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ABSTRACT

Data on individual tree crowns from remote sensing have the potential to advance

forest ecology by providing information about forest composition and structure with

a continuous spatial coverage over large spatial extents. Classifying individual trees to

their taxonomic species over large regions from remote sensing data is challenging.

Methods to classify individual species are often accurate for common species, but

perform poorly for less common species and when applied to new sites. We ran a

data science competition to help identify effective methods for the task of

classification of individual crowns to species identity. The competition included data

from three sites to assess each methods’ ability to generalize patterns across two sites

simultaneously and apply methods to an untrained site. Three different metrics were

used to assess and compare model performance. Six teams participated, representing

four countries and nine individuals. The highest performing method from a previous

competition in 2017 was applied and used as a baseline to understand advancements

and changes in successful methods. The best species classification method was based

on a two-stage fully connected neural network that significantly outperformed the

baseline random forest and gradient boosting ensemble methods. All methods

generalized well by showing relatively strong performance on the trained sites
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(accuracy = 0.46–0.55, macro F1 = 0.09–0.32, cross entropy loss = 2.4–9.2), but

generally failed to transfer effectively to the untrained site (accuracy = 0.07–0.32,

macro F1 = 0.02–0.18, cross entropy loss = 2.8–16.3). Classification performance was

influenced by the number of samples with species labels available for training, with

most methods predicting common species at the training sites well (maximum F1

score of 0.86) relative to the uncommon species where none were predicted.

Classification errors were most common between species in the same genus and

different species that occur in the same habitat. Most methods performed better than

the baseline in detecting if a species was not in the training data by predicting an

untrained mixed-species class, especially in the untrained site. This work has

highlighted that data science competitions can encourage advancement of methods,

particularly by bringing in new people from outside the focal discipline, and by

providing an open dataset and evaluation criteria from which participants can learn.

Subjects Ecology, Computational Science, Data Science, Forestry, Spatial and Geographic
Information Science

Keywords Airborne remote sensing, Species classification, National ecological observatory
network, Data science competition

INTRODUCTION
High resolution remote sensing imagery provides critical information about the presence

and types of organisms within and among ecosystems at scales beyond those observable

using field techniques. Inventory data from remote sensing, such as the location, size, and

species identity of individual trees is useful for ecological studies and the management of

forests (White et al., 2016), including studies of population dynamics (Clark et al., 2004;

Kellner & Hubbell, 2018), vegetation phenology (Wu et al., 2016; Park et al., 2019), biomass

and carbon (Duncanson et al., 2015; Jucker et al., 2016), foliar properties (Zheng et al., 2021;

Marconi et al., 2021), and species composition and biodiversity (Baldeck et al., 2014;

Rocchini et al., 2016; Baena et al., 2017). While it is often useful to gather information from

remote sensing at the stand or forest level, critical processes for ecology, ecosystem services

and wood production, such as growth and mortality, occur at the individual scale.

Species identity at the individual scale is crucial for models of biodiversity, and plays a

significant role in parameterizing models for ecosystem services, habitat modeling, and

forestry (Duncanson et al., 2015; Barber et al., 2022). Species classification models have

been a long-standing challenge in remote sensing of forests, with complexity especially in

dense forests, due to weakly defined edges among trees, large intra-class variance in tree

representation, and high local diversity within a forest. Early work used spectral features,

texture-based features, random forests and support-vector-machines, band ratios within

the visible and NIR, and other crafted-features (Fassnacht et al., 2016; Ballanti et al., 2016;

Shi et al., 2018; Modzelewska, Fassnacht & Stere�nczak, 2020). These initial models often

focused on higher-order taxonomic labels, such as ‘Birch’ vs. ‘Pine’, and were limited to less

than 10 classes (Persson et al., 2004; Heikkinen et al., 2010). The emergence of deep

learning networks in computer vision, combined with greater data availability, led to a
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large number of publications combining deep learning with a variety of sensors and data

acquisition platforms (Fricker et al., 2019; Kattenborn et al., 2021; Mäyrä et al., 2021;

Weinstein et al., 2023). A defining challenge of individual species classification is the

fine-grained nature of the task, with subtle differences among co-occurring species, often

within the same taxonomic genus. This challenge is compounded by a lack of training data,

especially for rarer species, and the natural long-tailed nature of biodiversity leads to a

massive imbalance between dominant and rare classes. While there are recent efforts to

combat class-imbalance in machine learning for ecology (Nguyen, Demir & Dalponte,

2019; Hemmerling, Pflugmacher & Hostert, 2021; Miao et al., 2021), there remains

significant areas for improvement before models can be used for operational analysis at the

landscape and continental scales.

Data science competitions are a unique way to advance image processing methods for

particular applications (Carpenter, 2011). These competitions provide a standardized

dataset and criteria for evaluation, and have the potential to draw expertise from different

application domains because of the focus on data science tasks that are found in many

applications (Dorr et al., 2016; Marconi et al., 2019; Van Etten, Lindenbaum & Bacastow,

2019). While competitions have allowed for the advancement of many applications in data

science, ecology is just beginning to use this format for democratizing method-building

(e.g.,Humphries et al., 2018; Little et al., 2020), largely due to the recent availability of large,

openly available ecological datasets such as from the National Ecological Observatory

Network (NEON).

The National Ecological Observatory Network is a 30-year effort of the National Science

Foundation to collect standardized organismal, biogeochemical, and remote sensing data

over 81 sites in the US from 20 distinct ecoclimatic domains (Schimel et al., 2007). The data

provided by NEON covers a broad array of ecosystem components including field data on

trees and associated airborne remote sensing imagery. NEON data is ideal for use in data

science competitions because it is openly available, well documented, and part of a massive,

continental-scale data collection effort. Therefore, methods and lessons learned from the

competition can be applied to a large-scale open dataset being used by large numbers of

researchers.

The first competition using data from the NEON was run in 2017 and was aimed at

generating species predictions of individual tree crowns in a single temperate forest

(Marconi et al., 2019). The 2017 competition was instrumental in advancing methods and

in establishing a framework for providing data and evaluating submissions. The 2017

competition identified the most effective methods for delineating tree crowns from

airborne remote sensing data, aligning delineations to field data, and assigning a species

label to delineations. The results of the 2017 competition showed the most successful

approaches to species classification require data cleaning to remove noise and outliers

prior to analysis, and incorporate uncertainty in predictions show the most promise for

future applications.

While the 2017 competition was an important step towards better methods for

converting remote sensing to ecological information, it has limited practical application

because it was limited to a single site and relied on a small and labor-intensive field dataset
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collected. Classification methods will be most useful in generating ecological data of

individual trees if they achieve high accuracy when: (1) trained on standard forest

inventory and remote sensing data, (2) applied across large spatial scales and diverse forest

types, and (3) when making predictions in forests where the models have not been trained.

The complexity of using standard forest inventory data across multiple sites presents

challenges for model performance because of the highly imbalanced multi-species datasets,

differences in the species present at different sites, and variability in the remote sensing

data due to differences in conditions when the data were collected. While the classification

remains critical to the needs of ecologists, an expansion in the diversity of sites and data is

required to effectively achieve this task.

To address these needs, a new iteration of the 2017 competition was run that focused on

classification using a dataset that allowed for within and cross site evaluation using

multiple metrics. This current iteration of the competition uses data from three NEON

sites in the southeastern United States to compare how well methods perform on standard

forest inventory data at one site, and how well methods perform when applied to a new

site. Here we present the results of the competition that includes a comparison of scores

from participating teams, a summary of the methods used, and a discussion of how this

competition advances our ability to classify individual trees using existing inventory and

remote sensing data.

MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint (https://doi.org/10.

1101/2021.08.06.453503) (Graves et al., 2021).

Study sites

The competition used multiple NEON data products from three sites in combination with

data collected by members from our research team. The three NEON sites in the

southeastern United States (Fig. 1) used in this study are part of three separate NEON

ecoclimatic domains and represent distinct environmental, geographic, and vegetative

characteristics (Thorpe et al., 2016). The Ordway-Swisher Biological Station in Putnam

County, Florida (OSBS, Southeastern domain, 03) is a mixed forest of hardwood and

conifers and is primarily managed for maintaining upland pine forests. The canopy of the

pine forests is dominated by Longleaf pine (Pinus palustris) and subcanopy Turkey oak

(Quercus laevis) with a grass and forb understory. The forests are on deep sandy soil and

are managed with prescribed fires at 3–4 year intervals (Krauss, 2018a). More mesic forests

are also present at the site, specifically around large water bodies, and contain a mix of

pines and hardwood species (see site species list in Appendix A). Mountain Lake Biological

Station in the Appalachian mountains of Virginia (MLBS, Appalachians and Cumberland

Plateau domain, 07) is a high-elevation forest typical of Southern Appalachia with a closed

canopy dominated by Red maple (Quercus rubrum) and White oak (Quercus alba)

(Krauss, 2018b). In MLBS, pine species are rarer than at Ordway Swisher Biological Station

(OSBS) and Talladega National Forest (TALL), and there is a greater abundance and

diversity of canopy hardwood species (see site species list in Appendix A). Talladega
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National Forest in west-central Alabama (TALL, Ozarks complex domain, 08) is similar to

OSBS in management regimes and species in the upland longleaf and loblolly pine forests

(Pinus palustris and Pinus taeda, Krauss, 2018c). Similar to OSBS, TALL has deciduous and

mixed forest types with a closed canopy and variety of hardwood species in more mesic

areas (see site species list in Appendix A). These wetter forests in TALL have some species

in common with MLBS (e.g. Liriodendron tulipifera and Quercus alba). In our species

dataset, there are 11 species in TALL that are found in either MLBS or OSBS, and 10

species that are only in the TALL dataset.

NEON data

The competition used NEON data from two standard collections; remote sensing data and

field-collected data. The remote sensing data were generated by the NEON Airborne

Observation Platform (AOP) and are provided as four different products, each one

measuring different properties of the vegetation and the ground surface (Appendix A,

Table A1). The AOP data products are high-resolution orthorectified camera imagery

(RGB), discrete return LiDAR point clouds (LAS), LiDAR-derived canopy height model

raster (CHM), and spectrometer orthorectified surface directional reflectance—mosaic

Figure 1 Map of the three study sites and domains of the National Ecological Observatory Network
(NEON). The sites are part of three separate NEON ecoclimatic domains and represent distinct envir-
onmental, geographic, and vegetative characteristics. The map of the USA shows the NEON domains.
To evaluate the ability for methods to apply within sites, the Ordway Swisher Biological Station (OSBS)
and Mountain Lake Biological Station (MLBS) were used for training and testing (green circles).
To evaluate the ability for methods to apply to new sites, the Talladega National Forest (TALL) was only
used for testing (orange triangle). Full-size DOI: 10.7717/peerj.16578/fig-1

Graves et al. (2023), PeerJ, DOI 10.7717/peerj.16578 5/26



hyperspectral surface reflectance (HSI). The data products were downloaded using the

NEON API and the neonUtilities R package (Lunch et al., 2020). We used the most recent

data from the start of the competition: April 2019 for TALL, September 2019 for OSBS,

and May 2018 for MLBS. NEON aims to collect airborne data for a minimum of 100 sq km

at each site during peak vegetation greenness, when the solar angle is above 40 degrees, and

with less than 10% cloud cover (Kampe et al., 2010). For this competition, 20 m × 20 m

image subsets were extracted from the original 1 square km tiles downloaded from NEON.

Each 20 m × 20 m image subset is either associated with a NEON field plot or with trees

that occur outside NEON field plots but were manually mapped in the field by the research

team.

The species labels in the training data were collected through the NEON Terrestrial

Observation System (TOS). The data contain information on individual tree identifiers,

location of trees relative to sampling locations (i.e., distance and azimuth from a central

location), species and genus labels, and measures of salient structural attributes. The field

attribute that was directly used in the competition was the taxonomic species information

that is described by its scientific name, which includes a genus and species classification.

To simplify the taxonomic species information, each scientific name is simplified to its

unique taxonomic identification code (taxonID). More information about the data

products and the field data and the list of species classes and taxonomic codes is provided

in Appendix A.

Individual tree crown data

Participants were given bounding boxes labeled with the taxonomic species in the training

dataset and generated species predictions for unclassified bounding boxes in the test

dataset. Each bounding box represents an individual tree crown (ITC) and was generated

by the research team since they are not a standard NEON product. Because ITC data are

time-intensive and difficult to generate, the research team used a combination of two

different approaches to produce both a reasonably large number of labeled data for

training and precise data for evaluation. Both ITC datasets were generated by experts who

are familiar with the ecology of the sites.

To generate ITC data for training the research team in the lab visualized multiple

remote sensing datasets and field inventory data from NEON for all tree crowns in the

20 m × 20 m image subsets to draw boxes round individual tree crowns. The 20 m × 20 m

subsets were located at NEON field plots (specifically over a subplot of the distributed

plots) for which surveys of geolocalized tree stems were available from the NEON

vegetation structure dataset. The locations of these plots was determined by NEON

through a stratified-random spatial balanced design as to capture the variation of the site

and allow for robust statistical analysis of the data (Thorpe et al., 2016; Barnett et al., 2019;

Meier, Thibault & Barnett, 2023). In the training data, the average distance from one plot

to its nearest plot is 246 m. Plot data and locations are available from NEON and maps of

each site and the locations of the plots are included in Appendix A.
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The training data had 409 ITCs from 39 plots at OSBS and 648 ITCs from 46 plots at

MLBS (Fig. 2). Each ITC bounding box was assigned a species label based on the location

of individual stem data in the NEON vegetation structure dataset that was determined to

match the ITC. To minimize the chance of mislabelling bounding boxes we limited

assignment of species labels to boxes that: (1) could clearly be linked to a single stem from

the field or a single species in cases where multiple conspecific stems could be candidates;

(2) where the field stem was not labeled as fully shaded; (3) where the field stem was not

labeled as dead; and (4) where the height of the field stem was not more than 4 m lower

than the maximum value of the LiDAR-based canopy height model within the bounding

box (when field stem height was available). Those bounding boxes that did not qualify were

labeled as unknown species and were not used for the species classification task.

To generate even more precise ITCs for evaluation, the research team created bounding

boxes and identified species for a non-random sample of tree crowns directly from the

field. These field-based ITCs are not directly overlapping with the NEON plots. The testing

data had 218 field-based ITCs at OSBS, 39 at MLBS, and 104 at TALL. More information

about how ITC data were generated and how they were related to the field data from

NEON is provided in Appendix A.

Importantly, for this study ITC data can be summarized as polygons that represent the

spatial extent of individual tree canopies. We provided 2-dimensional rectangular

polygons (i.e., bounding boxes) with four vertices at the maximum North/South and East/

West directions as a proxy of individual crowns. This strategy is different from what is

commonly used for forest and remote sensing methods that use more detailed polygons

with many vertices to delineate more precise crown boundaries and shape (e.g., Dalponte

et al., 2015). We provide bounding boxes rather than multi-vertex polygons because boxes

are a common output of most computer vision methods to identify, extract, and classify

objects in an image (Wäldchen & Mäder, 2018). In this way the competition allowed for

Figure 2 Data used for classification training and testing. Data listed for each of the three sites from
the National Ecological Observatory Network (NEON); OSBS, Ordway Swisher biological station; MLBS,
Mountain Lake Biological Station; TALL, Talladega National Forest. Example plots are from TALL. Only
RGB data are shown, but RS data include all four remote sensing data products (Appendix A) and are
given in the train and test dataset. For each site, the numbers are (1) the number of individual tree crown
delineations (ITC), and (2) the number of RS 20 m × 20 m plots (in parentheses). For ease of visuali-
zation, the image of the Test-submitted only shows the probability for four taxonID classes for one
ITC. Full-size DOI: 10.7717/peerj.16578/fig-2
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models to be developed on training data from separate crown detection and delineation

methods.

Solicitation and team participation

The competition was announced on February 3rd, 2020 and advertised to individuals and

communities focused on remote sensing, image processing, and forest ecology. We also

contacted the 109 people who had registered from the 2017 competition. In total, there

were 130 registrations for this second competition. Submissions were received from four

participating teams (Appendix B, Table B1).

All teams were allowed up to four submissions per task. Submissions made prior to the

final submission were evaluated and scores were returned. Pre-submissions were allowed

to ensure submissions were properly formatted and provide teams with feedback on model

performance. The final submission deadline was extended by 2 months after the train and

test data were released. This was done to allow teams more time to work with the data

given the challenges associated with COVID-19. The number of pre-submissions was

limited to reduce the chance of artificially increasing performance indirectly by iteratively

learning method performance from the test set. The number of pre-submissions varied by

team, with five pre-submissions from the Fujitsu and Intellisense CAU teams (an

additional submission allowed due to timeline extension), four submissions for Jeepers

Treepers, and two for Más JALApeñoS.

The original intent of the competition was for individual teams to submit short methods

and results articles describing the approaches and performance of their own methods.

However, due to the COVID-19 pandemic this became untenable for most teams, with

only one team, Jeepers Treepers, submitting the associated companion article (Scholl et al.,

2021). For details of Jeepers Treepers methods on the below tasks see Scholl et al. (2021).

For details of all other teams’ methods (and summaries of Jeepers Treepers) see

Appendix B.

Classification task

The data were split into training and testing datasets where the training data allowed for

the development and self-evaluation of models and the testing data was used to evaluate

the team methods. Training data included ITCs for the OSBS and MLBS sites, which

consisted of 1057 ITC delineations with taxonomic species labels for 85 plots and all

remote sensing data products (clips of 20 m × 20 m around each plot; Fig. 2, “Train”). Data

were split at the plot-level where all ITCs within a plot were assigned as train or test and

therefore spatially distant from each other. This was to reduce the effects of spatial

autocorrelation in model development due to the similarity of neighboring pixels

(Karasiak et al., 2022). Participants could use any of the remote sensing and field data for

training their models since this represents a common scenario where models are developed

using data from inventory plots. No TALL data were provided in the training data.

The testing data provided to the participants were 353 separate plots with associated
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remote sensing data, and 585 ITC delineations at the OSBS, MLBS, and TALL sites (Fig. 2,

“Test-provided”). The ground truth species labels were withheld from the teams and used

for evaluation by the research team (Fig. 2, “Test-ground truth”). Participants submitted

the probability of each ITC belonging to one of the taxonomic classes (Fig. 2, “Test-

submitted”). The predictions were submitted as a probability from 0 to 100% that the ITC

belonged to the associated species class. Providing the ITC bounding boxes kept this task

focused on classification methods rather than having participants also incorporate

detection and delineation approaches prior to or after classification.

Significant features of this dataset, and forest remote sensing data in general, are class

imbalance in the training data, and a difference in species composition and relative

abundances between the training data and the test data. Due to the nature of these data, the

ability to train on imbalanced data and predict species with species identities and

abundances that differ between the training and testing datasets is an important challenge

addressed in the competition. The training dataset for the OSBS andMLBS sites had a total

of 33 distinct species classes and two genus classes where the species was unknown (Pinus

and Quercus), ranging from 1–302 individuals per class (Fig. 3). This distribution

represents the composition and relative abundance of canopy trees in the NEON plots and

Figure 3 Distribution of samples and reflectance. (A) Distribution of samples per species class (tax-
onID) for each dataset. The number of samples for each taxonomic class differs for all sites. Taxonomic
class is arranged based on the number of data points in the train data. (B) Hyperspectral reflectance for
each data group. Reflectance sampled from 100 random pixels of 10 random 20 m × 20 m plots for each
site in the training and test data. Mean (thick lines) and standard deviation (vertical lines) are calculated
for each of the three data groups. Full-size DOI: 10.7717/peerj.16578/fig-3
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therefore the data available from forest inventory plots that are used to develop and test

classification models. The test data for OSBS and MLBS both show unequal distributions

of data among species classes. The test data for both sites include 15 species in the training

data, and both sites include species in the test data that are not part of the training data

(OSBS: 11 species, MLBS: five species). Furthermore, while the test data for TALL has less

imbalance across the species classes than the training data at OSBS and MLBS, it includes

only 10 of the species from the training data and introduces 11 new species that are not

part of the training data (Fig. 3 as the “Other” class). All new species in the test data have

few samples and therefore could not be included in the test and train data. In this way, the

external TALL site tests not only the ability of the models to be applied to new remote

sensing data, but also to a new site with different species composition.

Two additional challenges for applying methods to the untrained site were differences in

species composition and spectral variation among sites. Species that occur in the test data

but not in the train data are grouped together in an “Other” class in the test data. Creating a

mixed-species “Other” class that contains species with low samples is a common practice

in species mapping because there is insufficient data to accurately train and test each class

individually (for example Baldeck et al., 2014). Participants were allowed to include a

species class with the label “Other” in their submissions. The “Other” class can be used to

indicate a probability that an ITC is a species that is not represented in the training data

and is therefore likely a new species in the test dataset that was not seen in the train dataset.

Finally, spectral differences among the sites and training and testing data are also an

important feature of the dataset that could impact the ability to apply methods to an

untrained site (Fig. 3).

Evaluation of the classification task

Classification was evaluated with three class-level metrics to assess the performance across

teams; two hard-classification metrics that require a single species class label for each

crown (Grandini, Bagli & Visani, 2020) and one soft-classification metric that uses the

probability of a crown belonging to any trained species. Accuracy, a common metric in

remote sensing classification studies, is the number of samples correctly predicted out of

the total number of samples. Since accuracy does not take into account the class-level

scores, accuracy is influenced by variable performance and sample size of classes. In this

dataset, the class PIPA2 (Pinus palustris) is the dominant class so accuracy is heavily

influenced by the model performance for that class. Alternatively, a common classification

evaluation metric that is not influenced by class sample size is macro F1. Macro F1 is an

aggregate F1 metric of class-level performance, where F1 is the harmonic mean of class

precision and recall and is given by Eq. (1), where P is precision, R is recall, TP is the

number of true positives, FP is the number of false positives, and FN is the number of false

negatives. Macro F1 is the unweighted mean of class F1 and is given by Eq. (2), where C is

the set of species classes, Pc is the precision of species class c, Rc is the recall of species class

c, and |C| is the number of elements of set C. Macro F1 is a useful evaluation metric when
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there is imbalance in the class size and variable prediction performance. In this dataset, the

class PIPA2 has the same influence as each class in the macro F1 score.

F1 ¼ 2 �
P � R

P þ R
¼

TP

TP þ 0:5 FP þ FNð Þ
(1)

macro F1 ¼
1

Cj j

X

c2C

F1c ¼
1

Cj j

X

c2C

2PcRc

Pc þ Rc
: (2)

The final model-level metric is cross entropy loss, which is a metric commonly used to

quantify the performance of multi-class classifiers where all samples are predicted with a

probability of belonging to each class. The metric measures the degree of uncertainty in the

predictions of the model. Cross entropy loss (Shannon, 1949; Chen, Kar & Ralescu, 2012) is

a good measure of model robustness particularly in cases where new classes are introduced

into the test set because the metric can capture how the model responds to an increase in

test data entropy. Models that have a stronger ability to differentiate between learned

classes and new classes have lower cross entropy loss scores and can be considered more

robust.

Finally, a confusion matrix of all predictions and class-level precision and recall scores

were calculated for all team predictions combined to identify classes that are commonly

confused across methods. Precision, or user accuracy, is the percentage of instances

classified as positive that are actually positive. High precision means a low commission

error for the class where there are few predictions that are not true. Recall, or producer

accuracy, is the percentage of positive instances correctly classified as positive. High recall

means a low omission error for the class where there are few missing predictions.

Evaluation scores and confusion matrices were calculated with the scikit-learn package for

python (Pedregosa et al., 2011). The evaluation code is available in the Supplemental

Material.

Classification algorithms

A gamut of classification algorithms were used in the competition, with three teams

favoring neural network-based approaches and two teams favoring decision tree-based

approaches (Table 1). The winning method from the 2017 competition used principal

Table 1 Classification evaluation metrics for participating teams.

Team Method Data used Accuracy Macro F1 Cross entropy loss

Fujitsu satellite Two-stage fully connected neural network HSI 0.55 0.32 3.6

Intellisence CAU 1D-convolution neural network HSI, CHM 0.52 0.24 7.0

Más JALApeñoS Extreme gradient boosting HSI, CHM 0.50 0.14 2.4

Jeepers Treepers Two-stage neural network: RetinaNet +
multimodal neural network

RGB, HSI, LiDAR
point cloud

0.46 0.09 9.2

Stanford-CCB (baseline) Random forest and gradient boosting ensemble HSI 0.44 0.13 7.4

Note:
Scores are from test data from only the OSBS and MLBS sites. Lower scores are better for cross entropy loss. HSI, hyperspectral reflectance; CHM, canopy height model;

RGB, True color image. Bold values indicate the best score among the teams for each evaluation metric.
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components analysis (PCA) to reduce the dimension of the HSI images to 40 features, and

then used an ensemble of a random forest classifier and a gradient boosting classifier

(Anderson, 2018). This method was used to generate baseline results.

Only one team used only the HSI data and all other teams use LiDAR data, either as the

CHM or the point cloud. The methods are summarized here and additional details are

provided in Appendix B. The Fujitsu Satellite team used only the HSI data in a two-step

process. First, they used a neural network to encode pixel HSI data in a 2,048-dimension

feature vector. The data was clustered to create crown-level feature vectors. The crown

level features were put through a 3-layer fully connected neural network with Rectified

Linear Unit (ReLU) activation and softmax output layer for the final species classification.

The Jeepers Treepers team fused RGB, HSI, and LiDAR data into a neural network model.

Their method first used RGB crown data to train a pre-trained (from ImageNet dataset)

ResNet convolution neural network (CNN). The vector of probabilities derived from the

ResNet was concatenated with the HSI reflectance pseudo-waveform data from the LiDAR

point cloud. The concatenated vector was fed through a two-layer multi-layer perceptron

with a customized soft-F1 loss function for final classification, and predictions with high

uncertainty were labeled as “Other”. The Más JALApeñoS team’s method applied the

Extreme Gradient Boosting decision-tree method to HSI data that was first filtered at a

pixel level using LiDAR heights. The height-filtered pixels were further filtered using

PCA-based outlier removal before application of PCA based dimension reduction.

The dimensionally reduced data was run through the Extreme Gradient Boosted model

with parameters chosen with a partial grid search. Pixel class probabilities were averaged

for the final crown classification. The “Other” class was generated during training by

grouping less abundant species into a single “Other” class. Finally, the Intellisense CAU

team’s method was based on a one-dimensional CNN applied to HSI pixels. Small classes

were resampled to handle the imbalance. The CNN consisted of a convolutional layer,

max-pooling layer, a fully connected layer and output. The output was filtered using

LiDAR data to remove ground pixels.

RESULTS

Overall performance

For the trained sites (OSBS and MLBS) accuracy of team methods ranged from 0.46–0.55

and was higher than the baseline random forest and gradient boosting ensemble method

(accuracy = 0.44, Fig. 4, Table 1). For all teams, macro F1, the metric that equally weighs all

species classes, was considerably lower than accuracy (0.09–0.32), and all but one team had

higher macro F1 than the baseline (0.13). Cross entropy loss, that takes into account

uncertainty in the prediction, ranged from 2.4–9.2, with all but one team outperforming

the baseline score of 7.4 (lower is better). The Fujitsu Satellite team’s two-stage fully

connected neural network approach had the strongest performance for the two

hard-classification evaluation metrics (accuracy = 0.55, macro F1 = 0.32) and the

second-best performance for cross entropy loss (cross entropy loss = 3.6, Table 2).

The Más JALApeñoS extreme gradient boosting method showed the best performance for

cross entropy loss (cross entropy loss = 2.4).
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Table 2 Prediction metrics for taxonomic class of all team predictions.

TaxonID Precision Recall F1

ACRU 0.16 0.38 0.23

CAGL8 0.07 0.01 0.02

LITU 0.57 0.48 0.52

Other 0.31 0.22 0.26

PINUS 0.03 0.08 0.04

PIPA2 0.66 0.89 0.76

PITA 0.17 0.01 0.02

QUAL 0.30 0.20 0.24

QUGE2 0.13 0.15 0.14

QULA2 0.35 0.34 0.34

QUNI 0.18 0.11 0.14

QURU 0.32 0.50 0.39

ROPS 0.70 0.30 0.42

TSCA 0.80 0.16 0.27

Note:
Values from aggregated confusion matrix. Taxonomic classes with the highest value for each metric are bolded.

Taxonomic classes without predictions (with a value of 0) have been removed from the table (ACSA3, FAGR, NYSY,
QUERC, QUHE2, QUMO4). Precision is the inverse of commission error and recall is the inverse of omission error.
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All methods performed substantially worse on the untrained site (TALL) than the

trained sites (OSBS and MLBS), with accuracy ranging from 0.07–0.32 and macro F1

ranging from 0.02–0.18. The highest scores were from the Fujitsu Satellite team’s two-stage

fully connected neural network and the lowest accuracy from the Jeppers Treepers’

RetinaNet method. While cross entropy loss scores were better (lower) for all teams on the

trained sites, the two methods with the lowest cross entropy scores performed similarly for

the trained and untrained sites (Fujitsu Satellite = 4.6 and Más JALApeñoS = 2.8). Since

cross entropy loss takes into account the uncertainty in predictions, these results indicate

having an uncertain model may be advantageous when applying it to new sites.

Results by species

Model performance varied widely for predictions of individual species classes, with the

general pattern of better performance for the most common species and poorer

performance for the least common species (Fig. 5). The most common species in the

dataset (Fig. 3) is PIPA2 (Pinus palustrus, Longleaf pine), which is a dominant canopy
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species in the conifer forests in parts of OSBS and TALL. For all team methods, PIPA2 was

the best-scoring taxonomic species class, with F1 scores ranging from 0.73–0.86 in the

trained sites. For the aggregate predictions for all teams, recall (0.89) for PIPA2 was higher

than precision (0.66, Table 2), which indicates that most models tend to over predict

PIPA2 relative to other species. As with the overall accuracy metrics, all methods predicted

PIPA2 more accurately at the trained sites than at the untrained site (F1 = 0.12–0.54),

showing a consistent pattern of a decrease in F1 of approximately 0.35 for all teams.

The Jeepers Treeper’s RetinaNet method showed the largest difference between trained

and untrained PIPA2 performance (F1 on trained = 0.80 and untrained = 0.12) showing

the method was unable to learn features of the species that translated accurately to a new

site.

What contributed to the high macro F1 scores of the top two methods was their ability

to predict some of the less abundant species (Fig. 5), specifically Liriodendron tulipifera

(LITU, Tulip tree), Tsuga canadensis (TSCA, Eastern hemlock), and Robinia pseudoacacia

(ROPS, Black locust). For example, these methods had F1 scores of 0.75–0.77 for LITU in

comparison to other teams and the baseline where F1 was 0–0.42. The top methods were

responsive to the potentially distinct spectral signature of LITU based on it being

taxonomically unique as the only species in the Liriodendron genus, regardless of the low

number of samples in the training data (17 train samples, Fig. 3). In addition, TSCA, a

conifer species found only at the MLBS site, was not predicted by three methods (baseline,

MaS JALApeñoS, and Jeepers Treepers), yet had F1 scores of 0.5 and 0.57 for the Fujitsu

Satellite and Intellisence CAU teammethods. A similar result was seen for ROPS, a distinct

species because it belongs to a legume family, Fabaceae.

All methods performed better than the baseline in predicting a mixed-species “Other”

class. Three teams performed similarly in predicting the “Other” species class at the OSBS

and MLBS sites with F1 scores of 0.21–0.27 (Fig. 5). The MaS JALApeñoS team, which

created an “Other” class in the training dataset by grouping classes with fewer than three

samples saw a big difference between the trained and untrained sites (F1 = 0.41 and 0.03,

respectively). The Jeepers Treepers team use post-processing by assigning predictions with

high uncertainty as “Other”, which resulted in similar scores in the trained and untrained

sites (F1 = 0.21 and 0.22, respectively). An encouraging result is that two methods (Fujitsu

Satellite and MaS JALApeñoS) had high F1 scores of 0.40 and 0.41, respectively, for the

“Other” species class at the TALL site (Fig. 5). These two methods also had the best

performance as measured by cross entropy loss, suggesting that the methods that did well

when incorporating uncertainty in the prediction are able to identify untrained classes

when applied to a new site.

The all-team aggregated confusion matrix (Fig. 6), individual team confusion matrices

(Appendix B), and aggregated precision and recall scores (Table 2) show patterns of

misclassification within and across the Pinus and Quercus species. For example,

commission errors for PIPA2 (precision = 0.66) were mostly due to confusion with a

taxonomically and structurally similar Pinus species (PITA) or with Quercus species

(QUGE2 and QULA) that co-occurs in the same upland pine-dominated habitat.

Confusion within the Quercus genus was also a dominant pattern, as shown by the

Graves et al. (2023), PeerJ, DOI 10.7717/peerj.16578 15/26



multiple misclassifications of oak classes in the confusion matrix and precision, recall, and

F1 scores generally less than 0.4. There were no correct predictions for three of the oak

classes.

Finally, a feature of this dataset was the presence of a Pinus (pines) genus class (PINUS)

and the Quercus (Oaks) genus class (QUERC), where the specific species could not be

identified in the field. Confusion between the unique pine and oak species (e.g., PIPA2,

QULA2) classes and the PINUS and QUERC classes is expected since the individuals with

the PINUS and QUERC label are likely one of the species classes in the dataset. Our

evaluation did not include any hierarchical structure to account for this feature of the data

and no teams chose to include a hierarchical structure in their modeling. Yet, the results
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show that misclassifications of these genus classes are not limited to their genera, showing

that despite having a catch-all pine and oak genus classes, the methods did not learn the

taxonomic structure of the data.

DISCUSSION
Evaluation in the scientific literature of many remote sensing approaches to tree species

classification tends to focus on a method for a single site and where all species classes are

mutually exclusive and known. In this competition, participants were asked to grapple

with a challenging classification task, specifically building models using forest inventory

training data from multiple sites where there is imbalance in the class sizes, and applying

those models to a site where the models have not been trained. By establishing a dataset

and evaluation process on which participants with different background can apply their

methods, we can evaluate and compare relative performance of different methods for this

challenging task. While the high model accuracy scores relative to the baseline winning

model from the 2017 competition shows an advancement of methods for tree species

classification, many species classes were poorly predicted, especially when applying models

to the untrained site.

Two classification methods stood out in how they handled the challenges of imbalance

data and application to an untrained site. The first-ranked team based on accuracy and

macro F1 scores (Fujitsu Satellite) used a convolution neural network pipeline, consisting

of both a pixel and crown-level classifier. Stronger performance of CNNs over shallower

machine learning methods for species classification of remote sensing data has been

documented in many applications partly due to their ability to learn spatial features and

reduced reliance on data pre-processing (Kattenborn et al., 2021). The Fujitsu Satellite

team implemented a pixel and crown-level classifier and a unique random spatial data

augmentation filter, which is likely key to its success (Appendix A). The first-ranked team

based on cross entropy loss (MaS JALApeñoS) used a relatively simple pixel-level decision

tree classifier with a partial grid search for best parameters. Despite a more shallow

machine learning approach compared to CNNs the Extreme Gradient Boosting method

may have been less overfit and while a many species labels may have been incorrect, the

certainty of those labels was also low, resulting in a better cross entropy loss score. Finally,

while the approaches differed in many ways, both approaches relied on hyperspectral

reflectance and reduced the noise and complexity of the data, and extracted relevant

features of the 369 hyperspectral bands. This feature engineering was also a key lesson

from the original competition in 2017.

An inherent challenge with the classification of ecological data is the imbalance in the

data across classes. Most natural forest ecosystems have an unequal abundance

distribution of species, with a “hollow curve” shaped distribution where there are a small

number of common species, and a large number of relatively rare species (McGill et al.,

2007). Ecological datasets often reflect this natural distribution since they are generated by

randomly sampling plots in the field. Understanding patterns of taxonomic and functional

diversity or evaluating the impact of climate changes and extreme disturbance events on
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species are examples where poor accuracy of rare species will impact the ability to use the

predictions because of the uncertainty in the predictions.

Our results reflect the common outcome of classification on unbalanced datasets, with

models generally performing better on classes that have a greater representation in the

training data compared to classes with lower representation (Graves et al., 2016; Nguyen,

Demir & Dalponte, 2019; Hemmerling, Pflugmacher & Hostert, 2021). Evaluation metrics

that are weighted by the number of samples per class, such as accuracy, favor models that

are most accurate for abundant classes. However, for many ecological questions and

applications, having strong predictions across all species, especially the rare species is

important (Leitão et al., 2016; Dee et al., 2019; Cerrejón et al., 2021), and therefore an

evaluation score such as macro F1 that equally weighs all species classes, is most

appropriate. While model accuracy shows a relatively narrow range in performance among

the species, macro F1 shows the distinctly strong performance of two neural network

methods (Fujitsu Satellite and Intellisense CAU, Fig. 4) that can discriminate patterns of

some less abundant but taxonomically distinct species. In addition, one of the teams that

used a network approach and achieved a high macro F1 score (Intellisense CAU)

addressed the imbalance by resampling the common classes, which is a common method

to reduce the effect of imbalanced data in model training.

Another challenge addressed in this competition was transferability of the model to an

untrained site, where the site will most likely contain new taxonomic classes and introduce

spectral variation within species, especially if the untrained site is geographically distinct

from the training sites. We found that across metrics, all methods performed worse on the

untrained site than the trained sites. While the decreased performance is partially due to

the change in species classes, even a dominant species (Longleaf pine, PIPA2) was more

poorly predicted at the untrained site. This suggests that regardless of differences in species

presence and abundance between sites, the spectral and structural signatures of individual

species (caused by sensor calibration, atmospheric conditions, seasonal differences, or

inherent differences in species foliar and structural properties) are sufficiently different to

hinder model performance.

An encouraging result was the presence of methods with significantly lower cross

entropy loss scores than other methods (gradient boosting by Más JALApeñoS and a

neural network by Fujitsu), and that scores were similarly low for both the trained and

untrained sites (Fig. 6). A low cross entropy loss score means that a method was confident

with its correct predictions and unconfident with its incorrect predictions. Methods that

score low in cross entropy loss could be most useful in transferring to new sites because low

confidence in a prediction could indicate the presence of a new species.

The imbalance of data and application of methods to an untrained site means classes

will be present that are not in the training data. This challenge is often not directly

addressed in species classification tasks in the remote sensing fields, but it is studied in

computer science as a type of novel class detection (Din et al., 2021). While this

competition design could not fully evaluate the ability to detect untrained species, we did

employ the use of mixed-species “Other” class that were present only in the test data, and

teams used different approaches to predict this class by grouping trained species with low
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sample sizes or post-processing based on prediction uncertainty. The F1 scores for the

“Other” species class are too low for accurately detecting these new species (~0.2, Fig. 5),

yet most methods performed better at this task than our baseline approach from the 2017

competition where an untrained site and species were not part of the task. In addition,

methods generally performed better at identifying new species in the trained sites (OSBS

and MLBS) than the untrained site (TALL). This dataset and competition can hopefully

encourage the remote sensing community to continue to confront this real challenge

present in individual tree species mapping.

Finally, this classification task was challenging due to limitations and complexities of the

data. The complexities reflect the characteristics of data for real-world applications for

which robust methods are needed. One common challenge for ecological applications is

that the amount of field data for training and testing is often smaller than the optimal

amount to train and robustly evaluate algorithms. We believe the most accurate data for

training and evaluating crown delineation and classification models comes from laborious

field efforts where individual tree crowns are delineated and species are identified in the

field. Datasets like these are small and often limited to specific sites and studies. To

overcome limited field data and create a sufficiently large dataset for the competition, we

generated a large set of image-delineated crowns to use as training data (see Appendix A).

The certainty of these image-delineated ITCs, especially for classification, is less than for

the field data because of uncertainty in associating information from field data on

individual trees with the remote sensing data. The results showing confusion between two

very different species (Fig. 6) suggest that some of the training pixels identified as

belonging to one species may in fact belong to another, presenting challenges to

classification models. We emphasize that this is an inherent challenge in ecological studies

since high-quality data, such as the field-delineated ITCs, will always be limited, and

therefore there is a need for methods to account for this source of potential uncertainty.

Future efforts should be made to support improved alignment between field and remote

sensing datasets (Chadwick et al., 2020). For example, when collecting data in the field,

there could be an attribute that specifies if a tree has a position in the canopy and is

therefore viewable in remote sensing imagery. Additionally, tree crowns could be digitized

in remote sensing data while in the field to avoid any uncertainty and build robust datasets

(Graves et al., 2018). Algorithmic approaches may also help address these issues including

research in image analysis in classification and detection with label uncertainty (Zou,

Gader & Zare, 2019; Du & Zare, 2019), active learning for adding new labels or reviewing

existing labels and the inclusion of a self- or semi-supervised step in the learning processes

(Weinstein et al., 2019; Kattenborn et al., 2021).

CONCLUSIONS
This competition engaged researchers in the data science, remote sensing, and ecology

communities to train and apply algorithms for a classification task in the context of

individual tree crown species across multiple sites. Participants focused on deep learning

approaches, many of which were significantly better at cross-site prediction than the best

method from the 2017 competition. By comparing predictions from all teams on the same
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dataset, we found that the deep learning and more traditional decision tree methods can

predict the most common class well, even across sites, but more work is needed in methods

that can handle imbalanced data, can predict rare species (i.e., those with lower relative

abundances), and are robust to identifying the presence of new species when applied to an

untrained site.
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