

1 **A multi-dimensional selective landscape drives adaptive divergence
2 between and within closely related *Phlox* species**

3
4 Benjamin E. Goulet-Scott^{1,2}, Matthew C. Farnitano^{1,3}, Andrea L. M. Brown^{1,4}, Charles O.
5 Hale^{1,5}, Meghan Blumstein⁶, Robin Hopkins^{1,7,*}

6
7
8 ¹ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
9 02138, USA

10 ² Harvard Forest, Harvard University, Petersham, MA 01366, USA

11 ³ Current affiliation, Department of Genetics, University of Georgia, Athens, GA 30602, USA

12 ⁴ Current affiliation, Department of Environmental Science, Policy, and Management, University
13 of California Berkeley, Berkeley, CA 94720, USA

14 ⁵ Current affiliation, Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853,
15 USA

16 ⁶ Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA
17 02139, USA

18 ⁷ Arnold Arboretum of Harvard University, Boston, MA 02131, USA

19 *Corresponding author: Robin Hopkins, rhopkins@fas.harvard.edu

20
21 **Author Contributions:** BG-S and RH designed experiment; BG-S, MF, AB, CH and RH
22 contributed to data collection; BG-S, MB and RH contributed to data analysis, BG-S and RH
23 wrote the manuscript with all authors contributing to editing and revising.

24
25 **Competing Interest:** All authors have no competing interest.

26
27 **Keywords:** Local adaptation; adaptive divergence, natural selection, common garden, *Phlox*

28 **Abstract**

29 Selection causes local adaptation across populations within species and simultaneously
30 divergence between species. However, it is unclear if either the force of or the response to
31 selection is similar across these scales. We show that natural selection drives divergence between
32 closely related species in a pattern that is distinct from local adaptation within species. We use
33 reciprocal transplant experiments across three species of *Phlox* wildflowers to characterize
34 widespread adaptive divergence. Using provenance trials, we also find strong local adaptation
35 between populations within a species. Comparing divergence and selection between these two
36 scales of diversity we discover that one suite of traits predicts fitness differences between species
37 and that an independent suite of traits predicts fitness variation within species. Selection drives
38 divergence between species, contributing to speciation, while simultaneously favoring extensive
39 diversity that is maintained across populations within a species. Our work demonstrates how the
40 selection landscape is complex and multidimensional.

41

42 **Introduction**

43 Ecological adaptation contributes to the origin and maintenance of biodiversity¹⁻⁴.
44 Evolution by natural selection drives local adaptation among populations within a species that
45 occupy different biotic and abiotic environmental conditions⁵⁻⁸. Similarly, strong ecological
46 selection can drive divergence between closely related species and cause reproductive isolation,
47 leading to ecological speciation^{1,9,10}. Although extensive research has investigated local
48 adaptation within species and investigated ecological divergence between species, little is known
49 about if and how these evolutionary processes are related. Are the axes of selection favoring
50 adaptive divergence between species the same or different than the axes of selection favoring
51 local adaptation within a species? Characterizing local adaptation both within and between
52 closely related species can offer insight into how ecological adaptation generates diversity from
53 the micro- to macroevolutionary scale.

54 Disparate populations within wide-ranging species often evolve to become adapted to the
55 local ecological conditions⁷. Across the tree of life there are striking examples of variation in
56 morphology, physiology, and phenology within species across populations that span significant
57 gradients of temperature, water availability, seasonality, and types of biotic interactions¹¹⁻¹⁶.
58 Although very common, local adaptation among populations within a species is not inevitable.
59 The extent of divergence can depend on the relative strengths of selection and migration¹⁷, the
60 presence or absence of fitness trade-offs in different habitats⁶, and the genetic correlation
61 between traits¹⁸⁻²⁰. Nevertheless, meta-analyses conclude that adaptive divergence between
62 populations of a species is widespread in nature and maintained despite gene flow between
63 populations^{6,21}.

64 As taxa become reproductively isolated, they tend to evolve suites of diverged traits that
65 lead to higher fitness (survival or reproduction) in local or native habitats compared to habitats of
66 closely related taxa. Adaptive divergence often leads to a similar pattern of reciprocal local vs.
67 foreign advantage between closely related species as the pattern that we see between locally
68 adapted populations within a single species. Even when closely related species are in broad
69 sympatry with extensive geographic overlap, we may expect a pattern of adaptive divergence.
70 Interspecific competition for resources can select for ecological divergence and niche
71 partitioning driving either species-wide patterns of differentiation or leading to patterns of
72 character displacement in sympatry^{2,22}. Therefore, we expect many of the traits that differentiate
73 species from each other to be the suites of traits that lead to differential fitness and thus
74 ecological reproductive isolation between the species. In this way, adaptive divergence not only
75 causes phenotypic differentiation between taxa but also contributes to the cessation of gene flow
76 between taxa, leading to speciation. For this reason, ecological adaptation is considered
77 important during the speciation process²³. In fact, environmental divergence and ecological
78 divergence are often added to, and portrayed as parallel to, the speciation continuum from no
79 reproductive isolation to complete reproductive isolation^{24,25}.

80 The idea of a continuum of adaptive ecological divergence -- from producing and
81 maintaining diversity within species to causing reproductive isolation between species -- invites
82 us to consider how patterns of adaptation within and between species may or may not be
83 related^{2,23,26}. Under one notion of this continuum, the adaptive divergence that we see between
84 species is an extreme case of the local adaptation we see within species across populations and
85 therefore could be due to similar axis of selection and involve similar types of trait divergence
86 (Fig. 1, top & bottom right). Alternatively, the types of selection driving divergence between

87 species could be distinct from the selection pressures favoring local adaptation within a species
88 (Fig. 1, top & bottom left). Under this latter scenario, the trait divergence that differentiates
89 species is different from the variation that we see within a species. Importantly, ecological
90 divergence and speciation unfolds over evolutionary time, and the snapshot of divergences we
91 see now between populations and species does not directly tell us about how the process of
92 speciation did or will proceed in this system²⁵. Nonetheless, comparing patterns of phenotypic
93 divergence and axes of selection across phylogenetic scales can help us understand how
94 phenotypic diversity is generated and maintained under different scales of geographic range and
95 genetic exchange.

96 *Phlox pilosa* subsp. *pilosa* (hereafter “*pilosa*”), *P. amoena* subsp. *amoena* (amoena), and
97 *P. pilosa* subsp. *deamii* (deamii) are three closely related perennial wildflower taxa inhabiting
98 the eastern U.S. that provide a promising system in which to evaluate patterns of ecological
99 differentiation, both within and between species²⁷. The three species have strikingly similar floral
100 traits although distinctive vegetative characteristics^{27,28}. The ranges of these three *Phlox* taxa
101 overlap in western Kentucky, Tennessee, and Indiana, but they rarely co-occur in the same
102 locality, suggesting differences in habitat preference²⁷⁻²⁹. Here, we use a combination of
103 reciprocal transplant^{30,31} and provenance trial³²⁻³⁴ approaches to evaluate the presence and
104 strength of local adaptation between and within species. Specifically, we: 1.) model and compare
105 the ecological niches of the *Phlox* species; 2.) determine whether there is adaptive divergence
106 between the three species; 3.) infer if there is local adaptation within *Phlox* species; and 4.)
107 evaluate patterns of phenotypic diversity across all three species and compare axes of selection
108 driving divergence between and within species. Collectively, this study provides unique insights
109 into how selection operates to drive diversity across scales of micro- and macro-evolution.

110

111 **Results**

112 *Ecological niche modeling*

113 We built ecological niche models for the two widespread *Phlox* species, *amoena* and
114 *pilosa*, using available occurrence data and biologically relevant environmental variables (Fig.
115 2A, Fig S1, TableS1 & S2). The predicted extents of suitable habitat conform well to the
116 described geographic ranges of these species with a broad range of sympatry from Georgia to
117 Kentucky^{28,29}.

118 Deamii is a relatively rare endemic with only 5 documented occurrences. We included
119 this closely related species in our study to better understand broad patterns of adaptive
120 divergence but were unable to build an ecological niche model for deamii or test of local
121 adaptation within species due to the low number of known occurrence points. It is hypothesized
122 that deamii populations experience a narrow range of environmental conditions and are broadly
123 sympatric with both *amoena* and *pilosa*²⁸.

124 From a principal component analysis (PCA) of the environmental variables used to build
125 our niche models, we find that *pilosa* inhabits a greater breadth of ecological variation than does
126 *amoena* (Fig. 2B). While both species occupy a similar amount of variation on PC2, *amoena*
127 occupies a subset of the variation covered by *pilosa* on PC1. We find that the median conditions
128 occupied by *amoena* and *pilosa* are significantly different on PC1 but not on PC2 (Fig S1C). Of
129 note, the common garden sites chosen to represent *amoena* and *pilosa* habitats in our reciprocal
130 transplant experiment described below differ along PC1 as well (colored diamonds in Fig. 2B).
131 The reciprocal transplant experiment includes individuals sampled from populations that

132 reasonably encompass the environmental variation experienced by these species (black edged
133 circles Fig. 2B, Table S5).

134

135 *Adaptive divergence between taxa*

136 We find strong evidence of adaptive divergence between *Phlox* species from our
137 reciprocal transplant experiments. Multiple individuals sampled from source populations
138 throughout the ranges of these three perennial *Phlox* species (black diamonds and circles Fig.
139 2A) were clonally replicated into common gardens in the native sympatric range of these species.
140 Our experiment included three garden sites each adjacent to a wild population of one of the focal
141 taxa (Fig. 2C, D & E, Table S6). We quantified five fitness-related traits: herbivory, fruit
142 number, flower number, biomass, and survival and find the relative success of a species depends
143 on the garden in which they are grown, as indicated by statistical support for a taxon-by-garden
144 interaction (Fig. 3; Table 1). Adaptive divergence is evidenced by either the local species having
145 higher fitness than the foreign species in the local species' garden, or by a focal species having
146 highest fitness in its home garden compared to all other away gardens.

147 All significant local vs. foreign comparisons match the prediction of adaptive divergence
148 between taxa with the local taxon outperforming the foreign taxa (Table 1, Fig 3). In the amoena
149 habitat, amoena had nearly twice the survival as compared to deamii and 1.5 times the survival
150 of pilosa. Amoena also experienced a third to a half as much major herbivory as pilosa and
151 deamii, and produced more fruits than pilosa plants. In the deamii habitat, deamii survived nearly
152 three times more than pilosa. In the pilosa habitat, pilosa plants produced three times as many
153 fruits, and survived twice as much as amoena and deamii plants. Effect size estimates for each
154 contrast are illustrated in Figure 3F.

155 Home vs. away comparisons (comparing across habitats for each taxon) showed some
156 significant differences in the direction predicted by adaptive divergence (Table 1). Pilosa had the
157 highest fitness in the home garden compared to in the other gardens on all five fitness traits.
158 Deamii had less herbivory and set more fruits in the home garden compared to the amoena
159 garden. We also found some patterns of success that did not indicate highest success at home-
160 sites. For instance, deamii and amoena had fewer flowers and fruits in their home gardens
161 compared to either of the other gardens.

162

163 *Local adaptation within species*

164 We find strong evidence of local adaptation across populations within pilosa. We used
165 statistical models to estimate the contribution of the source population to variation in the five
166 fitness-related traits for amoena and pilosa. Local adaptation was evidenced by a negative
167 relationship between the estimated population effect on fitness and distance of the population
168 from the common garden. This relationship was tested for geographic distance, genetic distance
169 (as measured by F_{ST} using data from Goulet-Scott et al. 2021²⁷), and environmental distance (as
170 measured in climate PC space) between populations (Table S3 & S4).

171 For the pilosa species within the pilosa garden, local adaptation was evidenced by a
172 negative relationship between the estimated population effect on flower and fruit number fitness
173 traits and geographic distance, environmental distance, and genetic distance. Final biomass in
174 pilosa also shows a strong negative correlation with geographic distance (Fig. 4; Table S4).
175 Specifically, we estimate that biomass decreases by a milligram per kilometer distance between
176 source and common garden (Table S4). In the amoena habitat, pilosa populations also show
177 strong negative correlations between biomass and geographic distance and is similarly predicted

178 to lose a milligram of biomass per kilometer distance from the garden. Pilosa produces fewer
179 flowers in the amoena garden as all three distances increase from the garden. (Table S4). In the
180 amoena garden, pilosa populations show a strong positive correlation between the proportion of
181 plants without herbivore damage and both genetic and geographic distance; this represents the
182 only signal in our data that does not support local adaptation. Within the deamii garden, pilosa
183 populations show a negative correlation between the number of flowers produced and geographic
184 distance while amoena populations show negative correlations between survival and both genetic
185 and environmental distance. There was insufficient variation in herbivory among amoena
186 populations and survival among pilosa populations to model population effects suggesting no
187 evidence for local adaptation in these two traits.

188

189 *Selection between and within species*

190 Adaptive differentiation between *Phlox* species and local adaptation within species occur
191 along different axes of variation in leaf morphology and physiology, likely driven by different
192 axes of selection. For each individual genotype used in the experiment, we measured or
193 calculated six phenotypic traits including: leaf length, leaf width, leaf length/width ratio, leaf
194 area, leaf chlorophyll content, and specific leaf area (SLA). Due to collinearity between traits, we
195 summarized phenotypic variation using a principal components analysis of the trait
196 measurements (Fig. 5). We use a series of regression models to investigated how leaf trait
197 variation (as described by PC1 and PC2) explained variation in normalized fitness (fruit set,
198 flower set, and biomass normalized to the average of each trait) between and within species in
199 the pilosa-habitat common garden (Fig 5, Table S8 and S9). We then transform our findings
200 about PC variation and fitness back onto our leaf traits.

201 The principal components analysis summarizing the phenotypic variation across species
202 sharply divides pilosa from amoena and deamii individuals along PC1 (Fig. 5A.). Taxon identity
203 explains 72% of the variation along this first principal component ($F(2, 318) = 417.34, p < 0.001$).
204 PC1 explains 45% of trait variation and describes leaf shape (Table S7). Long narrow leaves and
205 low chlorophyl content are at one end of the PC axis (pilosa-like), and short wide leaves with
206 high chlorophyl content are at the other (amoena-like). All species show extensive and
207 overlapping variation along PC2, which explains 27.8% of the phenotypic variation and
208 corresponds to variation in size of the leaf (area and SLA) (Table S7). Taxon identity explains
209 none of the variation along PC2 ($F(2, 318) = 0.8, p = 0.451$).

210 We considered fitness variation due to PC1 and PC2 using two sets of models. First, we
211 modeled variation in fitness traits as explained by each trait PC while controlling for taxon and
212 the interaction between taxon and trait PC. For PC1, we found that taxon identity predicted
213 fitness related traits consistent with our tests of adaptive divergence previously discussed. Due to
214 the collinearity between taxon identity and value at PC1, this trait PC is not significant in our
215 model when controlling for taxon (Table S8). Pilosa individuals have both higher values long
216 PC1 and high fitness in the pilosa garden. For PC2 the strength and direction of selection varied
217 across species as indicated by the significant interaction term in our model (Table S8).

218 With our second set of models, we evaluated how each leaf trait PC predicts fitness traits
219 across all the species and within each of the species (Table S9). PC1 does not predict fitness
220 variation within any of the three species; it is only when individuals from all three species are
221 included in the model together that we see a significant relationship between PC1 and fitness-
222 related traits (Fig. 5B, D, F, Table S9). In contrast, we find that within pilosa and amoena PC2
223 strongly predicts fitness traits and that this variation explains the significant relationship between

224 PC2 and fitness in the combined dataset (Fig. 5C, E, G, Table S9). Together our models indicate
225 that leaf shape (PC1) differs significantly between *Phlox* species and it is therefore these
226 differences that correspond to fitness differences *between* species in the common garden. In
227 contrast, leaf size (PC2) varies within species and significantly predicts *within* species variation
228 in fitness in the common garden (Table S9).

229 Although the patterns in our models indicate that different traits underly fitness
230 differences between species compared to fitness differences between populations, measuring
231 selection on PC scores can be difficult to interpret. To overcome the problem of biologically
232 interpreting PC scores, we transform selection gradients for the PC scores back onto the original
233 traits³⁵. This method multiplies the matrix of eigenvectors from the leaf trait PCA (Table S7) by
234 the vector of regression coefficients of normalized fitness on the first three PC scores (Table
235 S11) to generate a vector of reconstructed selection gradients (Figure 5H). We performed this
236 analysis using data from all species grown in the pilosa garden and for only pilosa individuals in
237 the garden. The results reveal that fitness differences between species are due to selection acting
238 on leaf length ($\beta_{\text{flower}\#} = 0.16$, $\beta_{\text{fruit}\#} = 0.29$, $\beta_{\text{biomass}} = 0.19$), and leaf length/width ratio (leaf
239 shape) ($\beta_{\text{flower}\#} = 0.12$, $\beta_{\text{fruit}\#} = 0.28$, $\beta_{\text{biomass}} = 0.16$), whereas within pilosa the strongest
240 selection is acting on specific leaf area ($\beta_{\text{flower}\#} = -0.25$, $\beta_{\text{fruit}\#} = -0.36$, $\beta_{\text{biomass}} = -0.22$), leaf area
241 ($\beta_{\text{flower}\#} = 0.12$, $\beta_{\text{fruit}\#} = 0.15$, $\beta_{\text{biomass}} = 0.13$), and chlorophyl content ($\beta_{\text{flower}\#} = 0.16$, $\beta_{\text{fruit}\#} =$
242 0.23 , $\beta_{\text{biomass}} = 0.11$). The patterns of selection gradients across three proxies for fitness (fruit
243 number, flower number and biomass) all indicate that the strength of selection and even the
244 direction of selection is different within versus between species.

245 **Discussion**

246 Natural selection is widely acknowledged as the most important force underlying the
247 evolution of biological diversity, yet we still have much to learn about how this process acts
248 across micro- and macro-evolutionary scales. At one end of this scale, populations within a
249 species can locally adapt in response to variation in selection across space, generating diversity
250 within a species; while at the other end, response to selection can drive adaptive divergence
251 between taxa and even cause significant reproductive isolation, thus contributing to speciation.
252 Many studies have characterized the response to selection at one scale or the other, yet there are
253 few studies that integrate across scales to compare how selection simultaneously drives
254 divergence within and between species.

255 Here we have characterized adaptive divergence between closely related species and
256 local adaptation within one of these species. Furthermore, we show that selection driving
257 divergence between species is distinct in strength and direction from selection driving divergence
258 within species. Our results suggest a broadly applicable explanation of how a species can both
259 maintain extensive adaptive phenotypic variation across broad ecological habitats while
260 simultaneously maintaining distinct adaptive divergence from recently diverged taxa. Selection
261 acts along many axes and the axis correlated with reproductive isolation and species interaction
262 may be entirely different from the axis allowing populations to locally adapt across a species'
263 range.

264 Our results suggest that natural selection drove adaptive divergence between the three co-
265 occurring species of *Phlox* – pilosa, amoena, and deamii. The wide-spread species – pilosa and
266 amoena – show broadly sympatric ranges with statistically significant yet minimal niche
267 divergence. Specifically, amoena inhabits a distinct subset of the broader environmental
268 tolerance of pilosa, likely reflecting the more northern range limit of pilosa compared to amoena.

269 The patterns we observed in these closely related *Phlox* species are likely similar to many wide-
270 ranging species. Ecological niche modeling that focus on environmental conditions such as
271 temperature and precipitation can characterize overlapping niches for species that are never
272 found growing together but have broadly overlapping ranges. Due to this significant overlap in
273 both geographic and environmental space, our niche modeling may suggest minimal adaptive
274 divergence between species, and yet our experimental gardens reveal extensive fitness
275 differences.

276 Across the five proxies for fitness we measured, we found that the local species
277 generally does better in its local habitat garden as would be predicted by adaptive divergence
278 between species. Because we measured five traits in three gardens across three species, we
279 performed abundant statistical tests to identify patterns of differential success, which likely have
280 led to some false positives. We focus not on the results from any specific test but instead on the
281 robust pattern that, for each species, we found evidence for natural selection favoring the local
282 species. The specific patterns of adaptive divergence are different for each species, which is
283 consistent with other studies that find that different lineages locally adapt in different ways¹⁶. For
284 example, in the amoena garden there was extensive large-mammal herbivory with nearly 50% of
285 the plants showing signs of severe damage, but amoena plants suffered the least damage and the
286 highest survival. The pilosa garden had the greatest sun exposure and the pilosa plants seem to
287 exploit this light to have the highest survival and set the most fruits. Although our conclusions of
288 adaptive differentiation are strongly supported, this work inspires future investigations to
289 untangle the specific selective agents and traits underlying this pattern.

290 The support for adaptive differentiation between species may be particularly surprising
291 given that the three common gardens were geographically close (within 120 km of each other)

292 but the individuals in the garden were sourced from across the country, spanning 900 km. The
293 patterns of adaptation were robust to the extensive geographic sampling and the breadth of
294 source environmental conditions. This suggests that the traits that adaptively differentiate the
295 species are shared across populations within their ranges and could therefore contribute to
296 ecological reproductive isolation between species.

297 As is often observed for widespread species, one of our *Phlox* species also shows strong
298 patterns of local adaptation among populations. Two of our *Phlox* species span extensive
299 environmental gradients with large (and overlapping) geographic ranges. This presents the
300 opportunity for selection to favor different trait values between, for example the warm and dry
301 habitats in northern Florida and the cooler and wetter populations in western Kentucky. If local
302 adaptation within species is driven by these ecological gradients across their ranges, then we
303 predict that as distance increases between population source and an experimental garden, fitness
304 will decrease. This is precisely the pattern we documented across pilosa populations. Individuals
305 sourced from populations near the pilosa experimental garden grew bigger, had more flowers,
306 and set more fruits than individuals from populations farther way from the experimental garden.
307 This signal was robust to various measures of distance including geographic distance,
308 environmental distance, and genetic distance.

309 Interestingly, we found little to no signal of local adaptation in amoena populations. We
310 hypothesize that this difference in degree of adaptation within pilosa and amoena species could
311 reflect either differences in migration or in selection. High migration between populations of
312 amoena could cause homogenization of genetic variation across the range and swamping of
313 locally adapted alleles. This is unlikely to explain the difference in pattern between species since
314 the range of genetic distances (F_{ST}) represented in our experiment were similar for amoena (0 –

315 0.44) and pilosa (0 – 0.46) and for a given distance between populations, F_{ST} is actually higher
316 for amoena than pilosa (Goulet-Scott et al. 2021; Fig. 4B ²⁷). In contrast, the range of
317 environmental distances (based on a PCA of environmental variables) represented in our
318 experiment was significantly less for amoena (0 – 3.48) than for pilosa (0 – 5.53). Therefore,
319 pilosa populations may face stronger selection throughout their range to adapt to local ecological
320 conditions.

321 By characterizing adaptive divergence between species and local adaptation within a
322 species, we can compare and contrast how natural selection generates diversity across these
323 scales. We quantify diversity in leaf morphological and physiological traits across species and
324 find that different axes of diversity predict fitness between species versus within species. These
325 three species of *Phlox* grow in close geographic proximity, share pollinators, and have similar
326 flower shape, size, color, and timing. Therefore, their major phenotypic axis of diversity is in
327 vegetative traits such as leaf morphology. Pilosa plants have long narrow leaves whereas amoena
328 plants have shorter, wider leaves. Both species show extensive variation in the overall size and
329 mass of the leaf.

330 Our results demonstrate that the major leaf-trait differences between species strongly
331 predict fitness variation across species in our common-garden experiments. Plants with wider,
332 shorter leaves do better in the amoena garden and plants with longer narrower leaves do better in
333 the pilosa garden. It is perhaps unsurprising, that the traits that phenotypically differentiate
334 species also predict fitness differences across the species' habitats. We have highlighted the link
335 between key traits that define and differentiate closely related species, and fitness differences
336 between species in their respective habitats.

337 This axis of phenotypic variation differentiating species (PC1) does not predict fitness
338 variation within a species; instead, orthogonal trait variation (PC2) predicts within-species
339 relative success. We found evidence of local adaptation across multiple proxies of fitness in
340 *pilosa* that is predicted by a suite of leaf traits. Importantly, the strongest selection gradients
341 within species are different in strength and direction to those inferred across species.

342 The observation that adaptation within and between species operates along different axes
343 of selection might seem surprising given the perspective of a continuum of divergence between
344 locally adapted populations and ecologically isolated species. The ecological speciation
345 hypothesis suggests that populations within a species diverge ecologically until those populations
346 evolve sufficient reproductive isolation and become distinct species. This hypothesis has largely
347 been evaluated by documenting a correlation across many pairs of lineages between ecological
348 divergence and genetic divergence or reproductive isolation¹. Here, we have demonstrated that
349 process of ecological adaptation is multi-dimensional: if ecological divergence along one axis
350 leads to reproductive isolation and a signature of local adaptation between lineages, then local
351 adaptation between populations within each lineage may persist or develop along other
352 ecological axes. As has been articulated by others^{23,25}, the process of speciation is complex and
353 not linear; similarly, the role of selection in driving divergence is also complex and multi-
354 dimensional.

355 Further research is needed to determine if different ecological factors are more or less
356 likely to drive between or within species divergence. For example, adaptive divergence driven by
357 ecological factors with discrete or step-like variation may be more likely to contribute to
358 reproductive isolation between species due to the absence of intermediate habitat that could be
359 suitable for hybrids^{9,36}. In contrast, local adaptation to ecological factors that vary more

360 continuously may be less likely to lead to reproductive isolation and therefore act among
361 populations within species. Selective landscapes are clearly multifaceted; our study showcases
362 this by demonstrating that different ecological forces generate divergence between closely
363 related species than among populations within a species.

364

365 **Methods**

366 *Ecological niche modeling*

367 We used ecological niche modeling to assess environments occupied by our *Phlox*
368 species. We combined coordinates from our field collections and occurrence data from the
369 Global Biodiversity Information Facility (GBIF; <https://www.gbif.org/>) and the Southeast
370 Regional Network of Expertise and Collections (SERNEC; <https://sernecportal.org/portal/>),
371 including records within the native ranges that were identified to subspecies (*Phlox amoena*
372 subsp. *amoena*, *Phlox pilosa* subsp. *deamii*, and *Phlox pilosa* subsp. *pilosa*). We thinned
373 occurrences to one within 20km using the R package ‘spThin’³⁷ and retained 33 *amoena*, 87
374 *pilosa*, and only 5 *deamii* (Table S2). We could not perform ecological niche modeling analyses
375 for *deamii* due to low occurrences.

376 We extracted bioclimatic variables from the WorldClim dataset
377 (<https://www.worldclim.org/data/bioclim.html>) and soil composition and chemistry variables
378 from the Unified North America Soil Map
379 (https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_Unified_NA_Soil_Map.html) at each
380 occurrence location for *amoena* and *pilosa*. We reduced collinearity between variables to retain
381 11 variables with correlation coefficients <0.8 (Table S1). With these variables, we constructed
382 Maxent ecological niche models for *amoena* and *pilosa* using the R package ‘dismo’³⁸ following

383 established protocols^{39,40}. Model performance was evaluated using a repeated cross-fold
384 approach in which 90% of the data were sampled to train a Maxent ENM before testing the
385 model with the remaining 10% of the occurrence points. For both *amoena* (median testing AUC
386 = 0.942) and *pilosa* (median testing AUC = 0.889), we were able to construct robust niche
387 models (Figure S1).

388 We performed a principal components analysis based on correlations on all
389 environmental and soil variables used in our niche models. We assessed if the niches of the two
390 species differed by comparing the empirical differences between species in median and breadth
391 (difference between 5th and 95th percentile) along PC1 and PC2 to a null distribution defined by
392 bootstrap resampling 1000 times the pooled and randomly reassigned occurrence points across
393 both species^{39,41,42} (Figure S1). This PCA was later used to calculate environmental distances
394 between populations.

395

396 *Plant propagation*

397 We propagated collections of 122 genotypes of *Phlox amoena amoena* (eight
398 populations), 125 genotypes of *Phlox pilosa pilosa* (nine populations), and 37 genotypes of
399 *Phlox pilosa deamii* (three populations) from throughout their native ranges for our common
400 garden experiment (Table S5). Wild plants were collected as cuttings of vegetative shoots and
401 rooted and grown in the greenhouse facilities at the Arnold Arboretum of Harvard University.
402 After growing for nine months replicate cuttings, each four inches in length, were taken from
403 vegetative shoots on each plant and rooted and grown in fine potting media for one month before
404 being transplanted into experimental gardens. To increase the sample size for *deamii*, we

405 included two individuals per genotype in each garden, while only one individual per genotype
406 was planted in each garden for the other two taxa.

407

408 *Experimental gardens and fitness measurements*

409 We established three experimental gardens adjacent to one native population of each
410 taxon (Table S6). Each garden site contained four cleared plots into which the 321 plants were
411 assigned a randomized position. Clonal cuttings from the greenhouse were planted in their
412 assigned position, which was marked by an aluminum tag. Each plot was protected from large
413 herbivores by PVC and chicken wire cages for one year after planting. The gardens were watered
414 immediately after planting and then weekly for a month at which point supplemental watering
415 stopped.

416 We monitored fitness-related traits in the gardens over the course of three growing
417 seasons between planting in April 2018 and final data collection in September 2020.

418 Survivorship across all three gardens in the first year was high (92.5% in amoena garden, 91.9%
419 in deamii garden, 92.8% in pilosa garden, 92.4% total). At the end of the first winter in early
420 2019, we removed the wire cages and returned regularly to record traits throughout spring and
421 summer. We recorded damage from large vertebrate herbivores as a binary trait (0 = herbivore
422 damage, 1 = no herbivore damage). We counted the total number of open flowers on each plant
423 on a weekly basis from beginning of April through beginning of June 2019. Flowers on these
424 taxa remain open and fresh for about one week, so our timing minimized double counting or
425 missing flowers. We counted the total number of fruits set by each plant including both mature
426 fruits that remained on the plant as well as open calyces where fruits had already shattered. In
427 October 2019, we harvested all aboveground biomass for each plant, leaving root systems and

428 the stem at the base of each plant intact consistent with the annual aboveground die-back that
429 these taxa experience each winter. We dried this tissue in a drying oven at 60° C for 48 hours
430 before measuring the mass with an electronic scale. Due to the Covid-19 pandemic, we were not
431 able to return to the gardens again until September 2020 when we recorded final survival.

432

433 *Between species adaptive divergence analyses*

434 To test the hypothesis of adaptive differentiation between taxa, we used a generalized
435 linear mixed model (GLMM) approach implemented in the R package ‘lme4’^{43,44}. For each
436 fitness-related trait measured in the gardens, we modeled trait value with fixed effects of taxon,
437 garden, and taxon-by-garden interaction and a random effect of genotype nested within
438 population. Each genotype occurred at least once as a clonal replicate in each garden. For
439 herbivory and survival we used a binomial link function in our models, while for number of
440 flowers and fruits we used a Poisson link function. For biomass, we transformed the raw data by
441 taking the natural logarithm and modelled this trait using a linear mixed model. After fitting each
442 model, we evaluated them using ANOVA as implemented in the R package ‘car’⁴⁵.

443 Adaptive divergence between the species is expected to result in a significant taxon-by-
444 garden interaction effect. Specifically, we predict the local taxon to outperform the two foreign
445 taxa in its home garden (local vs. foreign comparisons) and/or for each taxon to perform better in
446 its home garden than in other two habitats (home vs. away comparison)⁷. To test these
447 predictions we performed post-hoc contrasts using Tukey’s Test as implemented in the R
448 package ‘multcomp’⁴⁶.

449

450 *Within species local adaptation analyses*

451 We implemented a provenance trial analysis to test for local adaptation and thus expected
452 a negative correlation between a plant's performance and the distance between its source and the
453 experimental garden in which it was measured. We calculated distance between experimental
454 garden and source population in three ways: geographic, genetic, and environmental (Table S3).
455 We calculated geographic distance with longitude/latitude of each population's wild collection
456 site and each experimental garden using the Haversine formula as implemented in the R package
457 'geosphere'⁴⁰. We calculated the genetic distance as F_{ST} between each wild source population
458 and an intraspecific population adjacent to each experimental garden site. DNA sequencing and
459 F_{ST} calculations among these populations are detailed and reported in Goulet-Scott et al. 2021.
460 Briefly, five individuals from each wild population were sequenced using double digest
461 restriction-site associated DNA sequencing (ddRADseq), and all pairwise Weir-Cockerham F_{ST}
462 values between populations were calculated using VCFtools^{47,48}. Finally, we calculated
463 environmental distance as the Euclidean distance between each population's wild collection site
464 and each experimental garden site in PC1 vs. PC2 space of the environmental PCA that
465 accompanied ecological niche modeling detailed above.

466 To quantify the contribution of the source population to the fitness of each clone in the
467 experimental gardens, we used a GLMM. For each species, we modeled fitness trait value with a
468 random effect of population nested within garden, using the same link functions for each trait as
469 described previously. These models yielded "population random effects" for each garden that
470 estimated the average effect on the fitness trait value in that garden attributable to being from a
471 given population. To test for local adaptation, we regressed population random effects for each
472 trait/taxon combination against each measure of distance using linear models as implemented in

473 base R⁴⁹. For each linear model, we recorded the coefficient associated with the distance
474 predictor, the coefficient of determination (R^2), and associated p -value.

475

476 *Between and within species trait selection analyses*

477 Finally, we evaluated patterns of selection by determining how morphological and
478 physiological trait variation predicted fitness both between and within species. We measured a
479 standard suite of morphological and physiological traits on a clonal replicate of each
480 experimental individual from the common garden and grown in the Arnold Arboretum
481 greenhouse. These trait measurements required destructive sampling and were therefore not able
482 to be measured on the plants growing in the field without compromising the experiment. From
483 each plant, the most recently fully expanded leaf was collected and the following measurements
484 taken: fresh mass, relative chlorophyll content using an atLeaf chlorophyll meter (FT Green,
485 Wilmington, DE, USA), and dry mass. Each fresh leaf was scanned and we used ImageJ to
486 measure leaf length, width, and area. We calculated specific leaf area (SLA) as area (cm²)
487 divided by dry mass (g). We summarized variation in leaf traits by performing principal
488 component analysis (PCA) on leaf length, width, length/width ratio, area, relative chlorophyll
489 content, and SLA using the correlation matrix. Together the first two principal components
490 described over 70% of the phenotypic variation and were thus used in subsequent analyzes (PC1
491 = 45.0% of variation explained, PC2 = 27.8%). We used a linear model in R to determine the
492 extent to which species identity explains variation on PC1 and PC2.

493 To confirm that the trait variation we measured is robust between the field and the
494 greenhouse, we measured the same traits on individuals growing naturally in one of our source
495 populations during the summer of 2018. This population contained both pilosa and amoena

496 plants. We measured leaf length, leaf width, leaf area, leaf dry mass, and calculated specific leaf
497 area and leaf length/width ratio on 35 *amoena* plants and 37 *pilosa* plants growing in this natural
498 population (population #729). We combined these field measurements with measurements taken
499 from 29 plants sourced from this population grown in the greenhouse and used in the
500 experimental gardens. We used an ANOVA model to determine the extent to which taxon
501 (*amoena* vs. *pilosa*), location (greenhouse vs. field) and the interaction of taxon and location
502 predicted leaf traits (Table S11, Figure S2). The trait best explaining PC1, length/width ratio,
503 shows no difference between the field and greenhouse but a strong taxon effect which is
504 consistent with all the greenhouse measurements. Leaf length, area, and width show significant
505 taxon and location effects with field leaves being smaller than greenhouse leaves but the
506 relationship between the taxon remains consistent across locations. We find a significant
507 interaction between taxon and location for specific leaf area and leaf width. For leaf width we
508 find that the effect of being grown in the greenhouse (wider leaves) is slightly more for *ameona*
509 than for *pilosa* but the rank order of the taxa remains the same across environments. In the case
510 of specific leaf area, we find that neither *amoena* nor *pilosa* show significant differences between
511 field and greenhouse grown measurements and there is no overall effect of taxon or location.
512 These results give us confidence that our greenhouse-based measurements are consistent with the
513 relative variation measured between individuals growing in the field.

514 Because we were interested in understanding fitness variation both within and between
515 species we focused our analyses on plants in the *pilosa* garden and the three fitness traits that
516 showed both adaptive divergence between species and local adaptation within *pilosa* (flower
517 number, fruit number, and biomass). For these analyzes, fitness traits were normalized around
518 the mean and PC axes were z-transformed with a mean of 0 and standard deviation of 1. First, we

519 implemented two linear models in R, one for each of the first two PCs, to ask how PC of trait
520 variation, taxon identity, and the interaction between these two main effects predicted fitness
521 trait variation across all three species. Second, we implemented a series of simple linear models
522 in R to specifically ask how PC1 and PC2 predicted fitness variation in four data sets: all species
523 combined, only pilosa, only amoena, and only deamii. By comparing the results of these models
524 for each fitness-trait we assess whether the same dimension(s) of leaf trait variation predicted
525 fitness within a species versus across all species together.

526 Principal components can be hard to interpret biologically, especially with regards to
527 impact of fitness. Therefore, we used the eigenvectors from our leaf-trait PC and the selection
528 gradients on the PC scores to reconstitute selection gradients onto the traits. This method is
529 described in detail by Chong et al (2018)³⁵. In brief, we created a matrix of eigenvectors for each
530 leaf trait and the first three PCs from our leaf trait PCA (referred to as E in formula (1) of Chong
531 et al.; Table S7). We generated a vector of selection gradients (referred to as A in formula (1) of
532 Chong et al.; Table S11) for the first three PC scores using both the full species dataset from the
533 pilosa garden and only the pilosa individuals from the pilosa garden. We generated this vector
534 for each of the three fitness traits (number of fruits, number of flowers, and biomass) that show
535 evidence of selection both across species and within pilosa. The product of this matrix of
536 eigenvectors and vector of selection coefficients is a vector of reconstituted selection gradients
537 for each leaf trait in the original PCA (Figure 5H).

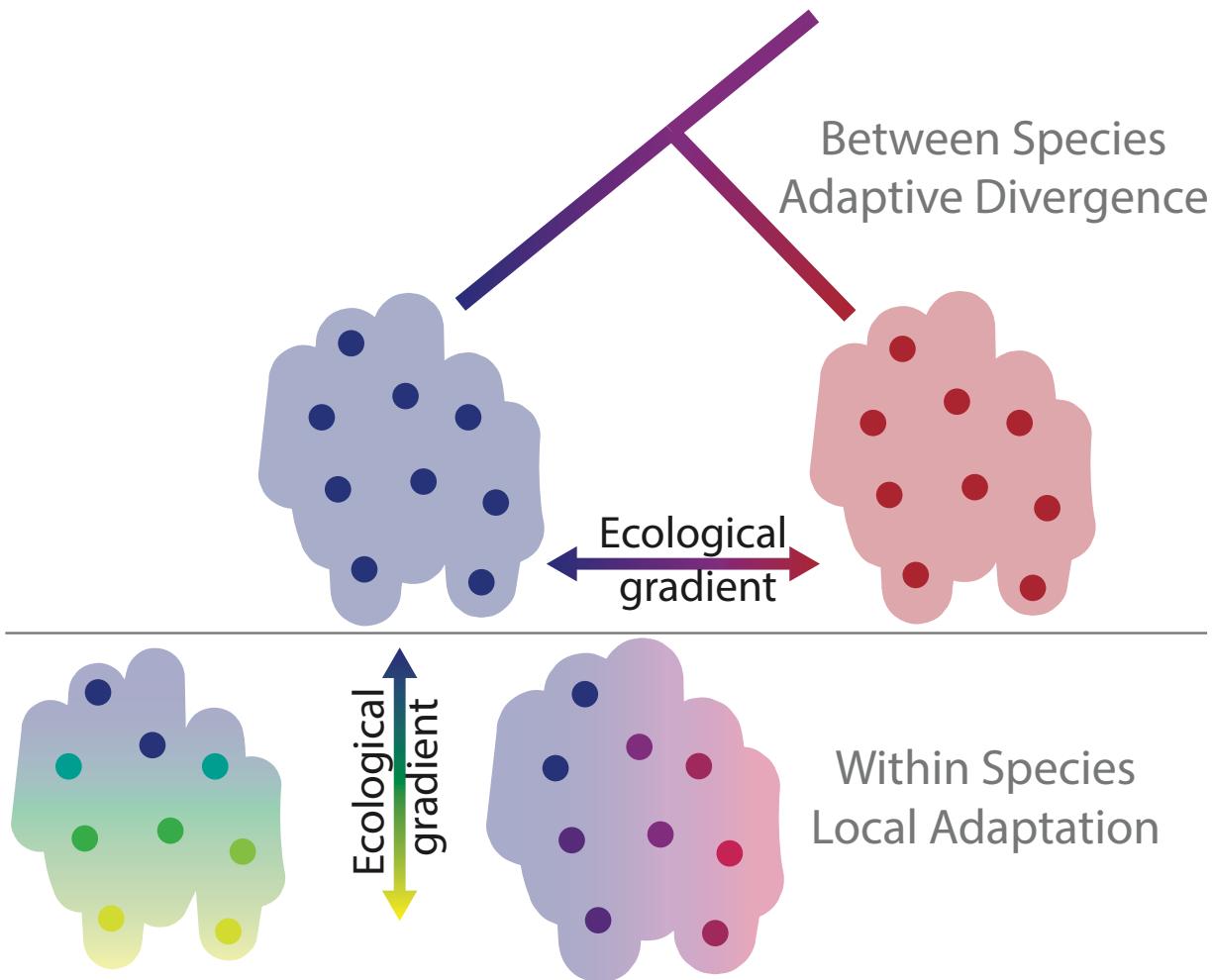
538

539 **Data Availability**
540 The data collected in this study are available on Dryad at: DOI: 10.5061/dryad.gxd2547sx. All
541 collated data and summarized data are available as Supplementary information and data. Raw
542 sequence data used in this project are available on the NCBI sequence read archive: PR-
543 JNA701424

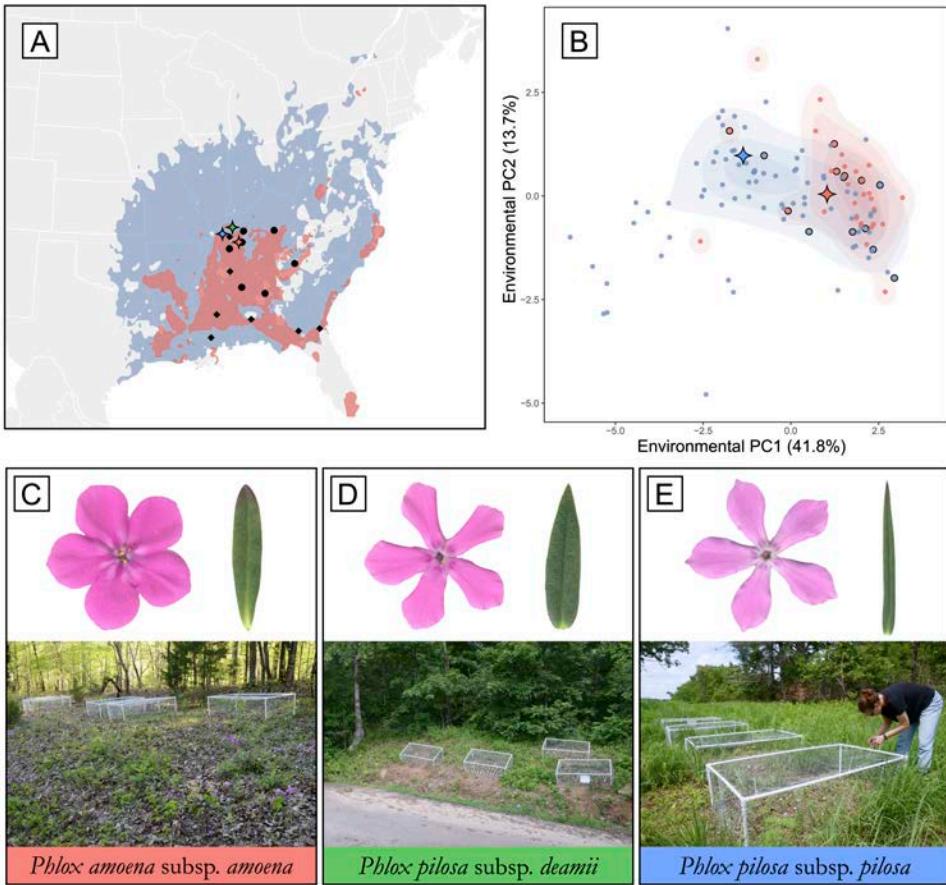
544
545 **Code Availability**
546 Source code is available at <https://github.com/PhloxHopkins/PhloxFieldAdaptation>

547
548 **Funding**
549 This study was funded by the National Science Foundation (DEB-1844906 to R.H.), and a
550 Rosemary Grant Advanced Award from the Society for the Study of Evolution to B.G-S. M.B.
551 was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology
552 under the Plant Genome Research Program.

553
554 **Acknowledgements**
555 We are grateful to Dan Hartl, Missy Holbrook, James Mallet, Grace Burgin, Austin Garner,
556 Samridhi Chaturvedi, Jake Grossman, and Antonio Serrato-Capuchina for helpful discussions.
557 We would also like to thank Abraham Cone, Andrew Goulet, Julian Campbell, Jewel Cotton,
558 Neville Crawford, Carolyn Ferguson, Elizabeth Raikes, and Richard Carter (Valdosta State
559 University Herbarium) for assistance with collecting plants used in this experiment, the Arnold
560 Arboretum greenhouse staff for plant care, and Hancock Biological Station (Murray State
561 University). Finally, we thank the US Forest Service, Paris Bailey, and Jewel Cotton for
562 permission to plant experimental gardens on their land.

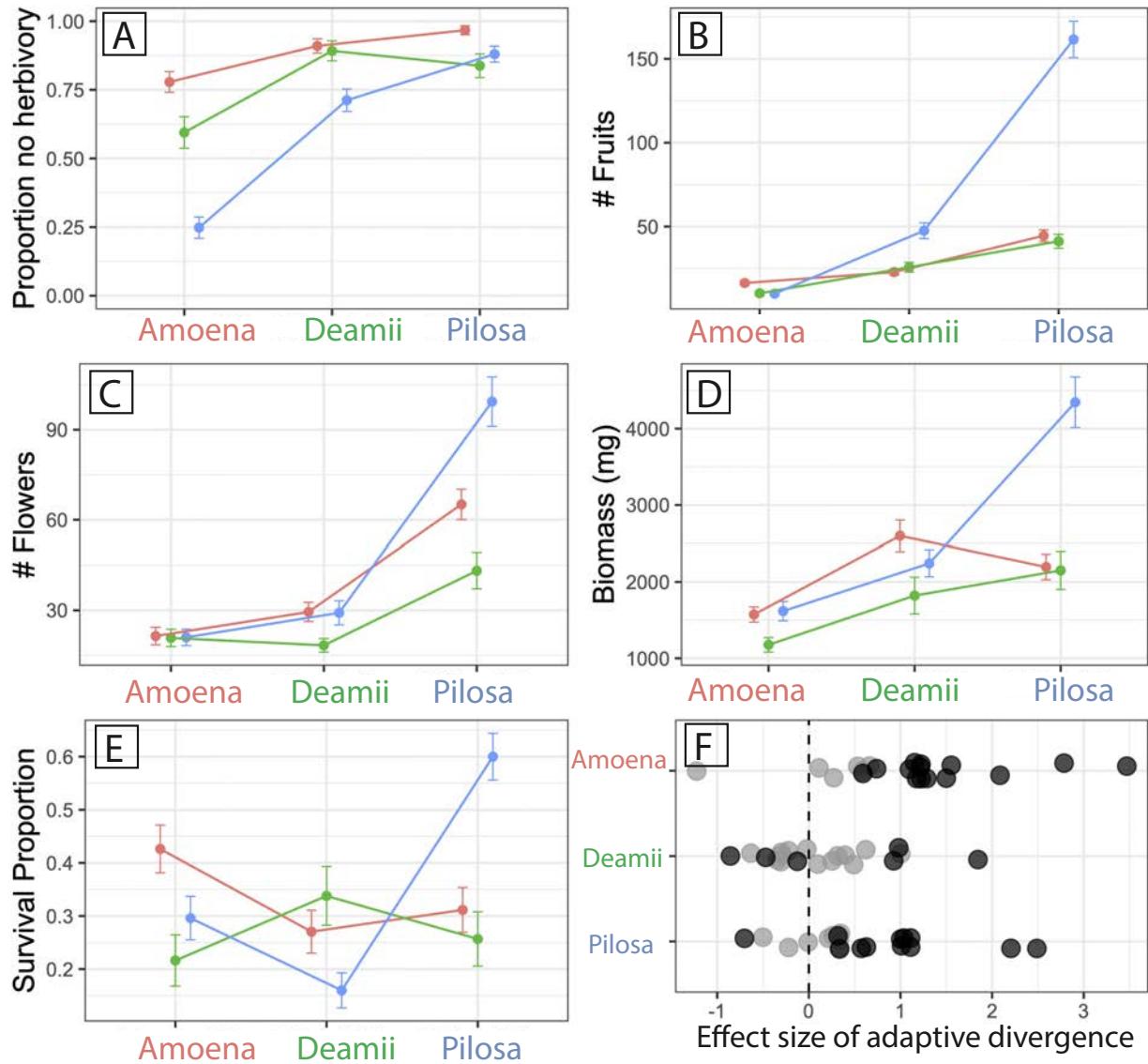

563
564 **Author contributions**
565 B.G-S. and R.H. designed the experiment. B.G-S., M.C.F., A.L.M.B., C.O.H. and R.H.
566 performed the experimental studies. B.G-S., M.B. and R.H. analyzed the data. B.G-S and R.H.
567 wrote the manuscript with assistance from all other authors.

568
569 **Competing Interests**
570 Authors declare no competing interests.

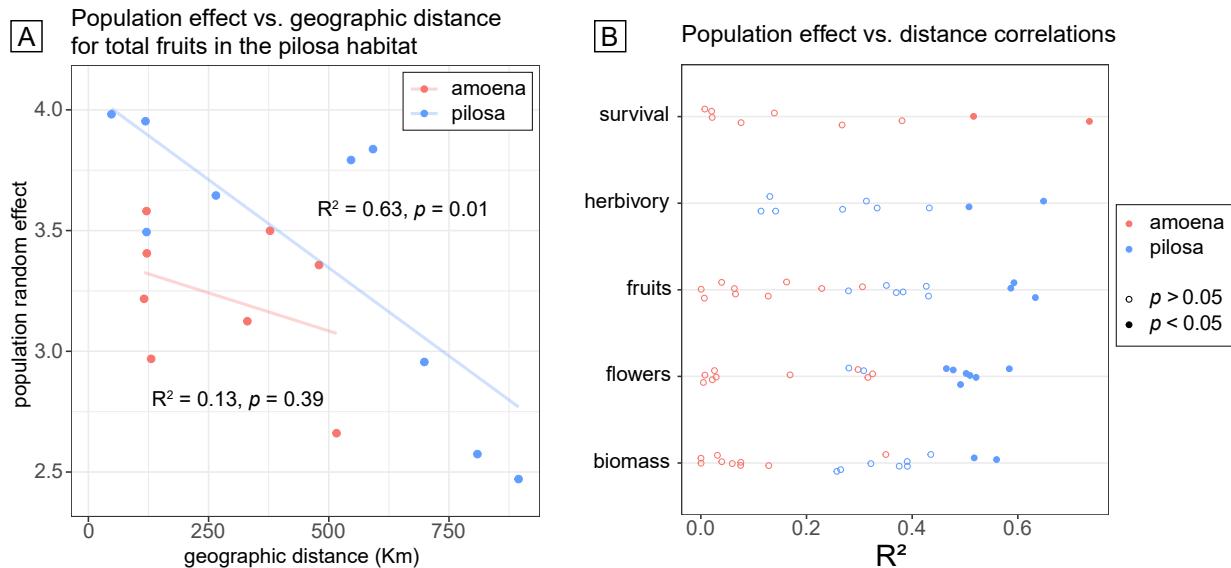

Table 1. Model details with contrast estimates for five fitness-related traits measured in a three-garden reciprocal transplant experiment.

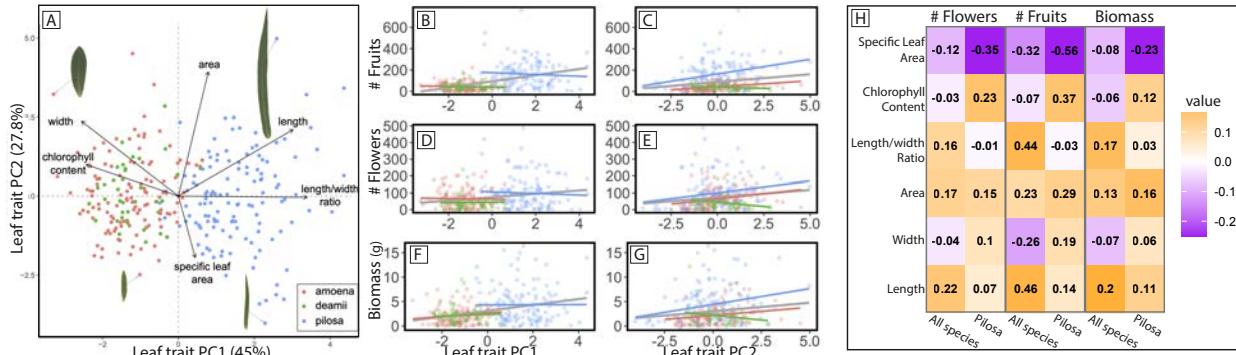
	taxon*garden	amoena		deamii		pilosa	
		local vs. foreign	home vs. away	local vs. foreign	home vs. away	local vs. foreign	home vs. away
herbivory	X ² = 17.87	vs. deamii = -1.03, p = 0.037	vs. Dea = 1.11, p = 0.005	vs. amoena = -0.30, p = 0.625	vs. Amo = 1.85, p < 0.001	vs. amoena = -1.22, p = 0.06	vs. Amo = 3.47, p < 0.001
	p = 0.001	vs. pilosa = -2.49, p < 0.001	vs. Pil = 2.21, p < 0.001	vs. pilosa = -1.00, p = 0.082	vs. Pil = -0.49, p = 0.328	vs. deamii = 0.66, p = 0.25	vs. Dea = 1.17, p < 0.001
flower #	X ² = 685.89	vs. deamii = 0.22, p = 0.703	vs. Dea = 0.32 p < 0.001	vs. amoena = -0.22, p = 0.698	vs. Amo = -0.13, p < 0.001	vs. amoena = 0.11, p = 0.789	vs. Amo = 1.55, p < 0.001
	p < 0.001	vs. pilosa = -0.33, p = 0.422	vs. Pil = 1.11, p < 0.001	vs. pilosa = -0.10, p = 0.864	vs. Pil = 0.86, p < 0.001	vs. deamii = 0.27, p = 0.634	vs. Dea = 1.23, p < 0.001
fruit #	X ² = 2583.5	vs. deamii = -0.33, p = 0.307	vs. Dea = 0.34, p < 0.001	vs. amoena = 0.25, p = 0.439	vs. Amo = 0.92, p < 0.001	vs. amoena = 1.15, p < 0.001	vs. Amo = 2.78, p < 0.001
	p < 0.001	vs. pilosa = -0.63, p = 0.007	vs. Pil = 1.00, p < 0.001	vs. pilosa = 0.34, p = 0.288	vs. Pil = 0.47, p < 0.001	vs. deamii = 1.10, p < 0.001	vs. Dea = 1.22, p < 0.001
biomass	X ² = 22.03	vs. deamii = -0.34, p = 0.384	vs. Dea = 0.27, p = 0.068	vs. amoena = -0.63, p = 0.110	vs. Amo = -0.02, p = 0.91	vs. amoena = 0.53, p = 0.07	vs. Amo = 0.74, p < 0.001
	p < 0.001	vs. pilosa = -0.21, p = 0.466	vs. Pil = -0.01 p = 0.955	vs. pilosa = 0.30, p = 0.4425	vs. Pil = 0.31, p = 0.103	vs. deamii = 0.58, p = 0.135	vs. Dea = 0.59, p = 0.001
survival	X ² = 43.05	vs. deamii = -1.01, p = 0.004	vs. Dea = -0.70, p = 0.011	vs. amoena = 0.31, p = 0.355	vs. Amo = 0.62, p = 0.099	vs. amoena = 1.22, p < 0.001	vs. Amo = 1.29, p < 0.001
	p < 0.001	vs. pilosa = -0.57, p = 0.041	vs. Pil = -0.50, p = 0.063	vs. pilosa = -0.98, p = 0.007	vs. Pil = -0.39, p = 0.279	vs. deamii = 1.50, p < 0.001	vs. Dea = 2.09, p < 0.001

The X^2 and p -values reported for taxon*garden interactions were determined by ANOVA on generalized linear mixed models as described in the methods. The contrast effect size estimates reported for local vs. foreign and home vs. away comparisons were determined using Tukey's Test. Gray shading indicates a contrast showing evidence of adaptive divergence with local species doing better than foreign or a species doing better in the home versus away garden. Dea indicates the deamii home garden site, Pil indicates the pilosa home garden site, and Amo indicates the amoena home garden site.



1
2 **Figure 1: Conceptual schematic representing divergence across scales of biological**
3 **diversity in response to selection along axes of ecological variation.** Top panel represents
4 adaptive divergence between populations of two species shown as blue and red dots on different
5 ecological habitats denoted by red and blue backgrounds. Bottom panel represents alternative
6 scenarios of within species local adaptation. Each colored point is a population adapted to the
7 gradient of ecological conditions in the habitat represented by color across the background. In
8 the scenario shown at the right (blue to red), the ecological gradient driving within species local
9 adaptation is parallel to the ecological gradient driving between species adaptive divergence. In
10 the left scenario (blue to yellow) the gradient of within species adaptation is orthogonal to the
11 gradient driving divergence between species (blue to yellow).
12




13
14 **Figure 2: Geographic and environmental variation of broadly sympatric *Phlox* species.** (A)
15 Ecological niche modeling predicts the geographic distributions of *P. pilosa pilosa* (pilosa; blue)
16 and *P. amoena amoena* (amoena; red) with sampling locations indicated as black diamonds
17 (pilosa) and black circles (amoena). Locations of the common gardens are indicated by colored
18 diamonds (amoena in red, pilosa in blue, deamii in green). (B) Environmental variation of pilosa
19 and amoena summarized with a principal component analysis. Blue and red points indicate
20 conditions of known populations of pilosa and amoena respectively. Black outlined points are
21 populations sampled for transplant experiment and diamonds are the common garden sites.
22 Representative flowers and leaves (not to scale) and pictures of local common garden site, of
23 amoena (C), *P. pilosa deamii* (deamii) (D), and pilosa (E).

24

25
26 **Figure 3: Performance of each taxon across three garden environments.** Fitness traits
27 include A) proportion of plants without herbivore damage, B) total number of fruits, C) total
28 number of flowers, D) aboveground biomass, and E) proportion survived to the end of the
29 experiment. Values plotted are taxon means +/- standard error in each garden (n= 321 individuals
30 per garden). The ANOVA evaluation of a mixed model analysis for each trait revealed a
31 significant taxon by garden interaction for all traits. F) Summary of effect size of post-hoc
32 contrasts evaluating local adaptation and home-garden advantage for each species. Positive
33 values indicate local species performed superior while negative values indicate local species
34 performs worse. Black points indicate Tukey Test contrasts are significant at $p < 0.05$. See Table
35 1 for full model results.
36

48
49 **Figure 5: Trait variation predicts fitness variation between and within species.** Principal
50 components analysis describing phenotypic variation across three *Phlox* species (A). Points
51 indicate values from individuals grown in the common garden experiment and black arrows
52 indicate loadings of specific traits on the axes of variation. Images of four leaves (to scale)
53 are connected to their points with gray arrows to demonstrate variation in shape along PC1 and area
54 along PC2. (B-G) Relationship between fitness traits and leaf trait variation along PC1 and PC2.
55 Colored points indicate fitness values of individuals grown in the pilosa habitat garden. Gray
56 lines indicate linear model found significant relationship across all species and colored lines
57 show relationship within each species (pilosa in blue, amoena in red and deamii in green). For
58 PC1, linear models find no relationships within species are significant while all within pilosa and
59 amoena relationships are significant between PC2 and fitness traits. Full results in Table S8. (H)
60 Heatmap of reconstituted selection gradients (β values) for three fitness measures on each leaf
61 trait with darker colors indicated higher values, negative values in purple and positive values in
62 orange. Results are shown for data from all species and just for pilosa for each fitness measure. β
63 values are included in each well.

References

- 1 Funk, D. J., Nosil, P. & Etges, W. J. Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. *Proceedings of the National Academy of Sciences* **103**, 3209-3213 (2006).
<https://doi.org:doi:10.1073/pnas.0508653103>
- 2 Grant, V. *Plant speciation*. 2nd edn, (Columbia University Press, 1981).
- 3 Mayr, E. Ecological factors in speciation. *Evolution*, 263-288 (1947).
- 4 Stebbins, G. L. in *Variation and evolution in plants* (Columbia University Press, 1950).
- 5 Hargreaves, A. L., Germain, R. M., Bontrager, M., Persi, J. & Angert, A. L. Local Adaptation to Biotic Interactions: A Meta-analysis across Latitudes. *The American Naturalist* **195**, 395-411 (2020). <https://doi.org:10.1086/707323>
- 6 Hereford, J. A Quantitative Survey of Local Adaptation and Fitness Trade-Offs. *Am. Nat.* **173**, 579-588 (2009). <https://doi.org:10.1086/597611>
- 7 Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. *Ecol. Lett.* **7**, 1225-1241 (2004).
- 8 Lortie, C. J. & Hierro, J. L. A synthesis of local adaptation to climate through reciprocal common gardens. *J. Ecol.* **110**, 1015-1021 (2022).
- 9 Rundle, H. D. & Nosil, P. Ecological speciation. *Ecol. Lett.* **8**, 336-352 (2005).
- 10 Schlüter, D. Evidence for ecological speciation and its alternative. *Science* **323**, 737-741 (2009).
- 11 Ågren, J. & Schemske, D. W. Reciprocal transplants demonstrate strong adaptive differentiation of the model organism *Arabidopsis thaliana* in its native range. *New Phytol.* **194**, 1112-1122 (2012). <https://doi.org:https://doi.org/10.1111/j.1469-8137.2012.04112.x>
- 12 Alberto, F. J. *et al.* Potential for evolutionary responses to climate change - evidence from tree populations. *Glob Chang Biol* **19**, 1645-1661 (2013).
<https://doi.org:10.1111/gcb.12181>
- 13 Blumstein, M. *et al.* A New Perspective on Ecological Prediction Reveals Limits to Climate Adaptation in a Temperate Tree Species. *Curr. Biol.* **30**, 1447-1453.e1444 (2020).
<https://doi.org:https://doi.org/10.1016/j.cub.2020.02.001>
- 14 Campbell-Staton, S. C. *et al.* Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. *Science* **357**, 495-498 (2017).
<https://doi.org:doi:10.1126/science.aam5512>
- 15 Hoekstra, H. E., Krenz, J. G. & Nachman, M. W. Local adaptation in the rock pocket mouse (*Chaetodipus intermedius*): natural selection and phylogenetic history of populations. *Heredity* **94**, 217-228 (2005).
- 16 Lowry, D. B., Rockwood, R. C. & Willis, J. H. Ecological reproductive isolation of coast and inland races of *Mimulus guttatus*. *Evolution* **62**, 2196-2214 (2008).
<https://doi.org:10.1111/j.1558-5646.2008.00457.x>
- 17 Lenormand, T. Gene flow and the limits to natural selection. *Trends Ecol. Evol.* **17**, 183-189 (2002). [https://doi.org:10.1016/s0169-5347\(02\)02497-7](https://doi.org:10.1016/s0169-5347(02)02497-7)

18 Antonovics, J. The Nature of Limits to Natural Selection. *Annals of the Missouri Botanical Garden* **63**, 224-247 (1976). <https://doi.org/10.2307/2395303>

19 Eroukhmanoff, F. Just How Much is the G-matrix Actually Constraining Adaptation? *Evolutionary Biology* **36**, 323-326 (2009). <https://doi.org/10.1007/s11692-009-9062-y>

20 Schluter, D. Adaptive radiation along genetic lines of least resistance. *Evolution* **50**, 1766-1774 (1996).

21 Leimu, R. & Fischer, M. A Meta-Analysis of Local Adaptation in Plants. *Plos One* **3**, 8 (2008). <https://doi.org/10.1371/journal.pone.0004010>

22 Brown, W. L. & Wilson, E. O. Character Displacement. *Systematic Zoology* **5**, 49-64 (1956).

23 Bolnick, D. I. *et al.* A multivariate view of the speciation continuum. *Evolution* **77**, 318-328 (2023). <https://doi.org/10.1093/evolut/qpac004>

24 Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for (incomplete) speciation. *Trends Ecol. Evol.* **24**, 145-156 (2009). <https://doi.org/10.1016/j.tree.2008.10.011>

25 Stankowski, S. & Ravinet, M. Defining the speciation continuum. *Evolution* **75**, 1256-1273 (2021).

26 Mayr, E. *Systematics and the origin of species*. (Columbia University Press, 1942).

27 Goulet-Scott, B. E., Garner, A. G. & Hopkins, R. Genomic analyses overturn two long-standing homoploid hybrid speciation hypotheses. *Evolution* **75**, 1699-1710 (2021). <https://doi.org/https://doi.org/10.1111/evo.14279>

28 Levin, D. A. & Smith, D. M. Hybridization and evolution in *Phlox pilosa* complex. *Am. Nat.* **100**, 289-& (1966). <https://doi.org/10.1086/282423>

29 Locklear, J. H. *Phlox: a natural history and gardener's guide*. (Timber Press, 2011).

30 Clausen, J., Keck, D. D. & Hiesey, W. M. Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. *Experimental studies on the nature of species. I. Effect of varied environments on western North American plants*. (1940).

31 Turesson, G. The species and the variety as ecological units. *Hereditas* **3**, 100-113 (1922).

32 Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic Patterns of Genetic Divergence and Adaptation across Environmental Gradients in *Boechera stricta* (Brassicaceae). *The American Naturalist* **186**, S60-S73 (2015). <https://doi.org/10.1086/682404>

33 Blumstein, M. & Hopkins, R. Adaptive variation and plasticity in non-structural carbohydrate storage in a temperate tree species. *Plant, Cell & Environment* **44**, 2494-2505 (2021). <https://doi.org/https://doi.org/10.1111/pce.13959>

34 Wilczek, A. M., Cooper, M. D., Korves, T. M. & Schmitt, J. Lagging adaptation to warming climate in *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences* **111**, 7906-7913 (2014).

35 Chong, V. K., Fung, H. F. & Stinchcombe, J. R. A note on measuring natural selection on principal component scores. *Evol Lett* **2**, 272-280 (2018). <https://doi.org/10.1002/evl3.63>

36 Wang, H., McArthur, E. D., Sanderson, S. C., Graham, J. H. & Freeman, D. C. Narrow
hybrid zone between two subspecies of big sagebrush (*Artemisia tridentata*: Asteraceae)
.4. Reciprocal transplant experiments. *Evolution* **51**, 95-102 (1997).

37 Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. *spThin*:
an R package for spatial thinning of species occurrence records for use in ecological
niche models. *Ecography* **38**, 541-545 (2015). <https://doi.org:10.1111/ecog.01132>

38 *dismo*: Species distribution modeling v. 1.1-4 (2017).

39 Grossman, J. J. Evidence of Constrained Divergence and Conservatism in Climatic Niches
of the Temperate Maples (*Acer L.*). *Forests* **12**, 535 (2021).

40 *geosphere*:Spherical Trigonometry v. 1.5-7 (2017).

41 Broennimann, O. *et al.* Measuring ecological niche overlap from occurrence and spatial
environmental data. *Global Ecology and Biogeography* **21**, 481-497 (2012).
<https://doi.org:https://doi.org/10.1111/j.1466-8238.2011.00698.x>

42 Molina-Henao, Y. F. & Hopkins, R. Autopolyploid lineage shows climatic niche expansion
but not divergence in *Arabidopsis arenosa*. *Am. J. Bot.* **106**, 61-70 (2019).

43 *lme4*: Linear Mixed-Effects Models Using S4 Classes. v. 1.1-27.1 (2007).

44 Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models
Using *lme4*. *Journal of Statistical Software* **67**, 1-48 (2015).

45 *car*: Companion to Applied Regression v. 3.0-11 16 (2012).

46 *multcomp*: Simultaneous Inference in General Parametric Models v. 1.4-13 (2015).

47 Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156-2158
(2011). <https://doi.org:10.1093/bioinformatics/btr330>

48 Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population-
Structure. *Evolution* **38**, 1358-1370 (1984).

49 Team, R. C. R: A Language and Environment for Statistical Computing R. Foundation for
Statistical Computing Version 4.0. 2. (2020).