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Abstract: This article explores the nonlinear vibration of beams with different types of nonlinearities.

The beam vibration was modeled using Hamilton’s principle, and the equation of motion was

solved using method of multiple time scales. Three models were developed assuming (a) geometric

nonlinearity, (b) material nonlinearity and (c) combined geometric and material nonlinearity. The

material nonlinearity also included both third and fourth nonlinear elasticity terms. The frequency

response equation of these models were further evaluated quantitatively and qualitatively. The

models capture the hardening effect, i.e., increase in resonant frequency as a function of forcing

amplitude for geometric nonlinearity, and the softening effect, i.e., decrease in resonant frequency

for material nonlinearity. The model is applied on the first three bending modes of the cantilever

beam. The effect of the fourth-order material nonlinearity was smaller compared to the third-order

term in the first mode, whereas it is significantly larger in second and third mode. The combined

nonlinearity models shows a discontinuous frequency shift, which was resolved by utilizing a set of

transition assumptions. This results in a smooth transition between the material and geometric zones

in amplitude. These parametric models allow us to fine tune the nonlinear response of the system by

changing the physical properties such as geometry, linear and nonlinear elastic properties.

Keywords: higher-order elastic constants; coupled nonlinearity; cantilever beam; multiple-scale

method

1. Introduction

The vibration of beams has been a problem of interest in several disciplines. A consoli-
dated theory of beam vibration was given by Lord Rayleigh in their two-volume treatise
on acoustics [1,2]. There are several modes of beam vibration such as longitudinal, tor-
sional, flexural and coupled modes depending the boundary condition. Isolating and
understanding the vibration modes has been very important in several disciplines across
physics and engineering applications. Understanding the nonlinear behavior of struc-
tures is significant for a variety of different applications including nonlinear resonant
ultrasound spectroscopy [3], SHM, defect detection [4] and vibrational analysis where
amplitude dependence is of interest [5]. Traditional analysis includes small amplitude
vibrations, which satisfy the linear assumptions in the governing equations, i.e., linearity
in strain-displacement, and stress±strain relationships. However, there are several mod-
ern engineering problems where the vibration amplitudes are much larger resulting in
nonlinear vibration. There are several bodies of work which have explored nonlinear
beam vibration using different types of nonlinearities [6±10]. Modeling vibration of a beam
requires defining the constitutive equations such as strain, strain displacement and the
stress±strain relationship.

There are four common sources of nonlinearity in a vibrating beam: (1) geometric
nonlinearity, i.e., nonlinearity in the strain-displacement relationship, (2) material non-
linearity, i.e., nonlinearity in the stress±strain relationship, (3) combined geometric and
material nonlinearity, and (4) physical nonlinearity arising from cracks and defects in
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the solid. Sources 1 through 3 are termed as classical sources of nonlinearity, while the
nonlinearity arising from cracks and defects is termed as nonclassical nonlinearity [11±15].
Of the classical sources, there is abundant literature on geometric nonlinearity of beams
since this applies to cases of thin beams which can undergo large deformations, such as thin
composite beams, microelectromechanical systems (MEMS), etc. [5,9,16±28]. This geometric
nonlinearity has also been studied using numerical methods [29,30]. Similarly, material
nonlinearity has also been studied in great detail for highly nonlinear materials such as
rubber [31,32]. Materials which exhibit weak nonlinearity relative to rubber have also been
studied using a Taylor series expansion of strain energy density [33,34]. Using a continuum
approximation, several researchers have presented nonlinear elastic models including
Birch [35], Murnaghan [36], Seeger and Buck, Thurston [37], Brugger [38], Wallace [39] and
several others. Nonlinearity in beam vibration often leads to a shift in resonant frequency
as forcing amplitude changes. This shift, observed as softening due to material nonlinearity
and hardening due to geometric nonlinearity, has been extensively investigated in the
existing literature [5,16,35,37]. While certain studies have examined the combined effects
on composite beams featuring a thin PZT layer [40] attached to a solid metallic structure,
wherein softening nonlinearity arises from the elastic constant of piezoelectric material
rather than the higher-order material nonlinearity of the base solid, there remains a notable
gap in the literature concerning nonlinear beam vibration incorporating both higher-order
material and geometric nonlinearities.

Several of the existing studies [41] use mathematical formulations which can simulate
a physical system. Typically, these models are further fitted to experimental data to obtain
a set of fitting coefficients which are used to define the system’s response. From an engi-
neering and physical point of view, parameterization of these models is very important,
since it can lead to the development of inverse problems which can further be used to
back-calculate important physical properties and not just extract coefficients. While a
mathematical model helps in the generalization of the problem, the parameterization helps
in direct application to engineering structures. Therefore, the objective of the present work
is to develop closed-form solutions for nonlinear beam vibration using a first principle’s
approach starting with the constitutive equations. This allows one to frame a parametric
model where the coefficients of the resulting equations can be related to physical param-
eters such as stiffness, density and beam dimensions. The models developed here will
use coefficients which can be calculated, and the unknown coefficients can be directly
inverted using experimental results in future work. Previously, the authors had developed
models based on geometric nonlinearity [34] and second-order material nonlinearity [3]
and validated with experiments. The present work extends this to a higher-order material
nonlinearity model including elastic constants up to fourth order and a combined geometric
and material nonlinearity model, both of which have not been explored in the literature.
The material nonlinearity has been studied in detail using both third- and fourth-order
elastic constants derived from the strain energy density formulation. The effect of the
nonlinear contributions towards the nonlinear response of the beam was observed for the
first three bending modes. For the sake of completeness and coherency, all four models
have been consolidated in the present article. Previous research on dynamics with mate-
rial nonlinearity investigates highly nonlinear materials like rubber which can have very
complicated stress±strain relationships. However, materials with weak nonlinearity such
as metals, plastics, etc., are mostly modeled using a Taylor series approximation of the
strain density function. The present study will explore classical nonlinear sources and
omit the non-classical case partly due to its complexity and since it has been dealt with
elsewhere [42,43]. However, the results from the classical model highlight the necessity to
develop a deeper understanding of the non-classical models.

This article is structured into theoretical models of nonlinear beam vibration, results
and the discussion. The geometric, material nonlinearity and combined nonlinearity models
are presented in model sections. The frequency response equations capture the nonlinear
shift of the resonant frequency as a function of the forcing amplitude. Nonlinearity of a
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cantilever beam is investigated using the first three bending modes. The models capture
the well-known softening and hardening nonlinearity that have been reported in the
literature. Additionally, the combined nonlinearity was captured using two models, which
show a continuous and discontinuous transition between the material and geometric
nonlinear zones.

2. Models

2.1. Geometric Nonlinearity

The present model follows the classical laminated plate theory (CLPT). According to
the Kirchhoff hypothesis, the displacements are given as follows:

w(x, y, z, t) = w0(x, y, t) (1)

where t is the time, and u0 and w0 are the in-plane and transverse mid-plane displacements.
The von Kármán-type nonlinear strain-displacement relationship is given by

εxx =
∂u0

∂x
+

1

2

(
∂w0

∂x

)2

− z
∂2w0

∂x2
(2)

Assuming the solid to be viscoelastic, a linear elastic stress±strain relationship together
with the Kelvin±Voigt damping term for the viscoelastic contribution is given by

σ = Eε + ηε̇ (3)

where E is the Young’s modulus which can be written as the stiffness matrix, η is the
Kelvin±Voigt damping term which controls the strain rate. Equation (3) can be written
as follows:

σ = σe + σv (4)

where σe is the elastic component of the stress±strain response, and σv is the viscoelastic
component.

By using the extended Hamilton’s principle,

δ
∫ T

0
(K − Π + W) dt = 0 (5)

where K is the kinetic energy, Π is the potential energy, and W is the work carried out by
non-conservative forces. The potential energy can be rewritten as Π = U + V, where U is
the elastic strain energy, and V is the potential energy change from conservative external
forces. Writing out each term separately,

δU =
∫∫∫

v
(σeδϵxx)dz dx dy (6a)

δV = −
∫∫∫

v
(Fδw(x, y))dz dx dy (6b)

δK =
∫∫∫

v
ρ0[

(

u̇0 − z
∂ẇ0)

∂x

)(

δu̇0 − z
∂δẇ0)

∂x

)

+ ẇ0δẇ0]dz dx dy (6c)

∂W = −
∫∫∫

v
(σvδϵxx)dz dx dy (6d)

∫ T

0

∫∫∫

v
(σe + σv)δϵxx − (Fδw0)− ρ0

[(

u̇0 − z
∂ẇ0

∂x

)(

δu̇0 − z
∂δẇ0

∂x

)

+ ẇ0δẇ0

]

dz dx dy dt = 0 (7)

Using Equation (4), the elastic and viscous stress can be rewritten, and Equation (7) can
be solved for a 1D cantilever beam as shown in Figure 1 to obtain the following equations
of motion:

(∂Nxx)/∂x = I0
∂2u0

∂t2
(8)
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∂

∂

(

Nxx
∂w0

∂x

)

+
∂2Mxx

∂x2
+ F = I0

∂2w0

∂t2
(9)

where Nxx and Mxx are the force and moment resultants, and I0 is the mass moment of
inertia. These are given by

Nxx =
∫ h/2

−h/2
σxxdz (10)

Mxx =
∫ h/2

−h/2
σxx zdz (11)

IMxx =
∫ h/2

−h/2
ρ0 zdz (12)

Figure 1. Schematic of 1D cantilever beam with nonlinear flexural vibrations.

Rewriting the nonlinear strain relationship in simpler notations,

ϵxx = u′
0 +

1

2
(w′

0)
2 − w′′

0 (13)

where the term u′
0 corresponds to a partial differential of u0 with respect to x.

Substituting Equations (13) and (3) into (10) and (11) gives

Nxx = A

(

u′
0 +

1

2
(w′

0)
2

)

− Bw′′
0 + µ1

(
u̇′

0 + w′
0ẇ0

′′)− µ2ẇ0
′′ (14)

Mxx = B

(

u′
0 +

1

2
(w′

0)
2

)

− Dw′′
0 + µ2

(
u̇0

′ + w′
0ẇ0

′′)− µ3ẇ0
′′ (15)

where

(A, B, D) =
∫ h/2

−h/2
C11(1, z, z2)dz (16)

(µ1, µ2, µ3) =
∫ h/2

−h/2
η(1, z, z2) dz (17)

For the nonlinear vibration analysis, the transverse displacement is expressed as

w(x, t) = q(t) p(x) (18)

where q(t) corresponds to the temporal function, and p(x) corresponds to the spatial
function or linear vibration mode shape. Substituting Equation (18) into force and moment
resultant equations, i.e., Equations (16) and (17) and re-substituting those into the equation
of motion, Equation (9), we can obtain the following nonlinear equation:

Èq + (ω2)q + (γ)q3 + (δ)q2 q + (α)q̇ = F (19)
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where

ω2 =
D

λ

∫ L

0
p pIVdx (20)

γ =
A

2λ

∫ L

0
p p′′dx

∫ L

0
(p′)2dx (21)

δ =
µ

2λ

∫ L

0
p p′′dx

∫ L

0
(p′)2dx (22)

α =
µ′′

λ

∫ L

0
p pIVdx (23)

λ = I0

∫ L

0
(p2)dx (24)

Let us restrict to the case of cantilever beam vibration; hence, the boundary conditions
are given by

w(0), w′(0), w′′(L), w′′′(L),= 0 (25)

Equation (21) represents the linear frequency, Equation (22) is the nonlinear parameter
arising from geometrical nonlinearity, and Equations (23) and (24) represent damping terms
arising from the Kelvin±Voigt model. The nonlinear equation can be solved by various
perturbation techniques, but in this work, the method of multiple time scales (MTS) [44]
has been used. Two time scales are introduced which give rise to

q(t, ϵ) = q0(T0, T1) + ϵq1(T0, T1) + ... (26)

where T0 = t and T1 = ϵt. This leads to the transformation of the derivatives of the
time scales

d

dt
= D0 + ϵD1;

d2

dt2
= D2

0 + 2ϵD0 D1 + ... (27)

This approach assumes small displacements along with small nonlinearity. It also
assumes that the nonlinearity, excitation and damping are all on the same scale ϵ . Hence,
with external harmonic excitation, the nonlinear equation is given by

Èq + (ω2)q + ϵ(γ)q3 + ϵ(δ)q2 q + ϵ(α)q̇ = ϵF sin(Ωt) (28)

Substituting Equations (26) and (27) into (28) and separating the coefficients of ϵ0 and
ϵ1 terms,

D2
0q0 + ω2q0 = 0 (29)

2D0D1q0 + D2
0q1 + ω2q1 + γq3

0 + D0δq3
0 + αq0D0 = Fsin(Ωt) (30)

The general solution of Equation (30) is given by

q0 =
(

A(T1)e
(iβT0) + ÅA(T1)e

(−iβT0)
)

(31)

The overall transverse displacement of the beam is given by Equations (31) and (18),
subjected to the boundary conditions, Equation (25). This gives the mode shape of the beam:

p(x) =
1√
L

{

cosh
( rnx

L

)

− cos
( rnx

L

)

+ Ri

(

sinh
( rnx

L

)

− sin
( rnx

L

))}

(32)

where rn is the nth root of the characteristic equation (1 + cos(r)cosh(r) = 0), and Ri is
given by

Ri =
cos(rn) + cosh(rn)

sin(rn) + sinh(rn)
(33)
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Substituting Equation (31) into (30) and isolating the secular terms (e(iβT0)) which
must vanish leads us to

2A′(iβ) + 3A2 ÅA + 3A2 ÅA − δ(iβ) + αA(iβ) = F/2e(iωT0) (34)

We introduce a detuning parameter ªτº defined as follows:

Ω = ω + ϵ τ (35)

We express A in polar form and introduce a new parameter φ as follows:

φ = τT1 − ωϕ (36)

A =
1

2
aeiϕ (37)

Substituting Equations (35)±(37) into (34) and separating the real and imaginary parts,

a′ =
1

2ω
Fsin(φ)− 3

8
a3δ − 1

2
αa (38)

aφ′ =
1

2ω
Fcos(φ)− 3a3

8ω
γ + aτ (39)

At steady state, the terms a′ and aφ′ will vanish. Hence by squaring and adding
Equations (38) and (39), the frequency response equation can be obtained as follows:

(
3

8
a3δ +

1

2
αa

)2

+

(

aτ − 3a3

8ω
γ

)2

=
F2

4ω2
(40)

2.2. Material Nonlinearity

The nonlinearity that manifests in the stress±strain relationship of a material is termed
as material nonlinearity. Weakly nonlinear materials have been traditionally described in
the area of condensed matter physics using a Taylor’s series expansion of the strain energy
density. This results in a polynomial expansion of the stress±strain relationship with the
higher -order nonlinear terms controlling the nonlinearity. The present study ia limited to
third-order and fourth-order strain terms which have been previously described from the
first-principles approach as given below:

σij = Cijklεkl + Mijklmnεklεmn + Kijklmnpqεklεmnεpq... (41)

2.2.1. Third-Order Elasticity

The displacements of the beam can once again be defined according to the Kirchhoff
hypothesis:

u(x, y, z, t) = u0(x, y, t)− z
∂w0

∂x
(42a)

w(x, y, z, t) = w0(x, y, t) (42b)

A linear strain-displacement relationship can be described by the von Kármán strains:

εxx =
∂u0

∂x
− z

∂2w0

∂x2
(43)

This form of strain-displacement relationship is a reduction in the nonlinear von
Kármán strains, with the nonlinear contribution being neglected. The only other equation
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that has to be defined is the stress±strain relationship. A formulation that is well described
in the literature is given by

σij = Cijklεkl + Mijklmnεklεmn (44)

where Cijkl is the linear stiffness of the material, otherwise known as the second-order
elastic constants (SOEC), and Mijklmn is given by

Mijklmn = Cijklmn + Cijlnδkm + Cjnklδim + Cjlmnδik (45)

where Cijkl is the third-order elastic constants. Using Voigt notation, these constants can be
rewritten as Cijkl → Cij and Cijklmn → Cijk . Since this is a one-dimensional beam model,
the constants can be written as

M = 3C11 + C111 (46)

Using Hamilton’s principle as shown earlier, the equations of motions can be obtained.
The in-plane force and moment resultants can now be defined as

Nxx = Au′
0 + Bw′′

0 + M1(u
′
0)

2 + M3(w
′′
0 )

2 − 2M2u′
0w′′

0 (47)

Mxx = Bu′
0 + Dw′′

0 + M2(u
′
0)

2 + M4(w
′′
0 )

2 − 2M3u′
0w′′

0 (48)

where,

(M1, M2, M3, M4) =
∫ h/2

−h/2
M(1, z, z2, z3) dz (49)

Expressing the transverse displacement as two separate variables as before, and
introducing a damping term α′ for the purpose of completeness, the equation of motion
can be written as

Èq + (ω2)q + (Γ)q3 + (∆)q2 q + (α)q̇ = F (50)

where

Γ =
M3

λ

∫ L

0
p (p′′)3dx (51)

∆ =
M3

λ

∫ L

0
p
(

p′′pIVdx + p′′′
)

− B

λ

∫ L

0
(p′′)2dx (52)

Solving Equation (50) using MTS as before, the frequency response equation can be
obtained as

( aα

2

)2
+

(

aτ − 3a3

8ω
Γ

)2

=
F2

4ω2
(53)

2.2.2. Fourth-Order Elasticity

The stress±strain relationship defined in Equation (44) is expanded to include the
fourth-order elastic constant [45]:

σij = Cijklεkl + Mijklmnεklεmn + Kijklmnpqεklεmnεpq (54)

where Cijkl is the linear stiffness of the material, otherwise known as the second-order elastic
constants (SOECs), Mijklmn is a combination of second- and third-order elastic constants,
and Kijklmnpq is a combination of second-, third- and fourth-order elastic constants. For a
one-dimensional beam model, the third-order constant can be written as

The fourth-order constant is given by

K =
3

2
C11 + 3C111 +

1

2
C1111 (55)
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Using Hamilton’s principle as shown in Section 2.1, the equations of motions can be
obtained. The in-plane force and moment resultants can now be defined as follows:

Nxx = Bw′′
0 + M3(w

′′
0 )

2 − K1(w
′′
0 )

3 (56)

Mxx = Dw′′
0 + M4(w

′′
0 )

2 − K2(w
′′
0 )

3 (57)

where

(K1, K2) =
∫ h/2

−h/2
K(z3, z4) dz (58)

Expressing the transverse displacement as two separate variables as before, and intro-
ducing a damping term α′ for the purpose of completeness, the equation of motion can be
written as

Èq + (ω2)q + (Λ)q2 + (Θ)q3 + (Φ)q4 q + (α)q̇ = F (59)

where

Λ =
M4

λ

∫ L

0
p
(

p′′pIV + (p′′′)2
)

dx +
B

λ

∫ L

0
(p′′′)2dx (60)

Θ =
M4

λ

∫ L

0
p (p′′)3dx +

K2

λ

∫ L

0

(

6 p p′′(p′′′)2 + 3 (p′′)2 pIV
)

dx (61)

Φ =
K1

λ

∫ L

0
p (p′′)4dx (62)

Solving Equation (59) using MTS, the frequency response equation can be obtained
as follows:

( aα

2

)2
+

(

aτ − 3a3

8ω
Θ

)2

=
F2

4ω2
(63)

2.3. Combined Geometric and Material Nonlinearity

To simulate the combined effect of geometric and material nonlinearity, a nonlinear
strain-displacement relationship described by the von Kármán strains is used along with
third-order stress±strain relationship. The strain-displacement relationship is given by

Nxx =
A

2
(w′

0)
2 − Bw′′

0 +
M1

4
(w′

0)
4 + M3(w

′′
0 )

2 − M2(w
′
0)

2w′′
0 (64)

Mxx =
B

2
(w′

0)
2 − Dw′′

0 +
M2

4
(w′

0)
4 + M4(w

′′
0 )

2 − M3(w
′
0)

2w′′
0 (65)

Expressing the transverse displacement as two separate variables as before, and intro-
ducing a damping term α′ for the purpose of completeness, the equation of motion can be
written as

Èq + (ω2)q + (Υ)q2 + (Ξ)q3 + (Ψ)q4 + (χ)q5 + (α)q̇ = F (66)

where

ω2 =
D

λ

∫ L

0
p pIVdx (67)

Υ =
B

λ

∫ L

0
p (p′′)2dx − B

λ

∫ L

0
p
(

p′p′′′ + (p′′)2
)

dx − M4

λ

∫ L

0
p pIVdx (68)

Ξ =
M3

λ

∫ L

0
p(p′′)3

︸ ︷︷ ︸

ΞMaterial

− M3

λ

∫ L

0
p
(

2(p′′)3 + (p′)2 pIV + 6p′p′′p′′′
)

dx
︸ ︷︷ ︸

ΞCoupled

+
A

2λ

∫ L

0
p p′′dx

∫ L

0
(p′)2dx

︸ ︷︷ ︸

ΞGeometric

(69)
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Ψ =
M2

λ

∫ L

0
3p (p′′)2 p′ + p p′′′(p′)2 + p (p′)2(p′′)2dx (70)

χ =
M1

4λ

∫ L

0
p (p′)4 p′′dx (71)

Solving Equation (66) using MTS, the frequency response equation can be obtained as

( aα

2

)2
+

(

aτ − 3a3

8ω
Ξ +

5a5

16ω
χ

)2

=
F2

4ω2
(72)

3. Results and Discussions

3.1. Model Evaluation

The developed models allow us to develop the frequency vs. magnitude resonance
curves. However, for a more quantitative comparison between the models, the nonlinear
frequency shift, i.e., the frequency at peak amplitude, was calculated as a function of the
applied force. The flowchart shown in Figure 2 outlines the algorithm to calculate the
change in frequency shift with the applied force. By incorporating respective boundary
conditions and nonlinearities, we established the relationships between the beam amplitude
(a), applied force (F) and detuning parameter (τ) as Equations (40), (53), (63) and (72) using
the developed models. Here, the detuning parameter τ is defined as f − ω, where f
represents the frequency of the applied force. Subsequently, the applied force and detuning
parameter were initialized as Fmin and τmin. For a given set of geometric and material
properties, the vibration amplitude (a) of the beam was solved for all applied force and
detuning parameters within the ranges (Fmin, Fmax) and (τmin, τmax) by incrementing F+, τ+.
The output is a set of frequency-response curves as shown in Figure 2. For each frequency-
response curve applied force, the frequency corresponding to the maximum amplitude
was identified, representing the resonant frequency of the beam under that force. Finally,
the nonlinear frequency shift, defined as the difference between the resonant and natural
frequencies, was plotted against the applied force. The developed models were evaluated
for a cantilever beam with specified geometric and material properties, detailed in Table 1,
considering the first three bending modes of the beam by substituting rn = 1.875, 4.694,
and 7.855 in Equation (33). The subsequent sections illustrate the impact of the applied force
on the nonlinear frequency shift resulting from various nonlinearities. In the case of a linear
beam, where nonlinearity is absent, there is no frequency shift in the resonant frequency.
Therefore, the resonant frequency becomes independent of the forcing amplitude.

Table 1. Descriptions and values of parameters used in the model. The values for parameters

correspond to iron.

Symbol Description Value

ρ0 Material Density 7850 kg m−3

C11 (E) Second Order Elastic Constant 205 GPa
M Third Order Elastic Constant −2425 GPa
K Fourth Order Elastic Constant 1530 GPa
G Shear Modulus 80 GPa
η Damping Coefficient 0.0007 Pa s
L Length of beam 76.2 mm
W Width of beam 12.7 mm
H Thickness of beam 7.29 mm
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Figure 2. Flowchart to calculate the nonlinear resonant frequency shift as a function of applied force

for a vibrating beam.

3.2. Geometric Nonlinearity

Equation (40) provides the relationship between the frequency shift (τ) and applied
force (F). In this case, the coefficient of cubic nonlinearity in Equation (19) is positive,
resulting in a rightward shift in resonant frequency for all the three modes as shown in
Figure 3. This hardening or stiffening effect is consistent with previously reported models,
numerical techniques and experiments in the literature [5,27,30,40].

Figure 3. Nonlinear shift in resonant frequency with change in applied force for a beam with only

geometric nonlinearity observed in (a) 1st mode, (b) 2nd mode and (c) 3rd mode.

3.3. Material Nonlinearity

The impact of third- and fourth-order material nonlinearity on the shift in resonant
frequency can be visualized by using Equations (53) and (63) in Figure 4, demonstrating
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the phenomenon across the first three bending modes. The material nonlinearity here
results in a leftward shift in resonant frequency which is consistent with the existing
literature [3,14,34,46]. As shown in Table 2, the cubic nonlinearity coefficient in both
cases are negative for all the three modes, but the difference between coefficients for two
cases are significantly higher in the second and third mode. The effect of this difference
is clearly shown in terms of the frequency shift in Figure 4. Interestingly, for the first
mode (Figure 4a), the effect of fourth-order material constant is nearly insignificant, but for
the second and third modes, the addition of fourth-order material nonlinearity showed a
significant difference in the frequency shift as shown in Figure 4b,c. As the third- and fourth-
order values exhibit opposite signs, the fourth-order nonlinearity counteracts the softening
effect induced by the third-order material nonlinearity. This phenomenon intensifies in
higher-order modes, as shown in Figure 4.

Figure 4. Change in resonant frequency shift with change in applied force in the beam with third-

order (K = 0) and fourth−order (K ̸= 0) material nonlinearity observed in (a) 1st mode, (b) 2nd

mode and (c) 3rd mode.

Table 2. Coefficients of cubic nonlinearity.

Parameters Nonlinearity 1st Mode 2nd Mode 3rd Mode

γ Geometric 1.59 × 1021 1.21 × 1027 1.01 × 1033

Γ Third order material −2.76 × 1021 −2.76 × 1028 −1.15 × 1035

Θ Fourth order material −2.65 × 1021 −1.33 × 1026 −9.41 × 1031

ΞMaterial Combined (material) −2.76 × 1021 _ _
ΞGeometric Combined (geometric) 1.59 × 1021 _ _
ΞCoupled Combined (coupled) 1.90 × 1022 _ _

χ Combined 1.53 × 1022 _ _

3.4. Combined Nonlinearity

Geometric nonlinearity requires large amplitude vibrations. Therefore, with the
increased amplitude of vibration, we can hypothesize that the material nonlinearity will be
dominant at the low amplitude range, and it will transition into geometric nonlinearity,
when the deformations are sufficiently large. From Equation (69), we can see that the
material, geometric and a coupled term determines the eventual nonlinear frequency shift.
The first model assumes that beam displacement a and forcing function F are related to
each other through some function. This assumption allows us to define regions where the
three terms in the coupled equation will manifest.

Model 1: We modify Equation (69) as

Ξ = A(ΞMaterial) + B(ΞGeometric) + C(ΞCoupled)

A = 1, B = 0, C = 0 i f − 1 < H(a) < 0

A = 1, B = 0, C = F(a) i f 0 ≤ H(a) < 1

A = 0, B = 1, C = 0 i f H(a) ≥ 0

(73)
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Here, H(a) is a function of beam deflection (a) which ranges from −1 to 1 with
an increase in a as shown in Figure 5. We assume that H(a) is a hyperbolic tangent
function, Tanh.

Figure 5. H(a) with change in beam deflection (a).

By using Equations (72) and (73), the effect of combined nonlinearity on the frequency
shift of the first mode is observed in Figure 6. In Figure 6, the various types of nonlinearity
influencing the frequency shift are portrayed through three distinct color-coded zones, each
denoting material, coupled and geometric nonlinearity, respectively. At lower amplitudes,
the material nonlinearity results in a leftward shift and with the increase in applied force,
the geometric and coupled effects begin to dominate, and hence, the nonlinear frequency
shifts rightward. The green region of the force is where the coupled term manifests. As can
be noted in Table 2, the coupled term is an order of magnitude larger than the geometric
term, which results in a higher rightward shift comparatively. However, with the increase
in applied force, it can be noted that the geometric nonlinearity is lower and hence results
in a sharp discontinuity. This discontinuous behavior seems erratic and abnormal for
physical systems.

Figure 6. Change in resonant frequency shift with change in applied force in the beam with material

and geometric nonlinearity using Model 1.

Model 2: To rectify the discontinuity, we introduce a different set of conditions given by

Ξ = A(ΞMaterial) + C(ΞCoupled)

A = 1, C = 0 i f − 1 < H(a) < 0

A = 1, C = H(a) i f H(a) ≥ 0

Ξ = ΞGeometric i f ΞMaterial + H(a)ΞCoupled ≥ ΞGeometric

(74)
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By using Equations (72) and (74), the effect of coupled nonlinearity on the nonlinear
frequency shift can be observed in Figure 7. Model 2 is able to generate a more continuous
behavior, wherein the leftward frequency shift due to material nonlinearity will transition
smoothly into a rightward shift into the geometric nonlinearity zone. This combined
shifting behavior has not been reported in the literature.

Figure 7. Change in resonant frequency shift with change in applied force in the beam with material

and geometric nonlinearity using Model 2.

4. Conclusions

The theoretical models developed here show the different nonlinear behavior resulting
from geometric, material and combined nonlinearity of a cantilever beam vibration. The
results indicate that in a nonlinear beam with cantilever boundary conditions, geometric
nonlinearity induces a hardening effect: as the forcing amplitude increases, the resonant
frequency of the beam rises. Conversely, material nonlinearity induces a softening effect: as
the forcing amplitude increases, the resonant frequency decreases. When both nonlinearities
are combined, the resonant frequency initially decreases due to material nonlinearity,
and then increases due to geometric nonlinearity as the amplitude further increases. In
the combined case, the model developed here is capable of capturing the transition of the
nonlinear effect from softening to hardening (left to right) as a function of the applied
load. Since the contribution of geometric and material nonlinearity depends on the beam
deflection, a function H(a) was assumed to be the hyperbolic tangent and was used to
regulate the cubic nonlinearity coefficient. While this assumption may not be valid for
all cases, the purpose of using it was simply to demonstrate a transition between the
material and geometric regions. Future studies will need to focus on determining the H(a)
empirically by fitting these models on experiments.
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