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ABSTRACT

Traditional statistical analyses do not reveal the spatial locations
and the temporal occurrences of clusters of anomalous events that
are responsible for a significant loss of sea ice extent. To address this
problem, we present a novel method named Convolution Matrix
Anomaly Detection (CMAD). The onset and progression of clusters
of anomalous melting events over the Antarctic Sea ice are stud-
ied as loss in sea ice extent, which are essentially negative values,
where the traditional convolutional operation of the Convolutional
Neural Network (CNN) approach is ineffective. CMAD is based on
an inverse max pooling concept in the convolutional operation of
CNN to address this gap. CMAD is developed to offer a solution
without using a neural network, and unlike a full CNN, it doesn’t re-
quire any training or testing processes. Satellite images are utilized
to establish the loss in the Antarctic region. Our analysis shows that
anomalous melting patterns have significantly affected the Weddell
and the Ross Sea regions more than any other regions of the Antarc-
tic, consistent with the largest disappearance in sea ice extent over
these two regions. These findings bolster the applicability of the
inverse max pooling based CMAD in detecting the spatiotemporal
evolution of clusters of anomalous melting events over the Antarc-
tic region. The anomalous melting process was first noticed along
the outer boundary of the sea ice extent in early September 2022
and gradually engulfed the entire sea ice region by February 2023 -
in tandem with the scientific literature. These findings indicate that
there is a necessity to delve deeper into the role of the anomalous
melting process on sea ice retreat for a better understanding of
the sea ice retreat process. The nature of the problem is to detect
clusters of contiguous grids of anomalous melting events rather
than detecting discrete grid points. CMAD’s ability to perform both
data clustering and anomaly detection via the pooling operations
allows for a more comprehensive analysis of sea ice melt patterns,
facilitating the pinpointing of areas with potentially significant melt
events. This method has the potential to apply in other fields of
study where anomalous events are detected in clusters. The inverse
max pooling concept has successfully detected clusters of anoma-
lous events in sea ice and demonstrated the capability to detect
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anomalies with 87% accuracy in benchmark data. In contrast to well-
established conventional methods such as DBSCAN, HDBSCAN,
K-Means, Bisecting K-Means, BIRCH, Agglomerative Clustering,
OPTICS, and Gaussian Mixtures, when applied to dynamic multidi-
mensional data, CMADRg,,chmark (Which is a variation of CMAD)
exhibits superior capabilities in detecting extreme events. The com-
parative analysis reveals that CMAD g,y chmark Outperforms these
traditional approaches, showcasing its heightened sensitivity and
efficacy in capturing significant variations within evolving multidi-
mensional datasets over time. This heightens the detection accuracy
positions of CMAD as a valuable tool for discerning extreme events
in the context of dynamic and changing multidimensional data.
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1 INTRODUCTION

With about 60% of the global population living within 100 km of a
sea or oceanic coast [4], the recent retreat of the Antarctic Sea ice
Extent (SIE) and the accelerated melting of the land ice sheets in
recent years has raised concern among the scientific community.
The Antarctic SIE reached a new record-smashing low of 1.965
million km? in February 2023, which is ~ 32% below climatological
values [1]. Although Sea ice melt does not directly contribute to
the global sea level rise, it acts as a protective blanket to the ice
sheets on the land [42, 43, 48]. In this regard, it is important to
note that the ice sheet melt has also accelerated in recent times as
the Antarctic has lost approximately 1200 Gigatons of ice between
February 2017 and February 2022 compared to 147 Gigatons of
ice every year since 2002 [39]. The causes behind the retreat of
sea ice that was growing till austral winter in 2015 are not well
understood. There is a critical need to investigate this understudied
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phenomenon since the sea ice acts as a buffer from warm currents,
wind, and waves to the ice sheets and protects the loss of land ice
sheets which leads to sea level rise.

To understand the recent sea ice melt, it is important to detect
the nature of the melting pattern in the Antarctic. The current
knowledge gap is primarily due the poor representation of the
sea ice melting in climate models that pose a large uncertainty in
the sea ice disappearance timing [7, 17] and ice thickness [5], a
lack of analysis using multi-years of observational datasets [59]
and, limited computational resources to analyze the big data. Prior
studies have focused on predicting Antarctic Sea ice [57] without
considering the melting patterns (anomalous or steady state but
gradual), investigating feature importance [11], and drawing causal
relationships [35] using deep learning as well as climate models
rather than attempting to understand the nature of the melting
patterns. Time series-based analysis has been a popular method to
study and analyze changes in SIE using a series of observations and
other satellite image data sets; however, they are unable to attribute
the SIE retreat to spatial locations effectively [6, 30, 49, 58]. Another
study [30] primarily examines the spatiotemporal variations and
influencing factors of sea ice extent in the Arctic and Antarctic,
rather than pinpointing specific anomalous melting areas. [49] re-
volves around comparing the timing of sea ice retreat and advance
in various regions of the Arctic and Antarctic. It delves into the
resulting alterations in the duration of the summer ice-free sea-
son, emphasizing the significant correlation between anomalies
in retreat and subsequent advance timing. However, it does not
explicitly detect the specific regions impacted by these anomalies,
only maintaining a broader focus on the overall patterns of sea ice
behavior in the Arctic and Antarctic. As a result, physical under-
standing of the melting patterns [1] and prediction are still crude
and uncertain [7, 18, 57].

Our study addresses this problem by using satellite images and
introducing a novel approach CMAD based on a convolutional op-
eration [8, 16, 32, 37, 44] to investigate whether the massive retreat
in sea ice in the Antarctic region is because of periods of anomalous
melting events. This is important to understand since anomalous
events can cause a sudden and massive loss of sea ice in a very short
time [20]. To address these challenges and simultaneously improve
our ability to detect clusters of anomalous melting events, we em-
ploy the CMAD method to investigate anomalous sea ice melting
in the Antarctic region using Sea Ice Concentration (satellite im-
ages) between September 2022 and April 2023 (Austral spring and
summer). Please note that CMAD is a method that can be used to
detect clusters of anomalous events without requiring any training
or testing as in full CNN. However, the method can be used in the
full CNN model to predict sea ice anomalies.

Our approach CMAD is based on detecting clusters of anoma-
lous melting events on a spatial scale from each image and then
detecting how the anomalous sea ice melting events onset along
the outer boundary of the sea ice extent in early spring and propa-
gate towards the coastline in summer over the Antarctic region of
the Southern Ocean. We have also implemented the suitability of
CMAD on a benchmark Global Aerosol Atmospheric Rivers Data
(AAR) [10, 12] and observed superior performance compared to tra-
ditional well established methods such as DBSCAN [34, 45, 47, 56,
61], HDBSCAN [9, 28, 36, 38, 45], K-Means [25, 29, 45], Bisecting
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K-Means [3, 45, 53], BIRCH [33, 45, 46], Agglomerative Cluster-
ing [25, 45], OPTICS [13, 26, 45] and Gaussian Mixtures [45, 54, 55].
While these methods are from several years ago, they have held the
test of time as robust traditional methods suitable for comparison
with our proposed method. Despite their age, these methods remain
relevant due to their robustness and continue to be employed in
recent anomaly detection research [23, 25, 29, 56, 61]. Our approach
excels in handling multidimensional data, effectively detecting ex-
treme values in dense matrices and image data compared to these
existing methods. However, CMAD might require further adapta-
tion to achieve optimal performance on sparse data. Thus, our key
contributions include:

e This study introduces a novel multi dimensional anomaly
detection method called CMAD using convolutional opera-
tion from CNN. CMAD is designed to investigate and detect
anomalous sea ice melting events in the Antarctic region
using satellite images.

e CMAD allows for a spatial understanding of melting pat-
terns over the Antarctic Sea ice. It detects how clusters of
anomalous melting events initiate along the outer boundary
of the sea ice extent in early September and progress towards
April.

e The study addresses challenges related to negative values
denoting loss in Sea Ice Extent (SIE). The introduction of in-
verse max pooling is specifically tailored to handle negative
values during melting events, providing a more comprehen-
sive approach to pooling. This approach can be used to detect
clusters of anomalous events where negative changes have
occurred.

o The study applies the CMAD g.p,chmark method to real-world
benchmark AAR transportation data, showcasing its superior

performance compared to traditional methods. CMADge,chmark

demonstrates effectiveness in handling multidimensional
data and detecting extreme or anomalous values or events
in dense multidimensional matrices and image data.

The rest of the paper is organized as follows. Section 2.1 outlines
our methodology. In Section 3 we present experimental results, and
Section 4 presents the significance and impact of our work. Finally,
we present conclusions in and future work in Section 5.

2 METHODOLOGY
2.1 Overall Methodology

Our overall methodology is shown in Figure 1 and includes the
following stepsWe first begin by pre-processing the satellite im-
ages. We start with a collection of RGB images. Each image has
dimensions of height and width. We crop the images to focus on
specific regions of interest. We convert the RGB images to grayscale
to reduce computational complexity. While RGB images have three
channels, grayscale images have only one, simplifying the process-
ing. The resulting grayscale images retain the dimensions Horiginal
and Woriginal of the original cropped RGB images.

While applying the convolutional operation of CNN, we encoun-
tered an interesting problem while analyzing the images. The loss
or gain in SIE is denoted by negative or positive values, respectively.
While max pooling was able to extract maximum gain in SIE from
the pooling matrix, it was unable to extract the minimum values
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Figure 1: CMAD methodology: A concise overview of the daily satellite image analysis, involving kernel application, inverse max
and mean pooling, and subsequent grid-based anomaly detection for spatial and temporal tracking of clusters of anomalous
melting events.

during the melting events from images. Max pooling was detecting We proceed by generating difference matrices, computed as the
the lowest amount of SIE loss (§SIE values close to 0). The changes difference between consecutive grayscale images using Equation (1),
in SIE denote the §SIE on a day from the previous day. To address resulting in a D matrix of dimensions Horiginal X Woriginal- Employ-
this limitation, we introduce an inverse max pooling concept shown ing an initial 2 X 2 kernel reduces the resolution of D. Subsequently,
in Equation 6 - similar to the max pooling concept, but to extract threshold calculation and application of inverse max and mean pool-
the minima of a set of negative values from the pooling layer. ing [8] are executed using Equations (3), (4), (6), (7) and (5). Pooling

extracted the main features within 2 X 2 matrix to detect anomalous
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melting grids based on Equation (8). The anomaly detection method
is then applied to each difference matrix of rr_matrix_List. The
anomalies identified through this process are subsequently traced
back to the original RGB images using backtracking techniques.
The daily sea ice imagery for this study consists of images with a
uniform spatial resolution of 25 km. Each image has dimensions of
332 x 316 pixels, providing a detailed representation of the sea ice
cover. First, we apply a 2x 2 kernel and then we use the inverse max
and mean pooling on the convolutional layer. From the pooling
layer, we use the mean pooling [8] and inverse max pooling to
detect the grids with anomalous melt (Figure 1). In the next step,
we project the anomalous grid found in the pooling layers back to
the original image to detect locations of anomalous melt within
each image. In this way, we use CMAD to detect the anomalous
regions of melting on a spatial scale for each day and to detect
the propagation of the clusters of anomalous melting events on a
temporal scale for the entire period.

Algorithm 1 CMAD Algorithm

Input: List of RGB images ImageList
Output: Anomaly Regions
: for each image in ImageList do
Read the image in RGB format and store it as image_rgb
Convert image_rgb to gray_image
Store gray_image in gray_image_List
: end for
. for each pair of consecutive gray images in gray_image_list
do
7: Calculate the difference matrix D as the subtraction of the
first image from the second image using Equation (1)
8: Store D in dif ference_gray_image_list
9: end for
10: for each difference matrix of consecutive gray images do
1 Reduce the resolution of the difference matrix D by padding
zeros, following Equation (2)

[ RS B N T

12: Store the reduced resolution matrix in a list named
rr_matrix_List
13: end for

14: Call the Reshaping
rr_matrix_List

15: Calculate the LBjgg and Q1 array using the reshaped_array.
Q1[i, j] assigns first quartile of reshaped_arrayl:, i, j,:] and
LBigrli, j] assigns Q1[i, j] — 1.5X interquartile range of
reshaped_arrayl:, i, j, :]

16: for each difference matrix of rr_matrix_List do

17: Call the Optimal Solution function to apply pooling and
detect anomalies

18: Save anomalies in the original RGB images

19: end for

Array function to reshape the

2.2 CMAD Algorithm

Our proposed CMAD method processes a list of grayscale images
to detect anomaly regions. In the main image processing loop
of CMAD, the algorithm 1 iterates through each RGB image in
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Algorithm 2 Optimal Solution Function

Input: Pooling dimensions (height = 2, width = 2), Stride
height and width (2), Difference matrix, Threshold (LBjgg, Q1)
Output: Anomalies

1: Apply inverse max and mean pooling to matrix with specified
parameters (height, width, stride_height, stride_width) using
PoolingFunction.

2: Detect anomalies for each grid of the matrix based on Equa-
tion (8).

3: Save anomaly regions in original RGB images.

4 Return Anomalies

Algorithm 3 Reshaping Array Function

Input: Reduced resolution matrix list (RRML)
Output: Reshaped array
1: Define pooling parameterspool_size = (2, 2), stride = 2
2. Calculate output_array dimensions using Equations (3), (4)
3: Initializationoutput_array =
(RRML.shape[0], output_height, output_width, 4)
4: for i in range(output_height) do
5 for j in range(output_width) do
6: Define pooling regionregion = RRML[:, i X stridei X
stride + pool_size[0], j X stridej X stride + pool_size[1]]
7: Reshape region to (4,) array and store it in output array
output_array|: i, j] = region.reshape(—1, 4)
8 end for
9: end for
10: Return reshaped_array

Algorithm 4 Pooling Function

Input: Input matrix, Pooling parameters (pool_height
, pool_width, stride_height, stride_width), Pooling type
Output: Pooled matrix

1: if pool_type is ’inverse max’ then

2: Apply inverse max pooling to input_matrix using specified
parameters and Equations (3), (4), (6), and (7).

3. else if pool_type is ‘'mean’ then

4 Apply mean pooling to input_matrix using specified pa-
rameters and Equations (3), (4), and (5).

5: end if

6: Return Pooled matrix

ImageList. For each image, it first reads the image in RGB for-
mat and stores it as image_rgb. Then, it converts image_rgb to
gray_image and stores it to gray_image_List which is shown in
lines between 1 to 5.

Next, the algorithm calculates the difference matrix D for each
pair of consecutive gray images in gray_image_list. The differ-
ence matrix D is computed using Equation (1), representing the
pixel-wise difference between the current and previous images.

These difference matrices are stored in difference_gray_image_list

which is depicted in lines between 6 to 9.
The difference matrix D between two consecutive input matrices
at time t and ¢ + 1 is computed as follows:
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D =TImg(t+1) — Img(t) (1)
Where:

e D is Difference matrix
e Img(t) is gray image at time t
e Img(t +1) is gray image at time t+1
Then, we apply a reduced resolution operation to the differ-
ence matrix D using Equation (2). The Reduced Resolution (RR) at
position (i, j) is computed as:

1 1
RR[i][j] = Z Z Input[2i + m][2) + n] @)
m=0 n=0

Where

e RR[i][j] represents the value at position (i, j) in the reduced-
resolution matrix.

e The summation terms Z}nzo 231:0 iterate over a 2x2 neigh-
borhood of the input matrix.

e Input[2i + m][2j + n] represents the values in the input
matrix, where each pixel in the reduced-resolution matrix
corresponds to a 2x2 block of pixels in the input matrix.

This equation computes the reduced resolution by aggregating
the values in the 2x2 neighborhood of the input matrix centered at
position (i, j). We have done experimentation with various kernel
dimensions, and a consistent choice of a 2 X 2 kernel in all pool-
ing operations proves effective in capturing crucial features and
nuances in our sea ice anomaly detection framework. In the given
algorithmic steps, the reduced resolution matrices are generated
and stored in a list named rr_matrix_List. The whole operation
is shown in lines 10 to 13. Following the completion of this stor-
age process, the Reshaping Array function is invoked to reshape
the list of reduced resolution matrices which is shown in line 14.
Subsequently, the LBjgg and Q1 arrays are calculated in line 15.

Finally, the Optimal Solution function is called to apply to the
pool and detect anomalies based on predefined criteria and thresh-
olds shown in Equation (8). The algorithm returns the detected
anomalies from the original RGB images. The whole operation is
shown between lines 16 to 19.

In summary, this algorithm processes a sequence of grayscale
images, computes the difference between consecutive images, and
detects anomalies using a combination of mathematical & statisti-
cal operations and predefined functions. The time complexity of our
proposed methodology is expressed as ® (number of satellite images
x row and column dimension of the satellite image). This complex-
ity analysis provides insights into the algorithm’s performance
characteristics based on the following considerations. First, the
term "number of satellite images" (p) signifies a linear relationship
between the algorithm’s time requirement and the number of im-
ages to be processed. As the dataset size grows, the time complexity
scales accordingly. Second, when examining the row and column
dimensions of the satellite image matrix (m X n), the complexity
is influenced by the product of the number of rows (m) and the
number of columns (n). In cases where m and n are comparable, the
complexity may exhibit quadratic behavior (O (n?)). Alternatively,
if m and n differ, the expression becomes @(p - m - n), potentially ap-
proximated as O(p - n?) when m is significantly smaller than n. We

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

can approximate it as O (p - m?) when n is significantly smaller than
m. In summary, our algorithm’s time complexity is sensitive to both
the number of satellite images and the dimensions of each image,
showcasing scalable performance with respect to these parameters.

We further explain the anomaly detection process next for satel-
lite image data.

2.3 Anomaly Detection

Detection of anomalous melt onset and progression is practically
impossible to ascertain without satellite imagery. We apply inverse
max pooling (p=2x2, stride =2 to avoid overlapping) on the con-
voluted layer to detect grids of anomalous melting events within
the convoluted layer. In the next step, we compute mean pooling
similarly.

Pooled Matrix Size: The size of the resulting pooled matrix P from
an input matrix with dimensions Hippyt (height) and Wippyt (width)
is determined as follows:

Hinput - Hpool
Houtput = \‘— + 1J (3)
oupe Hgtride
M’input - Wpool
R LR o
Pt Wetride
Pooling Operation: For Mean Pooling we use equation 5
PIi = I1x]1y] ©
illj] = X1y
Hpool : Wpool

xyeR(Lj)
Where R(i, j) represents the set of indices (x, y) within the pooling
window corresponding to the position (i, j).

For inverse max pooling, we use the following equation 6:

I[H[] =

{0 if input_matrix[i][j] > 0 ©)

-input_matrix[i][j] otherwise

Here, input_matrix[i][j] represents the elements of the input
matrix. To obtain the inverse max pooling values from the I matrix,
we employ the following equation with an inverse sign applied to
the result of max pooling:

P[i][j] = - max
%Y€R(L.j)
In this Equation 7, R(i, j) denotes the set of indices (x,y) within
the pooling window corresponding to the position (i, j).

I[x][y] @)

1 if inverse max_pooled[i] [j]

< LByorlillJ]
mean_pooled[i][/]

—r. and inverse max_pooled[i][J] >
Anomaly[i][)] = o ®

LByorl[i][Jj]

0 otherwise

Detecting clusters of anomalous melting events in Antarctic
Sea ice involves using a key ratio, LBQﬁ’ in the anomaly detec-
tion process. The first quartile (Q1) is the median of the lower
half of a dataset, representing the value below which 25% of the
data falls. LBjgg (Lower Bound using Interquartile Range) is cal-
culated as Q1 minus 1.5 times the interquartile range (IQR) where
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IQR is Q3 - Q1 [22]. This ratio, combined with a specific condi-
tion, is crucial for detecting unusual melting patterns by consider-
ing statistical quartile information and data dispersion. The ratio
mean_pooled[i][j]
inverse max_pooled[i][j]
data’s mean behavior relative to extreme inverse deviations. This
comparison provides valuable insights into the overall character-
mean_pooled[i][j]
inverse max_pooled[i][j]

is essential for understanding the sea ice

istics of melting events. The condition

O1[i][j]
LBrorli][Jj]
sures that both extreme deviations (captured by inverse max-pooled

values) and mean behavior align with the expected range defined
by the first quartile and data dispersion. In summary, incorporating

mean_pooled . . C L. o .
the T = ed ax_pooled Tatio; alongside statistical quartile information

and data dispersion conditions, enhances the anomaly detection
process. This comprehensive approach improves the detection of
clusters of anomalous melting events in Antarctic Sea ice, offering
a more nuanced understanding of sea ice retreat dynamics.

sets a criterion for detecting anomalous melting. It en-

2.4 CMADg. chmark for Benchmark AAR Data

We have also used benchmark data, with labeled anomalies, from
aerosol atmospheric river datasets [10, 12]. This dataset provides
information about dust and other aerosol storms in the atmosphere,
including their movement and concentration. The data have global
coverage with a resolution of 6 hours, and we have focused on the
horizontal movement of aerosol mass [10, 12]. The data sets have
been derived from MERRA-2 aerosol and meteorological reanalysis
datasets [12]. The dataset has been validated against measurements
from Aerosol Robotic Network (AERONET) stations, showing good
agreement [10, 12]. In adapting the CMAD methodology for AAR
data, specific modifications have been introduced, particularly in the
context of inverse max pooling. Given the focus on learning features
from AAR data without the necessity for differencing between
consecutive days (as reflected in Algorithm 1, lines 6 to 8 have
been deemed unnecessary for this purpose). In the modified CMAD
Algorithm 1, line 15 has undergone adjustments.

To accommodate all non-negative values characteristic of AAR
data, reshaped_array has been used to calculate the UBjgg and
Q3 array. Q3[i, j] assigns third quartile of reshaped_array|:i, j,
| and UBjgrli, j] assigns Q3[i, j] + 1.5x interquartile range of
reshaped_arrayl, i, j,:] [19].

Given the non-negative nature of the values, the usage of inverse
max pooling is no longer required. Instead, the Pooling Function
in Algorithm 4 (updating lines 1 and 2) has incorporated a normal
max pooling operation [8, 44]. Similarly, in the Optimal Solution
Function in Algorithm 2, line 1 has been updated to utilize max
pooling and mean pooling functions from the modified Pooling
Function in Algorithm 4. This adaptation aligns the CMAD method-
ology with the specific characteristics and requirements of AAR
data, optimizing its functionality for the given context. For detect-
ing the anomaly, we have used the following updated Equation (9).
To leverage the benefits of max pooling, we introduce a modified
version of CMAD that integrates this technique. We refer to this
version as CMADg.pchmark i the paper.

Devnath et al.

1 if max_pooled[i][/]

> UBigrlillJ]
and mean_pooled[i][/]

=T >
Anomaly[i][j] = Qﬁﬁ(],pooled[l]bl 9)

UBrorli]lj]

0 otherwise

3 EXPERIMENTS

Table 1 shows the datasets and images used in this study. We next
discuss results from our Inverse max pooling based CMAD anomaly
detection method. Then we have implemented CMADg.p,chmark
methods along with DBSCAN, HDBSCAN, K-Means, Bisecting K-
Means, BIRCH, Agglomerative Clustering, OPTICS, and Gaussian
Mixtures methods for comparison. We also outline the significance
and impact of our work.

Table 1: Data used in this study.

Datasets Satellite data | Resolution/Pixels/Data
Sources Size
Sea Ice Extent | SMMR, SSM/L, | 332 X 316 pixels (648
Images (satel- | SSMIS, NIMBUS | MB)
lite images) Passive Microwave
.png images

Sea Ice Concen- | SMMR, SSM/I, SS-| 1 day
MIS, Nimbus-7 .nc
numerical data

tration

The movement | Atmospheric rivers | Resolution (H=576,
and concentra- | dataverse [10, 12] W=361, T= 6 hours, 24
tion of aerosols years (1997-2020, 677
in the atmo- GB)

sphere (AAR)
Integrated MERRA-2 aerosol | Resolution of 1 hour
Aerosol Trans- | and meteorological | (H=576, W=361, T= 6
port variables [12] hours, 24 years (1997-
2020, 697 GB)

The computation of the CMAD for multi-dimensional data proved
to be a computationally intensive effort due to the large number
of values that required processing, totaling = 582051776 (332 * 316
* 5548) values. Moreover, the AAR data is 677 GB that has been
generated from MERRA-2 aerosol and meteorological reanalysis
data ( 697 GB). This dataset has a resolution of 576 X 361, provided
every six hours of temporal resolution. We have processed 24 years
of the MERRA-2 reanalysis data sets to estimate the efficiency of dif-
ferent algorithms methods in detecting anomalous AAR events (the
benchmark data). Therefore, we have utilized a high-performance
computing machine to enhance the efficiency of our program [21].

CMAD required 559.82 seconds for execution, as reported in [21],
while CMADgepnchmark demonstrated a longer runtime of 16156.01
seconds, as documented in the same source [21].
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Figure 2: Clusters of Anomalous melting events detected from satellite images using CMAD. Contours of the anomalous melting
onset and progress are calculated every 7 days starting from 09082022 to 04272023. Displayed here are sample plots capturing
the onset and progression of clusters of anomalous melting events, specifically focusing on the beginning day of each month.
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Figure 3: Line plots delineating the count of daily anomalous
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Figure 4: Visualization of the evolution of Annual Minimum
Antarctic Sea Ice Extent (AMASIE) in February, spanning
the years 2000 to 2022, represented through numerical satel-
lite data [14] shown by the red line. The total number of
anomalous melting events per year detected through CMAD
analysis on satellite images is shown by the blue line. The
blue box indicates the correct detection of CMAD.

3.1 CMAD Based Anomaly Detection in Satellite
Images

Cumulative anomalies and regions in the Antarctic

Figure 2 shows the anomalous melting patterns detected by using
CMAD. From Figure 2, it appears that the anomalous melting events
onset near the outer boundary of the maximum sea ice extent after
the end of the winter over the Antarctic region. Gradually with
time, those anomalous melting events progress inwards and by
the end of December 2022, they cover the entire sea ice region -
in tandem with the massive retreat of sea ice in the last austral
summer [50, 51].

Figure 2 shows the cumulative number of anomalous melting
detected from the images using CMAD. It appears from our analysis
that the Weddell and the Ross Sea regions are heavily affected by
anomalous melting. Our methods also confirm that the anomalous
melting and outliers are low over the other three regions - the Bell
Amundsen, Indian Ocean, and Pacific Ocean regions [40]. Figure 2
shows that the Ross Sea and the Weddell regions experienced a
heavy loss in SIE extent by February 2023 than any other regions.
The outer boundary of SIE is prone to suffer from a higher number
of anomalous melting, presumably because of the direct exposure
to the warm oceanic water.

Generalizability of anomaly detection statistical tests

The predominant occurrence of clusters of anomalous melting
events is observed in December 2022, as illustrated in Figure 3.
Notably, considering that each grid corresponds to a 625 km? area,
instances of daily anomalous melting surpassing 2500 during this
period may result in a substantial loss of sea ice area. Specifically,
this could translate to an impact of approximately ~ 2500 * 625
= 1562500 km?, depicting a significant influence on the Earth’s
environmental dynamics. To validate the effectiveness of CMAD
while using any statistical measures, we tested CMAD with standard
deviation based outliers in addition to the IQR based anomalies.
Figure 3 demonstrates the results of two approachesone based on
quantiles (green plot) and the other on 3¢ deviation (red plot).
While both methods exhibit similar outcomes, it is worth noting
that a mean minus three times the standard deviation occasionally
detects more anomalies in specific instances. In general, the two
plots indicate that the maximum anomalies occur towards the end
of December 2022 (austral summer).
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Comparison with annual minimum Antarctic sea ice extent

We evaluated the reliability of the CMAD method by comparing
its detection with the annual minimum Antarctic sea ice extent
(AMASIE) [14]. In Figure 4, the plot in blue, marked with square
boxes, signifies the accurate detection achieved through our CMAD
method. Meanwhile, the plot in red, distinguished by circles, illus-
trates the annual minimum Antarctic sea ice extent for each re-
spective year. We have standardized the total number of anomalous
melting detected by our CMAD method in the range of minimum
Antarctic sea ice extent before incorporating them into the plot.
Figure 4 shows that when the number of anomalous melting in-
creases in a particular year, the minimum sea ice extent in that year
decreases and vice versa. This is because an increase in anomalous
melting may cause a higher disappearance in sea ice. For exam-
ple, in 2010, when the minimum sea ice extent was higher than
in 2011, CMAD correctly detected a lower number of anomalies
which is shown in Figure 4. On the contrary, in 2011, when the
minimum sea ice extent was lower than in 2010, CMAD detected
a higher number of anomalies which is expected. Out of 23 years,
CMAD accurately detects this phenomenon for 16 years. This is
a noticeable finding since many years after 2010 agree with this
sea ice minima and higher annual anomalies relationship. In this
regard, it is important to note that this study doesn’t consider the
steady state melting events, which might also be important and
may have affected other years (7/23 years). Thus, it can be inferred
that the lower minimum Antarctic sea ice extent is associated with
higher anomalous melting, especially in recent years (including
2020-2022) [14].

3.2 CMADgenchmark in Benchmark AAR Data: A
Comparative Evaluation

In evaluating the performance of anomaly detection methods on
dynamically changing data like AAR, CMAD g, chmark €merges as
a robust and effective solution. The comparison of DBSCAN [34, 45,
47,56, 61], CMADgenchmarks and K-Means [25, 29, 45] methods re-
veals notable advantages of CMADg.pchmark i terms of precision,
f1-score, and overall accuracy [24, 45]. We know that DBSCAN can
provide meaningful results and good performance for clustering
spatial data [47]. Specifically, CMAD gepchmark demonstrates supe-
rior precision (49%), f1-score (57%), and accuracy (87%) compared
to DBSCAN [34, 45, 47, 56, 61] and K-Means [25, 29, 45] indicat-
ing its ability to accurately detect extreme events and changes in
dynamic changing data which is shown in Table 2. Here, we have
considered mean values of precision, recall, f1-score, and overall
accuracy to address the data gaps in specific locations. Along with
DBSCAN, and K-Means, CMADg,,,chmark outperforms HDBSCAN,
Bisecting K-Means, BIRCH, Agglomerative Clustering, OPTICS,
and Gaussian Mixtures across all metrics (precision, f1-score, and
accuracy), showcasing its effectiveness in detecting anomalies in
dynamically changing data over time. While some methods (HDB-
SCAN and Gaussian Mixtures) exhibit higher recall by classifying
every grid point as an extreme event, this assumption is erroneous
and leads to a high number of false positives, a phenomenon cor-
roborated by the analysis of the Area Under the Receiver Operating
Characteristic Curve (ROC) curve shown in Figure 5. Here, ROC
demonstrates its exceptional ability to distinguish between true
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anomalies and normal data points compared to CMADgepchmarks
DBSCAN, HDBSCAN, K-Means, Bisecting K-Means, BIRCH, Ag-
glomerative Clustering (Agg. Clustering), OPTICS, and Gaussian
Mixtures.

This was particularly evident in testing scenarios involving dust
AAR data in June 2020, where CMADpge,chmark €xcelled in pin-
pointing locations experiencing dynamic changes with extreme
values (for example, over the Sahara Desert and the regions sur-
rounding it). The method has exhibited a nuanced understanding
of spatial variations, successfully detecting aerosol atmospheric
rivers and other changing features. The Receiver Operating Char-
acteristic (ROC) [31] curve further substantiates the efficacy of
CMADgenchmark- highlighting its competence in detecting extreme
values when compared to other existing methods depicted in Fig-
ure 5. We have computed the average of True Positive Rate and
False Positive Rate to address data gaps in specific locations. These
findings underscore the applicability of CMAD g, chmark and posi-
tion it as a valuable tool for anomaly detection in multidimensional
datasets.

Our proposed CMAD g, chmark method aims to address some of
the key limitations of existing clustering approaches. Unlike meth-
ods like K-Means [45], Affinity Propagation [45, 60], and Gaussian
Mixtures [45] that struggle with large datasets, CMAD ge,chmark
is designed to be highly scalable, capable of handling very large
Nsamples efficiently. It does not make strong assumptions about the
underlying geometry of the data, allowing it to capture non-flat [45],
complex cluster shapes akin to methods like DBSCAN [45] and
Mean-Shift [45]. Furthermore, CMAD gy chmark does not impose
constraints on the number of clusters or their sizes, automatically
detecting an appropriate number of clusters of varying densities and
sizes. This flexibility makes it suitable for a wide range of clustering
problems without prior knowledge of the cluster structure. Impor-
tantly, CMADRg,,.chmark takes an inductive approach, enabling it
to generalize to new data points and assign them to existing or
new clusters as needed, unlike transductive methods like Spectral
Clustering [15, 41, 45]. The Spectral Clustering algorithm is not
well-suited for detecting aerosol atmospheric river events, as it
relies on constructing a connected similarity graph representation
of the data. This approach is ineffective for capturing the spatial
and geometric characteristics inherent to aerosol atmospheric river
events. Additionally, the Affinity Propagation [52] and Mean Shift
algorithms [27] have failed to converge within the specified number
of iterations, suggesting that the obtained cluster centers and labels
may be degenerate or suboptimal for the given dataset [45]. By
combining scalability, flexibility in geometry and cluster shapes, au-
tomatic determination of the number of clusters, and an inductive
nature, CMADg,,,chmark aims to provide a powerful and versatile
clustering solution applicable across diverse domains and datasets.

4 SIGNIFICANCE AND IMPACT OF OUR
WORK

This study advances our knowledge about the presence of clus-
ters of anomalous melting events over the Antarctic Sea ice region.
While the Arctic sea ice has been retreating for decades, the Antarc-
tic sea ice was able to maintain its extent for a long time till 2015.
Recently the sea ice retreat has tremendously accelerated in the
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Table 2: Comparative evaluation of anomaly detection meth-
ods (CMADg,,,chmarks DBSCAN, HDBSCAN, K-Means, Bisect-
ing K-Means, BIRCH, Agglomerative Clustering, OPTICS,
and Gaussian Mixtures) on dynamically changing data using
precision, recall, f1-score, and accuracy. CMADg,,,chmark €X-
hibits superior performance in accurately detecting extreme
changes over time, particularly demonstrated in its applica-
tion to dynamically changing AAR data.

Methods Precision Recall F1-Score Accuracy
DBSCAN 0.41 0.45 0.36 0.79
Agg. Clustering 0.14 0.77 0.22 0.29
HDBSCAN 0.15 0.87 0.24 0.23
K-Means 0.28 0.55 0.34 0.71
Bisecting K-Means 0.15 0.71 0.23 0.34
BIRCH 0.14 0.74 0.22 0.28
OPTICS 0.15 0.77 0.23 0.29
Gaussian Mixtures 0.20 0.85 0.30 0.53
CMADg..nchmark 0.49 0.80 0.56 0.87
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Figure 5: ROC curve illustrating the performance of anomaly
detection methods (CMADg,,chmarks DBSCAN, HDBSCAN,
K-Means, Bisecting K-Means, BIRCH, Agglomerative Clus-
tering (Agg. Clustering), OPTICS, and Gaussian Mixtures) in
dynamically changing data. CMADg,,,chmark demonstrates
robust performance across varying conditions, effectively
capturing changes in extreme values over time in compari-

son to other methods

Antarctic region. Since the mass of the ice sheet over the Antarctic
is equivalent to a sea level rise of 200 feet [2], the rapid retreat of its
protective blanket (or, sea ice) is of significant concern. Our study
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discovers anomalous melting patterns on sea ice retreat which war-
rant further investigation and help in understanding the importance

of the role of sea ice retreat.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced the concept of inverse max pooling
in CNN since the study primarily focuses on negative values of
SIE or retreats in SIE from its previous day. Furthermore, this re-
search addressed the challenge of applying conventional methods
to dynamic datasets. It addressed this issue by incorporating a
grid-wise matrix profile method to detect extreme values in time
series, utilizing the gridded version of the data. Additionally, the
study explored the application of DBSCAN, HDBSCAN, K-Means,
Bisecting K-Means, BIRCH, Agglomerative Clustering, OPTICS,
and Gaussian Mixtures to capture patterns in dynamically chang-
ing data. Our results show that the use of traditional methods like
DBSCAN, HDBSCAN, K-Means, Bisecting K-Means, BIRCH, Ag-
glomerative Clustering, OPTICS, Affinity Propagation, Mean Shift,
Spectral Clustering and Gaussian Mixtures on time series data may
not yield meaningful results, especially on a dynamic dataset that
deals with a temporal variation of spatial objects (AAR). It appears
from our analysis that inverse max pooling-based CMAD can be
used to detect the spatial distributions and sub-regional variations
in anomalous melting over the Antarctic region. CMAD gepchmark
is more suitable for finding the temporal evolution of clusters of
anomalous events than DBSCAN, HDBSCAN, K-Means, Bisecting
K-Means, BIRCH, Agglomerative Clustering, OPTICS, and Gauss-
ian Mixtures for AAR data. Nevertheless, when sparse matrices
are employed as input, CMAD tends to underestimate the occur-
rence of anomalous melting. In the future, we plan to improve the
CMAD method to better estimate anomalous melting and steady
state melting (melting rate close to the mean melting rate instead of
detecting melting events beyond 3¢ and lower bound). Building on
the successful detection of clusters of anomalous events in sea ice
using the inverse max pooling concept, which has demonstrated
an 87% accuracy in detecting anomalies within benchmark data,
our future work will extend this approach. We aim to integrate the
inverse max pooling technique into a comprehensive CNN model.
This model will be designed to predict anomalous sea ice extent
events using satellite imagery. We will include an extension of the
inverse max pooling study to encompass full CNN. This idea can be
extended by applying multiple hidden layers in a full CNN model
leveraging the inverse max pooling concept to predict clusters of
anomalous events. In our study, we have utilized satellite images
spanning from 2000 to 2023 to calculate the threshold for anomalous
melting events. It’s important to note that considering data from
past years introduces the possibility of changes in threshold over
time. To address this uncertainty and understand how variations
may occur, we aim to investigate the bounds of this uncertainty.
Examining the range of potential changes will contribute to a more
comprehensive understanding of the dynamics and uncertainties
associated with the threshold calculation, enhancing the robustness
of our findings. This deeper understanding is crucial for developing
accurate machine-learning models that can predict the melting of
land ice sheets and the rise of sea levels in the future, especially if
the sea ice in the Antarctic continues to retreat.
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