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Abstract
In-plane anisotropic two-dimensional (2D) materials exhibit in-plane orientation-
dependent properties. The anisotropic unit cell causes these materials to show lower
symmetry but more diverse physical properties than in-plane isotropic 2D materials. In
addition, the artificial stacking of in-plane anisotropic 2D materials can generate new
phenomena that cannot be achieved in in-plane isotropic 2D materials. In this perspective
we provide an overview of representative in-plane anisotropic 2D materials and their
properties, such as black phosphorus, group IV monochalcogenides, group VI transition
metal dichalcogenides with 1T′ and Td phases, and rhenium dichalcogenides. In addition,
we discuss recent theoretical and experimental investigations of twistronics using in-plane
anisotropic 2D materials. Both in-plane anisotropic 2D materials and their twistronics hold
considerable potential for advancing the field of 2D materials, particularly in the context of
orientation-dependent optoelectronic devices.

Keywords: two-dimensional materials, in-plane anisotropy, van der Waals heterostructure,
moiré superlattice, twistronics

1. Introduction

Two-dimensional (2D) materials consist of layers that are weakly stacked together
through van der Waals (vdW) forces, whereas the atoms in each layer are strongly
bound to each other by covalent or ionic bonds. This difference in bonding creates
an anisotropy between the in-plane and out-of-plane directions, which also enables
the exfoliation and isolation of a single layer of material [1] and advancing
investigations on exotic phenomena, such as the quantum Hall effect in graphene
[2–4], the strongly bound excitons and trions in group VI transition metal
dichalcogenides (TMDCs) [5, 6], the development of hexagonal boron nitride
(hBN) as a 2D dielectric material [7, 8], and the fabrication of vdW hetero-
structures and their optoelectronic devices [9–11]. These 2D materials exhibit high
symmetry within their in-plane structures, resulting in nearly isotropic in-plane
properties.

In contrast, there are several groups of 2D materials with in-plane anisotropy,
referred to as in-plane anisotropic 2D materials. Because of the different lattice
constants and bonding configurations within their in-plane orientations, they
exhibit highly anisotropic mechanical, electrical, and optical properties. This
category includes black phosphorus, which is the most representative in-plane
anisotropic 2D material, group IV monochalcogenides, 1T′ or Td phase MoTe2
and WTe2, and rhenium dichalcogenides. As the presence of anisotropy between
the in-plane and out-of-plane directions has prompted and widened research on 2D
materials, the high degree of freedom of in-plane anisotropic 2D materials also has
potential to provide and unlock new opportunities and possibilities of these
materials.

The investigation of in-plane anisotropic 2D materials follows the approach
employed for in-plane isotropic 2D materials, which involves the artificial
stacking of these materials with lattice mismatch or relative twist angles. The

11 These authors contributed equally
to this work.

© 2024 IOP Publishing Ltd1

https://doi.org/10.1088/1361-6528/ad2c53
https://orcid.org/0000-0001-6042-5551
https://orcid.org/0000-0001-6042-5551
https://orcid.org/0000-0002-3028-867X
https://orcid.org/0000-0002-3028-867X
mailto:gwanlee@snu.ac.kr


incommensurate stacking of 2D materials generates quasiperiodic geometric pat-
terns denoted to as moiré superlattices [12–14]. These patterns can modulate the
electronic properties of 2D materials and generate non-trivial physical phenomena
that are absent in their individual layers. This approach is referred to as twis-
tronics; the properties and phenomena induced by twistronics have been widely
studied in in-plane isotropic 2D materials, such as superconductivity and Mott-like
insulating states in twisted bilayer graphene [15, 16], out-of-plane ferroelectricity
in artificially stacked hBN and TMDCs [17–20], and moiré interlayer excitions in
twisted bilayers of TMDCs [21–23]. The artificial stacking of in-plane anisotropic
2D materials is expected to lead to a broader range of unique phenomena owing to
their higher degrees of freedom. Research on this topic is gradually emerging,
showing promise for future exploration.

From this perspective, we present a comprehensive overview of in-plane
anisotropic 2D materials and their twistronics. Initially, we introduce representa-
tive examples of in-plane anisotropic 2D materials and their respective char-
acteristics based on their crystal structures. In the subsequent section, we review
the recent progress in twistronics composed of in-plane anisotropic 2D materials,
encompassing both vdW homobilayers and heterostructures. Lastly, we address
several challenges and prospects associated with these emerging materials.

2. In-plane anisotropic 2D materials

Orientation-dependent properties of in-plane anisotropic 2D materials are mainly
attributed to their low crystallographic symmetry. Unlike in-plane isotropic 2D
materials with hexagonal or trigonal symmetry, such as graphene, group VI
TMDCs, and hBN, most in-plane anisotropic 2D materials exhibit orthorhombic,
monoclinic, or triclinic crystal systems. These crystal systems show nonequivalent
lattice parameters and bonding configurations that depend on the in-plane orien-
tations of the material. Consequently, the physical properties of in-plane aniso-
tropic 2D materials, including their mechanical, electrical, optical, and thermal
properties, show a distinctive dependence on the in-plane orientation. In table 1,
we categorise in-plane anisotropic 2D materials based on their crystal systems and
summarise their space groups, band structures, electrical anisotropy ratios, and
remarkable characteristics. The electrical anisotropy ratio refers the ratio between
electrical properties (resistance (R), conductance (G), or mobility (μ)) along each
principle in-plane crystallographic axis.

2.1. Black phosphorus: representative in-plane anisotropic 2D materials

Black phosphorus (BP), which is also known as phosphorene, is the most
extensively investigated in-plane anisotropic 2D material. The crystal structure of
BP is shown in figure 1(a). BP has an orthorhombic structure with the Cmca space
group. The monolayer of BP is characterised by a puckered arrangement com-
posed of two subatomic layers, which arise from the repulsion between the lone
pair electrons in the phosphorus atoms. As confirmed in the top-view image (right
side of figure 1(a)), BP exhibits distinct lattice constants and bonding configura-
tions along the armchair (x) and zigzag (y) directions. These differences give rise
to in-plane anisotropic properties.

Firstly, BP exhibits highly anisotropic in-plane mechanical properties.
Theoretical calculations have shown that the Young’s modulus of monolayer BP
along the armchair direction (Earmchair) is smaller than that along the zigzag
direction (Ezigzag) [24, 25]. This difference results from the puckered structure of
BP along the armchair direction. Under compression or tension, the pucker can be
compressed or flattened rather than extending the bonding length between the P
atoms. This behaviour facilitates mechanical deformation along the armchair
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Table 1.
Representative in-plane anisotropic 2D materials and their space groups, band structures, and electrical anisotropy ratio.

Crystal
system Materials

Space group
(mono/bulk)

Band gap (eV)
(mono/bulk) Band structure (mono/bulk) Electrical anisotropy ratio

Remarkable
characteristics

Orthorhombic BP Pnma / Cmca 1.6/0.68 [27] Direct/Direct [27] G ratio ∼1.5 [32] Direct band gap
from mono
to bulk

MX (M: Ge, Sn/X: S, Se) Pnm21 / Pnma SnS: 2.24/ [50] SnS: Indirect/Indirect [50] GeS: μ ratio ∼4.1 [119] In-plane
SnSe: 1.39/ [50] SnSe: Indirect/Indirect [50] GeSe: μ ratio ∼1.85 [120] ferroelectricity
GeS: 2.74/ [50] GeS: Indirect/Indirect [50]
GeSe: 1.66/ [50] GeSe: Direct/Indirect [50]

Td-MoTe2, WTe2 P21/m / Pnm21 Semi-metal Topologically
non-trivial

Monoclinic 1T′-MoTe2, WTe2 P21/m / P21/m Semi-metal WTe2: R ratio ∼3 [76]
Triclinic ReS2, ReSe2 P1̄/ P1̄ ReS2: 1.6/1.5 [85] ReS2: Direct/Indirect [90] ReS2: μ ratio ∼3.1 [79] Ferroelasticity

ReSe2: 1.31/1.06 [121] ReSe2: Indirect/Indirect [121]
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direction (figure 1(b)) [24, 25]. The polar plot in figure 1(c) shows the in-plane
Young’s modulus of monolayer BP obtained from the density functional theory
(DFT) [24]. The Young’s modulus along the zigzag direction (Ezigzag = 166GPa)
is approximately four times larger than that along the armchair direction (Earmchair

= 44 GPa). Similarly, the critical strain along the armchair direction (30%) is
slightly larger than that along the zigzag direction (27%) [24]. Several exper-
imental studies have investigated the mechanical properties of BP. Notably,
measurements of Earmchair and Ezigzag of few-layer BP using nanoindentation and
buckling metrology show that the zigzag direction is stiffer than the armchair
direction [26, 27], which are consistent with theoretical calculations [24, 25].

BP also exhibits anisotropic in-plane electrical properties. Figure 1(d) shows
the electronic band structure of monolayer, bilayer, and trilayer BP [28].
Regardless of its thickness, BP shows a direct band gap, which gradually
decreases from 1.6 to 0.68 eV when transitioning from a monolayer to a trilayer
structure. In addition, the band structure also indicates that the curvature along the
Γ–X (armchair) direction is smaller than that along the Γ–Y (zigzag) direction for
both the conduction band minimum (CBM) and valence band maximum (VBM)
[28–32]. These differences suggest that both for electrons and holes, the effective
mass along the armchair direction is smaller than that along zigzag direction. Qiao
et al theoretically investigated the effective mass of charge carriers in BP from the
monolayer to the bulk [30]. In the case of the monolayer, the effective mass of
electrons along the armchair and zigzag directions is 0.17m0 and 1.12m0, and that
of holes is 0.15m0 and 6.35m0, respectively, where m0 is the rest electron mass. As
the carrier mobility is inversely proportional to the effective mass, BP exhibits

Figure 1. Black phosphorus. (a) Crystal structure of BP viewed from side (left) and top (right). Unit
cells are represented with black solid lines. (b), (c) mechanical anisotropy of BP. (b) Flattening of
pucker in BP under tensile strain along the armchair direction. (c) Polar plot of calculated in-plane
Young’s modulus. (b), (c) were adapted from [24] with permission. (d) Calculated band structures of
mono-, bi-, and trilayer BP. Adapted from [28] with permission. (e)–(g) Polar plots of experimental
polar plots of (e) DC conductance, (f) calculated absorption coefficient as a function of light
polarization angle, (g) photoluminescence peak intensity as a function of analyzer angle for
excitation along armchair, zigzag, and 45° directions. Adapted from [33, 37, 38] respectively, with
permission.
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anisotropic carrier mobility and direct current (DC) conductance within its plane
(figure 1(e)) [33–35]. However, it should be noted that the effective mass is not the
only factor that influences the anisotropy ratio of carrier mobility, as mobility is
also affected by other factors, such as scattering by phonons and charged impu-
rities [30, 36].

The anisotropic band dispersion of BP also results in anisotropic in-plane
optical properties. BP has a mirror plane perpendicular to the armchair direction,
and the electron wavefunctions at the CBM and VBM include s, px, and pz orbitals
with even symmetry with respect to the mirror plane. As linearly polarized light
along y-axis exhibits an odd symmetry with respect to the mirror plane, the
absorption of y-polarized light is forbidden [30–32]. Hence, BP exhibits higher
absorption in the Γ–X direction (lower in the Γ–Y) when the polarization of the
incident light is parallel to the respective direction (figure 1(f)) [31, 32, 37].
Furthermore, the photoluminescence (PL) of BP displayed in-plane anisotropy
(figure 1(g)) [31, 38]. As previously mentioned, charge carriers exhibit higher
mobility along the armchair direction due to the smaller effective mass along that
direction. Conversely, the Coulomb interaction remains isotropic regardless of the
direction. As a result, anisotropic excitons are generated, leading to strong
polarization of the PL along the armchair direction.

In addition to the aforementioned properties, other physical properties exhibit
distinctive in-plane anisotropies, such as reflection [39, 40], thermal transport
[41, 42], and Raman scattering [43, 44].

Despite its outstanding properties, the applications of BP have been limited
because of its instability in the presence of oxygen and water, which can react with
its lone pair electrons [45, 46]. To ensure a meticulous investigation, the exfo-
liation, characterisation, and manipulation of BP are recommended to be per-
formed under inert conditions. Encapsulation with materials such as AlOx [47],
hBN [48], and native oxides [49] is another possible solution for preventing the
degradation of BP.

2.2. Group IV monochalcogenides: in-plane ferroelectricity

Group IV monochalcogenides (MX, M = Ge or Sn, X = S or Se) have crystal
structures similar to those of BP. Unlike the single-element composition of BP,
MXs are binary systems comprising two elements with different electro-
negativities. Furthermore, in contrast to BP, which has two atomic sublayers,
MXs’ atomic layers consist of four sublayers (figure 2(a)). Hence, the MXs exhibit
lower symmetry compared to BP within the Pnma space group. In particular, the
monolayers exhibit a broken inversion symmetry.

Theoretical results by Xu et al indicate that monolayer SnS, SnSe, GeS, and
GeSe have bandgaps of 2.24, 1.39, 2.74, and 1.66 eV, respectively. Notably, GeSe
is predicted to possess a direct band gap (figure 2(b)) [50].

By combination of the electronegativity difference between the metal and
chalcogen atoms and noncentrosymmetry in their monolayer, odd-layered MXs
show in-plane ferroelectricity along the armchair direction (red arrows in
figure 2(a)) [51–56]. In contrast, even-layered MXs exhibit antiferroelectric
characteristics, because the opposite polarizations are cancelled out by the adjacent
layers. Nevertheless, depending on the stacking order, the even-layered MXs can
exhibit ferroelectricity. Sutter et al confirmed stacking order-dependent in-plane
ferroelectricity in SnS using lateral piezoresponse force microscopy (PFM) as
shown in figure 2(c) [55]. The upper (lower) panels of figure 2(c) correspond to
the topography, PFM amplitude, and PFM phase images of AB-stacked
(AA-stacked) SnS. The alternating (increasing) lateral PFM amplitude and phase
images indicate the annihilation (accumulation) of in-plane ferroelectricity in
AB-stacked (AA-stacked) SnS. This result is supported by the cross-sectional
transmission electron microscopy (TEM) images obtained by Higashitarumizu et al,
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where a stacking order change was observed for 16 L SnS (figure 2(d)) [52]. Based
on the in-plane ferroelectricity, the MX devices displayed hysteresis in their I–V
curves (figure 2(e)), indicating their potential for application as resistance switching
memory (figure 2(f)) [53]. When a small forward bias is applied to an MX device,
residual negatively polarized domains cause the device to exhibit a low-resistance
state. As the forward bias exceeds the coercive force of MX, the polarizations of the
domains switch in the positive direction, hindering the transport of charge carriers.
When a higher voltage is applied, the current in the MX device is saturated and
quenched by charge accumulation at the interface between SnS and the electrodes,
leading to a high-resistance state (figure 2(g)) [51, 52, 56]. In addition, a synaptic
device utilizing MX has been demonstrated by flipping and reversing the polar-
ization of MXs domains through electrical spikes [53].

In addition to in-plane ferroelectricity, MXs have been reported to exhibit
various other characteristics, including piezoelectric [57], bulk photovoltaic
[56, 58], anisotropic thermoelectric [59, 60], and valley-dependent properties
[61, 62]. However, owing to the strong interlayer interaction by the lone pair
electrons in metal atoms [63, 64], the isolation of high-quality monolayer MXs
and their characterisation have seldom been reported [52, 54]. Therefore, it is
crucial to synthesize high-quality large-area monolayer MXs to bridge the gap
between the theoretical understanding and practical applications of MXs.

Figure 2. Group IV monochalcogenides (MXs). (a) Crystal structure of MX viewed from side (left)
and top (right). Yellow and grey spheres correspond with chalcogen and metal atoms, respectively.
Unit cells are represented with black solid lines. (b) Calculated band structures of monolayer GeS,
GeSe, SnS, and SnSe. Adapted from [50] with permission. (c) Topography, PFM amplitude, and
PFM phase images of AB- (top) and AA-stacked SnS (bottom), respectively. Adapted from [55] with
permission. (d) Cross-section TEM images of 16 L SnS. Adapted from [52] with permission. Scale
bars: 1 nm. (e) I–V curves of SnS device. The number of cycles are represented with different colors.
(f) Resistance changes against applied p (fatigue test) of SnS thin film. Program/erase pulse voltage
is ±7 V and read voltage is 0.2 V. (e) and (f) were adapted from [53] with permission. (g) Schematic
diagram demonstrating resistance change mechanism in GeS ferroelectric channel device. Adapted
from [56] with permission.
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2.3. Group VI transition metal ditellurides: phase transition and topological states

Group VI TMDCs (MX2, M = Mo, W; X = S, Se, Te) can exist in several
polymorphs, depending on the coordination between the metal and chalcogen
atoms. MoTe2, similar to MoS2 and MoSe2, has a thermodynamically stable 2H-
phase with a P63/mmc space group, in which the metal atoms are surrounded by
six prismatically arranged tellurium atoms. 2H-MoTe2 exhibits in-plane isotropy
with semiconducting properties, while the metastable metallic 1T′ phase of MoTe2
shows in-plane anisotropic properties due to the dimerization of metal atoms along
the a-axis caused by Peierls distortion (figure 3(a)) [65]. 1T′-MoTe2 belongs to the
monoclinic crystal system (P21/m space group) with a c-axis inclined approxi-
mately 94° to the basal plane with inversion symmetry (figure 3(c)). The energy
difference between the 2H and 1T′ phases of MoTe2 is only few tens of meV
[65, 66], leading to extensive research on the phase transitions between these two
phases using methods such as laser irradiation [67], thermal annealing [68], strain
[69], electrical fields [70], and electrostatic doping [71].

The Td phase is another metastable phase of MoTe2 with a monolayer
structure identical to that of the 1T′ phase. However, the Td phase has an
orthorhombic structure (Pmn21 space group) with vertically stacked monolayers
(figure 3(b)). In contrast to the 1T′ phase, which has an inversion center between
two adjacent layers, the Td phase is noncentrosymmetric. The Td-MoTe2 can be
obtained by cooling 1T′-MoTe2 under 250 K [72, 73]. In contrast, for WTe2, the
Td phase is stable under ambient conditions. The most intriguing feature of
Td-MoTe2 and Td-WTe2 is their topological states, where the distortion in the
metal atoms leads to the inversion of the valence and conduction bands [74, 75].
The inverted bands are further hybridized by spin–orbit coupling, which makes
Td-MoTe2 and Td-WTe2 topologically nontrivial phases. Athough both

Figure 3. Group VI transition metal ditellurides. (a), (b) Crystal structure of 1T' and Td phase
transition metal ditellurides viewed from side. Unit cells is represented with black cuboid. (c) Top
view of monolayer 1T' and Td phase transition metal ditellurides. Unit cells is represented with black
solid lines. (d) Longitudinal and transverse resistance of a WTe2 device as a function of angle
between b-axis and current bias. (e) Angle-dependent nonlinear Hall effect in WTe2 device. (d) and
(e) were adapted from [76] with permission. (f), (g) Schematic diagrams of WTe2 Josephson
junctions well-localized hinge states along the a-axis (f) and delocalized states along the b axis (g).
(h), (i) Measured magnetic field interference patterns (left) and extracted spatial distributions of the
Josephson current (right) of device A and B, respectively. (j), (k) Left: Theoretically calculated
interference patterns of the critical current along the a-axis (h) and b-axis (i). Right: Theoretically
calculated wave functions for the hinge states along the a-axis (j) and b-axis (k). Inset: the energy
spectra of multilayer WTe2 along the a axis (j) and b axis (k). (f)–(k) were adapted from [77] with
permission.
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1T′-MoTe2 and 1T′-WTe2 are composed of identical monolayers with lattice
distortion, they do not have topological characteristics due to the presence of
inversion symmetry. Recently, in-plane anisotropy of the topological character-
istics in Td-WTe2 has been further investigated. Kang et al reported the nonlinear
anomalous Hall effect (AHE) under zero magnetic field [76]. The Hall voltage
reached its maximum (minimum) when the bias current was parallel (perpend-
icular) to the W chain direction (figures 3(d) and (e)). Choi et al spatially resolved
helical one-dimensional (1D) hinge structures in Td-WTe2 [77]. They found that
the hinge states were localized only along the edges parallel to the direction of the
W chain (a-axis) (figures 3(f)–(k)).

2.4. Rhenium dichalcogenides: multidomain structure with ferroelasticity

In contrast to the dimerization of metal atoms in 1T′ or Td phase MoTe2 and
WTe2, ReX2 (ReX2, X = S, Se) exhibits in-plane anisotropy due to the clustering
of four Re atoms. The presence of additional valence electrons in ReX2 leads to
the formation of covalent bonds between Re atoms, resulting in the clustering of
Re4 units arranged in a rhombus shape (Re4 rhombus) (figure 4(a)) [78–84]. The
Re4 rhombuses are further connected by Re-Re bridges, forming unidirectional Re
chains. The formation of Re4 clusters induces lattice distortion, causing ReX2 to
belong to a triclinic crystal system with P1̄ space group. The substantially reduced
symmetry of ReX2 allows the directions of the lattice vectors to be arbitrarily
defined. However, in this study, a-axis is defined as parallel to the short diagonal
of the Re4 rhombus, whereas b-axis is defined as the direction parallel to the Re
chains, approximately 120° from the a-axis. There are conflicting statements about
the electronic structure of ReS2 whether it is indirect band gap or direct bandgap
semiconductor. According to Tongay et al [85], the presence of the Re4 cluster
inhibits ordered stacking in ReS2 and dramatically reduces the interlayer coupling
with adjacent layers. Consequently, the weak interlayer coupling in ReS2 preserve
the material’s direct bandgap characteristic from monolayer to bulk [85, 86].
However, other groups reported contradictory results demonstrating indirect to
direct band transition from bulk to monolayer ReS2 [87–89]. Zhou et al suggested
that the conflicting observations regarding the band structure of few-layered ReS2
stem from the stacking order of ReS2 bilayers, which induces change of interlayer
interaction and consequent change of band nature [90].

Owing to its highly reduced symmetry, ReX2 has six switchable domains.
Two-fold rotation along the in-plane axis is not a symmetrical operation for ReX2

[83]. As a result, there are two different types of domains in ReX2 with parallel
b-axes but opposite out-of-plane orientations (c-axes). These domains are denoted
as ‘c-up’ (top images figures 4(b)–(d)) and ‘c ̅-up’ (bottom images figures 4(b)–
(d)) depending on the direction of the c-axis [80–84]. Additionally, the c-up and
c ̅-up domains can possess three different types of domains, respectively, which are
related with approximately 60°-rotation [80–82] (figures 4(b)–(d)). These domains
can coexist in a single flake of ReS2, and can be distinguished using polarized
optical microscopy (POM) (figure 4(e)), polarized Raman spectroscopy
(figure 4(f)), and TEM (figure 4(g)) [83, 84]. These six domains can be switched
by reconstructing Re chains under electron-beam radiation [79], fracture propa-
gation [91], and uniaxial strain [80]. Jeong et al observed an abrupt generation of
new domains under uniaxial tensile strain (figure 4(h)) [80]. The newly generated
domains are not perfectly restored even after strain relaxation, and the Raman shift
exhibits hysteresis under strain (figure 4(i), (j)). These results demonstrate the
ferroelasticity of ReS2. The ferroelasticity in ReX2 arises from the reconstruction
of Re-Re bridges. This reconstruction, in turn, leads to a switching of the domain
orientation, where the former and latter domains are related to a 120° rotation,
followed by mirror reflection (figure 4(k)).
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Multidomain structures have been observed in other in-plane anisotropic 2D
materials synthesized by chemical vapor deposition (CVD) [92, 93]. Furthermore,
the occurrence of ferroelasticity with domain switching has also been anticipated
in other in-plane anisotropic 2D material [94, 95]. Nevertheless, to date, multi-
domain structures in exfoliated samples [84, 96] and the experimental imple-
mentation of domain switching have only been confirmed for ReX2 [79, 80, 91].
These results may originate from the considerably low energy barrier height
between the ReX2 domains compared to other in-plane anisotropic 2D materi-
als [79].

2.5. Other in-plane anisotropic 2D materials

In this section, we also introduce several in-plane anisotropic 2D materials.
Pnictogen atoms such as arsenic (As), antimony (Sb), and bismuth (Bi) can

manifest as 2D allotropes. In α-phase 2D pnictogens, similar to MXs, four atoms
are located at four different z-coordinates [97–102].

α-MoO3 is a layered transition metal oxide with an orthorhombic structure.
The unit cell of α-MoO3 is composed of two distorted octahedral double layers

Figure 4. Rhenium dichalcogenides. (a) Crystal structure of ReX2 viewed from side (left) and top
(right). Yellow and grey spheres correspond with chalcogen and rhenium atoms, respectively. Unit
cells are represented with black solid lines. Clustering of Re atoms is highlighted with red color. (b)–
(d) Six different domains of ReX2. Top (bottom) images in (b)–(d) are c-up (c̄-up) domains. (e)
Optical (top) and POM (bottom) images of ReS2 flakes with c-up and c̄-up domains. The incident
polarization of POM is at ∼45° with respect to the analyzer. (f) Polar plots of Raman intensities from
c-up (top) and c̄-up (bottom) domains. Red and black plots correspond with Raman mode 3 and 5,
respectively. (g) TEM images of 4L-ReS2 with c-up and c̄-up domains. (e)–(g) were adapted from
[84] with permission. (h) POM images of the evolution of the domain ReS2 under uniaxial strain
along the b-axis. The polarizer and analyzer are set perpendicular to each other. The reoriented
domains are indicated with black arrows. Scale bar: 10 μm. (i) Schematic diagram of ferroelastic
domain switching of ReS2 under uniaxial strain. (j) Change of Raman peak position (red and blue)
and fraction of the switched domain width (black) of ReS2 as a function of strain. (k) Polar plots of
Raman peak intensities of intrinsic (left) and re-oriented ReS2 domains (right), respectively. (h)–(k)
were adapted from [80] with permission.
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loosely bonded together by weak vdW forces along the b-axis [103]. Within each
individual layer, the octahedra are connected through corner sharing along the a-
axis and edge sharing along the c-axis. Recently, α-MoO3 has attracted significant
interest because of its in-plane hyperbolic phonon-polaritions [104–106].

Group IVB transition metal trichalcogenides (MX3, M = Ti, Zr, or Hf, X = S
or Se) have a monoclinic crystal system in which the monolayer consists of a
double layer of triangular 1D MX3 units. Because the breakage of the interaction
between the 1D chains and 2D layer requires similar energies, the MX3 tend to be
exfoliated into a whisker shape [107]. For TiS3, its monolayer is expected to have
direct bandgap with ∼1.0 eV [108].

3. Twistronics in in-plane anisotropic 2D materials

The most popular topics in 2D materials and vdW heterostructures are moiré
superlattices and twistronics [12–14]. When multiple layers of 2D materials are
stacked with lattice mismatches or twist angles, they give rise to long-range
quasiperiodic patterns known as moiré superlattices. As discussed in the Intro-
duction, moiré superlattices exhibit unique physical properties that are not found
in the original parent materials [15–23]. In addition to studies based on 2D
materials with hexagonal symmetry, moiré superlattices based on in-plane ani-
sotropic 2D materials have been consistently reported. These systems can induce
more diverse phenomena owing to their additional degrees of freedom resulting
from their reduced symmetry.

In this section, we introduce the theoretical and experimental results for vdW
homobilayers with in-plane anisotropic 2D materials (BP/BP, MX/MX, or
WTe2/WTe2) and vdW heterostructures with at least one parent material exhi-
biting in-plane anisotropy (graphene/BP or BP/WSe2).

3.1. Twistronics in homobilayers with in-plane anisotropic 2D materials

Mathematically, the moiré superlattices of vdW homobilayers exhibit similar
symmetry with that of their parent materials [12, 109]. For example, moiré
superlattices formed between homogeneous in-plane anisotropic 2D materials with
rectangular monolayers, such as BP, MXs, and MTe2, exhibit long-range rec-
tangular patterns. In other words, vdW homobilayers with in-plane anisotropic 2D
materials exhibit moiré patterns with different periodicities along their in-plane
orientations.

Kang et al theoretically investigated twisted bilayer BP (tbBP) with a twist
angle smaller than 5.4° [110]. There are four kinds of high-symmetry local
stacking configurations in tbBPs, named as AA, AB, AA′, and AB′. AB stacking
is the natural stacking order of bilayer BP, whereas AA, AA′, and AB′ can be
obtained when the upper layer in the AB stacking is translated along (0,+y/2),
(+x/2,0), and (+x/2,+y/2), respectively (figure 5(a)). Interestingly, the CBM and
VBM of the tbBPs showed flat bands along the Γ–X (armchair) direction
(figure 5(b)). The conduction band of tbBP shows a flat band regardless of the
direction, resulting from the strong localization of the conduction wavefunction in
all directions (localized on AB′ stacking), whereas the valence wavefunction is
localized along the x-direction (on AA and AB stacking). The flat bands indicate
an extremely high effective mass, which in turn causes a sharp decrease in carrier
mobility along the x-direction. Moreover, the carrier mobility along the y-direction
can be further influenced by the twist angle. In particular at θ = 2.7°, the con-
duction wave function is highly localized even in the y-direction, which induces
drastic reduction of electron mobility along the y-direction (figure 5(c)).

Moiré superlattices in twisted bilayer MXs (tbMXs) have recently been further
examined. Keness et al and Zhang et al investigated electronic band structure of
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twisted bilayer GeSe (tbGeSe) and SnS (tbSnS), respectively [111, 112]. Because
of reduced symmetry of MXs compared with BP, stacking configurations of
tbMXs at twist angle θ and 180°-θ are not identical. As a result, there are eight
distinct types of high-symmetry local stacking configurations in twisted bilayer
MXs. Nevertheless, both tbGeSe and tbSnS exhibited charge carrier localization in
1D wires as well as 1D flat bands, similar to tbBP (figure 5(d)). Keness et al
explained the dispersion and charge modulation along a 1D wire using the ionic
Hubbard model [112]. They expected that, as a function of the twist angle and
chemical potential, tbGeSe can show diverse phases of matter, such as band
insulator (BI), Mott insulator (MI), bond oriented wave (BOW), and Luttinger
liquid (LL) (figure 5(e)).

This expectation was recently fulfilled in a study on twisted bilayer 1 T’-WTe2
(tbWTe2) by Wang et al [113]. They fabricated 5°-tbWTe2 by the tear and stack

Figure 5. Twistronics in homobilayers with in-plane anisotropic 2D materials. (a) Moiré pattern
formed on the tbBP with θ = 2.7°. The high-symmetry local stacking configurations and the
supercell are represented with colored and black rectangles, respectively. The stacking configurations
are shown in the right panels. (b) Calculated band structure of 2.7°-tbBP. (c) Deformation limited
carrier mobility as a function of twist angle along the armchair direction. (a)–(c) were adapted from
[110] with permission. (d) Calculated band structure of tbGeSe obtained from density functional
theory using the local density approximation (LDA). Right images is a magnified image of red-boxed
in the left image. (e) Phase diagram of tbGeSe depending on chemical potential μ, on-site repulsion
U, and nearest-neighbor hopping t. (d)–(e) were adapted from [111] with permission. (f) Schematic
diagrams of tbWTe2 device (left) and moiré patterns with only W atoms (right). (g) Gate-dependent
four-probe resistances of two tbWTe2 devices with different twist angles. (f)–(g) were adapted from
[113] with permission. (h) Schematic diagrams of 90°-tbBP (top), band structures of naturally
stacked bilayer BP (bottom left) and 90°-tbBP (bottom right). (i) Band structures (top) and schematic
diagrams of effective mass changes (bottom) in of 90°-tbBP under out-of-plane electric field. (j)
Schematic diagram of optical transitions from VB of bottom BP (blue) and VB of top BP (red) to
CB. (k) Optical absorption spectra of 90°-tbBP depending on gate bias and polarization. (h)–(k) were
adapted from [114] with permission.
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method with ∼7 nm spacing of moiré patterns between W atoms (figure 5(f)). In
the hole-doped region, the two orthogonal directions exhibit a conductivity
anisotropy ratio of ∼1000 at 1.8 K (figure 5(g)). They also investigated the con-
ductance power laws in both directions and interpreted their findings as indicative
of the emergence of a two-dimensional anisotropic non-Fermi liquid phase with
similarities to an LL.

VdW homobilayers with large twist angles have also been studied. Cao et al
calculated the band structure of a BP homobilayer with a twist angle of 90°
(figure 5(h)) [114]. Unlike naturally stacked bilayers, which show highly aniso-
tropic band dispersion along the Γ–X (armchair) and Γ–Y (zigzag) direction
(bottom left of figure 5(h)), band strucutre of the 90°-tbBP homobilayer is nearly
isotropic around the Γ point. However, the VBM is separated into two sets of
bands localized in the top (red) and bottom layers (blue) owing to weak interlayer
hybridization (bottom right of figure 5(h)). The energy of each band can be shifted
by an out-of-plane electric field, resulting in a gate-switchable effective mass
anisotropy. The downward (upward) electric field increases the energy of the
valence band attributed to the bottom (top) layer, thus hole effective mass of the
vdW homostructure exhibits higher value along zigzag direction of bottom (top)
BP layer (figure 5(i)). They also expected gate-tunable optical dichroism in 90°-
tbBP (figures 5(j) and (k)).

As discussed above, vdW homobilayer composed with in-plane anisotropic
2D materials exhibit peculiar phenomena and strong anisotropy which cannot be
obtained in vdW homobilayer with isotropic 2D materials. For small twisted
angle, these system can be promising platforms to study strongly correlated 1D
physics and to interpolate between 1D and 2D system. In contrast, a large-twisted-
angle system can be utilized as an optoelectronic device with a higher degree of
freedom, which can be modulated by an electrical field or optical polarization.

3.2. Twistronics in van der Waals heterostructures with in-plane anisotropic 2D materials

In addition to twisted homobilayers, several studies have focused on vdW het-
erostructures, which involve at least one parent material with in-plane anisotropy.
Although extensive research has been conducted on vdW heterostructures invol-
ving in-plane anisotropic 2D materials, our attention has been focused on inves-
tigations that specifically explore the impact of moiré patterns on the modulation
of orientation-dependent properties in such vdW heterostructures.

In these systems, the moiré patterns generally exhibit a parallelogram shape.
Liu et al reported a sample-wide pseudomagnetic field (PMF) in a graphene/BP
heterostructure [115]. They fabricated graphene/BP heterostructures by transfer-
ring monolayer graphene onto a few-layer BP. For the twist angle around θ = 0°,
the moiré patterns exhibit a pseudo 1D striped pattern with highly different per-
iodicity (λ1 = 8 nm and λ2 = 0.8 nm at θ = 1.03°) (figure 6(a)). The wavelengths
and angles between them can be tuned by varying the twist angle, which, in turn,
can modulate the strain texture in the heterostructure (figure 6(b)). The non-
uniform strain patterns results in a shift of two different Dirac cones in opposite
directions, inducing a PMF in the graphene/BP heterostructure (figure 6(c)). The
angle-dependent moiré patterns in the graphene/BP heterostructure suggested that
the magnitude and distribution of the PMF can be engineered by changing the
twist angle between the 2D materials (figure 6(d)).

Akamatsu et al stacked multilayer BP on a monolayer WSe2 and investigated
the spontaneous photovoltaic effect (SPE) in the heterostructure [116]. When the
armchair edges of BP and WSe2 were aligned, the symmetries of WSe2, the three
mirror planes, and one three-fold rotational symmetry were reduced to one mirror
plane parallel to the armchair edge of BP. In this reduced symmetry, electronic
polarization appears along the mirror plane (figure 6(e)). Similar to the afore-
mentioned graphene/BP heterostructures, the BP/WSe2 interface exhibits strip-
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shaped moiré patterns (figure 6(f)). In the BP/WSe2 device, a spontaneous pho-
tocurrent is observed under laser illumination (figure 6(g)). In contrast to the
devices with only WSe2 or BP, where the photocurrent is observed primarily
around the electrodes, the BP/WSe2 device exhibits the SPE even at locations far
from the electrodes (figure 6(h)). Based on measurements of the photocurrent,
depending on the excitation power and linear polarization angle of the laser, the
authors attributed the SPE to the shift current, which is a result of the asymmetric
shift of photoexcited electrons and holes in a non-centrosymmetric crystal
[117, 118].

As demonstrated above, the presence of pseudo-1D moiré patterns in in-plane
anisotropic 2D material-based vdW heterostructures enables the observation of
novel phenomena that are not typically observed in moiré patterns between hex-
agonal 2D-materials. Moreover, it provides a means for manipulating the sym-
metry of two-dimensional materials, allowing isotropic materials to exhibit
anisotropic phenomena. Therefore, this approach is expected to expand the field of
2D materials and vdW heterostructures significantly.

4. Challenges and perspective

In this perspective paper, we have introduced representative in-plane anisotropic
2D materials and twistronics based on them. However, several challenges need to
be addressed in these fields: (1) even though exotic properties are expected for
monolayer in-plane anisotropic 2D materials, their experimental implementation
has been limited by the difficulty in fabricating monolayers caused by strong
interlayer interactions. As a result, these materials exhibit insufficient control over
quality, size, and thickness; (2) since many in-plane anisotropic 2D materials are
prone to degradation under ambient conditions, research on passivation methods is
necessary; (3) the electrical anisotropy ratio of most in-plane anisotropic 2D
materials is relatively low, typically less than 10 orders of magnitude, and difficult
to control. New approaches are required to increase the electrical anisotropy ratio
and tunability, as demonstrated in [113] or [114]. (4) Although recent research has
explored twistronics using in-plane anisotropic 2D materials, it still lags behind
studies conducted with in-plane isotropic materials. Twistronics employing in-

Figure 6. Twistronics in van der Waals heterostructures with in-plane anisotropic 2D materials (a)
scanning tunneling microscopy image of graphene/BP heterostructure. (b) Calculated biaxial strain
as a function of twist angle. (c) PMF texture in graphene/BP with 1.03°-twist angle. (d) Measured
PMF as a function of twist angle. (a)–(d) were adapted from the [115] with permission. (e) Schematic
illustrations of monolayer WSe2 (left), BP (middle), and BP/WSe2 heterostructure (right) with
symmetry operations. (f) Moiré patterns of BP/WSe2 heterostructure. The scale bar is 5 nm. (g) I–V
characteristics of the BP/WSe2 device under dark and laser illumination. (h) Photocurrent mapping
of BP/WSe2 device. (e)–(h) were adapted from the [116] with permission.
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plane anisotropic 2D materials offers the potential to unlock additional properties
owing to their higher degrees of freedom. Therefore, it is crucial to undertake
additional rigorous theoretical and experimental investigations encompassing a
wide range of combinations to advance our understanding in this field. Addressing
these challenges could significantly contribute to the advancement of the field of
in-plane anisotropic 2D materials and their twistronics, as well as their application
in orientation-dependent optoelectronic devices.
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