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Abstract Predicting the future contribution of the ice sheets to sea level rise over the next decades presents
several challenges due to a poor understanding of critical boundary conditions, such as basal sliding. Traditional
numerical models often rely on data assimilation methods to infer spatially variable friction coefficients by
solving an inverse problem, given an empirical friction law. However, these approaches are not versatile, as they
sometimes demand extensive code development efforts when integrating new physics into the model.
Furthermore, this approach makes it difficult to handle sparse data effectively. To tackle these challenges, we
use the Physics‐Informed Neural Networks (PINNs) to seamlessly integrate observational data and governing
equations of ice flow into a unified loss function, facilitating the solution of both forward and inverse problems
within the same framework. We illustrate the versatility of this approach by applying the framework to two‐
dimensional problems on the Helheim Glacier in southeast Greenland. By systematically concealing one
variable (e.g., ice speed, ice thickness, etc.), we demonstrate the ability of PINNs to accurately reconstruct
hidden information. Furthermore, we extend this application to address a challenging mixed inversion problem.
We show how PINNs are capable of inferring the basal friction coefficient while simultaneously filling gaps in
the sparsely observed ice thickness. This unified framework offers a promising avenue to enhance the predictive
capabilities of ice sheet models, reducing uncertainties, and advancing our understanding of poorly constrained
physical processes.

Plain Language Summary Our ability to predict the future contribution of the ice sheets to future
sea‐level rise is limited due to the lack of observations, especially at the base of the ice sheets. Traditional
computer models infer basal sliding from observations at the surface based on ice flow physics, a process that
becomes complex and inflexible when incorporating new information or a more sophisticated description of ice
flow. Our solution involves Physics‐Informed Neural Networks that seamlessly integrate data and physical laws
in a unified framework. We demonstrate the versatility of Physics‐Informed Neural Networks (PINNs) on
Helheim Glacier in Southeast Greenland, showcasing their ability to handle missing or incomplete data.
Additionally, we extend PINNs to address a challenging problem, which consists of inferring basal sliding while
filling gaps in sparsely observed ice thickness at the same time. This unified approach holds promise for
improving ice sheet predictions and advancing our understanding of complex ice dynamics.

1. Introduction
The Greenland and Antarctic ice sheets are collectively responsible for more than half of the observed global sea‐
level rise in recent decades (Frederikse et al., 2020). This mass loss is primarily driven by the dynamic behavior of
marine‐terminating glaciers, which discharge icebergs into the ocean (Mouginot et al., 2019; Rignot et al., 2019).
Current projections of sea level rise rely on transient simulations (Eyring et al., 2016; Nowicki et al., 2016) that
capture the response of these outlet glaciers to climate forcings. These numerical models solve forward problems
to compute the evolution of ice velocity and geometry (Bueler & Brown, 2009; Colinge & Blatter, 1998; Durand
et al., 2009; Mangeney & Califano, 1998), which, in turn, affect the discharge of ice into the ocean.

Among all the physical processes influencing current and future ice discharge, basal friction is a major control on
the dynamics of these outlet glaciers. Basal friction characterizes a relationship between the ice basal velocity and
the stress exerted by the underlying bed (Budd et al., 1979; Gagliardini et al., 2007; Weertman, 1957). This
relationship has a significant influence on how the ice sheets respond to external forcings, particularly in the
context of climate change (Barnes et al., 2021; Brondex et al., 2019; Yu et al., 2018). Therefore, improving our
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understanding of basal conditions and accurately representing them in ice sheet numerical models is critical
(Åkesson et al., 2021; Brondex et al., 2017).

Empirical friction laws typically incorporate a friction “coefficient,” which is spatially and sometimes temporally
variable, encapsulating less‐understood physical processes. This friction coefficient cannot be directly measured
and is generally inferred from surface observations using data assimilation methods (D. MacAyeal, 2002;
Morlighem et al., 2013; Petra et al., 2012; Tarantola, 2005). These methods involve solving inverse problems
aimed at minimizing an objective or cost function, which is constructed based on the misfit between observed and
modeled variables, such as surface velocity or surface elevation (Goldberg & Sergienko, 2011; Morlighem &
Goldberg, 2023). These observational data are often associated with noise, and the uncertainties, as well as model
error, propagate through the inverse model and end up lumped into the friction coefficient (Cheng & Lot-
stedt, 2020; Karniadakis et al., 2021), which contributes significantly to the overall uncertainty in ice sheet
modeling. Furthermore, solving inverse problems often requires specially designed numerical methods,
demanding different formulations and sometimes complex computer codes (Griewank et al., 1996; Vogel, 2002).
These challenges underscore the pressing need for novel approaches to potentially alleviate these issues and
enhance our ability to model and understand the dynamics of ice sheets.

Recent advances in machine learning techniques, coupled with the wealth of new remote sensing data, offer
opportunities to develop new approaches to better constrain numerical models with data. Among all the emerging
methods in recent years, neural networks have shown to be a promising tool to complement traditional ice flow
models. These traditional models often rely on specifically designed numerical methods to solve forward and
inverse problems, for example, Durand et al. (2009); Mangeney and Califano (1998); Bueler and Brown (2009);
Colinge and Blatter (1998); Tarantola (2005); D. MacAyeal (2002); Petra et al. (2012); Morlighem et al. (2013),
etc. In the remainder of this paper, these numerical methods will be referred to as “traditional methods.” Machine
learning‐based methods offer significant benefits in three key application areas: data assimilation (Bolibar
et al., 2023; Iwasaki & Lai, 2023; Jouvet & Cordonnier, 2023; Riel & Minchew, 2023; Riel et al., 2021), GPU‐
based forward ice flow emulator (Brinkerhoff, 2022; He et al., 2023; Jouvet, 2022; Rahnemoonfar & Koo, 2024),
and hybrid approaches that combine these advantages to create powerful new methods for ice flow modeling
(Jouvet & Cordonnier, 2023). Particularly, Physics‐Informed Neural Networks have been designed to tackle
complex problems associated with intricate mathematical operations (Karniadakis et al., 2021; Lu, Meng,
et al., 2021; Raissi et al., 2019). PINNs seamlessly integrate observational data with underlying physical laws and
have been used in a wide range of applications (e.g., Karniadakis et al., 2021; Lu, Meng, et al., 2021; Riel
et al., 2021; Teisberg et al., 2021; Wang et al., 2022). The PINN loss function represents a weighted sum of data
misfits and the residuals of the governing equations, typically in the form of partial differential equations (PDEs).
This contrasts with standard deep neural networks, which solely learn from available data. By enforcing physical
laws as soft constraints, PINNs make it possible to infer quantities without direct observations.

Here, we explore the use of PINNs in ice sheet modeling by solving two‐dimensional forward and inverse
problems on a real Greenland glacier. By training PINNs with a carefully designed loss function, while knowing
all variables except one, we try to recover the unknown. Depending on the choice of training data, we use this
framework as a forward solver to get the ice velocity, or as an inverse solver to infer the basal friction coefficient.
To evaluate whether PINNs can effectively and accurately reconstruct the unknown field, we compare its solution
with the true solution obtained from a conventional numerical model. Furthermore, we try to infer other pa-
rameters within the governing equations using this framework, even those challenging to invert using traditional
numerical methods. In a second set of experiments, we extend the application of PINNs to address a challenging
mixed‐inversion problem: we test the ability of the framework to infer the basal friction coefficient, while
simultaneously filling in gaps in sparsely observed ice thickness. This type of mixed inversion problems has been
previously explored in fluid mechanics applications (Raissi et al., 2020), mountain glaciers (Jouvet & Cordon-
nier, 2023), initial ice thickness (Perego et al., 2014), but remains challenging for traditional numerical methods.

2. Method
2.1. Physical Model—Shelfy Stream Approximation

An ice sheet or glacier usually occupies a three‐dimensional shallow volume with a small aspect ratio, where the
width of the domain is several orders of magnitudes larger than the height of the domain. Therefore, the variation
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in the vertical direction can generally be neglected, by assuming a plug flow in fast flowing areas, which leads to
the so‐called Shelfy Stream Approximation (MacAyeal, 1989, SSA).

Consider a two‐dimensional domain x = (x, y) ∈ Ω, where the ice velocity is denoted as u = (u,v)T. The governing
ice dynamics are described by the SSA (MacAyeal, 1989), expressed as a system of PDEs:

∇ ⋅ σ + τb = ρigH∇s (1)

where τb = (τbx,τby)
T represents the basal shear stress, ρi is the ice density, g is the gravitational acceleration, s is

the surface elevation, and H is the ice thickness. The stress tensor σ of the SSA model is defined as

σ = μH
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The ice viscosity, μ, is determined by Glen's flow‐law (Glen, 1958), which in two dimensions reads:
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where n = 3 is the flow‐law exponent, and B is the pre‐factor dependent on ice temperature (Cuffey & Pater-
son, 2010), among other factors.

We assume here that the basal shear stress τb is related to the ice velocity u by Weertman's friction law
(Weertman, 1957)

τb = −C2|u|m−1u, (4)

where C is a spatially varying friction coefficient and m = 1/3. While various empirical friction laws exist (e.g.,
Budd et al., 1979; Gagliardini et al., 2007; Weertman, 1957), for simplicity, we focus on Weertman's law in this
work. Nevertheless, the methodology presented can be generalized to accommodate other friction laws.

Many of the Greenlandic glaciers are marine‐terminating glaciers, which have calving fronts at the ice‐ocean
interface. The boundary conditions on the calving front Γ are defined as

σn =
1
2

g(ρiH2 − ρwb2) n (5)

where n = (nx,ny)
T is the outward normal unit vector on Γ, ρw is the density of sea water, and b = s − H is the bed

elevation. For the remaining outer boundaries of the domain, we apply Dirichlet boundary conditions.

2.2. Data

To effectively train the PINNs, we rely on both direct measurements and reanalysis models. For simplicity, we
will refer to these training data sets as “data” throughout this manuscript. These data sets encompass a range of
variables, including ice velocity, surface elevation, ice front positions, ice thickness, and inferred basal friction
coefficients. In this work, we focus on Helheim Glacier in Southeast Greenland, as shown in Figure 1.

The ice surface velocity mosaic is from NASA's MEaSUREs products (Joughin et al., 2018). We denote the
velocity observations at Nu distinct locations {xu

j }
Nu

j=1 as ûj = (ûj, v̂j)
T . Surface elevation data ŝj at the location

{xs
j }

Ns

j=1 are from the Greenland Ice Mapping Project (Howat et al., 2014), while ice thickness Ĥj at {xH
j }

NH

j=1 is from
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BedMachine Greenland v6.1 (Morlighem et al., 2017). The ice front position is derived using the ice mask from
Howat et al. (2014).

To complete the data used in training the PINNs and assessing their performance as forward and inverse models,
we require the friction coefficient Ĉj at specific locations {xC

j }
NC

j=1. Since there is no direct observation of the

friction coefficient, we perform an inversion using the Ice‐sheet and Sea‐level System Model (ISSM, Larour
et al., 2012), using the aforementioned data sets to infer the friction coefficient following the method described in
Morlighem et al. (2013).

2.3. Physics‐Informed Neural Networks

The fundamental difference between this work and many other physics‐informed neural networks in ice sheet
modeling, such as those discussed in Jouvet and Cordonnier (2023); Bolibar et al. (2023); Brinkerhoff (2022); He
et al. (2023); Rahnemoonfar and Koo (2024); Riel et al. (2021), lies in what and how the neural network learns.
Specifically, the neural networks in He et al. (2023); Bolibar et al. (2023); Rahnemoonfar and Koo (2024) act as
emulators, learning the relationships among the variables from the numerical solutions of the PDE. In Jouvet and
Cordonnier (2023), the neural networks also function similarly as emulators but learn the relationship directly
from the PDE by integrating the PDE residual into the loss function during training. Meanwhile, in Riel
et al. (2021), the neural networks learn simultaneously from the data and from physics‐based properties, such as
the smoothness and sign of the basal drag.

Our approach, following Raissi et al. (2019); Iwasaki and Lai (2023); Wang et al. (2022), differs by having the
neural network learn all the variables involved in the PDE as functions of the coordinates (x, y) in the domain. We
implement a PINN to assimilate both the physical model detailed in Section 2.1 and the data presented in Sec-
tion 2.2. The architecture of the PINN is schematically illustrated in Figure 2. In this configuration, fully con-
nected parallel neural networks are employed, with the inputs designated as the coordinates x and y in the two‐
dimensional plane (or x in the one‐dimensional cases). The PINN generates predictions for five different outputs.
Specifically, three parallel neural networks, each comprising 6 layers with 20 nodes per layer, are utilized to
generate predictions for ice velocity, ice geometry, and friction coefficient, respectively. We employ the hy-
perbolic tangent activation function for all nodes in the PINN. We normalize the input variables to the range [−1,
1] across the computational domain before feeding them into the network. Additionally, the network outputs are
denormalized from the range [−1, 1] to their actual values as used in the governing PDEs.

2.4. The Loss Function

We formulate a loss function L(θ) to optimize the parameters θ of the neural networks. This loss function takes the
form

L = Lu + Lg + LC + Lφ (6)

Figure 1. Reference data from Helheim Glacier. (a) Velocity magnitude (b) basal friction coefficient (c) ice thickness (d) surface elevation. The color map in (a) is on a
logarithmic scale, and the rest of subplots are on linear scales.
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where each term represents the contributions to the loss function associated with subscripts u (velocity), g (ice
geometry), C (friction coefficients), and φ (PDE residuals). Specifically, our loss function comprises a weighted
sum of data misfits and residuals from the governing PDEs. We further denote these misfits and residuals by ɛ,
and the weights by w, with the same subscripts as the ones described above.

The data misfits are calculated by the mean‐square errors (MSE) of the PINN's predictions at locations where the
corresponding observational data is available, and they contribute to the loss function as

Lu = wu (εu + εv) =
wu
Nu

∑

Nu

j=1
((u(xu

j ) − ûj)
2

+ (v(xu
j ) − v̂j)

2
), (7)

Lg = wg (εs + εH) =
wg

Ns
∑

Ns

j=1
(s(xs

j ) − ŝj)
2

+
wg

NH
∑

NH

j=1
(H(xH

j ) − Ĥj)
2, (8)

LC = wCεC =
wC

NC
∑

NC

j=1
(C(xC

j ) − Ĉj)
2, (9)

where u(x), v(x), s(x), H(x), and C(x) are the output of the PINN as shown in Figure 2. The weights, wu, wg, and
wC, are scaled according to the typical values of the ice velocity, ice thickness, and friction coefficient in the
International System of Units (SI), to balance their contributions to the total loss function. For Helheim Glacier,
the typical values of these variables and the corresponding weights are shown in Table 1.

The PDEs in Equation 1 are evaluated using the output of the PINN at a distinct set of collocation points {xΩ
j }

NΩ

j=1,

which are different from the observational data sets in Section 2.2. The residual of the PDEs is expressed as the
mean‐square errors among these collocation points together with the boundary conditions. Specifically, for the

Figure 2. Illustration of the Physics‐Informed Neural Network. Note that the neural network architecture depicted here is for illustrative purposes only, and does not
represent the actual configuration used in this study described in the text.
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Helheim Glacier, we include the calving front boundary condition along the
points at {xΓ

j }
NΓ

j=1 in evaluating the residual of the PDEs as

Lφ = wΩεΩ + wΓεΓ

=
wΩ

NΩ
∑

NΩ

i=1

⃦
⃦∇ ⋅ σ + τb − ρigH∇s

⃦
⃦2

+
wΓ

NΓ
∑

NΓ

i=1

⃦
⃦
⃦
⃦σn −

1
2

g(ρiH2 − ρwb2)n
⃦
⃦
⃦
⃦

2
, (10)

where the weights wΩ and wΓ are chosen by scaling the basal shear stress and boundary force as in Table 1.

Effectively constructing a robust loss function for the PINN poses a significant challenge due to the diverse nature
of its components, each representing distinct physical quantities with inherently different orders of magnitudes.
Importantly, these components serve as soft constraints within the loss function, collectively influencing the
learning process of the neural network (Iwasaki & Lai, 2023; Lu, Meng, et al., 2021). The success of PINNs in ice
sheet modeling critically relies on the careful selection of weights assigned to each component in the loss
function. To optimize the predictive capabilities of the PINN before applying it to real problems at Helheim
Glacier, we perform an extensive grid search to find the best weights outlined in Table 1. We fix wu and vary the
other four weights by several orders of magnitude around the typical values. This search aims to validate that the
values in Table 1 are indeed optimal for the diverse components in the loss function. We systematically vary wg

and wC by ±2 orders of magnitude, while adjusting wΩ by ±5 orders of magnitude. For wΓ, the ratio wΩ/wΓ is
fixed at 10−8. To ensure robustness, each experiment is repeated at least 25 times using a Glorot normal initializer
with distinct random seeds. To speed up the grid search procedure, we perform these validation experiments
exclusively on an inverse problem along a flowline of Helheim Glacier, treating it as a one‐dimensional problem
with fewer data points. The main results are shown in Section 3.1.

2.5. Numerical Experiments 1–3

After validating the choice of the weights, we apply the PINN to the two‐dimensional data sets obtained from
Helheim Glacier, as detailed in Section 2.2. Subsequently, we conduct three distinct sets of numerical experi-
ments by intentionally concealing one component within the training data sets.

In the first experiment, we test the ability of the PINN to solve the forward problem. This involves utilizing the
friction coefficient, Ĉ, and the ice geometry, ŝ and Ĥ, to solve for the ice velocity, u. The second experiment tests
the ability of the PINN to solve an inverse problem and infer basal friction based on observed velocities. Here, we
train the network with ice velocity, û, and ice geometry, ŝ and Ĥ, and infer the basal friction coefficient, C. In the
third experiment, we test the ability of the PINN to infer the ice thickness, H. This is accomplished using the ice
velocity, û, surface elevation, ŝ, and the basal friction coefficient, Ĉ, as training data sets. For all these experi-
ments, we calculate the misfits as the PINN predictions minus the “true” solutions.

2.6. Experiment 4: Dual Inversion

In many real‐world scenarios, the basal friction coefficient is unknown and needs to be inferred from surface
observations, and the ice thickness is only known along flight lines, leaving large gaps that are generally filled
using interpolation methods. Figure 3 illustrates all available flight tracks around Helheim Glacier, with dots
representing resampled points at 200 m intervals along the tracks. These flight track data are notably sparse, even
along the main branch of Helheim Glacier, where only one flight track is present in the center of the ice stream.
Various numerical methods have been developed to leverage flight track data along with other observations to fill
gaps in regions lacking direct measurements. Some examples include the BedMachine Greenland and Antarctica
models (Morlighem et al., 2017, 2020), which use mass conservation principles to constrain ice thickness.

Given the flexibility of the PINN, we perform one more test here to assess its ability to address a dual inversion
problem. Here we would like to test the ability of the PINN to infer the basal friction coefficient, C, while
simultaneously filling gaps in sparsely observed ice thickness, H. Following the same procedure as the ones

Table 1
Typical Values of Variables in Helheim Glacier

Variable Typical value Weights Value

|u| 104 m yr−1 wu 10−8 × (315,360,002) m−2 s2

s, H 103 m wg 10−6 m−2

C 104 Pa1/2 m−1/6 s1/6 wC 10−8 Pa−1 m1/3 s−1/3

τb 105 Pa wΩ 10−10 Pa−2

ρigH2 109 Pa m wΓ 10−18 Pa−2 m−2
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described above, we expose the model to ice velocity, û, surface elevation, ŝ,
and ice thickness only along flight tracks, H̄, as shown in Figure 3.

For all these four experiments, we use 4,000 data points for the training sets,
and 9,000 collocation points for evaluating the PDE residual. The calving
front is described by 121 data points with spacing of 200 m, and the
Dirichlet boundary around the domain has 541 data points. All the experi-
ments are trained with Adam optimization up to 1,000,000 epochs on the
NVIDIA Tesla V100 SXM2 32GB GPU. We use TensorFlow 2.4.1
implementation of the Adam optimizer, with a learning rate at 0.001, and
hyper‐parameters β1 = 0.99, β2 = 0.999, along with a tolerance of ϵ = 0.1.
Further details regarding the definition and algorithm can be found in
Kingma and Ba (2014).

3. Results
3.1. Choice of Weights

In total, we conducted over 15,000 experiments, systematically exploring
various combinations of weights. Perhaps unsurprisingly, balancing the
different data misfits is relatively straightforward by scaling to the same

magnitude within the SI unit system. However, the balance between the data misfit and PDE residual is
particularly delicate in order to obtain satisfactory results.

In Figure 4, we vary wΩ while keeping all other weights fixed, as specified in Table 1. Each point in the figure
represents an experiment, and due to randomization in the training process, we repeated these experiments
multiple times to derive an average behavior of the PINN. Figures 4a–4c exhibit distinct “L‐curve” patterns. As
wΩ decreases from 10−7 to 10−15 Pa−2, the data misfit diminishes, reflecting the increased focus of the loss
function on the data, while placing less emphasis on the PDE constraints. The minimum data misfit is achieved at
wΩ = 10−11 Pa−2. However, errors, particularly the MSE of the velocity, start to diverge, which is indicative of
overfitting (Iwasaki & Lai, 2023). This trend becomes more pronounced for wΩ < 10−11 Pa−2. Figure 4d further
illustrates this by presenting the mean and standard deviation of test errors for each wΩ. Test error is computed by
comparing the PINN's prediction of C with the reference data Ĉ. From this figure, we conclude that the optimal
choice for wΩ is 10−10 Pa−2. This value corresponds to the square of 1/(100 kPa), a typical driving stress in ice
sheet modeling, serving as the right‐hand side of the PDE. This choice of weight aligns well with physical
expectations.

3.2. Forward Problem

Now that we know how to best choose the weights of the cost functions, we can perform our first set of ex-
periments. We train the PINN with the data set of friction coefficient, Ĉ, ice thickness, Ĥ, and surface elevation, ŝ,
described in Section 2.2. In this case, the PINN is treated as a solver for the forward problem, aiming to determine
the ice velocity u. Since we are not exposing the ice velocity to the PINN, the ice velocity is solely inferred by the
PDE constraint in the loss function. The PINN's predictions and the corresponding misfits with respect to the
reference data are shown in Figure 5. For comparative analysis, we evaluate the PINN's predictions on a
400 × 400 regular grid, resulting in a mesh resolution of approximately 100 m, which is finer than the density of
the collocation or data points. In order to calculate the misfit, the reference data is projected onto the same grid
using a piecewise cubic, continuously differentiable interpolation. All predictions agree well with the reference
data in Figure 1, particularly where training data is available, that is, C, H, and s, as shown in Figures 5f–5h. The
root mean squared error (RMSE) of these misfits is presented in Table 2.

The PINN's prediction of the flow velocity closely matches the true solution over most of the area, capturing all
branches of Helheim Glacier. Although there are some large misfits locally (e.g., ±700 m/yr) in the fast flow
region in Figure 5e, the RMSE of the misfit is 193.75 m/yr. This represents approximately less than 10% of the
average flow velocity over the entire domain (2,028.69 m/yr) and about 2.7% of the highest velocity
(7,152.93 m/yr).

Figure 3. Available ice thickness data in the region of interest. The dots are
resampled at 200 m intervals, overlaid with an image map from MEaSUREs
MODIS Mosaic of Greenland (Haran et al., 2018).
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3.3. Inverse Problem

We change the training data set to use ice velocity û, ice thickness Ĥ, and surface elevation ŝ. In this configu-
ration, the PINN serves as an inverse solver to infer the basal friction coefficient C. Again, because we don't
expose the PINN to the “true” friction coefficient from the ISSM model inversion, the PINN is inferring C solely
based on the PDE constraint that is linking the friction coefficient to the other variables that the PINN is exposed
to. The predictions and misfits are presented in Figure 6, and the RMSE of the misfit is provided in Table 2.
Similar to the forward problem in Section 3.2, the predictions of PINN align well with the “true” solution.
Particularly for those learning from the reference data, the relative errors are all below 3% (the average ice
thickness is 716.61 m, and the average surface elevation is 987.66 m).

The RMSE of the misfit in C is 589.61 Pa1/2 m−1/6 s1/6, with a relative error 6.69%. However, as shown in
Figure 6f, the pattern of large errors is located primarily in the slow‐moving region (velocity < 10 m/yr), where
there is minimal ice coverage (ice thickness < 30 m). In contrast, the predicted friction coefficient is highly
accurate in the fast‐flow region, capturing all features, including branches and shear margins. The RMSE of misfit
in C over the region with |u| > 10 is 392.54 Pa1/2 m−1/6 s1/6, with a relative error 4.45%.

3.4. Inferring Ice Thickness

The flexibility of the PINN framework provides the possibility to infer the ice thickness H using ice velocity û,
surface elevation ŝ, and friction coefficient Ĉ. The PINN predictions and their corresponding misfits are shown in

Figure 4. MSE of the (a) velocity, (b) surface elevation, and (c) ice thickness versus the PDE residual ɛΩ. (d) The mean test
error of the PINNs predictions using different weights wΩ.
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Figure 7. Similar to Sections 3.2 and 3.3, the predictions of u, s, and C align well with the training data, with
relative errors of 3.5%, 4.3%, and 1.3%, respectively. The PINN's prediction of the ice thickness in Figure 7c is a
smoothed version of the true solution shown in Figure 1c. The misfit in Figure 7g is distributed fairly evenly in the
entire domain with an RMSE of 69.47 m with a relative error of 9.69%, primarily located along the sharp
transition of the H, such as the ice front and a part of the northern branch of Helheim Glacier.

3.5. Dual Inversion

The predictions from the PINN and their corresponding misfits are presented in Figure 8. Notably, the PINN
predictions for ice velocity and surface elevation align well with the true solutions (shown in Figure 1), and the
RMSE of the misfits are 126.83 m/yr for the velocity and 22.08 m for the surface elevation. Both are below those
obtained in the forward problem (193.75 m/yr and 26.99 m). The predicted ice thickness closely reproduces the
shape and magnitude observed in the true solution as well. While the predicted friction coefficient shows a high
misfit in slow‐moving regions, as expected given the limitations of SSA in slow‐moving regions discussed above,
it aligns well with the true solution in fast‐flow regions. The RMSE values for both C and H are comparable to
those obtained in the individual inversions presented in Sections 3.3 and 3.4 (see Table 2).

4. Discussion
4.1. A Unified Framework

The results presented above show how a single PINN architecture can solve
both forward and inverse problems within the same framework. It is worth
noting that there are no inherent distinctions between solving different types
of problems within this framework. In other words, solving for ice velocity or
inferring basal traction or ice thickness is implemented by switching on and
off terms in the loss function during the training process. Depending on the
training data provided, the PINN learns variables from both observational

Figure 5. (a)–(d) Predictions of the PINN solving a forward problem without exposure to ice velocity during training. (e)–(h) Corresponding misfits between the
predictions and the “true” solutions in Figure 1. The color map in (a) is on a logarithmic scale, and the rest of subplots are on linear scales.

Table 2
RMSE for All Experiments

Experiments |u| (m/yr) C (Pa1/2 m−1/6 s1/6) H (m) s (m)

Forward problem 193.75 269.54 30.33 26.99

Inverse problem 56.01 589.61 18.96 14.11

Invert for H 70.64 114.55 69.47 12.99

Dual inversion 126.83 899.53 88.39 22.08
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Figure 6. (a)–(d) Predictions of the PINN solving an inverse problem without exposure to the friction coefficient during training. (e)–(h) Corresponding misfits between
the predictions and the “true” solutions in Figure 1. The color map in (a) is on a logarithmic scale, and the other panels are on linear scales.

Figure 7. (a)–(d) Predictions of the PINN inferring ice thickness using ice velocity û, surface elevation ŝ, and friction coefficient Ĉ in the training procedure. (e)–(h)
Corresponding misfits between the predictions and their corresponding reference data in Figure 1. The color map in (a) is on a logarithmic scale, and the other panels are
on linear scales.
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data and the underlying physics. This approach considerably simplifies the code development process compared
to conventional numerical methods.

The training data serves as a foundational basis for the PINN to learn from, while the governing PDEs act as soft
constraints, guiding the estimation of unknown parameters in the system. The PDE constraints provide additional
relationships between all the variables involved, and act as a regularizing operator, particularly for the terms
involving gradients (Karniadakis et al., 2021). For variables with available data during training, the PINN acts as a
smooth interpolator. On the contrary, for variables without data, the PINN behaves as a solver, effectively
satisfying the soft constraints imposed by the governing PDEs.

This unified framework, illustrated in Figure 2, offers flexibility for incorporating new variables and physics into
the system. The addition of new variables involves introducing additional outputs from the neural network, while
the inclusion of new physics requires adding an extra term to the loss function to assess the residual of the new
governing equation. Furthermore, this framework can be readily extended to time‐dependent problems by
introducing time as an input variable to the neural network and adding time‐dependent PDEs, such as the con-
servation of mass, in the loss function (Raissi et al., 2020; Riel et al., 2021).

4.2. Model Performance

The results presented in Section 3 show that the PINN is able to produce solutions for all four experiments with
reasonable accuracy. The relative errors in all cases are below 5%. For the variables learned directly from the data
(e.g., surface topography), the errors are evenly distributed throughout the entire domain, with some larger errors
associated with steep changes in the data. On the other hand, when inferring solutions based on the PDE con-
straints, the errors depend on the location. In the forward run, the error in the predicted velocity (u) is larger in the
high‐velocity region, especially close to the shear margin and ice front. Similarly, when inferring the ice
thickness, larger errors are observed in the fast‐flowing region and at sharp transition zones in the ice thickness.

Figure 8. (a)–(d) Predictions of the PINN inferring ice thickness and basal friction coefficient using ice velocity û, surface elevation ŝ, and flight track data H̄ (as in
Figure 3) in the training procedure. (e)–(h) Corresponding misfits between the predictions and their corresponding reference data in Figure 1. The color map in (a) is on a
logarithmic scale, and the rest of subplots are on linear scales.
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However, in the basal friction inverse experiment, the errors in the inferred parameter C show a different pattern.
Larger errors are observed in the slower‐moving regions with thinner ice. This difference is likely due to the MSE
of the velocity misfit that tends to prioritize the fast‐flowing regions over the slower‐moving ones, and the errors
in the slow moving regions have limited impact on the overall accuracy of the solutions. Considering the
extensive range of ice velocities observed in Helheim Glacier, spanning five orders of magnitude, the solution for
C in the inverse problem detailed in Figure 6 exhibits more substantial errors in regions characterized by low ice
velocities (less than 10 m/yr) compared to those in the fast‐moving regions. This situation is not unique to this
approach, and traditional numerical methods also face this problem when inverting for the basal friction coef-
ficient. The solution to tackle this problem in conventional inverse methods is to complement the L2 norm for the
velocity misfit with a logarithmic norm of the velocity that will place more weight on the slow‐moving regions
(Morlighem et al., 2010). Additionally, the SSA equations (Equation 1) may not be a good approximation of the
ice dynamics in slow‐moving regions where vertical shear cannot be neglected. Since the flow velocity does not
strongly depend on the friction coefficient in these slow‐moving regions, the error is expected to be high.

To assess the quality of the PINN solutions, we conduct two additional forward problem experiments using
friction coefficient C inverted from ISSM (Figure 1b) and PINN (Figure 6b), respectively. These experiments are
solved by the Finite Element method using ISSM on a triangular mesh at a resolution of 200 m (23,484 degrees of
freedom). The velocity magnitude solutions are shown in Figures 9a and 9b and the misfits between these so-
lutions and the “true” solution (as in Figure 1a) are shown in Figures 9c and 9d, where the RMSE of the misfit are
106.58 m/yr and 474.14 m/yr, respectively. We find similar patterns of the misfit at fast‐flowing regions and
along the shear margins, as observed in the forward solution from PINN in Figure 5e. While the ISSM forward
solution (Figure 9a) exhibits slightly better accuracy, the difference is not substantial. Notably, in the experiment
using C from PINN in Figure 9b, unrealistically large velocities (over 5,000 m/yr) are observed in the thin ice
region north of the ice front. This area is sparsely covered by ice in reality, as depicted in the flight track data in
Figure 3. As previously discussed, incorporating additional terms in the loss function or imposing additional
physical constraints may be necessary to improve the representation of the slow velocity region.

The experiment in Section 3.4 is particularly noteworthy as it demonstrates the capability of PINNs to infer ice
thickness using momentum conservation (SSA). To our knowledge, this has not yet been achieved using con-
ventional numerical methods. Together with the other experiments presented in Section 3, these results under-
score the inherent flexibility of the PINN framework. Ideally, this approach can be applied to infer any variable
within the governing equation in a similar manner.

It is also important to note that in the dual inversion problem (Section 3.5), only the ice velocity, surface elevation,
and ice thickness along flight lines are incorporated into the training procedure and exposed to the PINN. The
governing equation in the PINN is based on momentum conservation rather than mass conservation, which is the
principle employed by BedMachine for inferring ice thickness. Consequently, discrepancies between the PINN
predictions and the reference ice thickness from BedMachine are expected, constituting the likely primary reason
for the observed misfit in Figure 8g. Furthermore, considering that the reference friction coefficient is inferred
from ISSM using the ice thickness from BedMachine, differences are expected, particularly in regions where the
two ice thickness data sets diverge.

4.3. Regularization

Previous studies (e.g., Brinkerhoff, 2022; He et al., 2023; Jouvet, 2022; Jouvet & Cordonnier, 2023; Riel &
Minchew, 2023; Riel et al., 2021) enforce spatial smoothness by adding a term to the loss function that penalizes
high gradients in basal drag calculated from the PDEs (Riel & Minchew, 2023; Riel et al., 2021), or through other
regularization terms (generally involving the gradient of the friction coefficients). This regularization helps the
inversion converge faster and makes the loss function more convex (Brinkerhoff, 2022; He et al., 2023; Jou-
vet, 2022; Jouvet & Cordonnier, 2023). Our approach directly computes the residual of the entire PDEs without
the need to augment the loss function with extra regularization terms.

The inherent smoothness in the solutions generated by the PINNs can be attributed to several factors within the
framework (Chen et al., 2021; Seo, 2024). These factors include the neural network architecture, the choice of
activation functions, the formulation of the loss function, and the optimization method, typically stochastic
gradient descent (SGD) (Poggio et al., 2017). Specifically, the relatively shallow architecture of the neural
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network, coupled with the differentiable hyperbolic tangent activation function, provides a smooth representation
of the PINN output. Moreover, the loss function of the PINN consists of both the PDE residual and the data misfit,
acting as a soft constraint and implicit regularization mechanism (Bolibar et al., 2023). Importantly, the prior
knowledge from the PDEs introduces essential structure that effectively regularizes the minimization procedure
during neural network training (Raissi et al., 2020). Finally, SGD tends to converge to smooth solutions by
selecting global minima and mitigating overfitting risks (Jin et al., 2020; Lu, Pestourie, et al., 2021; Poggio
et al., 2017).

Unlike previous studies (e.g., Brinkerhoff, 2022; He et al., 2023; Jouvet, 2022; Jouvet & Cordonnier, 2023; Riel &
Minchew, 2023; Riel et al., 2021), our approach directly utilizes the residual of the PDEs in the loss function,
ensuring that the loss function converges to zero if the output of the PINN converges to the true solution that fully
satisfies the PDEs.

4.4. Limitations

While our study highlights the capabilities of PINNs in ice sheet modeling, certain limitations should be
acknowledged. For the forward model, which is mathematically well‐posed, traditional grid‐based solvers clearly
outperform PINNs (Karniadakis et al., 2021). For instance, while training the PINN for a forward problem
(Section 3.2) requires approximately 10 hr on one GPU, the same problem can be solved within minutes using
established solvers like ISSM with 40 CPUs for a mesh of approximately 20,000 elements. Another challenge is
that the governing equations are imposed as soft constraints in the loss function and compete with the data misfit
during the optimization, causing occasional non‐convergence. Furthermore, it is well known that SSA serves as a
reliable approximation for ice dynamics in fast‐flowing regions but its assumptions break down in the interior of
the ice sheet. Generalizing this approach to the entire Greenland Ice Sheet may necessitate the use of alternative
physics or a combination of different physics to infer ice thickness, for example,

Future research directions will need to address the identified limitations and further enhance the application of
PINNs in ice sheet modeling. To enhance its efficiency, the training process could be optimized and potentially
integrate parallel computing strategies for faster execution. The handling of PDEs as soft constraints in the PINN

Figure 9. (a) The numerical solution of the ice velocity u using ISSM to solve the same forward problem as in Figure 5.
(b) The same forward problem solved by ISSM as in (a), except the friction coefficient C is inverted from PINN as in
Figure 6. (c)–(d) Corresponding misfits between the ISSM solutions and the reference velocity data in Figure 1a. The color
maps in (a)–(b) are on a logarithmic scale, and the rest of subplots are on linear scales.
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framework could be revised in order to mitigate convergence issues. Finally, improving the accuracy of the ice
sheet interior will involve alternative physics or hybrid approaches that better capture the complexities of ice
dynamics in slow‐moving regions. These steps will collectively contribute to advancing the robustness, accuracy,
and computational efficiency of PINNs for comprehensive ice sheet modeling.

5. Conclusion
This study explores several applications of PINNs in typical problems of ice sheet modeling. In contrast to
traditional numerical methods, we utilize PINNs to construct a unified framework for both forward and inverse
modeling. The inherent adaptability of PINNs is particularly easy to use and expand, enabling the inclusion of
new physical parameters into the numerical model. This approach offers a promising avenue for enhancing the
flexibility of ice sheet models and data assimilation, beyond the traditional categories of forward or inverse
problems.

The dual inversion case presented in this study further demonstrates the ability of PINNs to simultaneously infer
the basal friction coefficient and fill in gaps in partially sparse ice thickness observations. Serving as complements
rather than replacements to traditional numerical methods, PINNs offer simplicity in implementation, rapid
development, and easy testing of novel concepts, thereby introducing new perspectives to data‐driven ice sheet
modeling. This study suggests the potential of PINNs in improving our understanding of ice dynamics and
eventually enabling more accurate predictions of future sea‐level rise in glaciology and climate science.

Data Availability Statement
The data and the code of the simulations are available at Cheng (2024). ISSM is open source and available at
ISSM Team (2023).
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