Reducing Uncertainty in Sea-level Rise Prediction:
A Spatial-variability-aware Approach
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Abstract—Given multi-model ensemble climate projections, the
goal is to accurately and reliably predict future sea-level rise while
lowering the uncertainty. This problem is important because sea-
level rise affects millions of people in coastal communities and
beyond due to climate change’s impacts on polar ice sheets and
the ocean. This problem is challenging due to spatial variability
and unknowns such as possible tipping points (e.g., collapse of
Greenland or West Antarctic ice-shelf), climate feedback loops
(e.g., clouds, permafrost thawing), future policy decisions, and
human actions. Most existing climate modeling approaches use
the same set of weights globally, during either regression or
deep learning to combine different climate projections. Such
approaches are inadequate when different regions require dif-
ferent weighting schemes for accurate and reliable sea-level
rise predictions. This paper proposes a zonal regression model
which addresses spatial variability and model inter-dependency.
Experimental results show more reliable predictions using the
weights learned via this approach on a regional scale.

Index Terms—climate change, sea-level rise, spatial variability,
forecasting, machine learning, regression

I. INTRODUCTION

Sea-level rise is one of the most pressing environmental
challenges facing the world today. In 2021 Intergovernmental
Panel on Climate Change (IPCC) [26] projected that the global
sea level is likely to rise by 10 to 32 inches (26 - 82 cm) by
2100, relative to 1986-2005. However, these global projections
mask significant regional variation: sea level is projected to
rise more in the Arctic than in the tropics and more in the mid-
latitudes than in the subtropics. For example, in Chesapeake
Bay (near Maryland and Washington DC), projections based
on tide gauges, satellite observations and geo-physical models
indicate that sea level will probably rise between 12-20 inches
(30 - 50 cm) by 2050 (starting from 2005) [25]. The need for
regional sea-level rise projections is becoming increasingly
urgent. Coastal communities worldwide are already experi-
encing the impacts of sea-level rise, such as flooding, erosion,
and saltwater intrusion. These impacts are expected to worsen
as the sea level continues to rise. Regional sea-level rise
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projections are essential for coastal planning and adaptation.
They can help communities identify areas that are most at risk
and develop strategies to mitigate and adapt to these impacts.

Given a multi-model ensemble of climate projections from
state-of-the-art climate models of the present, the goal is to
accurately and reliably predict future sea-level rise while low-
ering the prediction uncertainty. A spatially-variable weighting
scheme assigns different sets of weights to the candidate
models in different regions unlike global climate models
(GCMs), which assign the same set of weights across different
regions. Using a spatially variable weighting scheme ensures
that higher priority is given to more reliable models in a
specific region when performing predictions and reducing
uncertainty.

Predictions from climate models are improved when ob-
tained via multi-model ensembles. The result is more accurate
and produces more reliable predictions with lower uncertainty.
The earliest works generally used an average of the simulated
predictions to obtain the final result. However, this method
would not entirely capture the prediction skill of the models
in different regions. More recent approaches [7], [8] use a
global weighting scheme based on regression or deep learning
methods to reduce the discrepancy between observations and
the weighted prediction obtained from the simulations. These
models assign greater weight to more reliable predictions on a
global scale but do not adequately handle the spatial variability
arising from regional factors which affect changes in sea level.
They can approximate the thermal expansion of the oceans
but cannot properly account for regional factors like tsunamis,
tides, boundary waves, river runoff, vertical land movement,
etc. The spatial variability arising from such regional factors
is a significant challenge that can lead to different weighting
schemes based on the model’s reliability in that specific region.

This paper explores a zonal regression model to address
spatial variability in sea-level rise prediction. This approach
assigns weights to models based on their prediction skills in a



Katabatic winds

duceq

—

Retreating
ground line

Rebounding
continent

____g_rg_v_iiational attractiog___,_

Sea ice formation
i and salt rejection

Changing winds,
temperatures,
e currents, and
sea level A

Local sea-level fall

Larger sea-level |
rise distant from
ice sheet

Fig. 1. Interaction between ice sheets, ocean, and atmosphere on the Antarctic and Greenland ice sheets. [1]

specific region, looking for improved predictions. Traditional
weighting strategies use an inverse of the root mean square
between the observations and the simulations to assign the
weights on a global scale. This paper proposes a spatial-
variability-aware regression model to learn the weights from
historical predictions in a region. Empirical results in Figure
5 using root mean squared errors from the different model
predictions, the baseline method, and the proposed approach
display the effectiveness of the approach in reducing the
prediction error.

II. BACKGROUND

Global sea levels can be affected by factors like warming
oceans and the addition of freshwater from continental ice
(Figure 1). Ocean dynamics can bring warm waters in contact
with glaciers, leading to the decay of ice sheets. Changes in at-
mospheric temperature can increase surface temperatures over
continents leading to further loss of ice sheets. This reduction
in the ice mass balance can impact the sea level in different
regions of the earth. Other factors such as tsunamis, tides,
boundary waves, river runoff, and vertical land movement can
also impact regional sea levels.

Figure 2 provides a comparison of the significant factors
contributing to changes in the global mean sea level (GMSL).
Different satellite systems measure different GMSL properties.
For example, mass-driven changes such as ice melt and
land water storage are measured by satellite altimeters, like
GRACE/GRACE-FO [15]. Argos [16] measures ocean heat
content by monitoring factors such as temperature and salinity
changes in the ocean.

III. PROPOSED APPROACH

This paper explores a zonal regression method to represent
spatial variability in weighting multi-model ensemble climate
projections. CMIP-6 projections obtained from the National
Center for Atmospheric Research (NCAR) are used as the
simulated data, while Copernicus sea-level anomaly gridded
data are used for the ground truth observation.

Given a set of spatio-temporal tensors representing climate
model projections (F,.) over a region r, the proposed weighting
strategy aims to find a set of coefficients (w,) for the multi-
model ensemble such that the combination of projections with
weights (Zi P, ;w, ;) improves the accuracy of the sea-level
rise prediction while simultaneously reducing the prediction
uncertainty. Here, ¢ represents the model under consideration.

We formulate the problem as a non-negative least squares
problem where the goal is to find the set of weights w, that
minimizes the prediction error:

argmin |0, — Z Pr,iwr,iHv (D
Wr,i i
where w;,; >= 0 and Zi wy; = 1. O, represent the ground
truth observation data over region r.
Simultaneously, we also need to reduce the prediction

uncertainty:
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where E; = [|Oyy — Y. Prtiwy;||. This can be considered

as a multi-objective optimization problem in which we want

to minimize both the prediction error and the prediction

minimize
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Fig. 2. Contribution to sea-level rise from thermal expansion and ocean mass. [6]

uncertainty. One technique for solving this problem is to
use Pareto optimality. The main goal in this technique is
to find solutions such that each quantity (prediction error
and prediction uncertainty) is minimized without affecting the
other. Thus we want to find the Pareto frontier (i.e. set of
Pareto efficient solutions) as in Figure 3. A point 3" € R™ is
preferred to (dominates) another point ¢’ € R™ is referred to
as y" > y'. In Figure 3, both A and B dominate C in reducing
the prediction error and the uncertainty.

Model similarity can lead to projections biased towards
the largest set of similar models and the underestimation of
uncertainties [23]. To address this, the proposed method down-
weights models with a higher covariance in their predictions.
The final weights obtained are a product of the weights
obtained from the regression coefficients and the coefficients
if the model is down-weighted. This zonal regression formu-
lation overcomes the drawbacks of one-size-fits-all (OSFA)
models such as GCMs which do not account for spatial
variability.

IV. EXPERIMENTAL FRAMEWORK

A. Experimental Evaluation

A zonal regression model is employed to learn a weighting
scheme for the simulated projections such that the output of
the weighted predictions reduces the discrepancy with the
observations. The main experimental goal was to compare
the sea-level rise predictions obtained with the proposed
spatial variability-aware zonal regression approach against
the sea-level rise predictions from a one-size-fits-all method
that doesn’t adapt to zones. Figure 4 shows the overall
validation framework. The metric for comparison with the

baseline [7], [8] was solution quality, specifically the root
mean squared error between the combined prediction and the
ground truth observations. The experiments were performed
with the CMIP-6 projection models of sea-level height and
the Copernicus satellite data for ground truth.
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Fig. 3. Pareto frontier for simultaneous reduction of prediction error and
uncertainty.

B. Data

This work primarily uses Copernicus [9] sea-level gridded
satellite data for ground truth observations and zos (Sea
Surface Height Above Geoid) data from CMIP-6 (Coupled
Model Intercomparison Project 6) for the simulated projec-
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Fig. 4. Experiment Design

tions available from NCAR (National Center for Atmospheric
Research).

The sea level satellite observation data [9] from Copernicus
provides daily and monthly global estimates of mean sea level
anomaly based on satellite altimetry measurements from 1993
to 2012. Here sea level anomaly refers to the height of the
sea surface in comparison to the mean sea level at a given
time and region. The dataset is generated using a two-satellite
merged constellation where one satellite is used as a reference
while the other is used to improve accuracy.

The Coupled Model Intercomparison Project (CMIP) [10]
is a collaborative framework for collecting, organizing, and
distributing output from multiple coupled climate models per-
forming common sets of experiments. It is focused on global
climate model (GCM) simulations of the past, current and
future climate. The major components include (1) DECK (Di-
agnostic, Evaluation, and Characterization of Klima), which
are some common experiments, and CMIP historical simu-
lations (1850—present); (2) common standards, coordination,
infrastructure, and documentation; (3) ensembles of CMIP-
Endorsed Model Intercomparison Projects (MIPs) specific to
a phase of CMIP (CMIP6) that build upon the DECK and
CMIP historical simulations. Some data variables of interest
available from CMIP-6 include air pressure at sea level, air
temperature, surface temperature, sea-level anomaly, surface
runoff flux, etc. The experiments mentioned in this paper focus
on sea-level anomaly (zos) data.

Experiments mentioned in this paper were focused on the
Eastern North America (ENA) region due to the availability of
more reliable ground truth data in the ENA region. The exper-
iments were performed on four CMIP-6 models obtained from
NCAR, namely CESM2 [17], CESM2-FV2 [18], CESM2-
WACCM [19] and CESM2-WACCM-FV2 [20].

V. PRELIMINARY RESULTS

Figure 5 provides a comparison of the root mean squared
errors (RMSE) in sea-level rise predictions from four simula-
tion models, the baseline method, and the proposed approach.
The RMSE obtained from each model prediction was higher
than the weighted combination of the predictions. In the ENA
region, the proposed method had a median RMSE of 0.35
while the baseline method [7], [8] had a median RMSE of
0.36 across the different time scales. The standard deviation

of the prediction was 0.0177 for the proposed method while
the standard deviation of the baseline method was 0.0158.
The outliers in a boxplot represent datapoints that are located
outside the whiskers of the box plot. For example, outliers
in Figure 5 are data points 1.5 times outside the interquartile
range (IQR) above the upper quartile (Q)3) and below the
lower quartile (Q1), i.e. (Q1—1.5%xIQR or Q3+ 1.5xIQR).
This shows that accounting for spatial variability leads to more
reliable predictions.

VI. RELATED WORK AND DISCUSSION

The Fourth National Climate Assessment (2018) mentions
a weighting strategy used by the Intergovernmental Panel on
Climate Change for differential weighting of climate projec-
tion models. The approach, based on works by Sanderson et al.
[71, [8], incorporates both skills in climatological performance
and the inter-dependency of models due to factors such as
common parameterizations. A set of weights are obtained via
a ranking scheme of the climate models based on the inverse of
the root mean square error (RMSE) between the observations
and the predictions. The final output is a single set of weights
that can be used to find a weighted average of the climate
projections. Inter-dependency between models is determined
based on inter-model RMSE between each pair of models. A
model is down-weighted if its inter-model RMSE with another
model is significantly lower than a predetermined threshold.
The final weight for each model is a product of its skill and its
inter-dependency weights. This final set of weights obtained
is used for combining projections irrespective of region and
thus the strategy ignores the spatial variability from various
regional physical forcings.

Spatial variability is receiving increasing attention in pattern
detection [12], [13], [27], [28] and prediction studies [11],
[29]. Recent approaches [14] towards predicting regional sea-
level rise with machine learning require explicit input values
for the regional physical factors, which might be difficult to
obtain in certain cases. Such bottlenecks can be avoided by
employing the proposed approach.

VII. CONCLUSION AND FUTURE WORK

This paper discussed a new spatial variability-aware zonal
regression approach towards weighting sea-level rise models.
Rather than relying on a model’s global projection skill, this
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Fig. 5. Root mean squared errors of each model.

method learns a weighting scheme that accounts for regional
factors in sea-level rise predictions.

Future Work: We plan to extend this work into more
sophisticated approaches such as physics informed models
using GWR (geographically weighted regression) or spatial-
variability-aware deep learning methods [11] and work on
novel ways to handle the inter-dependency between the mod-
els. A potential future direction of this work would be to make
sea-level rise predictions at a higher resolution.

Sea-level rise is directly tied to the rise in greenhouse
gas emissions. Therefore, we can improve the quantification
of uncertainty in sea-level rise projections by considering
different scenarios that are likely to affect levels of greenhouse
gas emissions in the future. For example, with no human
intervention, scientists project emissions will double by 2100.
If all countries comply with the Paris Agreement, emissions
should reach net zero after 2050. A third scenario assumes
countries only meet their current national commitments for
reducing emissions. In our future work, we plan to explore how
such emissions scenarios can be used to reduce uncertainty in
sea-level rise projections.
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