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ABSTRACT
The Antarctic sea ice cover plays a crucial role in regulating global
climate and sea level rise. The recent retreat of the Antarctic Sea
Ice Extent and the accelerated melting of ice sheets (which causes
sea level rise) raise concerns about the impact of climate change.
Understanding the spatial patterns of anomalous melting events
in sea ice is crucial for improving climate models and predicting
future sea level rise, as sea ice serves as a protective barrier for
ice sheets. This paper proposes a two-module framework based on
Deep Learning that utilizes satellite imagery to identify and predict
non-anomalous and anomalous melting regions in Antarctic sea
ice. The first module focuses on identifying non-anomalous and
anomalous melting regions in the current day by analyzing the
difference between consecutive satellite images over time. The
second module then leverages the current day’s information and
predicts the next day’s non-anomalous and anomalous melting
regions. This approach aims to improve our ability to monitor and
predict critical changes in the Antarctic sea ice cover.
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1 INTRODUCTION
With rising global sea levels affecting coastal communities world-
wide, the rapid retreat of Antarctic sea ice and accelerating ice sheet
melt pose significant challenges. In February 2023, the Antarctic Sea
Ice Extent (SIE) reached a record low of ∼ 1.965 million km2, repre-
senting a concerning ∼ 32% decrease from climatological values [9].
Although sea ice melt itself doesn’t directly raise sea levels, it acts
as a protective layer for the underlying ice sheets [11]. Notably,
Antarctic ice sheet melt has also accelerated, with an estimated
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1200 gigatons lost between 2017 and 2022, compared to the previ-
ous annual average of ∼ 147 gigatons [12].

Our understanding of the factors driving this recent sea ice
decline remains limited. Prior to 2015, Antarctic sea ice reached
maximum extent during the austral winter. The causes behind this
shift since 2015 are not fully understood, highlighting the critical
need to investigate the nature of melting patterns, specifically the
distinction between stable (non-anomalous) and anomalous melting
events [2, 8]. Sea ice acts as a buffer against warm currents, wind,
and waves, protecting the ice sheets [11]. A more comprehensive
understanding of stable ice conditions (non-anomalous melting or
positive class) and anomalous melting events (negative class) is
therefore essential for predicting future ice sheet stability and sea
level rise. Current limitations in this field include: (a) Poor repre-
sentation of melting processes in climate models, leading to uncer-
tainties in estimating the timing of sea ice disappearance [2, 8]. (b)
Insufficient analysis using multi-year observational datasets [7, 16].
(c) Limited computational resources for handling big data associated
with sea ice retreat dynamics.

Previous research has focused on subseasonal prediction of re-
gional Antarctic sea ice [14], and loss of ice sheets [3, 4]. However,
these studies haven’t explicitly explored the nature of melting pat-
terns in sea ice (like the classification of stable and anomalous
melting patterns). Additionally, time series analysis, while a pop-
ular tool for studying SIE changes, often struggles to attribute
retreat to specific locations [1, 10, 13, 15]. Existing studies examin-
ing spatiotemporal variations in sea ice [10] have primarily focused
on broader trends in the Arctic and Antarctic, rather than pin-
pointing specific areas in the Antarctic experiencing anomalous
melting [13]. As a result, our physical understanding of Antarctic
melting patterns remains rudimentary, hindering accurate predic-
tions [2, 8, 9]. Each grid of satellite data corresponds to a 625 km2

area, the number of instances of daily anomalous melting surpass-
ing 2500 during this period may result in a substantial loss of sea ice
area. Specifically, this could translate to an impact of approximately
∼ 2500×625 = 1562500 km2, depicting a significant influence on the
Earth’s environmental dynamics. Thus, identifying and predicting
non-anomalous & anomalous melting is crucial for understanding
Earth’s environmental dynamics. To the best of our knowledge, no
studies have yet been conducted to predict anomalous melting in
the Antarctic region using satellite imagery.

This study addresses this gap by proposing a two-module frame-
work that leverages satellite imagery to identify and predict regions
experiencing stable sea ice conditions or non-anomalous melting
(positive class) and areas undergoing anomalous melting (negative
class) within the Antarctic sea ice retreat. This novel approach aims
to bridge the knowledge gap in melting pattern analysis and con-
tributes to a more comprehensive understanding of Antarctic sea
ice retreat dynamics, ultimately aiding in predicting sea ice retreat.
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2 METHODOLOGY
RGB satellite images are first converted to grayscale to reduce
computational complexity, then difference matrices are calculated
from consecutive images to capture changes over time. Table 1
shows the datasets used in this study.

Table 1: Data used in this study.

Datasets Satellite data Sources Resolution/Pixels
Sea Ice Extent Im-
ages (satellite im-
ages)

SMMR, SSM/I, SSMIS,
NIMBUS Passive Mi-
crowave .png images

332 × 316 pixels

Figure 1: TheM1module in the two-module framework lever-
ages the difference between satellite images to identify and
classify regions experiencing anomalous melting events. M2
module, is a CNN, within the two-module framework for
Antarctic sea ice anomaly prediction, which takes an anom-
aly mask generated by the M1 module as input. M2 processes
this information to predict the probability of two classes for
the following day: non-anomalous melting conditions (posi-
tive class) and anomalous melting (negative class).

2.1 M1: Anomalous Melt Identification Module
M1 Module Architecture: The M1 module uses convolutional
operations to detect anomalous melting events in Antarctic sea ice
by analyzing differences in satellite images, as shown in Figure 1.
Initially, a convolutional layer with a specific kernel configuration is
applied, emphasizing negative values in the image that often corre-
spond to areas of significant sea ice decrease. The kernel weights are
fixed to ensure consistent behavior during anomaly detection, with
no backpropagation occurring [17]. Subsequently, two pooling lay-
ers, mean pooling and inverse max pooling (shown in Equation 1),
are employed consecutively [6]. These layers reduce the image size
while capturing crucial spatial information about potential anom-
alies. Anomaly Detection: The model processes the input image
and isolates negative values, focusing on potential reductions in sea
ice intensity. It uses inverse max pooling and mean pooling to em-
phasize the magnitude of change and performs pooling operations.
Two conditions are established to identify pixels representing po-
tential anomalies. The first condition checks if the processed image
value falls below the predefined lower bound threshold, indicating
a substantial decrease. The second condition examines the ratio
between the average value (using mean pooling) and the magnitude
of the change (represented by inverse max pooling). A ratio greater
than the lower bound/Q1 suggests a significant deviation from the
typical sea ice patterns [6]. These conditions are combined to create
a final anomaly mask, which distinguishes between non-anomalous

melting and anomalous melting, highlighting potential anomalous
locations in the image. Anomalous Pixel Identification and
Marking: The module iterates through each image in a batch,
identifying pixels that meet the anomaly criteria based on the mask.
It marks the corresponding locations of these anomaly pixels in
the original grayscale image. Overall Process: The code utilizes
the M1 module to process batches of grayscale sea ice images. The
module strictly utilizes feed-forward computations, excluding back-
propagation for parameter updates. It identifies potential anomaly
pixels based on the pre-defined thresholds and the M1’s internal
logic. The final output is a list containing anomaly maps for each
image, highlighting areas with potential anomalous sea ice melting
events.

I[i][j] =

{
0 if input_matrix[i][j] > 0
-input_matrix[i][j] otherwise

(1)

𝑃 [𝑖] [ 𝑗] = − max
𝑥,𝑦∈𝑅 (𝑖, 𝑗 )

𝐼 [𝑥] [𝑦] (2)

Here, 𝑖𝑛𝑝𝑢𝑡_𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖] [ 𝑗] represents the elements of the input
matrix. To obtain the inverse max pooling values from the 𝐼 matrix,
we employ the following equation 2 with a negative sign applied to
the result of max pooling. In this equation, 𝑅(𝑖, 𝑗) denotes the set
of indices (𝑥,𝑦) within the pooling window corresponding to the
position (𝑖, 𝑗). For more detailed information about the M1 module,
please refer to our previous work [6], from which this method has
been adopted.

Figure 2: The AMASIE for February, representing the years
2000 to 2022, is illustrated by the red line. The predicted total
number of anomalous melts per year obtained through M1
analysis on satellite images is shown in the blue line where
the blue box indicates the expected prediction identified by
our framework.

2.2 M2: Next-Day Non-Anomalous and
Anomalous Melt Prediction Module

Building upon the M1 module’s capability to detect anomalous sea
ice melting events, the M2 module aims to predict the likelihood
of such anomalies occurring on the following day which is shown
in Figure 1. This section outlines the design and functionality of
M2 within the context of anomaly detection and prediction for
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Antarctic sea ice data.M2Module Architecture:M2 adopts a CNN
architecture specifically tailored for time-series prediction of sea ice
anomalies. The description of the M2 is shown in Table 2. It takes
the output from the M1 module as input, representing the anomaly
mask for the current day. This mask highlights areas identified
as potentially undergoing anomalous melting. The M2 consists of
several convolutional layers followed by activation functions. These
layers learn to extract spatiotemporal features from the anomaly
mask, capturing information about the spatial distribution and
patterns of anomalous melting events. The specific number and
configuration of these layers are subject to hyperparameter tuning
for optimal performance. Prediction Process: The M2 module
receives the anomaly mask generated by M1 for the current day
as input. This anomaly mask is then fed into the M2 CNN, where
each convolutional layer extracts higher-level features from the
previous layer’s output, effectively capturing the evolving patterns
of sea ice anomalies across space and time. In the prediction phase,
the final layer of the M2 module produces a one-channel output
representing the predicted probabilities of normal and anomalous
sea ice conditions for the next day. A value of 1 corresponds to the
probability of normal sea ice conditions (non-anomalous) on the
next day, while a value of 0 represents the probability of anomalous
sea ice melting occurring on the next day.

Table 2: M2 Model Architecture Summary

Component Description
Input Anomalymask fromM1 for the current day (332×

316).
Layers First convolutional layer followed by ReLU activa-

tion (number optimized through hyperparameter
tuning). The second convolutional layer is fol-
lowed by Sigmoid activation. Final convolutional
layer with one output channel.

Output
Layer Acti-
vation

Sigmoid activation to produce probability values
between non-anomalous and anomalous melting.

Loss Func-
tion

Binary Cross-Entropy (BCE) loss for measuring
prediction error.

Training
Technique

Early stopping to prevent overfitting and ensure
convergence.

Batch Size 32 for efficient training.
Table 3: Training, Testing, and Validation Periods for Sea Ice
Anomaly Detection

Training Period Testing Period Validation Period
2000 - 2004, 2011 - 2022 2005 - 2009 2010

2006 - 2022 2000 - 2004 2005
2000 - 2010, 2017 - 2022 2011 - 2015 2016

2000 - 2016 2017 - 2021 2022

Leveraging Anomaly Information: M2’s strength lies in its abil-
ity to leverage the anomaly mask from M1. This information pro-
vides valuable context for predicting future anomalies. By analyzing
the spatial distribution and characteristics of anomalies detected in
the current day, M2 can learn how these patterns might evolve and
influence sea ice retreat conditions on the following day. Unlike
traditional climate models and statistical methods, which seldom
simulate sea ice anomalies and heavily rely on statistical properties

of numerical data [7, 14], our approach is uniquely applied to im-
ages, allowing for the direct analysis of spatial features and visual
patterns in the sea ice data. This image-based methodology enables
the model to capture and interpret complex spatial relationships
and temporal changes that may be overlooked by conventional
techniques, offering a more nuanced and accurate prediction of
anomalous sea ice retreat.

2.3 Performance Evaluation of M1 Module
To generate validation of our framework represented in Figure 2,
we have employed a comprehensive training, testing, and valida-
tion strategy selecting different time periods as shown in Table 3.
This comprehensive approach has enabled us to assess the frame-
work’s performance across different time periods, ensuring a robust
evaluation of our anomaly prediction framework. To assess the re-
liability of our framework, we have compared its predictions with
established data on the Annual Minimum Antarctic Sea Ice Extent
(AMASIE) [5]. Figure 2 presents the results. The blue plot with
square markers represents the expected anomalous melting events
predicted by our framework. The red plot with circular markers
depicts the AMASIE for each corresponding year. For improved vi-
sualization, the number of predicted anomalies from the framework
has been normalized to the range of minimum sea ice extent values.
As evident in Figure 2, a clear inverse relationship emerges. Years
with a higher number of predicted anomalies by our framework
coincide with years exhibiting lower minimum sea ice extent, and
vice versa. This suggests that increased anomalous melting events,
as predicted by our framework, correlate with a greater decline in
sea ice coverage. For instance, in 2010, when the minimum sea ice
extent was higher than in 2011, our framework accurately predicted
a lower number of anomalies. Conversely, in 2011, with a lower
minimum sea ice extent compared to 2010, our framework correctly
identified a higher number of anomalies, as expected. This trend
holds true for 16 out of the 23 years analyzed. This negative correla-
tion is particularly noteworthy considering that many recent years
(including 2020-2022) exhibit a similar association between lower
minimum sea ice extent and higher numbers of predicted anom-
alies [5], and vice versa. It is important to acknowledge that this
study focuses on anomalous melting events and excludes steady-
state melting, which might have influenced some of the remaining
years (7 out of 23). Nevertheless, the findings strongly suggest a
connection between lower minimum Antarctic sea ice extent and a
higher prevalence of anomalous melting events, particularly in re-
cent years. This observed relationship serves as valuable verification
of the framework’s capability to detect anomalies effectively. This
observed relationship reinforces the reliability of our framework,
highlighting its potential in monitoring and predicting significant
changes in Antarctic sea ice coverage.
2.4 Performance Evaluation of M2 Module
This section evaluates the performance of the proposed framework
for prediction of anomalies through M2 using a threshold-based
approach. A threshold value of 0.9 has been selected to classify
pixels exceeding the threshold as not anomalous melting (positive
class) and those below as anomalous melting (negative class). The
M1 module’s output has been used as an input to the M2 mod-
ule, which has been trained and tested using an 80/20 train-test
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split. Daily sea ice data has been employed, where data for the cur-
rent day served as the training input, and data for the subsequent
day functioned as the ground truth label. We have used the 2000-
2022 satellite images for the framework mentioned above shown
in Figure 1. The training and testing procedure has been applied
iteratively across multiple years, leaving one year out each time
for validation. For instance, 2000-2016 data was used for training,
with 2022 acting as the validation year. The evaluation results of
2022 (validation year) demonstrate our framework’s effectiveness
in classifying daily sea ice melting patterns, achieving high average
precision (0.98) and recall (0.93), which indicates accurate iden-
tification of both non-anomalous and anomalous melting events.
This is supported by a strong average F1 score (0.96) and overall
accuracy (0.92). Notably, the average ROC AUC score of 0.70 high-
lights satisfactory discrimination capability between anomalous
and non-anomalous melting patterns [6]. We have validated the
performance on randomly selected years, all showing similar kinds
of results.

In the context of identifying critical melting events or regions,
we can specifically consider instances where the predicted anom-
aly score surpasses a certain threshold. For example, when we set
the threshold for anomalous melting detection at 0.9, the model
effectively predicts these high-risk scenarios with a high proba-
bility. Above 52% percentage anomalous melting area is identified
by our framework. This allows us to prioritize areas experiencing
significant melting and potentially implement targeted mitigation
strategies. This approach highlights our framework’s ability to not
only differentiate between non-anomalous and anomalous melting
but also pinpoint areas with particularly concerning levels of melt
activity. This information is crucial for researchers and policymak-
ers working to understand and manage the complex dynamics of
Antarctic sea ice melt.

3 DISCUSSION AND CONCLUSION
This study investigated the development and evaluation of a two-
module framework for Antarctic sea ice anomaly detection and pre-
diction. The M1 module demonstrated effectiveness in identifying
or predicting anomalous melting events using a CNN architecture.
The M2 module, leveraging anomaly information from M1, aimed
to predict the likelihood of anomalies occurring on the following
day. Improved Prediction Accuracy: The integration of M1’s
anomaly detection capabilities offers a potential advantage for M2.
By incorporating information about the current day’s anomalies,
M2 can potentially achieve more accurate next-day anomaly predic-
tions compared to models that solely rely on historical sea ice data.
This enhanced accuracy could be attributed to M2’s ability to learn
the spatiotemporal patterns of anomalous melting events, allowing
it to anticipate their evolution over time. Early Warning Sys-
tem: M2’s ability to predict next-day anomalies can be particularly
valuable as an early warning system for major sea ice melt events.
Identifying areas with a high probability of anomalous melting can
provide researchers and policymakers with crucial early warning
to take necessary actions. This could include deploying resources
for further investigation, implementing mitigation strategies, or
raising awareness about potential environmental impacts. Overall,
our anomaly prediction framework effectively forecasts anoma-
lous events for the next day based on the anomalous events of the

current day. The combined M1-M2 framework offers a comprehen-
sive approach to sea ice anomaly analysis. M1’s role in anomaly
detection provides critical context for M2’s predictive capabilities.
Further research could explore expanding the early warning to
multiple-day prediction. Hyperparameter Tuning: Optimizing
hyperparameters or identifying more important features for both
M1 and M2 can potentially enhance their individual performance
and their combined effectiveness. Data Fusion: Integrating addi-
tional data sources, such as atmospheric data or ocean temperature
measurements, could potentially improve the prediction accuracy
of M2. EvaluationMetrics:Developing tailored evaluation metrics
for sea ice anomaly prediction will provide a more comprehensive
assessment of the framework’s performance. Further research on
hyperparameter tuning, data fusion, and dedicated evaluation met-
rics can refine this framework and enhance its contributions to
understanding and managing the complexities of the Antarctic sea
ice retreat. The implementation details and data sources used in
this study are available on GitHub.
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