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ARTICLE INFO ABSTRACT
Keywords: An advanced light scattering model for Total Internal Reflection Microscopy (TIRM) is presented. The model
Total internal reflection microscopy considers the specific TIRM geometry and deals with the scattering by an axisymmetric particle of arbitrary

Axisymmetric particle
Colloidal particle
T-matrix method

orientation placed in a stratified medium and the imaging of the scattered field. The scattered field is computed
by truncating the scattered and internal field expansions and by using spherical and plane wave expansions
for the free-space dyadic Green’s function. While the first expansion is valid outside a sphere enclosing the
particle, the second one is valid outside the tangent planes bounding the particle from above and below. We
demonstrate that in both cases, the results are the same, and thus, that the restrictive condition according to
which the interface should not intersect the particle’s circumscribed sphere is not relevant. The image of the
scattered field is computed by using the Debye diffraction integral and fast Fourier transform, while for a better
reconstruction of the particle orientation, an image processing step consisting in a contour extraction and ellipse
fitting is considered. The numerical simulations dealing with scattering by a prolate spheroid provide evidence
of the remarkably sensitivity of the geometric parameters of the image ellipse to the particle orientation angles,
as well as, of the integral response of the detector to the distance between the particle and the interface.

1. Introduction of a particle’s position and orientation via analysis of the morphology
of light scattered by a particle [19-21].

Nano- to micrometer scale ‘colloidal’ particles regularly interact The TIRM setup is illustrated in Fig. 1. It consists of a linearly
with nearby surfaces including neighboring particles and boundaries polarized incident beam, a hemispherical glass prism, a microfluidic
via weak kT scale interactions [1,2]. These surface interactions are cell, a microscope objective, and a CCD camera. Note a dovetail prism
responsible for a wide variety of important phenomena, including is often used during TIRM, but recent work has shown a hemispherical
particle deposition [3-5] and the rheological response of a colloidal prism can be used to systematically adjust azimuthal angle of the

incident beam [22]. The sample is suspended in an aqueous solution
inside the microfluidic cell. The cell, placed on top of the prism using
refractive index matching oil, is made of a thick microscope slide at
the bottom and a thin cover slide at the top. Although not necessary,
a thin coating is often deposited on the bottom microscope slide of
the cell to measure the influence of particular materials on the surface
interactions experienced by a particle. The scattered light of isolated
particles attached to the glass surface is collected with a microscope
objective directly above the sample, and then analyzed by a CCD
camera.

suspension [6-10]. Robust experimental techniques, including the Col-
loidal Probe Atomic Force Microscope and the Surface Force Apparatus,
have been developed and adopted to measure surface interactions, but
are limited due to the feature that force is measured via the mechanical
manipulation of two surfaces relative to each other. Total Internal Re-
flection Microscopy (TIRM) was developed to infer the potential energy
landscape and associated weak surface forces experienced by a particle
undergoing thermal fluctuations very near a boundary [11-13]. TIRM
has since been used to measure a variety of both conservative (path
independent, e.g. electrostatics) and non-conservative (path dependent, In Doicu et al. [19], we described a mathematical model for TIRM.
e.g. hydrodynamics) surface interactions for spheres [14-18]. More In Yan et al. [21], Vasilyeva et al. [23] it was compared with ex-

recent work on Scattering Morphology Resolved TIRM has started to periments for investigating the scattering morphology of a spherical
extend this technique to non-spherical particles by extracting reporters
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Fig. 1. Simplified TIRM setup.

particle. The model treats the scattering by an axisymmetric particle
of arbitrary orientation near a plane surface, and the imaging of the
scattered field. In the present paper, we intend to design a more realistic
model that better reproduces the TIRM setup. More precisely, we want
to take into account the fact that the particle is not near a plane
surface separating two half-spaces, but rather in a stratified medium.
As in Doicu et al. [19], we aim to consider both the scattering by an
axisymmetric particle situated in a stratified medium and the imaging
of the scattered field via microscope optics.

The paper is organized as follows. In Section 2 we describe the
mathematical model for TIRM, in Section 3 we present a numerical
analysis regarding the possibility to measure the particle orientation
angles and the separation distance, and in Section 4 we formulate some
conclusions and discuss a few feature goals.

2. Theory

In this section, we analyze the scattering by a particle in a stratified
medium and describe the imagining of the scattered field.

2.1. Scattering by a particle in a stratified medium

A python package for the simulation of light scattering by multiple
particles near or between planar interfaces was designed by Egel et al.
[24]. The software package uses the T-matrix method for analyzing
the individual particle scattering and the scattering matrix formalism
for analyzing the electromagnetic field propagation through planar
interfaces. Although the basic ideas are the same, we prefer to develop
our own formalism which extends the one presented in Doicu et al. [19]
and is devoted to the concrete TIRM geometry we are analyzing.

In our model, the stratified medium is a succession of air-glass—
immersion-coating-glass interfaces, in which the “immersion” layer is
an aqueous solution. The incident field propagates in the glass prism,
the particle is placed in the immersion layer, and the outmost layers
are semi-infinite in size. The multiple scattering problem is solved by
the superposition method. To develop a scattering model we need to
understand the interaction process of the radiation with the particle.
The incident field strikes the particle either directly or after interacting
with the layer system. The resulting field is the incident field in the
immersion. On the other hand, the fields scattered by the particle also
interact with the layer system and strike the particle again. In this
regard, the total field in the immersion layer (containing the particle)
can be decomposed into a sum of three constituents:
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Fig. 2. Geometry of the layer system. The particle is placed in layer 2, and the outmost
layers 0 and 4 are semi-infinite in size.

1. the incident field in the immersion layer,
2. the field scattered by the particle, and
3. the layer system response to the scattered field.

By convention, the layer system response to the scattered field will be
called the interacting field. The incident field in the immersion layer
together with the interacting field make the excitation field. The layer
system responses are first computed as plane wave expansions after
which, they are transformed into regular spherical wave expansions.
As a result, a series representation for the excitation field in terms of
regular spherical waves is obtained. The spherical wave expansion co-
efficients of the scattered field are then linked to those of the excitation
field through the transition matrix of the particle.

We consider the layer system illustrated in Fig. 2. The absolute
refractive index and the wavenumber in medium ; are denoted by n;
and k; = n;k, respectively, where k = 27/ and A are the wavenumber
and the wavelength in vacuum, respectively. An axisymmetric particle
of arbitrary orientation is placed in layer 2. The Cartesian coordinate
system Oxyz centered at the particle and having the z-axis perpendic-
ular to the layer interfaces represents the global coordinate system.
The orientation of the particle is described by the Euler orientation
angles (aps Bp) and we denote by Ox,yp2, the particle (local) coordinate
system. To deal with an arbitrary particle orientation, the rotation
addition theorem for vector spherical vector functions will be used.
In general, if the particle coordinate system Ox,y,z, is obtained by
a rigid-body rotation of the global coordinate system Oxyz with the
Euler angles (ap, Bps yp), the addition theorem for vector spherical wave
functions under coordinate rotations is [25]

n
M2 (kr,0,0) = ), Dl (@, B )M, (k1 0 ), €]

my=—n

n
Nokr,0,0) = 3 Dy (@, B, 7pN2, (k' O, ), (2)
my=-n

where D"  are the Wigner D-function, (r, 6, ¢) are the spherical coordi-
nates of a point in the global coordinate system Oxyz, and (r, 6, ¢,,) are
the spherical coordinates of the same point in the particle coordinate
system Oxpy,z,,. Some basic results that will be used frequently in what
follows are given in appendices. In particular, the expressions of the
vector spherical wave functions and vector plane waves, as well as the
transformations between them are given in Appendix A, while the main
relations describing the scattering in a stratified medium and which are
relevant for computing the interacting field are given in Appendix B.
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2.1.1. The incident field in the immersion layer (layer 2)

The incident field is a plane electromagnetic wave propagating in
the half-space 4, the azimuthal plane «;,. and the direction 7 — f,,
where f;,. is the angle of incidence. In the global coordinate system
Oxyz, the incident field in the half-space 4, is given by

~ . PONR
Eyinc(r) = (cos @104 + sin ) P

= AM(r, k) + BN(r.K]), 3)

where M(r,k;) and N(r,k;) are the vector plane waves defined in
Appendix A, ki = (kg, T = fipc- @ind) = ki — kP2, K = kycos Py,
§4 = @(/l\(z), @, = (’ﬁ(/l\(z), /l\(Z = ki /ky, A = jsinay,, B = —cosay,
and ay, is the polarization angle.

In Appendix B it is shown that for an external excitation represented
by the vector plane waves propagating downward in the half-space 4,
E; = M(r.k;) and E] = N(r,k;), the total upward propagating fields
in layer 2 are E2t0t = S*M(r k*) and E2t0t = S*N(r k*), respectlvely,
while the total downward propagating field are EJ = S M(r, k)

and B} = b:J N(r, k), respectively. The expressions for the scattermg

coefficients S;(’ and SX X =1,], are given by Egs. (B.15) and (B.16),
respectively. As a result, we deduce that in layer 2, the incident field
exciting the particle is

Epinc(r) = A™M(r, k) + A™M(r, k)

+ BYN(r. ki) + B°N(r.k;), “
where
A* = AS}, A" =AS], B*=BS}, B =BS|. 5)

Making use of the spherical wave expansions of the upward and down-
ward propagating vector plane waves as given by Egs. (A.19)-(A.20)
and (A.23)-(A.24), respectively, and taking into account Egs. (A.21)-
(A.22), we find

© n
EZinc(r) = Z z Cn[AmnMylnn
n=1 m=—n

where M (k,r) = M} (kor.0,¢) and N} (k,r) = N} (k,r.0, ) are the
regular vector spherical wave functions defined in Appendix A,

(ko) + B,,,NL (kyp)], (6)

A = Col AT (By) + A2 (z — )

+ m[B* ™ (p) + B~z (z — py)]}eImainc, %)
By, = Cy{m[ AT 2" (8,) + A™ 2" (z — )]
+ Brel"l(p) + B o!"(x — p,) e Imine, ®
and
in+l
¢ =—0 ©

V2nn+1)
In Egs. (7)-(8), the angle of refraction f, corresponds to the angle of
incidence By, i.e., cos f = +4/1 — (ny/ny)? sin® By, with Im(cos f,) >
0. Finally, application of the rotation addition theorem for vector spher-
ical wave functions (cf. Egs. (1)-(2)) yields the following expansion of

the incident field in the particle coordinate system Ox,y,zy:
o n

Epinc®) = Y [8,,M},, (ko7 0. @) + b,,,, N, (ko 0. )], (10)
n=1 m=—n

where

n
Z D:’nml(ap’ﬁp’o)Amln’ bmn=

my=—n my=—

D, (@ By 0B, (1)

or in matrix form,

[am ]_D [Am],,] R O 0
Boun *| B, | ™ 0 D, (@ f,0) |

(12)
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2.1.2. The scattered field in the immersion layer (layer 2)
In the global coordinate system Oxyz, the Stratton-Chu formula for
the scattered field gives

Ejq(r) = f {IVXGo(ky, 1. 1)) € (1)) +joptgGokp, T, 1)) hige (1)} dr
SP

13

where Gy (k,.r,r,) is the free-space dyadic Green’s function with wave-
number k,, e;,; and h;,, are the tangential components of the electric
and magnetic internal fields (inside the particle), respectively, w is the
frequency, p is the magnetic permeability in vacuum, and the integra-
tion is performed over the particle surface Sj,. Specific representations
for the scattered field can be obtained by expanding the dyadic Green’s
function Gy(k,.r.r;) in terms of vector spherical wave functions or
vector plane waves. In the following we consider the spherical wave
expansion, i.e.,

= 1 PNSIDN
Gy(ky,r, 1)) = —pﬁ(r -r)r®r
2

L (kyr) @ M3 (kpr ) +NL (kor) @ N3 (kyr)),
[~ r<r
2
+ 12 2 3
n=1m=-n 3 (kyr) @M (kyr)) + N3 (kor) @NL  (kyr)),

r> ry
a4
The derivation based on the plane wave expansion of the dyadic Green’s
function is given in Appendix C. For a field point r lying on a sphere
with radius R enclosing the particle, the expansion of the dyadic
Green’s function yields the series representation

Eyo@) =Y Y [FuM;, (kot) + G, N2, (Feor)]. (15)

n=1 m=—n
For a numerical implementation, we truncate the infinite series (15)
by letting m = —M 0k -+ » Mpan and n = max(l, |m|), ..., N, Where
Nian and M, are the maximum expansion and azimuthal orders,

respectively. To simplify the writing, the finite summation Zf_"‘_“‘;/[ .
= ranl

ZnN;::x(ump will be written as Zé\; =1 where the multi-index v = (m, n)
ranges from 1 to N, when m ranges from —M . t0 M, and n
from max(l, |m|) to N. In other words, we consider an approximate
scattered field expressed as a (finite) linear combination of radiating
vector spherical wave functions

N
Y [ENM, (eor) + G NS (o)), 16)

2sct (I‘) mn” "mn

(m,n)=1

which in the particle coordinate systems Ox takes the form

N
Y M,

pYpp>

zsct(1‘) a(kar, 05, 00) + gmn mn(kzr 05, @p)l, 17
(mn)=1
where
min(n, Mygni)
FN,= Y DhO.-Ba)fN,

m=—min(n,Mank)
min(n,Mrank)
N _ N
Gy, = > D}, 0.~y a)gn, (18)

m=—min(n,Mank)

or in matrix form,

[Frann] _D_l |:f,£lv,,:| D_] _ |: D:lnlm(o’ _ﬁp’ap) 0
Grlr\llln grlr\lln 0 mlm(o ﬂP’a )

19

Note that the upper index N indicates that the expansion coefficients
depend on the truncation indices M, and Np,.
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In the half-space z > 0, the radiating vector spherical wave functions
can be expressed as integrals over upward propagating vector plane
waves (cf. Egs. (A.13)—(A.14))

27 /2—joo
M} (k,r) = / / [ASP (B, 0)M(r, K}) + BSF (B, 0)N(r, k)] sin fdfde,
o Jo
(20)

2t prf2—joo

N} (k,r) = / / [BSP (B, )M(r, k) + ASF (8, 0)N(r, k)] sin fdpda,
o Jo

@1

where kI = (ky, §,a), and the amplitudes ASF(8,a) and BJ'(f,a) are

given by Egs. (A.15) and (A.16), respectively. Inserting Egs. (20)-(21)

in Eq. (16), and interchanging the order of summation and integration,

gives an integral representation for the scattered field in terms of
upward propagating vector plane waves,

2 7/2—joo
EY (@)= /0 /0 [F*(8, )M(r, K} ) + G* (8, ®)N(r, k} )] sin fdpda,

(22)
where
N
Fr(B)=Y [FNAS(B,a)+GN Biw(p, a)l, (23)
(m,n)=1
N
G*(B.a)= ) [FNBS(B.a)+GN ASP (B, a)l, (24)

(m,n)=1

are the amplitudes of the vector plane waves. Similarly, in the half-
space z < 0, we use the integral representations (cf. Egs. (A.17)—(A.18))

2r  pr/2-joo
M} (kor) = / / [ASP (z — B, a)M(r.k3)
0 0

+ Byr(x — f.o)N(r, k)] sin pdfda, 25)
2r w/2—joo
N3 (kor) = / / [BSP(z — p,a)M(r,k3)
0 0
+ AP (2 — . 0)N(r. k3)] sin pdpda, (26)

where k3 = (k,, 7 — B, @), and obtain an integral representation for the
scattered field in terms of downward propagating vector plane waves,

2 pr/2-joo
EN (1) = / / [F~(, )M(r.k;) + G~ (8, 0)N(r,k;)] sin fdpda,
0 0

(27)
where
N
F=(B,a)= ), [FAs(x—p,a)+Gh Bor(x = f,a)], (28)
(m,n)=1
N
G () = 2 [FN B3P (x — p,a) + GN ASF (z -, a)]. (29)
(m,n)=1

Relying on the analysis presented by Egel et al. [26,27] we make the
following comment. Let z = z.,,, < R be a tangent plane bounding the
particle from above. The spherical wave expansion of the scattered field
(15) can diverge in the region z,,, < z < R. If we would work with
the infinite series (15), we would obtain the spectral representation for
the scattered field (22), in which the amplitudes F*(f,a) and G* (5, «)
would be represented as in Egs. (23) and (24), respectively, but by infi-
nite instead of finite series. In this case, the spectral representation (22)
would not to be valid in a part of the region inside the circumscribed
sphere. The reason is due to the change of the order of integration and
summation when inserting Eqs. (20)-(21) in Eq. (15). This operation is
justified for z > R, but it is not allowed for z — z,,,. In this region, the
convergence is not uniform but only point-wise. However, in a practical
implementation of the method, the expansion (15) must be truncated,
in which case, the order of integration and summation plays no role. For
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this reason, we considered from the beginning an approximate scattered
field represented by the finite series (16).

2.1.3. The interacting field in the immersion layer (layer 2)

Each vector plane wave in Egs. (22) and (27), that is, M(r,k;),
N(r,k;), M(r, k), and N(, k), will interact with the layer system.
Because we have two integral representations for the radiating vector
spherical wave functions (for z > 0 and z < 0), we will treat these cases
separately.

1. In Appendix B it is shown that for an external excitation repre-
sented by the vector plane waves propagating upward in layer
2, E;’ = M(r,k;) and E; = N(r,k;), the reflected upward
propagating fields in layer 2 are E}; = ST*M(r,k]) and E}, =
SrN(r,k;), respectively, while the reflected downward prop-
agating fields in layer 2 are ELx = SI‘M(r,k; ) and ELx =
Sﬁ’N(r,k; ), respectively. The expressions of the scattering co-
efficients Sy* and Sy~, X =L,||, are given by Egs. (B.17) and
(B.18), respectively. Using this result in Eq. (22), we infer that
the interacting field is
2r  pr/2—joo
EN*(r) = / / {F* (B, )[STHM(r.kI) + ST M(r.k;)]
o Jo

nt
+ GT(f. 0[S, "N(r.k]) + S 7N(r. K;)]} sin fdpda.  (30)

2. In Appendix B it is shown that for an external excitation rep-
resented by the vector plane waves propagating downward in
layer 2, E] = M(r,k)) and E] = N@.k), the reflected up-
ward propagating fields in layer 2 are E}, = S7"M(r,k]) and
E;R = S”’ *N(r,k;), respectively, while the reflected downward
propagating fields in layer 2 are E; = STTM(r.k3) and EL =
Sy “N(r,k3), respectively. The expressions of the scattering co-

efficients S;“ and S;‘, X =1,]||, are given by Egs. (B.20) and

(B.21), respectively. Employing this result in Eq. (27), we deduce

that the interacting field is

2r  pr/2—joo
EN-(r) :/ / {F~ (B, ST M(r,k}) + 57" M(r, k3)]
o Jo

int
+ G (p, a)[S||_+N(r, k) + S”“N(r, k3)1} sin pdfpda.  (31)
The (total) interacting field produced by the scattered field is then

EN @) =EN*(r) +EN-(r)

int int int

2 m/2—joo
= / / [F*, a)M(I',k;)+ F~(p,0)M(r,Kk)
0 0

+ GT (B, )N, K3) + G (B, )N(r, k3] sin pdpda, (32)
where
Fr(f.a) = FX(B.)ST* + F~ (B, a)ST*, (33)
F~(f.a) = F*(B,)ST™ + F~(f,0)S]™, (€D)]
G (f.a) =G (B.)S|" + G (B.)S ", (35)
G (f.a0) =G (f. )" + G (f.a)S " (36)

Inserting the expansions of the upward and downward propagating
vector plane waves in terms of regular vector spherical wave func-
tions as given by Egs. (A.19)—(A.20) and (A.23)-(A.24), respectively,
in Eq. (32), we obtain the following series representation for the
interacting field:

N
EN (r) = Z [ﬂfrj]nlenlnl(kerG{,Vn]n]N}nln](kzr)], 37)

(myp,np)=1

where
2 pr/2-joo
Fy = / / [F*(B. ALy, (B.0)+F ()AL, (x— f.a)
0 0

+ GY (BB (B, @)+ G (B, w)BS, (n— p,0)]sinpdpda,  (38)

myny myny
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2 pr/2-joo
Gy = /0 /0 [F* (5, a)B”‘jqu;, a)+F(p, a)B,]:l?nl(n' )

+GH B Ay, (Ba)+ G (BA, (- @)]sinpdpda,  (39)

and Azslnl(ﬂ, «) and B,‘::nl(ﬂ, a) are given by Egs. (A.21) and (A.22),
respectively. In the particle coordinate systems Ox the spherical
wave expansion of the interacting field reads as

pYpp>

N
N _ N 1 N 1
EN® = Y U ML (or0.0) g N (or,0,0),  (40)
(my.np)=1
where
min(ny,Myank)
N _ ] N
o = X Duim (@ B OF
my=—min(ny,Myank)
min(ny,Myank)
N _ ] N
glmlnl - Dm]mz(a aﬂva)GIMany (41)
my=—min(ny,Myank)
or in matrix form,
N N n
[flmlnl] -D FIm2n1 D= Dm11m2 (ap5 ﬂp’ O) 0 :|
N N ’ - ny .
gImlnl Imyn; 0 D”'I"‘Z(ap’ﬁp’o)

(42)

2.1.4. The interaction matrix

The interaction matrix relates the expansion coefficients of the
interacting field ( fﬁ . and gf:’n 1"1) to the expansion coefficients of the
scattered field (f n’l‘fl and g,’;’n ) in the particle coordinate system.

In a first step, we relate the expansion coefficients of the interacting
field (FI{Z . and GI]:’" 1"1) to the expansion coefficient of the scattered
field (FN and G¥) in the global coordinate system. For doing this,
we note that expansions of the spectral amplitudes F*(8,a), F~ (8, a),
Gt(f,a), and G~ (B,a) in terms of the scattering field coefficients le
and Gr];’n can be obtained by combining Egs. (23), (24), (28), and (29)
with Egs. (33)—(36). The result is

N
Frpay= Y (FaFN +GGN), 43)
(m,n)=1
N
F o)=Y (FhFEN+9GN). (44)
(m,n)=1
N
GHBay= Y (FEFN+GEHGN), (45)
(m,n)=1
N
GBay= Y (T FN+GEGN), (46)
(m,n)=1
with
Tyt = ST ASE (p.a) + STHASE (2 — B ), (47)
gt = ST B (B, a) + STYBS (2 — B, ), (48)
T = STASE (B 0) + STTASE (7 - fa), (49)
G- = 5T B%(B,a)+ STTBYE (n - B, ), (50)
and
T =SB0+ S B (x - o), G))
G2 = S||++A§n§(ﬁ, a)+ S”—+A§n§(n - B, a), (52)
T = S Byr(B.0) + Sy Bye (7 = B a), (53)
G = ST AN(B.a) + ST AN (2~ ). (54)

Then, substituting Egs. (43)—(46) in Egs. (38)—(39), yields

FN FN
Imyny _ mn
Imyn; mn
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where the elements of the matrix

Rl] R12
_ myny,mn myny,mn
R= [ 21 22 (56)
m]nl,mn mlnl,mn

are given by

) 2 pr/2-joo ) S s
1 — 71+ 4P 1- 4P _
lenl,mn - /(; ‘/(; [ymn Amlnl(ﬂ’a)-i_gmn Amlnl(ﬁ7 ﬁ’a)

+ F2BPS (B,a)+ FZ BIS (x— p,a)]sin pdpda, (57)

myny myny
2r m/2—joo
R [ AR, G0 9S4, = p)
+ GBS, (B)+ G0 BYS, (r = f.a)]sin fdfda, 8)
R :/27r /7[/2—J'°°[3.;1+BP5 B a)+<9‘1_BPS (x - . a)
myny,mn 0 0 mn " mypn mn " myn; >

+ T A (o) + T AR (= f.a)]sin pdpda, (59)

22 o #/2je 1 PS 1 PS
— + -
lenl,mn - A /0 [gmn Bmlnl(ﬂ’a)—‘rgmn Bm]nl(ﬂ_ﬁ’ a)+

+ gj;A‘;Slnlw, a) + gj;A,P;Slnl (z — B, a)] sin fdpda. (60)
The expressions of the matrix elements Rﬁ,’;lnl'm,,, i,j = 1,2 can be

simplified by making use of the expressions of ASP(8,a), BSE (5, ),
Ay, (f.a) and BPS, (§,a) as given by Egs. (A.15), (A.16), (A.21) and
(A.22), respectively, and by integrating over the azimuth angle a; we

find
n/2—joo
R, w= / Cornl ZLE B B+ Zhm By (2 = )
0
+ m[Z2 P B) + T2, (B)m (x — 1) sin pdp, (61)

mn

n/2—joo
2 _ 71 Imy] - [
RE = /0 ol B e B + 1 el e - )

+ m 2 O ) + G2 (B (x - B)1) sin pdp, (62)
7/2—joo
R = / Copnlm L7t Bm  (B) + Z)- (D 2 = ]
0
+ Z2 B @)+ T Py (x - @) sin dp, (63)

n/2—joo
R2, = /0 Copa MG B (B) + G (B (x = )]

+ G2 D @) + D2, Py (x = b)) sin pdp, 64)
where
and
Zre® = ST En" e + s e - p, (66)
Gt B =m ST B + ST Em" (7 - p, 67)
Fan ) =S B + ST B @ - p), 68)
G0 =m ST Em" B) + ST (B (- P, (69)
T2 =m (ST B B + ST B - ), 70)
G20 =SB B + S P - p), 7D
Zr B =mIST @ ®) + S; A" - p, 72)
GeB =S Bn" B + 57 B @ - p). 73)

In the second step, we derive the expression for the interaction
matrix by combining Egs. (19), (42), and (55); we obtain

Sim ] [ I ]
1" mn

=A , 74)
[ iy, Znn
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where

AZI A22 (75)

myny,mn

2
A=DRD™ = [Ay 0 ] = [ Animn Amyamn ]
- - myny,mn| =

myny,mn
is the interaction matrix whose elements are given explicitly by

min(ny,Mpank)

All > D)l (a5, By, OR)!

myny,mn mynyn

n
D, (0. ~fya).  (76)
my=—min(ny, Myani)

min(ny, Mank)

Al _ Z D} (@, By OR

myny,mn monn

D O.~pya).  (77)
my=—min(n|,Mrank)
min(ny, Mrank)
21 _ 1y 21
Am[nj,mn - Z Dmlmz(a ’ﬂP’O)RmznlnD:lnzm(o’ _ﬂP’ ap)’ (78)
my=—min(n|,Mrank)
min(ny,Mpank)

AL = > Dl iy (@, By ORZ L DY (0, =P, ), (79)

myny,mn
my=—min(ny,Myank)

2.1.5. The T-matrix equation

In the particle coordinate system, the scattered field coefficients are
related to the expansion coefficients of the fields exciting the particle
through the transition matrix T = [T,,, , ,, ]. Taking into account that
the field exciting the particle sums the contributions of the incident and
interacting fields, and truncating the spherical wave expansion of the
incident field (10), we find the T-matrix equation:

N N
N pN N
Emn myny glm|n|

and further, by making use of Eq. (74),

I a,
(I—TA)[ n ]:T[ o ] (81)
Emn bm]nl
In the above equations, the matrices are of dimension 2N, X 2N .\,
where
Niax = Nrank + Mrank(2Nrank = Myank + 1), (82)

and it is apparent that the transition matrix of the system particle-
stratified medium is

Tyystem = A= TA)'T = (T = A)™". (83)

The transition matrix can be calculated with any method devoted to
this purpose, and in particular, with the null-field method with discrete
sources [28]. After solving the T-matrix equation for the scattered
field coefficients in the particle coordinate system ( f,ﬁ and g,’n""), the
scattered field coefficients in the global coordinate system (FN and
Gf;’n) are computed by means of Eq. (18) (or Eq. (19)).

2.1.6. The scattered field in half-space 0

We consider the expressions of the scattered field in layer 2 as given
by Eq. (22) for z > 0 and Eq. (27) for z < 0. As before, we distinguish
the following situations.

1. In Appendix B it is shown that for an external excitation repre-
sented by the vector plane waves propagating upward in layer
2, E; = M(r,k*) and E; = N(r,k;’), the transmitted downward
propagating fields in the half-space 0 are E; = SIM(r,k(;)
and E; = SﬁN(r, k7)), respectively, where the expression of the
scattering coefficient S; , X =1,], is given by Eq. (B.19). As a
result, and by using Egs. (23)-(24), we find

N o pr/2-jeo
Eé\g:t@): Z /0 /0 {[Afni(ﬁ,a)SI(ﬂ)M(r’ka)
(m,m)=1
+ By (8. 0)S (AN kIE,,

2r 7/2—joo
+ / / [Bor (B, a)ST(BM(r,ky)
0 0
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+ A0 (B, @S (BN, kIG), } sin fdfda. (84)

2. In Appendix B it is shown that for an external excitation repre-
sented by the vector plane waves propagating upward in layer
2, EJ = M(r,k3) and EJ = N(r,k3), the transmitted downward
propagating fields in the half-space 0 are Ej; = STM(r k)
and E; = S-N(r, k7)), respectively, where the expression of the
scattering coefficient Sy, X =L, |, is given by Eq. (B.22). As a
result, and by using Egs. (28)-(29), we find

N 2r  pr/2—joo
Eom= Y /0 /0 {[ASP (z — B, a)ST(HM(r. k)

(m,n)=1
+ Biw(r = B,a)ST (AN, k) FL,
2r  pr/2-joo
* /0 /0 [Bon (7 = . a)S T (FYM(r. k)

+ Ay (2 = B, @)S; (HN(r. kIG), ) sin fdpda. (85)

To compute the integrals in Eqgs. (84)-(85) we use the stationary phase
method. Specifically, for r = (r, 6, ¢) with 6, > 7 /2, we use the results
Appendix D

2r 2 —joo ~ L .
[ ewwho)e sinpapda = 12 s, 045, (86)
0 0 o’

2 %*joo R L P PN
/ / g(B.)Bk™)e* T sin pdpda ~ —Jk—”rg(ﬁzs, @) oF), (87)
o Jo 0
where
. n, .
pps = arcsin | — sinfy | . (88)
%3
Employing the above results in Egs. (84)-(85) and using the expressions
of ASP(B,a) and BSP(f,a) as given by Egs. (A.15) and (A.16), respec-
tively, we find that the far-field pattern E(’)\; % (09, @) of the scattered field
in the half-space 0, defined through the relation
_ ejko’ o
Ej . () =E}* () +Ej (r) = TE(’;“ (09> @), (89)
is

EN2 (00, @) = gy 09, )00 + (0, )9, (90)

where 6, = 0%), § = (@),
N

.1 .
Egy™00.9) =iz ( Z)_l Cmlal™ (Boo) Sif (Bas) + 7\ (7 = Brg) S|y (Bao)IF,

+ [ (Bas) ST (Bas) + 71 = Boo) S| (Ba0)IGy, €™, (91)

N
EN®(0. ) = -1 C AL (Br) ST (Bog) + 7™ (m = Br) ST (Brs)IFN,
P kO
(m,n)=1

+ mll™ (B,)ST(Bye) + ™ (m — Prg) ST(Brs)IGN 1™, (92)

and

C, = | S S (93)

2+ )
The main steps of the algorithm for computing the expansion coef-
ficients of the scattered field are illustrated in Fig. 3. Some remarks can
be made here.

1. For a numerical computation of the integrals in Egs. (61)-
(64), we set Sy’ = e2j"(zz>z3§;‘(” for u,v = + = and X =1,|,
in Egs. (66)-(73), where the expressions of S;” are given by
Egs. (B.27)—(B.30). Consequently, each integrand in Egs. (61)—
(64) will contain the factor

e2jk(22)z3 - e2jkzz3 cnsﬂ’
and so, the integrals in Egs. (61)-(64) will be of the form

7/2—joo .
1= / f(cos )el?<®sF sin g dp, 94)
0
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Fig. 3. Algorithm for computing the expansion coefficients of the scattered field. Here,
PWE stands for plane wave expansion, SWF1 for regular spherical wave expansion, and
SWEF3 for radiating spherical wave expansion.

where f(7) is a relatively slowly varying function and ¢ = 2k, z;.
The standard path of integration C for g is the union of the
lines L, = {(Re(f),Im(f)) | 0 < Re(p) < x/2, Im(f) = 0} and
L, = {(Re(p).Im(p)) | Re(f) = x/2, —o0 < Im(f) < 0}. By the
change of variable k;, = k,sinp, the integral (94) becomes a
Sommerfeld-type integral,

)
I= /wf(kL>eiq(k§2)/kz)ﬁ, (95)
0 ks ko)

where k;z) = \/kg - ki. The computation of the integral (95)
along the real axis is not a trivial task. This is because, in
the neighborhood of the wave-guide mode singularities and
the branch-point singularity (at k;, = k,), the integrand is
a rapidly varying function of k,, and so, a fine sampling of
the integrand would be required to achieve a good enough
accuracy. A straightforward and robust approach for computing
the integral (95) along the segment [0, k, ...] was proposed in
Refs. [24,29]. It is a direct numerical quadrature (e.g., using
the trapezoidal rule) in combination with an integration con-
tour C; deflected into the negative complex half-plane [30].
Because the wave-guide mode singularities and the branch-point
singularity associated with the square root are located in the
positive complex half-plane [24,29], the integrand is an an-
alytic function in the negative complex half-plane. Therefore,
according to Cauchy’s theorem, the integral along the deflected
contour C, is identical to the integral along the real axis, but the
numerical instabilities are avoided. On the other hand, Bobbert
and Vlieger [31,32] considered the change of variable x =
—jg(cos g — 1), yielding
di [ X\ _y

=5 f(1 jq>e dx, (96)
and used a Gauss-Laguerre quadrature for an efficient calcula-
tion of this integral. It should be pointed out that by the above
change of variable, the contour of integration isnot C = L, UL,,
but rather a contour C, that starts at the point (0,0) (for x = 0)
and goes to the point at infinity (Re(f) — z/2,Im(f) — —o0) (for
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X — o), without passing through the critical point (z/2,0). The
standard integration contour C together with the two deflected
integration contours C, and C, are shown in Fig. 4. As an
example, we illustrate in Fig. 5, the integrands of Egs. (95) and
(96) for computing the matrix element I = R,‘nlln]n. The plots
show that in the first case and in the neighborhood of the critical
point k = 1, the integrand is a rapidly varying function of x =
k, /k, = sin §, while in the second case, the integrand is a smooth
function of x = —jg(cos f — 1). Actually, in the second case, we
have x = sin f = /(x/q)* — 2j(x/q), showing that Im(x) < 0; thus,
the contour C, avoids the vicinity of the singularities. For this
reason, the deflected integration contour C, was adopted in our
analysis.

. The convergence of the algorithm depends on the choice of

the maximum expansion and azimuthal orders N, and M i,
respectively, as well as, on the number of Laguerre quadrature
points Nj,.. In practice, we may check the convergence of the
differential scattering cross sections for parallel and perpendicu-
lar polarizations o) (6y) and o (), respectively, at 11 equidistant
values of the scattering angle 6, in the range [90°,270°] for the
pairs (Nrank’ Mrank)’ (Nrank_l’ Mrank)’ and (Nrank’ Mrank_ 1) [33].
Note that for a prolate spheroid with semi-major axis a, o(6y)
and o, (6,) are defined, respectively by

2
|EN® (0.0 = 0)]

ra?

2
|EN® (0, ¢ = 0)]

o) (8o) = , 01(8p) = 97)

2
na

Alternatively, we may check the convergence of the integral
response of the detector (defined below) for the same pairs of
expansion and azimuthal orders.

. The system T matrix was obtained by truncating the scattered

field expansion and by considering an expansion of the dyadic
Green'’s function in terms of vector spherical wave functions. The
derivation relying on a truncation of the internal field and an
expansion of the dyadic Green’s function in terms vector plane
waves is given in Appendix C. Note that the spherical wave
expansion is valid outside a sphere enclosing the particle, i.e., for
z > R, while the plane wave expansion is valid outside the
tangent planes bounding the particle from above and below,
ie., for z > z,. and z < z.;,, respectively. In both cases we
obtained the same result (cf. Egs. (83) and (C.43)). Therefore, we
may conclude that for truncated field expansions, the condition
z3 > R does not play a role.

Two simplified scattering problems can be modeled by particulariz-
ing the above formalism.

1. The scattering by a particle placed in the lower half-space and

being illuminated by an incident field propagating in the upper
half-space (Fig. 2). This problem can be modeled by setting
ny = n; = n, and n; = n4. In such a case, the expressions
of the scattering coefficients are given by Egs. (B.31)-(B.37) of
Appendix B, and the entire mathematical formalism reduces to
the one presented in Ref. [19].

. The scattering by a particle placed in the lower half-space and

being illuminated by an incident field propagating from the glass
prism to the lower half-space through the coating layer (Fig. 2).
This problem can be modeled by setting n, = n; = n, and n; #
n,. In such a case, the expressions of the scattering coefficients
are given by Egs. (B.39)-(B.42) of Appendix B. The scattering
problem is considerably simplified in the sense that it does not
take into account the presence of the immersion cell. (cf. Fig. 1).

2.2. Imagining of the scattered field

The imaging system of the scattered field is illustrated in Fig. 6.
It consists of a pair of lenses which are placed such that their foci
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Fig. 4. Standard p-integration contour C (left), deflected «-integration contour C, proposed in Refs. [24,29], where x = k, /k, = sin§ (middle), and the deflected p-integration

contour C, proposed in Refs. [31,32] (right).

05—

Integrand Eq.(95)
I

0
0.5 0.75 1 125
K
8x10" T
& 6x10* - -
- L i
o 4
'c% 4x10° [~ 1
: | )
£ 2x10' .
0 \ \ \
0 25 50 75 100
X

Fig. 5. The integrand of Eq. (95) as a function of x = k, /k, (upper panel) and the integrand of Eq. (96) as a function of x (lower panel) for computing the matrix element
I'=R!!' . In the first case, we considered 3000 equidistant quadrature points in the interval [0,k ,,] with k.. = 3k,, while in the second case, we considered 80 Laguerre

myn,

quadrature points. The simulations correspond to m; =1, nj = n= N, =35, and n, = 1.0003, n, = 1.515, n, = 1.33, n; = 1.42, and n, = 1.515.

coincide, for both illumination and image formation. The particle is
placed in the front focal plane of the first lens with the focal distance f,,
and the corresponding image field is formed in the back focal plane of
the second lens with the focal distance f;. The image space is assumed
to be a medium with absolute refractive index n; and wavenumber
k; = n;k. The aperture angle in the object space (the polar angle under
which the Gaussian reference sphere is observed at the focus of the
collector lens) is

0, = arcsin(NA, /n),

where NA, is the numerical aperture of the collector lens, the aperture
angle in the image space is computed as

O; = arctan (é tan @0) s
fi

and the numerical aperture of the detector lens is NA; = n;sin©;. In
Fig. 6, A;B; is the image of the object AB through the optical system,
and the coordinate system O;x;y; is the image of the coordinate system
Oxy. The right-hand side coordinate system O;XY Z, centered at the
focal point of the detector lens, was chosen in order to compute the
focus field by means of the Debye diffraction integral. This coordinate
system has the positive Y and Z axes in the opposite direction to
the positive y; and z; axes, respectively. To calculate the image of
the scattered field we compute (i) the scattered field on the Gaussian
reference sphere of the collector lens, (ii) the transmitted field on
the Gaussian reference sphere of the detector lens, and (iii) the focus

field by means of the Debye diffraction integral. The image is then
processed in order to extract some useful information about the particle
orientation angles. These computational steps are summarized below.

1. The Gaussian reference sphere of the collector lens is a sphere
of radius f, centered at the focal point. In view of Eq. (89), the
scattered field on this sphere is given by

elkofo
Ejt (00, ) = ——E{[% 6y, 0). (98)

fO Osct
An important scattering characteristics is the integral response
of the detector. This is defined as the integral of the Poynting
vector over the lower Gaussian hemi-sphere and is computed as

2r b4
P= / / EN® 0. @) + | EN® (00, @) Tsin ydbydg.  (99)
0 0,

2. To determine the transmitted field in the image space, we as-
sume that a ray propagating in the object space in the direction
(89, ) is deflected into a ray that propagates in the image space
in the direction (6;, ¢;); the polar angles in the image space are
computed as

0; = arctan[(f,/ f;) tan(6, — 7)],

@; =21 — @.

(100)
(101)
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Fig. 6. The imagining system of the scattered field is represented by the two sections of
the Gaussian reference spheres of the collector and detector lens, P, and P, respectively.
A; B is the image of the object AB and the coordinate system O;x;y; is the image of the
coordinate system Oxy. The right-hand side coordinate system O;XY Z has the positive
Y and Z axes in the opposite direction to the positive y; and z; axes, respectively.

Similarly, the polar unit vectors 90 and @ are deflected into the
polar unit vectors 6; and @;, for which we have the computa-
tional formulas

@i = cos 6; cos (piﬁ + cos 0; sin (pi{(\' —sin Gii, (102)

&, = = —sinp,X + cos ¢; Y, (103)

where ()A(,SA(, Z) are the Cartesian unit vectors in the coordinate

system O;XY Z. The Gaussian reference sphere of the detector

lens is a sphere of radius f; centered at the focal point. The

transmitted field on this sphere is

EN 0 00 = Z2 11, EN (0, 008, + T, EN(01, ), (104)
i i» Pi fi [ 0=00 i» Pi)Yi =00 ( i» @i Q’,L

where

EN® (0, 95) = EN®(00(0), o) and EN®(0;,0) = EN=(00(6), o))
(105)

with 6y(6;) = « — arctan[(f;/fo)tan6;] and ¢ = 2z — @;. The
quantities T, = Typ(6;, ¢;) and T,, = T, (6;, ¢;) in Eq. (104) are
the transmission coefficients of the imagining system for parallel
and perpendicular polarization, respectively. These parameters,
which are input parameters of the algorithm, take into account
accumulated phase distortions (aberrations at the principal plane
of the detector lens) and attenuations (amplitude factors).

3. The computation of the focus field by means of the Debye
diffraction integral was outlined in Doicu et al. [19] by following
the results established in Leutenegger et al. [34]. Essentially, the
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electric field E at a point (X,Y, Z) is calculated as
; 2z
E(X.,Y,Z)= —jﬁ/
A Jo

0; .
x / EN (9, py)@®ixX thivY+kiz2) gin 9,dg; dg;
0
(106)
N
_ i / wejkizCOSgiej(kiXXJrkiYY)dk‘Xdk.Y

1 1Y

}”kiz D, cosb;
(107)
where 0; is the aperture angle of the detector lens. In the last

equation above, we used the relations k;x = k; sin 6; cos @;, kijy =
k; sin 6; sin @;, and k;z = k; cos 8;, and defined the domain Dy as

Dy = {(kix, kiy) | /Ky + kiy < K, (108)

where K = k;sin®; = kNA;. Assuming M sampling points over
K, and considering an equidistant sampling k;x = mAK and
kiy = ndAK, where AK = K/M and m,n = —-M, ..., M, we find
that the sampling polar angles are

Oiun = arcsin(Ak—K Vm? + n2>, (109)
i

Dimn = arccos(L ) (110)

Vm? + n?
As a result, the numerical implementation of the integral (107)
is

g i EIN (eimn ’ (pimn)

jk; Z cos 6, jAK(mX+nY
@IhiZ €05 Oy, K (mX +1Y)

m=—M n=—M cos eimn

(111)
with the convention
EY Oin» Pign) = 0 for Vm? +n2 > M.

The double sum in Eq. (111) is computed by means of a fast
Fourier transform (FFT) by choosing the number of FFT sampling
points per transformed dimension as N = 2° > 4M. To ensure
this condition, the aperture matrix is enlarged by zero padding
before performing the Fourier transform, while a cropping of
the transform output eliminates the padding. The algorithm is
summarized below.

(a) in the axial plane Z, compute the aperture matrix

FiAK2 EY Ot =15 Pimy M, —p1)
,1ki2 cos 0;

im—M,n;—M

EAmln,(Z) =—j e]kizcosoiml—M,n]—M’

112)

for my,n; =0, ..., N — 1, with the convention

Ep, 0 (Z) = 0 for \/(m1 MY+ —M?>M; (113)

()

—

compute the Fourier transform of the aperture matrix,
Elenl(Z) = F(EAmln](Z)); (114)

(c) at the sampling points X,,, = myAX and Y,, = m4Y,
where AX = AY = 2z /(N AK), compute the focus field
E as

E(sz’YnZ’Z) = EFm2+N/2—1,n2+N/2—1(Z)’ (115)

for my,n, =-N/2+1,...,N/2;
(d) for N, < N, cut the matrix E(X,,,Z,Y,,Z,Z) outside the
range my,n, = —N./2+1,...,N./2;
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Fig. 7. Differential scattering cross sections for (i) a particle in a stratified medium with ny =n, =n, = 1.33 and n; =n, = 1.515, and (ii) a particle near a substrate. The incidence
angles are f,. = 0° (left) and f;,. = 72° (right). The results correspond to parallel polarization and a particle azimuthal orientation angle a;, = 45°.

(e) compute the intensity at the sampling points X,,, = m,4X
and Y, =n,4Y as

Z))%,
(116)

Ly, (Z) = | Ex(X,, Yy s 2P+ Ey(X,) Y, s D+ Ef(X,y,, Y,

for my,ny = =N /2+1,...,N./2;

(f) for a better interpretation of the information related to
the particle orientation, the image is transformed into
a binary image, the outer contour is extracted, and an
ellipse is fitted to the data (by least squares fitting).

3. Numerical simulations

In our numerical simulations we choose the wavelength in vacuum
A = 0.635pum, and the refractive indices of the layers as n, = 1.0003
(air), n; = 1.515 (glass), n, = 1.33 (water), n; = 1.42 (poly(L-lysine)-
poly(ethylene glycol), PLL-PEG [35]), and n4 1.515 (glass). The
thicknesses of the coating layer, immersion cell, and glass slide are
chosen as degating = 0.02pm, degyy = 2.0 X 10° pum, and dgppse = 1.0 X
103 pm, respectively. If not stated otherwise, the separation distance
between the particle and the coating layer is z; = 2.4pm. The other
distances to the different interfaces are computed with the formulas
zp = —(deenn + dglass) + 23, 2; = —deey + 23, and z, = z3 + dcoating'
The particle is a prolate spheroid with semi-major axis ¢ = 2.0pum,
semi-minor axis b = 1.0 pum, refractive index n, = 1.591, and zenith
orientation angle g, = 90°. The polarization angle of the incident wave
is ap, = 45°. The refractive index in the image space is n; = 1.0003
(air), the transversal magnification My = f;/f, = 60, and the numerical
aperture in the object space NA, = 1.0. In the simulations, the number
of Laguerre quadrature points is N;,; = 80, and for z; = 2.4pum,
the maximum expansion and azimuthal orders are N, = 35 and
M, = 30, respectively. The critical angle required to achieve total
internal reflection in a glass—water interface (n, = 1.515 and n, = 1.33)
is feric = 61°. Accordingly, the cases of a bright-field (f;,. = 0°) and an
evanescent wave (fi,c > Puic) illuminations will be considered in the
following.

3.1. Model analysis

In a first test we check the accuracy of the newly developed code.
For this purpose we take the results corresponding to the scattering by
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a particle placed in the lower half-space and being illuminated by an
incident field propagating in the upper half-space (i.e., ny = n; = n,
and n; = ny) as a Ref. [19]. The results illustrated in Fig. 7 show a
complete agreement between the scattering curves.

In a second test we check the accuracy of the simplified model
corresponding to the scattering by a particle placed in the lower half-
space and being illuminated by an incident field propagating from the
glass prism to the lower half-space through the coating layer (i.e., n, =
n, n, and n; # ny). The results illustrated in Fig. 8 show that
there is a disagreement between the scattering curves, and so, between
the integral responses of the detector. In the case of evanescent wave
scattering, the integral response is reduced by about 50%.

The immersion layer and the lower glass slide have a thickness
in the millimeter scale, and we can think to model such thick layers
incoherently, i.e., in terms of intensity transmission instead of (com-
plex) amplitude transmission. Incoherent scattering can be simulated
by assuming the above simplified stratified medium with ny =n; =n,,
and n3 # ny, and by taking into account the transmission between the
layers 2 and 0. In particular, referring to Egs. (89)-(92), we set

jk

elkor
Eja®) = ——EQ2 (0, 9), (117)
ENE2 (09, @) = Egy™ (09, 0)0g + Eg = (00, 0), (118)

N+oo

where E,** is as in Eq. (91) but contains only the terms depending on

SIT (Brs) Eé\é“"’ is as in Eq. (91) but contains only the terms depending
on S[(ﬂzS), while E(;V *° and Eév ~® are defined in a similar manner
from Eq. (92). The ditq%erential scattering cross sections and the integral

response of the detector are then computed as

2 - 2
|T02\|E(])\g+°°(9o, =0+ |T02||E&J, (0, ¢ = 0)|

) (6p) = — , (119)
2 o 2
[Toor Eé\;m(@o, @ =0)" + T, Eé\; 6y, ¢ = 0)|
6.0y = — , (120)
and
2r T 2 5
P= /0 /9 [Ty Egy 00, @)™ + | Tooy Egy™ (6, @)
2 _ 20 .
+ | ToL Et ™00, @)™ + |Togs By (0. @) 15in 65 d6yde, (121)

respectively, where (cf. Egs. (B.4) and (B.5)) Tyox = Ty 1xT12x> X =L I,
is the transmission between the layers 2 and 0. In Fig. 9 we show the
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Fig. 8. Differential scattering cross sections for a particle placed in (i) a simplified stratified medium with n, = n; = n, = 1.33, n; = 1.42, and n, = 1.515, and (ii) a realistic
stratified medium with n, = 1.0003, n; = 1.515, n, = 1.33, n; = 1.42, and n, = 1.515. The incidence angles are f;,. = 0° (left) and f;,. = 62° (right). The results correspond to parallel
polarization and a particle azimuthal orientation angle «, = 45°. The aperture angle in the object space is 6, = 60°, and the vertical lines at 180° — 6, and 180° + O, define the

angular scattering domain analyzed by the detector.
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Fig. 9. Differential scattering cross sections for parallel (left) and perpendicular (right) polarizations corresponding to a coherent and an incoherent scattering model. The particle
is placed in a simplified stratified medium with n, =n; =n, = 1.33, n; = 1.42, and n, = 1.515, and the incidence angle is f;,. = 62°.

differential scattering cross sections for a simplified stratified medium
with n) = n; = n, and n; # n,, computed by using a coherent and
an incoherent scattering model. As expected, the incoherent scattering
curves are smoother. However, as compared to a realistic stratified
medium and a coherent treatment of the thick layers, the integral re-
sponse is still smaller (by about 45%). The explanation of this decrease
in the integral response (regardless of whether we use a coherent or
an incoherent scattering model) is that in the case of a simplified
stratified medium, we do not take into account the field reflected by
the lower glass slide. This field increases the interacting field, and so,
the scattered field (even in the case of evanescent scattering).

11

3.2. Measuring the particle orientation angles

In our analysis we consider the focus intensity distribution 1,,,, (0)
at the sampling points X,, = my4X and Y,, = nyAY for my,n,
—N/2+1,...,N/2, that is, the intensity distribution in the plane Z = 0.
The number of sampling points over the horizontal wavenumber K
is M = 120, and the number of FFT sampling points is N 512.
The original image is cropped by cutting the image I,,,, (0) outside
the range m,,n, = —N /2 + 1,...,N./2, where N. = 128, and then
filtered out by setting 1,,,,(0) = 0 if I, , (0) < Oy pplne(0), where
I, (0) = max (0) and 8. pp = 107! is a low-pass filter tolerance.

my.ny Im2”2
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Fig. 10. Image processing step: intensity distribution 1/, (upper panel), outer
contour of the image (middle panel), and fitted ellipse (lower panel). The simulations
correspond to the incidence angle f;,. = 0° and the azimuthal orientation angle a;, = 0°.

In the image processing step, we transform the image into a binary
image (i.e., we set I, () = 1if I,,(©) > 0 for all my,n, =
—N./2+1,..., N./2), extract the outer contour, and fit an ellipse to the
data (Fig. 10). Specifically, the ellipse fitting is a least squares fitting
over (i) the semi-major and semi-minor axes of the ellipse, (ii) the
center coordinates, and (iii) the orientation angle of the major axis with

respect to the x-axis.

In Figs. 11 and 12 we illustrate some simulated images in the case
of bright-field and evanescent wave illuminations, respectively. The
results can be interpreted as follows.
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Table 1
Ellipse orientation angle in degree for different low-pass filter tolerances &;pz. The
particle azimuthal orientation angle is a, = 45°.

O1pp Bright field illumination Evanescent wave illumination
(Bine = 0°) (Bine = 62°)

107! 44.35 42.65

5% 1072 44.63 38.21

1072 44.18 34.56

5%1073 44.22 27.25

107 46.68 25.22

1. The dependence of the ellipse orientation angle ajjps. On the
particle azimuthal orientation angle a;, is shown in Fig. 13.
The plots make clear that the orientation angle of the ellipse
reproduces the azimuthal orientation angle of the particle. The
dependence is almost linear in the case of bright-field illumina-
tion and approximately linear in the case of evanescent wave
illumination. Actually, in the latter case, the curve of variation
depends on the choice the low-pass filter tolerance §;pg. From
Table 1, we see that the deviations from the azimuthal orienta-
tion angle of the particle are more pronounced for lower values
of 6;pp. However, this is not a critical problem. Choosing the
same tolerance as that which is used for analyzing the measured
TIRM images, we can theoretically determine the variation of
ellipse @S @ function of ap, i.€., dellipse = Xellipse (¥p)-

2. The variation of the ellipse aspect ratio &g, defined as the
ratio of the semi-major to the semi-minor axis, with the particle
azimuthal orientation angle a;, is shown in Fig. 14. For these
simulations, the particle zenith orientation angle is f, = 90°. As
before, it is apparent that the particle aspect ratio e, = a/b =2
is well reproduced by the ellipse aspect ratio egjjipse in the case
of bright-field illumination, and less so in the case of evanescent
wave illumination. In practice, when the dimensions of the par-
ticle, and thus, the aspect ratio ¢, are known, the ellipse aspect
ratio egpjipse s used to determine the particle zenith orientation
angle f3, according to the relation fi, = arcsin(eejjipse/€p)- NOte
that even in the case of evanescent wave illumination, it is pos-
sible to determine a theoretical curve of variation of &gjjipee as a
function of a;, and f,, i.., elipse = Ecllipse (Aps fp)- Consequently,
if the functions Qellipse = ellipse(¥p) and Eellipse = Eellipse(®p» fp)
are not multi-valued, the particle orientation angles a;, and f,
can be recovered. This technique was used in Rashidi et al. [20].

3.3. Measuring the separation distance

An important advantage of TIRM is that the integral response of the
detector is very sensitive to the separation distance between the particle
and the substrate (coating layer). This fact is highlighted in Figs. 15
and 16. The results show that the integral response of the detector
decreases rapidly with increasing the separation distance z;. As seen
in Fig. 16, this is not only valid for a realistic stratified medium but
also for a simplified stratified medium with ny =n; =n, and n; # ny.
An interesting fact that should be mentioned is that for any separation
distance z3, the integral response for a realistic stratified medium is
approximately twice as big as the integral response for a simplified
stratified medium (the scale factor varies between 1.95 and 2.05). This
result, which suggests that the presence of the immersion cell translates
into a reduction of the integral response by a factor independent of the
separation distance, requires a more detailed analysis in the future.

It should be pointed out that the algorithm also converged in the
case z; < R, where R = 2.0pm is the radius of the circumscribed
sphere, that is, for an interface situated inside the circumscribed sphere.
Convergence was achieved for (N = 56, M = 50) in the case
zz = L4pm, (Npgpi = 50, My n = 45) in the case z; = 1.6 pm, (Npgp =



A. Doicu et al. Journal of Quantitative Spectroscopy and Radiative Transfer 320 (2024) 108964

0.008 1
0.007
08
0.006
0.005 06
0.004 >
0.003 04
0.002
02
0.001
0 0
0.008 1
0007
08
0.006
0.005 06
0.004 -
0.003 04
0.002
02
0.001
0 0
0.008 1
0.007
08
0.006
0.005 06
0.004 N
0003 04
0.002
0.2
0.001
0 0
0.007 1
0.006
08
0.005
0.004 06
-
0003 04
0.002
02
0.001
0 0
200 100 0 100 200
X X

Fig. 11. Intensity distributions /1, (left columns) and fitted ellipses (right columns). The results correspond to the azimuthal orientation angles a, = 0° (first row), 45° (second
row), 90° (third row), and 135° (fourth row). The incidence angle is f;,. =0°.

45, M n = 40) in the case z3 = 1.8 pm, and (N = 35, Mgnic = 30) in Along this line it should be pointed out that an important results was
the case z; > 2.0 um. This shows that possible failures of the algorithm, derived in Ref. [27]. Considering the integral (94) along the segment
especially for large size parameters, are due to numerical instability. [0, k | max], the authors found that a large k., leads to a decrease in
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Fig. 12. Intensity distributions /1,
row), 90° (third row), and 135° (fourth row). The incidence angle is ;. = 62°.

the numerical stability. Actually, for a fixed expansion order N, the
overall numerical accuracy first improves with growing &, ..., and then
drops rapidly.

3.4. Uncertainties in layer thicknesses

In our model, the thick layers (the immersion layer of thickness
deei, and the lower glass slide of thickness dj,g are treated coher-
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(left columns) and fitted ellipses (right columns). The results correspond to the azimuthal orientation angles a, =0° (first row), 45° (second

ently, i.e., in terms of field amplitudes. The reason is that in order
to determine the image of the scattered field, we used the Debye
diffraction integral (which involves field amplitudes) for focus field
calculation. However, a correct coherent simulation requires that the
thicknesses dc.; and dgj,g be know with wavelength-scale precision.
This conclusion follows immediately by looking at the phase terms
which appear in the expressions of the scattering coefficients (listed
in Appendix B). Because the thickness tolerances are of the order of
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10 pm, it is desirable to analyze the influence of the layer thickness
uncertainties on the detector signal. For this purpose, we

1. assume that dce and dgj,g are independent random variables
with uniform distributions,

2. generate N, samples d; = (dceiip, dglassk)> k¥ = 1,..., N, in the
domain [dcell - 5cell’ dcell + 6ce11] X [dglass - 5glass’ dglass + 5glass]’
where d is the mean, § the tolerance, and ¢ = § / \/3 the standard
deviation, and

3. compute the average of an energetic scattering quantity f (dif-
ferential scattering cross section, integral response of the detec-
tor, focus intensity in the image space) over the thickness real-
izations dy, k =1, ..., Ny, i.e., compute m ={/Ny) Y, fdy

In particular, our intention is to compare m with f(d). In Fig. 17 we
illustrate the differential scattering cross sections oy(d) and oy(d) for
X =L.|. In this simulation, we choose N, = 1000, d o = 2.0 x 10° um,
Eglass = 1.0 x 10° um, and . = Oglass = 10pm. Actually, we used a
Python script which serves as a wrapper for the original Fortran model;
this employs shell commands to manage the output files from different
processes and generates input files for each case. We leveraged the
parallelization capabilities of Python’s joblib library, distributing tasks
across 12 servers, each with 80 cores, allowing for the simultaneous
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Fig. 15. Differential scattering cross sections for different separation distances z;
between the particle and the coating layer. The upper plot corresponds to a bright-
field illumination (f;,. = 0°), while the lower plot corresponds to an evanescent wave
illumination (f,. = 62°). In the first case, the curves are indistinguishable. The results
correspond to parallel polarization and a particle azimuthal orientation angle a;, = 45°.
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Fig. 16. Integral response of the detector versus the separation distance z; in the case
of evanescent wave illumination (f;,. = 62°). The results correspond to (i) a simplified
stratified medium with n; =n, =n, = 1.33, n; = 1.42, and n, = 1.515, and (ii) a realistic
stratified medium with n, = 1.0003, n; = 1.515, n, = 1.33, n; = 1.42, and n, = 1.515.
The particle azimuthal orientation angle is a), = 45°.

execution of approximately 960 cases. However, given the shared RAM
and corresponding limitations on the number of concurrent processes,
we were actually able to run about 300 cases at the same time.
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the detector.

Completing the full set of 1,000 simulations took 40 min. The results
show that ox(d) is a smoothed version of ox(d), and that in the angular
scattering domain analyzed by the detector, the curves are very close.
As a result, the integral responses of the detector are almost the same,
ie., % = 22210 and P(d) = 22.227. Note that because in the image
processing step, the fitted ellipses are obtained by an image filtering,
a binary-image transformation, and a contour extraction, they remain
practically unchanged through the averaging process. These results are
not shown here.

4. Conclusions

An advanced light scattering model for TIRM was described herein.
The model treats (i) the scattering by an axisymmetric particle of ar-
bitrary orientation situated in a stratified medium and (ii) the imaging
of the scattered light.

The important tasks related to the scattering analysis include the
calculation of (i) the layer system responses to the incident and scat-
tered fields, (ii) the interaction matrix, and (iii) the transition matrix
of an isolated particle. The layer system responses were computed as
plane wave expansions and then transformed into regular spherical
wave expansions, while the transition matrix was calculated with the
null-field method. To deal with an arbitrary particle orientation, the
addition theorem for vector spherical wave functions under coordinate
rotations was used. An important theoretical development was the
computation of the interaction matrix, and so of the system T matrix
by (i) truncating the scattered and internal field expansions and (ii)
employing spherical and plane wave expansions for the dyadic Green’s
function. While the spherical wave expansion is valid outside a sphere
enclosing the particle, the plane wave expansion is valid outside the
tangent planes bounding the particle. We showed that in both cases,
the expressions of the interaction matrix were the same. This results
demonstrates that the restrictive condition according to which the
sphere enclosing the particle should be at most tangent to the interface
is not required.

The image of the scattered field was obtained by computing (i) the
scattered field on the Gaussian reference sphere of the collector lens, (ii)
the transmitted field on the Gaussian reference sphere of the detector
lens, and (iii) the focus field by means of the Debye diffraction integral
and fast Fourier transform. In addition, for a better reconstruction of the
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particle orientation, an image processing step consisting in a contour
extraction and ellipse fitting was considered.

In the case of a prolate spheroid, the numerical simulations were
focused on a model validation and an analysis of

1. a simplified stratified medium with coherent and incoherent
scattering,

2. the influence of the layer thickness uncertainties on the signal,
and

3. the model ability to recover the particle orientation angles and
separation distance.

The latter simulations were not exhaustive. They were only intended to
show the exquisite sensitivity of the geometric parameters of the image
ellipse to the particle orientation angles. A more detailed analysis,
with the specification of the variation curves agjipse = @eliipse(@p) and
Eellipse = Eellipse (@p, fp), is an ongoing work. In the future we intend to
improve the algorithm by

1. including the invariant embedding method [36-38], in order to
compute the transition matrix of particles with complex geome-
tries, such as capped spheres and biconcave discs,

2. incorporating a Gaussian beam illumination by using the plane
wave representation of a third-order Davis beam [39],

3. modeling chiral particles as in Ref. [28], in order to study
chiroptical effects for a circularly polarized incident wave,

4. adding a second incident wave, in order to avoid the multi-
valued nature of the functions afjipse = @eltipse(@p) and Eejipse =
Eellipse (ap s ﬁp)s

5. fitting a two-dimensional Gaussian to the particle image (as in
Ref. [20]), in order to improve the reconstruction process of the
particle orientation angles,

6. computing the integral (96) by means of a trapezoidal quadra-
ture rule along a reduced domain of integration, e.g., [0, x %],
and determining a relationship between x ., and N, (as in
Ref. [27]), in order to increase the numerical stability of the
method for particles with large size parameters situated very
close to the substrate.
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Appendix A. Vector spherical wave functions and vector plane
waves

The vector spherical wave functions are defined by

1.3 _ 13
ML (k) = 213 (krym,, (0, ),

1.3
N3 (kr) = v(n + 1) 2 k(rkr) 1,0, +

[krz,” (kr))

e (A1)

n,,, (0, ¢),
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where r = (1,6, ), z}'ﬁ designates the spherical Bessel functions j,, ZZ
stands for the spherical Hankel functions of the first order h(nl),

1,0, ¢) = L\/_pﬂ'”f'(cos 0)el" 7R,
2

1

[z"1(6)6 + jmz!™ (0) @1,
n(n+1)

n,,(0,9) =

(A.2)

m,, (0. ) = [jmz!" ()0 — /" 0)@1e™?

V2n(n+1)
are the spherical harmonic vectors, (T, 5, @) are the spherical unit
vectors, P,‘,'"'(cos 0) the associated Legendre functions, and

P (cos 6)
sin 6
the standard angular functions.
The scalar plane wave functions, otherwise known as the Weyl plane
wave functions, are defined by

z"m@) = and 7/"(9) = d%P,jm'(cos 0). (A3)

x(r, k%) = exp(ik* - r) = exp[j(k, - r| +k,(k))z)], (A.4)
where
KE =k, +k,(k )2, (A.5)
r=r, +zz, (A.6)
and
r; = xX+ )y, (A7)
k, = kR + k3, (A.8)
k,(ky)=1/K2 = k>, Im(k,) >0, (A.9)
k=22, (A.10)

A A A

with (X,¥,z) being the Cartesian unit vectors. These scalar functions can
be used to represent upward and downward propagating waves, as well
as, upward and downward evanescent waves. In Eq. (A.9), k,, and so,
k, and k, are real, but k, can be complex if k is real and k < k,, or
k is complex. The vector plane wave functions M(r,k*) and N(r, k*)
are transverse vector functions and are defined in terms of scalar plane
wave functions by

M(r, k%) = —j@(k) r(r, k%),
N(r, k*) = —0(k*) y(r, k%),

(A11)
(A.12)

where (T(i, @(T(i), @(T(i)) are the spherical unit vectors.

In the half-space z > 0, the radiating vector spherical wave functions
can be expressed in terms of upward propagating vector plane waves
as

27 m/2—joo
M’ (k,r) = / / [ASF (B, )M(r, K}) + B3 (B, a)N(r,k})] sin fdpda,
0 0
(A.13)
27 7/2—joo
N? (k,r) = / / [BSP (B, )M(r,k}) + ASP (B, 0)N(r, k)] sin fdpda,
0 0
(A.14)

where k' = (k,, §,a), and the amplitudes ASP(B,a) and BSP (B, a) are
given respectively, by

1 1 ;
AP (B.a) = —— ————1!"l(p)e™, (A.15)
" 27j"" \/2n(n + 1)
1 1 ;
BY(f.a) = —— ————mal"l(p)e™. (A.16)
" 27" 2+ 1) "
In the half-space z < 0, we have the representations
2r  pr/2—joo
M, (k1) = / / LA (x = B, )M(r, k)
o Jo
+ By (x — f. )N(r. ;)] sin pdpda, A17)
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2r  pr/2-joo
N3 (kor) = / / (B3P (x — B, 0)M(r,k;)
0 0

+ ASP (z - B, @)N(r, k; )] sin pdpda, (A.18)

where k3 = (ky, 7w = f, ).
The upward propagating vector plane waves can be expanded in
terms of regular vector spherical wave functions as

M(r. k) =D Y [AXS (B, )M}, (kor) + Bos(B, )N}, (kor)], (A.19)
n=1 m=—n
N(r.k}) = Z Z [BFS (B, )M (kyr) + APS (B, 0)N! (k1)1 (A.20)
n=1 m=-n
where
PS 4! ml ;
A (B a) = ——=1,"(f)e7 ", (A.21)
¢ V2n(n+1) K
sn+1
B (B.a) = Y mz!"(g)eIme, (A.22)
2n(n+1)

For downward propagating vector plane waves, we have the expansions

M(r.ky) = )" Y [AMS(z = f, )M, (kor) + Bys(x = f, )N}, (kor)],

n=1 m=—n

(A.23)

N k) =)0 Y [BYS(x = f, )M}, (kor) + ALS (x — B, )N}, (kor)].

n=1 m=—n

(A.24)
Appendix B. Scattering in a stratified medium

A stratified medium is a collection of layers filled with a homoge-
neous medium and separated by z-surfaces. The scattering in a stratified
medium was described by Egel [29] by following the prescriptions
given by Ko and Sambles [40]. Specifically, in each layer, the electric
field is expanded in terms of upward and downward propagating vector
plane waves, relative to a local coordinate system with the origin at
the bottom of the layer. Reflection at a layer interface relates the
upward propagating wave to its downward propagating counterpart.
This relation is expressed in matrix form, by organizing the coefficients
of the upward and downward propagating vector plane waves into a
two-dimensional vector (for each state of polarization). The coefficient
vectors for two neighboring layers are linked by a transfer matrix,
which is computed from the boundary conditions for the electromag-
netic fields. The transfer matrix of the layer system is then calculated
as the product of the individual transfer matrices corresponding to
all neighboring layers. However, for evanescent field propagation, the
transfer matrix scheme is numerically unstable. A numerically more
stable algorithm is the scattering matrix formalism. The scattering
matrix of a layer system relates the coefficients of the outgoing vector
plane waves to the incoming amplitudes, and is computed by using
the iterative scheme described by Ko and Sambles [40]. Subsequently,
the scattering matrix scheme was used by Egel to compute the waves
generated inside the layer system by a scattering center.

In this section we give the main formulas describing the scattering
in the assumed stratified medium, which are relevant for computing
the interacting and the scattered fields. Instead of using the iterative
approach described in Ko and Sambles [40], we will use a direct
approach based on the superposition method. The use of this approach
is facilitated by the fact that the geometry of the layer system is not
very complicated.

Let us consider the layer system illustrated in Fig. 2, where n;
and k; = n;k are the absolute refractive index and the wavenumber
in medium j, respectively, and k is the wavenumber in vacuum. The
different angles of incidence and refraction are determined by Snell’s
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law

ng sin fy =1, sin f; = n, sin f, = n sin f; = ny sin g, (B.1)

where f; € [0,7/2 — joo). For example, in the case of a plane electro-
magnetic wave propagating in medium 2 at the angle of incidence p,,
we compute cos f; = +4/1 — (nz/nj)2 sin? By, j =0,1,3,4 and choose the
sign of the square root, such that Im(cos §;) > 0. In this way, we guar-
antee that the amplitudes of the upward and downward propagating
waves will tend to zero with increasing |z|. The z-components of the
wavenumbers are then calculated as k(zj ) =k ; cos f;. The amplitudes
of the refracted waves are computed by using the Fresnel equations.
In general, for a plane electromagnetic wave traveling from medium 1
into medium 2, the reflection and transmission Fresnel coefficients for
perpendicular (1) and parallel (||) polarizations are given respectively,
by

ROSe
Ry, = ﬁ (B.2)
KD 4 k€
i K3ky =1k k) - ntk? ®3)
21| — - ’ .
e ek 2 2k
and
T. 2 (B.4)
0L T o .
kD + K
2 ke kD 2n,n, k"
T21|| — 17277 _ 111277 (B.5)

kD + 12K 2k 2k
Note that the lower indices in the expressions of Fresnel’s coefficients
are read from right to left, i.e., 21 stands for a wave traveling from
medium 1 into medium 2.

In a first step, we consider the layer system a consisting of the layer
3 and the half-space 4, and the layer system b consisting of the half-
space 0 and the layer 1. The layer systems a and b are bounded from
below and from above by a half-space with the refractive index n,
corresponding to the layer 2, respectively. We consider the following
situations.

1. The half-space 2 and the layer system a. For an external excita-
tion represented by the vector plane waves propagating upward
in the half-space 2 (Fig. B.18a),

+ _ + +
EX = M(r.k}) and E} = N(r.k}),
the transmitted fields in the half-space 4 are
+ _ ot + + _ ¢+ +
Ef = S; M, k}) and Ef; = 57 N(r.k)),
respectively, while the reflected fields in the half-space 2 are
E;, = S;,M(r.k;) and Eg, = S, N(r.k;),

respectively. The scattering coefficients % and S—, X =L, ||, are
given respectively, by

5t = Pk Tex g (B.6)
X T— R R .
23xRazx
_ 2 2) (@ 3 Trsx Razx
Sy = e B Rypy + ellle a1 T Ror.o B (B.7)
= RoysxRuzx
where
L) D)
Rysx = e 3% B Ryy, Tpay = elhe 1T, (B.8)
e B @
Rysx = e 4 Rysy, Ty =ellhs 72 1aT5y (B.9)

If the external excitation is represented by the vector plane
waves propagating downward in the half-space 4 (Fig. B.18b),

E; = M(r.k;) and E; = N(r.k]).
the transmitted fields in the half-space 2 are

E;; = S, M(r.k;) and E;; = 87 N(r, k),

18

Journal of Quantitative Spectroscopy and Radiative Transfer 320 (2024) 108964

(a) A %
B,/ AS;
e AEir a
7y 377,
2 (2n, k3 T
Z4 Z3 o ﬁZ k7
LB KB NV,
(b) A %
E; &
4 n, i ki a
Y 30,
b |2 n,
Z, Zy ﬁ2
(0} Fo— -
EZT k2 Sa_
(c) A Z
(0] . +
- : 4‘Sb
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0
,B;) K, } b
Eg; Vs,

Fig. B.18. The layer system a consisting of the layer 3 and the half-space 4, and the
layer system b consisting of the half-space 0 and the layer 1. The external excitation
is represented by vector plane waves propagating upward in the half-space 2 (a),
downward in the half-space 4 (b), and downward in the half-space 2 (c).

where

TZSX

~ . (3) )
S = ellkz —k; ]14—T34x-
1 = RyzxRosx -

~ (B.10)

2. The half-space 2 and the layer system b. For an external excita-
tion represented by the vector plane waves propagating down-
ward in the half-space 2 (Fig. B.18c),

E; = M(r.k;) and E; = N(r.k;),
the reflected fields in the half-space 2 are
+ _ ot + + _ ot +
Ef, = S, M(r,k}) and Ef, = S} N(r,k),
respectively, while the transmitted fields in the half-space 0 are
Ej; = S, M(r,k;) and By = S, N(r, ky),

respectively. The scattering coefficients S;X and S;, X =1,]|, are
given respectively, by

e (D@ Thix R
St = e Wk 2 R by + ellke k)7 - 27‘{" 07'{" Tiox» (B.11)
= RoaxRoix
G (D @) Toi1x
S = ellky =kglzy 01X Tyox (B.12)
bx 1= RyxRoix
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rs
tSb

Fig. B.19. Geometry for computing the incident field. The external excitation is
represented by vector plane waves propagating downward in the half-space 4.

where
oD O ()

Roix = € 3% 2Ry, Tyx = ellls ~h ooy o, (B.13)
() (D@

Roix = €3 51Ry iy, Ty = ellba Ry o (B.14)

We come now to the layer system shown in Fig. 2, in which the
layer 2 is of finite vertical extent. To characterize the incident field,
we consider as external excitation the vector plane waves propagating
downward in the half-space 4 (Fig. B.19),

E; = M(r.k;) and E; = N(r,K;).
In this case, the total upward propagating fields in layer 2 are

E+

—_Ft — ¢+ + +
ot = Eag = STM(r,k}) and E

_Ft = ¢ +
st = Eor = SN, k3),
respectively, while the total downward propagating fields are

Ej,, =B + E3p = STM(r.k;) and E;,

atot = Eor + Eop = S 'N(r, k),

2tot
respectively. The scattering coefficients §;(’ and 5; , X=1,], are given
respectively, by

- S-S
Sf =X X (B.15)
1= 85Six
- S ®.16)
So = —= B.16
- Sa_xS;rx

To compute the interaction matrix and to characterize the scattered
field, we consider two situations.

1. The external excitation is represented by the vector plane waves
propagating upward in layer 2 (Fig. B.20a),

+_ + + _ +
EJ = M(r,k3) and EJ =N, k).

In this case, the reflected upward propagating fields in layer 2
are

+ _ o+t + + _ o+t +
E, =S8"M(r.k ) and EZR—S” N(r,kY),

respectively, the reflected downward propagating fields in layer
2 are

Ejp = ST™M(r.k;) and Ejp = S, N(r.k;).

respectively, and the transmitted downward propagating fields
in the half-space 0 are

Ejp = STM(r.k;) and Eg; = SIN(r. ky).

respectively. The scattering coefficients S3*, S;~, and S7, X =1
, |I, are given respectively, by

++ _ SH_XS;—X B.1
X_I_S—S+’ ('7)
aX "~ bX
- aX (B.18)
X - o+’ :
1=S8xSx
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(b) YEqr
a |
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: I
S~ |
¥ \ko S
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Fig. B.20. Geometry for computing the interaction matrix and the scattered field. The
external excitation is represented by vector plane waves propagating upward (a) and
downward (b) in layer 2.

St = S(I_XSIJ_X
X7 1-85,8""
aX ~ bX

(B.19)

2. The external excitation is represented by the vector plane waves
propagating downward in layer 2 (Fig. B.20b),

E; = M(r.k;) and E; = N(r.k}).

In this case, the reflected upward propagating fields in layer 2
are

+ _ ¢+ + + _ ¢+ +
EZR_SL M(r,k¥) and EZR_SM N, Kk3Y),

respectively, the reflected downward propagating fields in layer
2 are

Ej, = STTM(r,k;) and E3p = S, N(r, k),

and the transmitted downward propagating fields in the half-
space 0 are

Ej = STM(r.ky) and Ey = STNGr, kp),

respectively. The scattering coefficients S;', Sy ,and 87, X =1
,|I, are given respectively, by

S+
St = X (B.20)
X — ot
1- SaXShX
S-St
Sy =S84t = % (B.21)
T PaxPpx
5=
Sy =—2"% (B.22)
X — ot
1- SaXSbX
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In order to compute the elements of the interaction matrix by using
Gauss-Laguerre quadrature, we need to factorize the term exp(2jk§2)z3)
in the expressions of the scattering coefficients S}, i.e.,

uv 2jk(2)z Suv
Sy =ed B0 wv=4+- X=1. (B.23)
For doing this, we set in Egs. (B.7) and (B.11)
- _ 2Pz - + _ 2k 2 o
Sy=edanss st =e i agh (B.24)
with
A~ erk(Z3)(z4—z3)
Six = Raox + 5 To3x Rasx Trox» (B.25)
1 — ek (2472 Ryy Ry
o =23k (z0-21)
Sx =Rix + —0 Tr1xRoixTioxo (B.26)
1 — e k(20720 Ry 1y Ry x
and obtain
Q. A A
. e ka5 S
St — e (B.27)
— ) 23—z e
1 —edfz (53771 SaXSbX
S+— S;X
T Ttmespra (B.28)
23—z - gt
1—edh B8 Six
R -2k +z3>§;rx
e (B.29)
— ) Z3—z - +
1 —edh 87208 Sk
~ ~ 2k 7 S-Sk
S; =81t = a (B.30)

2 (2) NP
_ o2k, (z3-2z)) §¢— ¢+
1 —ed% S xSix

Referring to Fig. 2, we distinguish two particular scattering prob-
lems.

1. The scattering by a particle placed in the lower half-space and
being illuminated by an incident field propagating in the upper
half-space. This problem, which corresponds to the scattering by
a particle near a substrate (a plane surface separating two half-
spaces), can be modeled by choosing n, = n; =n, and n; = n,.
In this case, Egs. (B.6)-(B.7), (B.11)-(B.12), and (B.10) reduce

to

(2 3 2 (2
Six = etk )JZSTSZX’ Six = e R3x; (B.31)
St =0, S =1, and (B.32)
Ea_X — ei[k(ZZ)_k(Z3)]z3 Tyix (B.33)
respectively, Egs. (B.15)-(B.16) to
~ ~ 2,3
O O A R (B.34)
Egs. (B.17)—(B.18) and (B.20)-(B.21) to

(2

S+ =0, ;7 =¥ Ry, and (B.35)
St =57 =0, (B.36)
respectively, and Eqgs. (B.19) and (B.22) to
Sk = k% Ry and S§ =1, (B.37)

respectively.

2. The scattering by a particle placed in the lower half-space and
being illuminated by an incident field propagating from the glass
prism to the lower half-space through the coating layer. This
problem can be modeled by choosing n, = n; =n,. In this case,
Egs. (B.6)-(B.7) and (B.10) remain valid, but Eqgs. (B.11)—(B.12),

reduce to

SFH=0, S, =1, (B.38)
Egs. (B.15)—(B.16) to

SH=0. 8 =5, (B.39)
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Egs. (B.17)—(B.18) and (B.20)—(B.21) to

S;('J’ =0, S;(r_ =S4, and (B.40)
S;’ =837 =0, (B.41)
respectively, and Egs. (B.19) and (B.22) to

S;(’ =Sy and Sy =1, (B.42)

respectively.

Appendix C. The system T matrix for a plane wave expansion of
the dyadic Green’s function

Let z = zp, and z = z;, be two tangent planes bounding the
particle from above and below, respectively, and

= 1 PRSP
Gy(ky,r,1)) = —ﬁﬁ(r -1)zQ®z
2

d’k
J M@ k) ® M(—r;. k) + N, ki) @ N(-r;. k)| é) ,
kyk
Z
ks z> 2z
82

_ - - Ok,
JM(r,k3) ® M(-r;, ;) + N(r, k) ® N(-r1, k)| Pk
z
z2< 2z

(CD

the representation for the free-space dyadic Green’s function in term of
vector plane waves.
For a field point with z > z_ .. > z;, substitution of Eq. (C.1) in

Eq. (13), yields the integral representation (22), with the amplitudes

ik [
Feo=-5 ¢ [Nk et 43y EMEr KD Bt &
P

(C.2)
jk% . [Ho 2
G P =35 74 [Mer1 ) - ey 41/ 2N 1) Py
s, 2
(C.3)

Approximating the tangential fields e;, (r;) and h;,(r;) in the global
coordinate system by a (finite) linear combination of regular vector
spherical wave functions, i.e.

N
ey (r) = Z {CNA(r;) x M, (k,r] + DY [f(r) x N} (k,r)1}

(m,n)=1

(C4

N
I3
wY () = -iq / #—P Y {CN A(r,) x N}, (kor )] + DN [fi(r,) x MY, (k,r )]},
0 (mnm)=1

(C.5)

where k;, and ¢, are the wavenumber and the electric permittivity of
the particle, respectively, we obtain (compare with Egs. (23)-(24))

N
Fr(p)=Y, [CNah(B.a)+ DN a2 (5 o),

(C.6)
(m,n)=1
N
G*(B.a)= ) [CN g2 (p.a)+ DN g2 (B, )], (€7
(m,n)=1
where
11 Jk% -~ 1 +
Gy (B @) = 2 ;z(sp{[n(rl) XM, (kprp)] - N(=r1, k})
+ 1/Z—"[ﬁ(rl)><N}m1(/¢pr1)]-M(—rl,k;)} d’r;, (C.8)
2

ik3 .
G (@) = # fs p{[n(rl) XN (kor)] - N(-r). k)
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&
+ ﬂg—p[ﬁ(rl) XM, (kyr)]- M(—rl,k;)} dr,
2

jk3
21 2
qm,,(ﬂ’ a) = @

&
n ‘/S—P[ﬁ(r,) X N! (kor))] ~N(—r],kg)} d’r,,
2

jK3
22 2
qm,,(ﬂ, a) = @

&
" ,/S—P[ﬁ(r]) XM (kyr)]- N(—rl,k;)} &r,
2

}é {[ﬁ(rl) x M) (kpr)] - M(=r, K
P

fé {[ﬁ(rl)xN}M(kPrl)] -M(-1,.k})
P

) (€9

(C.10)

s (C1D)

To simplify the expressions for the coefficients q%,mn(ﬂ’ a), i,j = 1,2,

given by Egs. (C.4)-(C.11), we use the expansions

M1,k =87 3 ' (A, (oML, (k) + B, (B, )N

ny=1m=-n,

(kpr)],

—myn;

(C.12)

N,k =8z 3 Y [BY, (BoM!,  (or)+ AN, (BN, (o0,

ny=1m=-n,
(C.13)
and obtain
N
11 _ SP 11 SP 21
qmn(ﬂ’ a) - Z [Amlnl(ﬂ’ a)Qllmlnl,mn + Bmlnl(ﬂ’ a)Qllmlnl,mn]’ (C14)
(my,ny)=1
N
12 Sp 12 SP 22
amB= Y (AT, B0Q], . .+ By, faQf, 1 (C15
(my.ny)=1
N
21 _ SP 1 53 21
GB)=" Y By, (B0Q], . +A, B0}, 1 (C16)
(my,ny)=1
N
22 SP 12 sp 22
G (B ) = Z [Bm],,](ﬂ,a)Q”mlnlymn+A,,,l,,|(ﬁ,a)Q“ml,,l,m,,], (C17)
(my.ny)=1
where
k3
11 _" o 1 1
Qllmlnl,mn - 7%5‘ {[l‘l >(an(kll)')] ’ melnl(kr)
P
RN Gl M (& c.18
+ k—z[nX mnkp )1 -MC, (ko) r, (C.18)
k3
12 _1" ~ Nl 1
Qllmlnl,mn - 7 S {[nXNmn(kP')] 'melnl(kf)
P
SlasM! g M b2 C.19
+ k_z[nx on(kp )1 - M (Kye) ¢ d7ry, (C.19)
k3
21 2 - 1 1
R =7 §, {Ix ML, (1ML, | ()
P
kp a1 1 2
+ k—z[anmn(kp-)]-N_mlnl(k2~)}d r, (C.20)
22 K AxN! (koo]-M!(k
Qllmlnl,mn - S [ mn( P)] 7m1n1( 27)
P
kp o 1 1 2
+ k—z[anmn(kp~)]~N_mlnl(k2-)}d r. (€.21)
Actually, the matrix
oll 12
Umyny, Umyny,
Qll = [Qllmlnl.mn] = Q21m1n1 mn 22m1n1 mn i (C.22)
11myny,mn Ilmyny,mn

appears in the null-field method and relates the expansion coefficients
of the approximate scattered field to those of the internal field in the
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global coordinate system, i.e.,

[ Frﬁl\l]nl ] -° |: C’ilvn :|
- <11 .
G, Dy,

In summary, by considering expansions of the dyadic Green’s function
in terms of vector spherical wave functions and vector plane waves, we
obtain the spectral representation for the scattered field (22). In the first
case, the Green’s function expansion is valid outside a sphere enclosing
the particle, i.e., for z > R, and the spectral amplitudes depend on
the expansion coefficients of the scattered field approximation (cf.
Egs. (23)—(24)). In the second case, the Green’s function expansion
is valid outside a tangent plane bounding the particle from above,
i.e., for z > z.,.,, and the spectral amplitudes depend on the expansion
coefficients of the internal field approximation (cf. Egs. (C.6)—(C.7)).

For a field point with z < z.;, < z;, we employ similar arguments.
We obtain the integral representation (27) with

(C.23)

N
F=(B,e)= Y [CNal(x = p,a)+ DN )2 (x — B, )], (C.24)

(m,n)=1

N
G (Ba)= Y [CNam(x—B,a)+ DN ar(x = p,a)]. (C.25)

(m,n)=1
Further we proceed as in the case of a spherical wave expansion of
the dyadic Green’s function.

1. In the global coordinate system, we obtain the series representa-
tion (37) for the interacting field with the expansion coefficients
FI’,‘n’M1 .and Gl’:’n n, 3 gi\{en by Egs. (38) and ‘(39), resPectively,
while in the local coordinate system, we obtain the series repre-
sentation (40) with the expansion coefficients fllr\n’ . and g{:; .
as given by Eq. (42)

2. Expansions of the spectral amplitudes F* (8, a), F~ (B, @), GT (5, a),
and G (B, a) in terms of the internal field coefficients C,’nVn and
DN are obtained in the form

N
— 71 N 1 N
7—"+(ﬁ’ a) = Z (7m:Cmn + ganrDmn)’

(C.26)
(m,n)=1
N
F- (o)=Y (FpCN+glDN), (C.27)
(m,n)=1
N
CrBay= ) (FLCN +92DN), (C.28)
(m,n)=1
N
GCPay= Y (FLCN+42DN), (C.29)
(m,n)=1
where
Fh=stgll (g.0)+ STl (x - B, (C.30)
gt =512 (p.0) + T2 (n - pLa0), (C.31)
Fr =S (B.a)+ ST gkl (x = B ), (C.32)
G =851 g2(B.a) + ST gl (x - pla), (C.33)
and
T = S, (Boa) + S qp, (= ), (C.34)
Gt = S (B @) + ST g (7w = fa), (C.35)
T = S G (B. @) + S o (x = B ), (C.36)
G = S (@) + Sy o (7 = B ), (C.37)
3. Substituting Egs. (C.26)-(C.29) in Egs. (38)—(39), yields
FN CN
Imymy _ mn
[ GV ]—RQ“ [ DN ] (C.38)
mlnl mn
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and then,

N N
|: fIm1n1 ] =AQ11 |: Cmn ]
N N ’
glmlnl dmn

where Q,, = DQ,,D~! is the matrix which relates the expansion
coefficients of the approximate scattered field to those of the in-
ternal field in the particle coordinate system. On the other hand,
from the null-field equation relating the expansion coefficients of
the internal field to those of the external excitation,

(C.39)

eN an]\lfn fIIr\z n
Q3l[ m”]=—<[ “]+[ ). (C.40)
ay, By Sy
we find
cN al¥
(Q3; +AQD d’"N" ] =_[ le 1 ] (C.41)
mn myny
and then, using the relation T = —QHQ;ll,
ry eN ay
myny mn -1 myny
[ " ]:Q“[ " ]:T(I—AT) [ " ] (C.42)
gmlnl dmn b’"l"l

Thus, the transition matrix of the system particle-stratified medium is
given by

Tsystem =Td - AT)_I = (T_l - A)_l- (C.43)
This is exactly Eq. (83), and we deduce that both representations for
the dyadic Green’s function lead to the same result.

Appendix D. Stationary phase evaluation of multidimensional in-
tegrals

In this appendix we discuss the stationary phase method for com-
puting the n-dimensional integral

I= / gk @y,

in the limit k — oo, where by assumption, g(x) is a slowly varying
function on x = (x,...,x,). Let x; be a stationary point of f(x),
i.e., Vf(xg) =0, and consider the Taylor expansion around xg,

(D.1)

£ = £e) + 3 6 = 5T HOx )Gk = 5,), (.2)
where

_ 9
H(xs) =1 ox0%,; ()] (D.3)
is the Hessian matrix of f at x,. Set ¥ = x — x, to obtain
(x — x5)TH(x,)(x — %) = T HO)X. (D.4)

Assume that the Hessian is positive definite, i.e., that x, is a local
minimum. Because H is symmetric and positive definite, its eigenvalues
are positive, and we have the eigendecomposition

H(0) = vAvT, (D.5)

where V is the orthonormal matrix of the eigenvectors, and A is the
diagonal matrix of the eigenvalues, A = [diag(4,)]. By the change of
variable y = VT'%, we obtain

(x — x)TH(xs)(x — %) = y7 Ay. (D.6)

From X = Vy and |det(V)| = 1, we deduce that the determinant of the
Jacobian matrix 0%/dy is one, i.e.,

| det(Z2)] = [det(V)] = 1, ®.7)
dy
and so, that the coordinates transformation is
&z = | det(?)ld”y = dy. (D.8)
y
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Because by assumption, g(x) is a slowly varying function on x, we find

ST =
ela kx H(O)xdnx
RII

I~ g(xs)ejkf(xs)

= gyl [ TR Mgy (2_”>n/2 £&) gen (Do)
B ) VT
where we made use of the result
© Y
/ &3 dy = %"elz. (D.10)
Finally, taking into account that
[1 4 = det(4) = det[H(O)1 > 0, (D.11)
we end up with
I~ (2_” )"/2 e (D.12)
k y/det[H(x;)]

If x, is a saddle point for f, then the Hessian matrix has both positive
and negative eigenvalues. In this case, the stationary phase approxima-
tion is

1= (¥)"

8(xg)

\ /| det[H(x,)]

where o the signature of the Hessian matrix (the number of positive
eigenvalues minus the number of negative eigenvalues).
Consider now the integral

Py Zjoo o
I= / / T (PSP sin pdpda,
0 0

with

K0+ T ) (D.13)

(D.14)

S(B, @) = sin f cos aX + sin f sin ay + cos fZ,

r = r(sin @ cos @X + sin 6 sin @y + cos 67).
The stationary point (fg, ;) of the function
f(B, @) =S(f,a) - r = rlcos f cos O + sin f sin O cos(p — a)]
is
bs =0, a5 =09,
and the Hessian matrix is

—r 0
0 —rsin®0

B, ) = [ ]
Hence, the signature and the determinant of H are ¢ =
det[H(B,, a,)] = r? sin’ 0, respectively, and we get

-2 and

2 .
I~ —Jk—jg(a,(p)eﬂ‘ . (D.15)
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