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Abstract
Given coarser-resolution projections from global climate models
or satellite data, the downscaling problem aims to estimate finer-
resolution regional climate data, capturing fine-scale spatial pat-
terns and variability. Downscaling is any method to derive high-
resolution data from low-resolution variables, often to provide more
detailed and local predictions and analyses. This problem is soci-
etally crucial for effective adaptation, mitigation, and resilience
against significant risks from climate change. The challenge arises
from spatial heterogeneity and the need to recover finer-scale fea-
tures while ensuring model generalization. Most downscaling meth-
ods [21] fail to capture the spatial dependencies at finer scales and
underperform on real-world climate datasets, such as sea-level
rise. We propose a novel Kriging-informed Conditional Diffusion
Probabilistic Model (Ki-CDPM) to capture spatial variability while
preserving fine-scale features. Experimental results on climate data
show that our proposed method is more accurate than state-of-the-
art downscaling techniques.
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1 Introduction
Given coarse-resolution climate projections from global climate
models or satellite data, the problem of statistical downscaling aims
to estimate high-resolution regional climate data, capturing fine-
scale spatial patterns and variability for a climate variable (e.g.,
sea-level rise). Since downscaling generates high-resolution data
from low-resolution variables, statistical downscaling uses statisti-
cal methods to establish relationships between coarse-resolution cli-
mate data and high-resolution historical observations. For instance,
Figure 1 shows a geographic area near Ecuador and Peru in two
different time frames. In both images, the blurry coarse-resolution
projections display limited variation in sea surface height anomalies
compared to the fine-scale resolution, as shown in the rectangular
strips (in red). The ability to capture localized variations is crucial
for accurately predicting climate change effects (e.g., sea-level rise)
in a specific area.

Figure 1: An illustrative example of differentiating coarse resolution
and fine-scale resolution observations [32]. (Best in color)
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Table 1: Applications of the Data Downscaling Problem

Application Domain Occurrence of Spatial Variability

Temperature Regional Temperature Change Prediction
Soil Carbon Emission Local Farmland Emission vs Global

Precipitation Regional variability in precipitation
Extreme wind Regional wind variability (e.g., wind farms)

Climate Policy Making County vs State level jurisdictions.

The regional downscaling problem is vital for developing com-
prehensive climate policies and strategies. The impacts of climate
change, as predicted by global climate models, range from extreme
weather events to rises in sea levels and shifts in agricultural pro-
ductivity. Enhancing the spatial precision of climate data is vital
for accurately assessing risks in specific regions. Decision-makers
require such information to strategize how communities can suc-
cessfully mitigate and adapt to these threats. For example, coastal
areas worldwide face severe risks associated with sea-level rise,
where even small changes can lead to significant flooding, erosion,
and habitat loss [14, 29]. High-resolution data contributes to accu-
rate regional predictions of this risk, essential for effective coastal
management, infrastructure planning, and disaster preparedness.

The problem of statistical downscaling in climate data is chal-
lenging due to climate data’s inherent complexity and variability
involving intricate spatial and temporal dependencies influenced
by numerous physical processes (e.g., ocean currents, wind pat-
terns, temperature gradients, and coastal topography). The non-
stationarity of climate data, driven by dynamic changes in climate
patterns and extreme events, further complicates the development
of reliable and robust downscaling techniques. For example, sta-
tistical properties like mean and standard deviation may not be
constant over time [2, 23].

Traditional Kriging and interpolation-based methods [25, 40, 44]
for downscaling sea-level rise data often fall short due to their re-
liance on stationarity assumptions and their inability to capture the
dynamic nature of climate data. Thesemethods typically smooth the
data excessively, resulting in the loss of critical fine-scale features.
The loss leads to an inaccurate representation of the underlying
physical processes, such as ocean currents, wind patterns, and tem-
perature gradients. On the other hand, machine learning-based
methods [20, 45, 47], while powerful in capturing non-linear re-
lationships, often struggle with generalization and maintaining
physical consistency. These models can be data-hungry and sensi-
tive to the quality and quantity of training data.

Traditional super-resolution models, designed primarily for im-
age processing, cannot be directly applied to climate downscaling
for the following reasons. (a) They lack physical constraints and fail
to incorporate the complex, nonlinear relationships between vari-
ous components of the Earth system [4, 28]. (b) They do not handle
the high-dimensional nature of climate data effectively and often
require large amounts of high-resolution training data, typically
sparse in climate science [46]. (c) They are deterministic and do not
provide probabilistic outputs or uncertainty estimates, which are
crucial for climate predictions [26]. (d) They lack generalization
across different regions and periods, as they do not account for the
multiple scales inherent in climate processes [19].

To address these limitations, we propose a Kriging-informed
Conditional Diffusion Probabilistic Model (Ki-CDPM), which com-
bines the strengths of Kriging’s spatial interpolation capabilities
with the flexibility and robustness of conditional diffusion processes.
Ki-CDPM effectively captures spatial variability, maintains physical
consistency, handles high-dimensional data, and provides proba-
bilistic outputs, ensuring more accurate and physically consistent
downscaling of climate data.

Table 2: Comparison of methods for sea-level downscaling

ML based methods
No Yes

Kriging (spatial variability)
No x [20, 45, 47]
Yes [25, 40, 44] Ki-CDPM

Contributions: The paper contributions are as follows:
• We propose a novel Kriging-informed Conditional Diffusion
Probabilistic Model (Ki-CDPM) that leverages Kriging inter-
polation for fine-scale projections.
• We introduce Variogram-Based Regularization to capture
spatial variability in regional processes and enhance the
physical consistency of downscaled data.
• We compare the Ki-CDPM against state-of-the-art machine
learning models and conduct comprehensive evaluations in
different regions, demonstrating its effectiveness.

Relevance to SIGSPATIAL: This paper is relevant to SIGSPATIAL
for the following reasons:
• The paper proposes a novel approach to addressing the chal-
lenge of downscaling climate data, which aligns with the
fields of remote sensing, earth observation, spatial data min-
ing, and knowledge discovery
• Models used in the paper (e.g., diffusion models) have been
explored recently in SIGSPATIAL with promising results in
graph forecasting [48] and urban flow [49].
• Challenges described in the paper (e.g., spatial variability)
have been studied recently in SIGSPATIAL (e.g., [22]).
• The paper integrates geostatistical methods and deep learn-
ing models, aligning with SIGSPATIAL’s focus on GeoAI.

Scope: This paper focuses on the statistical downscaling of cli-
mate variables like sea-level rise and ocean eddy energy. Temporal
downscaling is not addressed in this manuscript but will be ex-
plored in future work. This study does not explore physics-informed
machine-learning methods for downscaling or does not simulate
the temporal evolution of physical processes. Additional physi-
cal constraints can be added to the proposed method to explore
downscaling climate variables with conservation properties.

Organization: The paper is organized as follows: Section 2 intro-
duces basic concepts and provides the problem formulation. Section
3 describes the overall architecture of the Kriging-informed Condi-
tional Diffusion Probabilistic Model (Ki-CDPM) and the variogram-
based regularization. Experimental evaluations are presented for
the proposed approach in Section 4. Related work is mentioned in
Section 5. Finally, Section 6 concludes this work and briefly lists
the future work.
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2 Problem Formulation
2.1 Basic Concepts

Definition 2.1. A Sea-Level Rise or Sea-Level Elevation Map
is a raster map that provides information on the average increase in
the water level of the Earth’s oceans. Sea level is the height of the
sea surface relative to a standardized baseline, typically the mean
sea level. It is measured using satellite altimetry, tide gauges, and
GPS data, which require advanced algorithms for integrating and
correcting various environmental factors. Understanding sea level
elevation is crucial for climate research, disaster management, and
urban planning and involves complex data processing, modeling, and
predictive analytics [8].

Figure 1 shows sea-level rise information for the eastern equato-
rial Pacific Ocean and coastal Peru and Ecuador regions, where red
and green contours depict high and low sea-level rise, respectively.
From the coarse scale resolution (background color), we can ob-
serve that sea-level elevation along this coastal region was higher
in August 2023 than in October 2023.

Figure 2: Coarse-scale and fine-scale resolution example.

Definition 2.2. A coarse-scale resolution is a 𝑁 × 𝑁 grid-based
representation of a climate variable (e.g., sea-level elevation) for a
given geographic region (𝑅) projection.

Figure 2 shows a study area with a 1◦×1◦ spatial resolution, con-
taining randomly distributed data points that were later discretized
to a 0.5◦×0.5◦ resolution, revealing variations in population density.

Definition 2.3. A fine-scale resolution is an𝑀 ×𝑀 (where M
> N) grid-based representation of a climate variable (e.g., sea-level
elevation) for a given geographic region (𝑅) projection.

Figure 2(c) shows a study area with a spatial resolution of 0.25◦×
0.25◦ revealing finer scale variations in population density.

Definition 2.4. Downscaling in climate science derives fine-
scale resolution data from coarse-resolution variables [23].

Figure 3 shows the down-scaling process for a real-world temper-
ature heatmap. Spatial variability within the map can be observed
between the northern and the southern regions. Further, it is ob-
served that the finer resolution data is better for observing regional
patterns (e.g., Regions to the West of the center).
2.2 Problem Formulation
The problem of downscaling a climate variable (e.g., sea-level ele-
vation) is formally defined as follows:
Input:

(1) Coarse-Resolution climate data (𝑦)
(2) A diffusion model to output a downscaled climate dataset

(𝑥high) which is an approximation of the ground truth (𝑥high)
Output: High-resolution downscaled climate data (𝑥high) as an
approximation of the ground truth data (𝑥high)

Objective: Solution quality, model generalization
Constraints: (1) Spatial variability; (2) Domain adaptability; (3)
Model interpretability

Figure 3: An illustrative example of input and output (Maps adapted
from [47]).

Inverse Problem: Downscaling sea-level rise projections from
coarse-resolution climate models to finer regional scales can be
thought of as an inverse problem aimed at estimating high-resolution
sea-level changes based on limited low-resolution observations
and a forward model [16, 23]. This problem is complex due to
nonlinear relationships between inputs and outputs, sparse and
unevenly distributed observations, and model errors and uncer-
tainties [2, 4, 28, 34]. Additionally, the high-dimensional nature of
the problem poses computational challenges [19]. These factors
make sea-level rise data downscaling an ill-posed inverse problem,
which requires advanced techniques for reliable high-resolution
projections [26, 46].

3 Kriging-informed Conditional Diffusion
Probabilistic Model

This section will introduce a novel architecture based on Kriging
interpolation as a conditional input to preserve spatial variability
while transforming coarser-resolution climate variables (e.g., sea-
level elevation) to finer-scale resolution. Section 3.3 provides a
detailed explanation of the proposed architecture, and Section 3.4
shows the Kriging-informed training and regularization.
3.1 Conditional Diffusion Probabilistic Model
In this approach, the goal is to generate a fine-scale resolution map
from a coarse-resolution input map in which samples were drawn
from an unknown conditional distribution 𝑝 (x | y) where 𝑝 (y) is a
distribution of Kriging-interpolated map of the coarse-scale resolu-
tion input (𝑦). The objective is to learn a parametric approximation
of 𝑝 (x | y) via stochastic refinements which iteratively maps source
condition y to a target output x ∈ R𝑑 via denoising diffusion prob-
abilistic (DDPM) model [12, 35].

Figure 4: Forward and Reverse Diffusion Processes
Figure 4 presents a detailed view of a diffusion model where

isotropic Gaussian noise is progressively added to a signal through a
predeterminedMarkov chain, denoted by 𝑞(x𝑡 | x𝑡−1). This process
generates a series of intermediate noisy maps referred to as forward
diffusion. Conversely, in reverse diffusion, the process begins with a
completely noisy map, x𝑇 ∼ N(0, 𝑰 ). The model then incrementally
refines this map through successive iterations (x𝑇−1, x𝑇−2, . . . , x0)
using learned conditional transition distributions 𝑝𝜃 (x𝑡−1 |
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Algorithm 1 Training
1: repeat
2: (x0, y) ∼ 𝑝 (x, y)
3: 𝜓 ∼ 𝑝 (𝜓 )
4: 𝝐 ∼ N(0, I)
5: Take a gradient descent step on

∇𝜃



𝝐 − 𝑓𝜃 (y,

√︁
𝜓x0 +

√︁
1 −𝜓𝝐,𝜓 )




𝑝
𝑝

6: until converged

x𝑡 , y), aiming for x0 ∼ 𝑝 (x | y). This method reverses the forward
diffusion process by reconstructing the signal from noise using a
backward Markov chain conditioned on y.

Forward Process (𝑞): In this process, gaussian noise is progres-
sively added to a fine-scale resolution x0 over 𝑇 iterations [12, 35]:

𝑞(x1:𝑇 | x0) =
∏𝑇

𝑡=1
𝑞(x𝑡 | x𝑡−1) , (1)

𝑞(x𝑡 | x𝑡−1) = N(x𝑡 |
√
𝛼𝑡 x𝑡−1, (1 − 𝛼𝑡 )𝑰 ) , (2)

Here, the hyperparameters 𝛼1:𝑇 are constrained between 0 and 1,
representing the noise variance introduced at each iteration. The
variable x𝑡−1 is scaled down by a factor of √𝛼𝑡 to keep the variance
of the random variables finite. Additionally, deriving x𝑡 from x0
can be streamlined using Equation 3.:

𝑞(x𝑡 | x0) = N(x𝑡 |
√︁
𝜓𝑡 x0, (1 −𝜓𝑡 )𝑰 ) , (3)

where𝜓𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 . In addition, one can derive the posterior dis-
tribution of x𝑡−1 given (x0, x𝑡 ) as

𝑞(x𝑡−1 | x0, x𝑡 ) = N(x𝑡−1 | 𝝁, 𝜎2𝑰 )

𝝁 =

√︁
𝜓𝑡−1 (1 − 𝛼𝑡 )

1 −𝜓𝑡
x0+
√
𝛼𝑡 (1 −𝜓𝑡−1)

1 −𝜓𝑡
x𝑡

𝜎2 =
(1 −𝜓𝑡−1) (1 − 𝛼𝑡 )

1 −𝜓𝑡
.

(4)

Reverse Process (𝑝𝜃 ): In this process, we leverage additional
kriging interpolated source elevation map y and optimize a neural
denoising model 𝑓𝜃 that takes as input map y and a noisy map 𝑥 ,

𝑥 =
√︁
𝜓 𝒙0 +

√︁
1 −𝜓 𝝐 , 𝝐 ∼ N(0, 𝑰 ) , (5)

Equation 5 aims to restore the noise-free target map 𝒙0, and 𝑥 aligns
with the marginal distribution of noisy maps at various stages of
the forward diffusion process described in (3).

In contrast to the forward process 𝑞, 𝑝𝜃 goes in the reverse
direction starting from Gaussian noise 𝒙𝑇 :

𝑝𝜃 (x0:𝑇 |y) = 𝑝 (x𝑇 )
∏𝑇

𝑡=1
𝑝𝜃 (x𝑡−1 |x𝑡 , y) (6)

𝑝 (x𝑇 ) = N(x𝑇 | 0, 𝑰 ) (7)
𝑝𝜃 (x𝑡−1 |x𝑡 , y) = N(x𝑡−1 | 𝜇𝜃 (y, x𝑡 ,𝜓𝑡 ), 𝜎2𝑡 𝑰 ) . (8)

The inference process is defined using isotropic Gaussian condi-
tional distributions, 𝑝𝜃 (x𝑡−1 |x𝑡 , y), that are learned. If the noise
variance in the forward process steps is minimized, i.e., 𝛼1:𝑇 ≈ 1,
the resulting optimal reverse process 𝑝 (x𝑡−1 |x𝑡 , 𝑦) will closely ap-
proximate a Gaussian distribution [35]. The Gaussian conditionals
selected for the inference process in (8) can closely approximate
the actual reverse process. Moreover, it is necessary for 1 −𝜓𝑇 to
be large enough to ensure that the distribution of x𝑇 closely aligns
with the prior distribution 𝑝 (x𝑇 ) = N(x𝑇 |0, I), which is a stan-
dard Gaussian distribution with mean zero and identity covariance
matrix. Here we designed 𝑓𝜃 to predict 𝝐 from any noisy map 𝑥 ,

Algorithm 2 Inference

1: x𝑇 ∼ N(0, I)
2: for 𝑡 = 𝑇, . . . , 1 do
3: z ∼ N(0, I) if 𝑡 > 1, else z = 0

4: x𝑡−1 = 1√
𝛼𝑡

(
x𝑡 − 1−𝛼𝑡√

1−𝜓𝑡
𝑓𝜃 (x𝑡 , y,𝜓𝑡 )

)
+
√
1 − 𝛼𝑡 z

5: return x0

including 𝑥𝑡 . Consequently, we can estimate x0 by rearranging the
terms as shown in (5):

x̂0 =
1√︁
𝜓𝑡

(
x𝑡 −

√︁
1 −𝜓𝑡 𝑓𝜃 (y, x𝑡 ,𝜓𝑡 )

)
. (9)

Finally, we insert x̂0 into the posterior distribution of𝑞(x𝑡−1 |x0, x𝑡 ),
which parameterizes the mean of 𝑝𝜃 (x𝑡−1 |x𝑡 , y) in Equation 10. We
set the variance of 𝑝𝜃 (x𝑡−1 |x𝑡 , y) to (1 − 𝛼𝑡 ), which is the default
variance as determined by the variance of the forward process [12]:

𝜇𝜃 (y, x𝑡 ,𝜓𝑡 ) =
1
√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√︁
1 −𝜓𝑡

𝑓𝜃 (y, x𝑡 ,𝜓𝑡 )
)
, (10)

Additionally, we carry out iterative refinement at each iteration
as described in Equation 11 (where 𝝐𝑡 ∼ N(0, 1)):

x𝑡−1 ←
1
√
𝛼𝑡

(
x𝑡 −

1 − 𝛼𝑡√︁
1 −𝜓𝑡

𝑓𝜃 (y, x𝑡 ,𝜓𝑡 )
)
+
√
1 − 𝛼𝑡𝝐𝑡 , (11)

3.2 Interpolation with Kriging
Universal Kriging (U-Krig) is an advanced geostatistical method
that allows for interpolation by accounting for deterministic trends
and spatial correlation in the data. For instance, let 𝑦 represent a
coarser resolution map and 𝑦 represent a finer resolution map. We
then model the trend using a second-order polynomial function of
the spatial coordinates:

𝑚(𝑠) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑥2 + 𝛽4𝑦2 + 𝛽5𝑥𝑦 (12)

Where𝑥 and𝑦 are the spatial coordinates (longitude and latitude),
and 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5 are the coefficients to be estimated. Hence,
the residuals 𝛾 (𝑠𝑖 ) are calculated by subtracting the estimated trend
𝑚(𝑠) from the observed sea-level elevations 𝑦 (𝑠𝑖 ):

𝛾 (𝑠𝑖 ) = 𝑦 (𝑠𝑖 ) −𝑚(𝑠𝑖 ) (13)

These residuals represent the deviations from the deterministic
trend and are used to model the spatial correlation structure.

We then use the spatial correlation of the residuals, which is
quantified using the experimental variogram. The semivariance
Δ(ℎ) for different lag distances ℎ is computed as:

Δ(ℎ) = 1
2𝑁 (ℎ)

𝑁 (ℎ)∑︁
𝑖=1
[𝛾 (𝑠𝑖 ) − 𝛾 (𝑠𝑖 + ℎ)]2 (14)

Where 𝑁 (ℎ) is the number of pairs of points separated by a
distance ℎ, and 𝛾 (𝑠𝑖 ) are the residuals. The experimental variogram
is fitted with a theoretical Matérn variogram model, defined as:

Δ(ℎ) = 𝜎2
[
1 − 21−𝜈

Γ(𝜈)

(
ℎ

𝜌

)𝜈
𝐾𝜈

(
ℎ

𝜌

)]
+𝐶0 (15)
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where 𝜈 is the smoothness parameter, 𝜌 is the range parame-
ter, 𝜎2 is the partial sill, 𝐶0 is the nugget, and 𝐾𝜈 is the modified
Bessel function of the second kind. Once the variogram parameters
(𝜈, 𝜌, 𝜎2,𝐶0) are estimated by fitting the Matérn variogram model
to the experimental variogram, they are used to calculate the semi-
variances Δ(𝑠𝑖 − 𝑠 𝑗 ) between all pairs of sampled locations. These
semivariances form the basis of the Kriging system of equations.
We use the Universal Kriging system to predict the sea-level eleva-
tion at unsampled locations with a higher resolution. The predicted
value 𝑦 (𝑠0) at location 𝑠0 is given by:

𝑦 (𝑠0) =
𝑛∑︁
𝑖=1

𝜆𝑖𝑦 (𝑠𝑖 ) +
𝑝∑︁

𝑘=1
𝜇𝑘 𝑓𝑘 (𝑠0) (16)

where 𝜆𝑖 are the Kriging weights, 𝜇𝑘 are the Lagrange multipliers
for the trend functions, and 𝑓𝑘 (𝑠0) are the basis functions for the
trend model. The weights 𝜆𝑖 are obtained by solving the system of
equations:{∑𝑛

𝑗=1 𝜆 𝑗Δ(𝑠𝑖 − 𝑠 𝑗 ) +
∑𝑝

𝑘=1 𝜇𝑘 𝑓𝑘 (𝑠𝑖 ) = Δ(𝑠𝑖 − 𝑠0) for 𝑖 = 1, . . . , 𝑛∑𝑛
𝑗=1 𝜆 𝑗 𝑓𝑘 (𝑠 𝑗 ) = 𝑓𝑘 (𝑠0) for 𝑘 = 1, . . . , 𝑝

where Δ(𝑠𝑖 − 𝑠 𝑗 ) is the semivariance between locations 𝑠𝑖 and 𝑠 𝑗 .
Finally, we apply the Universal Kriging weights to interpolate the
sea-level elevation data to a higher resolution. This interpolated
map 𝑦 is used as a conditional input to the diffusion model, which
then controls the generation in the reverse diffusion process to
retain the spatial dependencies.
3.3 Proposed Model Architecture
The Ki-CDPM extends the CDPM by incorporating a conditioned
input obtained from Universal-Kriging (U-Krig) on the coarse-
resolution elevation map ỹ ∈ R𝑀×𝑀 providing local variability
for the climate variable. The objective is to find an interpolated
elevation map y ∈ R𝑁×𝑁 (where 𝑁 > 𝑀) with the exact resolution
as 𝑥0. Hence, y is later used as a conditional input concatenated
with the noisy elevation map x𝑡 ∈ R𝑁×𝑁 at each diffusion step 𝑡
along the channel dimension, forming a multi-channel input tensor
[x𝑡 , y] ∈ R𝑁×𝑁×2.

The concatenated input tensor is fed into the U-Net [31] architec-
ture of the Ki-CDPM, allowing the model to learn the conditional
distribution 𝑝𝜃 (x𝑡−1 |x𝑡 , y). The U-Net can leverage the spatially
variable information provided by the U-Krig-based elevation map
y to guide the generation of a fine-scale resolution map capturing
spatial dependencies via leveraging the strengths of geostatistical
information into the diffusion modeling framework.

ExecutionTrace: Figure 5 provides an overview of our proposed
Ki-CDPM, a single conditional diffusion model that utilizes Kriging
interpolated elevation map as conditional input y. The forward
process begins by adding small Gaussian noise until the input map
is completely distorted. In reverse process, 𝒙𝑇 (i.e., complete random
noise) is denoised until we recover 𝑥0( an approximation of 𝑥0) and
within each transition interval, we learn U-Net parameters which
allow conditioning with Kriging-interpolated elevation map 𝑦 to
generate finer-scale resolution map. For instance, Figure 5 (a) shows
a transition interval 𝑥𝑡 and 𝑥𝑡−1 where the forward process is ∈
𝑞(x𝑡 |x𝑡−1) and the reverse process is ∈ 𝑝𝜃 (x𝑡−1 |x𝑡 , y). At time step
𝑡 , we concatenate the noisy map (𝑥𝑡 ) with the U-Krig interpolated

map (𝑦) as a conditional input (where 𝑦 ∈ R𝑁×𝑁 ) and pass it to
the U-Net (as shown in Figure 5 (b)). Thus the reverse process
is represented by 𝑝𝜃 (x𝑡−1 |x𝑡 , y). In the U-net encoder, we utilize
different scales of the conditional input (𝑦) via several stacked down-
sampling layers. The U-Net outputs 𝑥𝑡−1, a less noisy version of the
elevation map. Finally, this process yields the denoised version or a
more fine-scale map as the output. For our training noise schedule,
we use a piecewise distribution [1], i.e., 𝑝 (𝜓 ) = ∑𝑇

𝑡=1
1
𝑇
𝑈 (𝜓𝑡−1,𝜓𝑡 ),

where we first uniformly sample a time step 𝑡 ∼ 0, . . . ,𝑇 , followed
by𝜓 ∼ 𝑈 (𝜓𝑡−1,𝜓𝑡 ) with 𝑇 = 1000.
3.4 Proposed Variogram-based Regularization
Variational Lower Bound (LVLB): Considering the forward dif-
fusion process as a set approximate posterior within the inference
mechanism, it is possible to establish the ensuing variational lower
bound for the marginal log-likelihood:

E(𝑥0,𝑦) log𝑝𝜃 (𝑥0 |𝑦) ≥ E𝑦,𝑥0E𝑞 (𝑥1:𝑇 |𝑥0 )
[
log𝑝 (𝑥𝑇 )

+
∑︁
𝑡≥1

log
𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦)
𝑞(𝑥𝑡 |𝑥𝑡−1)

]
(17)

According to the specific parameterization of the inference pro-
cess described earlier, the negative variational lower bound can
be simplified and expressed as a loss function. This simplified loss
consists of terms corresponding to each time step, and a constant
factor weights each term.

LVLB = E𝑥,𝑦0,𝜖

[
𝑇∑︁
𝑡=1

1
𝑇




𝜖 − 𝜖𝜃 (
𝑥,

√︁
𝜓𝑡𝑦0 +

√︁
1 −𝜓𝑡𝜖,𝜓𝑡

)


2
2

]
(18)

In this equation, 𝜖 represents a random variable that follows
a standard normal distribution with mean 0 and identity covari-
ance matrix 𝐼 . It’s important to note that this objective function is
equivalent to the 𝐿2 norm. Additionally, the distribution 𝑝 (𝜓 ) is
characterized as a uniform distribution over𝜓1, ...,𝜓𝑇 .

Variogram-basedRegularization:To further exhibit Ki-CDPM
towards spatial dependence structure as the observed finer-resolution
data (𝑥0), we introduce variogram-based regularization in con-
junction to Conditional Variational Lower Bound (LVLB). The regu-
larization term R𝑉 penalizes the discrepancy between the empirical
variogram of the generated noisy elevation maps (in the reverse
process) and the variogram from the observed high-resolution map.

Let Δ𝒙𝑡 (𝒉) denote the empirical variogram of the generated
elevation map 𝒙𝑡 at step 𝑡 , calculated as:

Δ𝒙𝑡 (𝒉) =
1

2|N (𝒉) |
∑︁

(𝒔𝑖 ,𝒔 𝑗 ) ∈𝑵 (𝒉)
(𝑥𝑡 (𝒔𝑖 ) − 𝒙𝑡 (𝒔 𝑗 ))2 (19)

where N(𝒉) is the set of location pairs separated by the lag
vector h, and | · | denotes the cardinality of a set.

Let Δ𝒙0 (𝒉) denote the variogram of the observed map (𝑥0) eval-
uated at lag h :

Δ𝒙0 (𝒉) =
1

2|N (𝒉) |
∑︁

(𝒔𝑖 ,𝒔 𝑗 ) ∈𝑵 (𝒉)
(𝑥0 (𝒔𝑖 ) − 𝒙0 (𝒔 𝑗 ))2 (20)
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(a) Conditional Diffusion Model Architecture (b) U-Net Model Architecture

Figure 5: Proposed Kriging-informed Conditional Diffusion Model (Ki-CDPM) Architecture
Algorithm 3 Training in Ki-CDPM
1: repeat
2: (x0, ỹ) ∼ 𝑝 (x, ỹ)
3: 𝑡 ∼ Uniform({1, . . . ,𝑇 })
4: 𝜓 ∼ 𝑝 (𝜓 )
5: 𝝐 ∼ N(0, I)
6: y←U-Krig(ỹ)
7: Compute Δ𝒙𝑡 (𝒉) and Δ𝒙0 (𝒉)
8: R𝑉 = 1

|H|
∑

𝒉∈H (Δ𝒙𝑡 (𝒉) − Δ𝒙0 (𝒉) )2
9: Take a gradient descent step on

∇𝜃 (



𝝐 − 𝑓𝜃 (

√︁
𝜓𝑡𝒙0 +

√︁
1 −𝜓𝑡 𝝐, y, 𝑡 )




2 + 𝜆𝑉 R𝑉 )
10: until converged

The variogram-based regularization term R𝑉 is defined as the
mean squared error between the empirical and observed variograms
over a set of representative lag vectorsH :

R𝑉 =
1
|H |

∑︁
h∈H
(Δx𝑡 (h) − Δ𝒙0 (h))2 (21)

The regularization term R𝑉 is added to the original loss function
of the CDPM, weighted by a hyperparameter 𝜆𝑉 :

LKi-CDPM = LVLB + 𝜆𝑉R𝑉 (22)

The hyperparameter 𝜆𝑉 controls the strength of the variogram-
based regularization and can be tuned to balance the trade-off
between data fidelity and spatial structure preservation.

By minimizing the augmented loss function 𝐿Ki-CDPM, the Ki-
CDPM is encouraged to generate high-resolution elevation maps
that match the finer-resolution observations and exhibit similar
spatial dependence structures. Algorithm 3 provides training for
Ki-CPDM in detail.

Once the Kriging-informed Conditional Diffusion Probabilistic
Model (Ki-CDPM) has been trained, it can be used for inference
to generate high-resolution sea-level elevation maps from coarse-
resolution inputs. The inference involves applying the learned re-
verse diffusion process to a given coarse-resolution map (as a condi-
tional input) to obtain a detailed, spatially coherent high-resolution
map. Algorithm 4 describes the steps involved in the inference pro-
cess and discusses generating high-resolution sea-level elevation
maps using the Ki-CDPM.

Algorithm 4 Inference in Ki-CDPM

1: x𝑇 ∼ N(0, I)
2: y←U-Krig(ỹ)
3: for 𝑡 = 𝑇, . . . , 1 do
4: z ∼ N(0, I) if 𝑡 > 1, else z = 0

5: x𝑡−1 = 1√
𝛼𝑡

(
x𝑡 − 1−𝛼𝑡√

1−𝜓𝑡

𝑓𝜃 (x𝑡 , y,𝜓𝑡 )
)
+
√
1 − 𝛼𝑡 z

6: return x0

4 Experimental Evaluation
Experimental Goal: Our experimental goal was to compare the
solution quality of downscaling from our proposed Ki-CDPMmodel
against state-of-the-art downscaling methods and provide both
qualitative and quantitative analysis.
4.1 Experiment Design
Datasets: Our experimental evaluation focused on downscaling
two key climate variables: sea-level anomaly (SLA) and eddy ki-
netic energy (EKE). We use high-resolution Copernicus and CMIP6
datasets and examined various sub-regions, including Eastern North
America (ENA), western North America (WNA), and the Bay of
Bengal (BoB) [15], an area particularly vulnerable to coastal flood-
ing, due to the absence of ground truth data for climate models
and the need for bias correction. We tested our methodology on
satellite observations where the ground truth is known. Climate
model outputs on sea level change are biased in the mean and vari-
ability, and the ground truth is unknown for high-resolution sea
level values. Hence, we did not downscale climate model output in
this study. Future studies will utilize high-resolution climate model
outputs for training datasets as these high-resolution models are
currently being tested[5].

The Copernicus Climate Data Store (CDS) dataset offers com-
prehensive global sea level anomaly data derived from satellite
altimetry measurements. This dataset spans from 1993 to now and
provides daily and monthly mean estimates of sea level anomalies.
These anomalies are calculated with respect to a twenty-year ref-
erence sea level using absolute standards. The data is essential for
monitoring the long-term evolution of sea levels and analyzing
ocean and climate indicators. It includes sea level anomalies, ab-
solute dynamic topography, and geostrophic velocities, which are
crucial for approximating ocean surface currents. The dataset is
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updated approximately three times a year with a delay of about
five months to ensure accuracy and stability [38, 39].

The CMIP6 HighResMIP versions of EC-Earth provide global
high-resolution coupled climate data developed by the EC-Earth
consortium. The dataset includes EC-Earth3P-HR, with a high res-
olution of approximately 40 km for the atmosphere and 0.25 de-
grees for the ocean, and a standard-resolution version, EC-Earth3P,
with 80 km for the atmosphere and 1.0 degrees for the sea. These
are part of the High-Resolution Model Intercomparison Project
(HighResMIP) and are designed to improve the accuracy of climate
simulations by using higher resolutions. The high resolution en-
hances the representation of certain climate phenomena like the El
Niño–Southern Oscillation, although it does not universally reduce
biases in all regions [3].

Figure 6: Experiment Design
Training & Inference: The model was trained on monthly

mean data for both climate variables (sla, eke) in each of the three
regions (ENA, WNA, BoB) for the duration from 1993-02 to 2013-12.
The range of years for evaluation spans from 2014-01 to 2023-05.
The data was transformed to the range [-1,1] to facilitate training
convergence. We fixed 𝑇 = 1000 for all experiments to align the
number of neural network evaluations during sampling with those
in prior studies [13, 35, 36]. The variances in the forward process
were set to constants that increase linearly from 𝛽1 = 10−4 to
𝛽𝑇 = 0.02. These values were selected to be small in comparison to
the data scaled to the range [−1, 1], ensuring that the reverse and
forward processes have roughly the same functional form while
maintaining the signal-to-noise ratio at x𝑇 as low as possible.

Evaluation Metrics: We assess model performance using stan-
dard downscaling evaluationmetrics: rootmean square error (RMSE),
mean absolute error (MAE), and Pearson correlation coefficient
(PCC). Additionally, we employed the continuous ranked probabil-
ity score (CRPS) to evaluate the uncertainty inherent in the multiple
predictions generated by diffusion models due to sampling from the
terminal Gaussian distribution x𝑇 . As only the traditional diffusion
model in our baseline models produces probabilistic predictions,
CRPS was used exclusively for comparison with this model.

Continuous Ranked Probability Score (CRPS):

CRPS(𝐹, 𝑥) =
∫ ∞

−∞
(𝐹 (𝑦) − 1{𝑦 ≥ 𝑥})2 𝑑𝑦 (23)

where 1{·} is the indicator function. CRPS [11] is employed to eval-
uate the accuracy and reliability of probabilistic forecasts in our
downscaling model. CRPS measures the difference between the
cumulative distribution function (CDF) of the predicted probability
distribution 𝐹 and the CDF of the observed value 𝑥 . A lower CRPS
value indicates a forecast that closely matches the observed out-
comes, effectively capturing the uncertainty and variability in the

predictions. This metric is beneficial since it provides a comprehen-
sive measure of forecast quality, encompassing both the accuracy
and sharpness of the probabilistic predictions. Figure 6 shows the
overall experiment design.
4.2 Experimental Results
Quantitative results: Results averaged over the entire test dataset
for Sea-level Anomaly (SLA) in the Eastern North America (ENA)
region are presented in Tables 3, 4, and 5. The quantitative evalua-
tion of the Ki-CDPM model demonstrates its superior performance
compared to state-of-the-art baseline methods for sea-level eleva-
tion downscaling. Table 3 presents a comprehensive comparison
using RMSE, MAE, and PCC metrics across three regions: Eastern
North America (ENA), Western North America (WNA), and the Bay
of Bengal (BoB). Ki-CDPM consistently achieves the lowest RMSE
and MAE values and the highest PCC values among all methods,
indicating its ability to generate accurate and spatially consistent
downscaled data. The lower RMSE and MAE values indicate higher
accuracy in predicting sea-level elevation. In contrast, the elevated
PCC value further suggests that the predicted elevations closely
align with the patterns and trends observed in the ground truth data,
highlighting the model’s ability to accurately capture the spatial
variability and gradients inherent in sea-level elevations.

Specifically, in the ENA region, Ki-CDPM obtains an RMSE of 1.1,
MAE of 0.8, and PCC of 0.94, outperforming the best-performing
baseline, the diffusion-based downscaling method, which yields
an RMSE of 2.5, MAE of 1.9, and PCC of 0.91. Similar trends are
observed in the WNA and BoB regions, where Ki-CDPM maintains
its superiority across all metrics. Table 4 compares the performance
of Ki-CDPM with the diffusion-based downscaling method using
the CRPS metric, which assesses the accuracy and reliability of
probabilistic predictions. Ki-CDPM achieves lower CRPS values in
all three regions (0.09 for ENA, 0.22 for WNA, and 0.31 for BoB)
compared to the diffusion-based method (0.13 for ENA, 0.31 for
WNA, and 0.37 for BoB), further confirming its ability to provide
more accurate and reliable probabilistic downscaled data.

Additionally, an ablation study presented in Table 5 highlights
the impact of the variogram regularizer in Ki-CDPM. The inclusion
of the regularizer leads to improved performance across all metrics
in the ENA region, with an RMSE of 1.1, MAE of 0.8, PCC of 0.94, and
CRPS of 0.09, compared to the model without the regularizer (RMSE
of 1.3, MAE of 1.0, PCC of 0.92, and CRPS of 0.11). These results
underscore the importance of the variogram-based regularizer in
enhancing the accuracy and reliability of the Ki-CDPM model for
sea-level elevation downscaling.

In addition to downscaling sea-level elevation, the Ki-CDPM
model demonstrates superior performance in downscaling other
climate variables, such as eddy kinetic energy (EKE), as shown in
Tables 6, 7, and 8. Ki-CDPM achieves the lowest RMSE, MAE, and
CRPS values and the highest PCC values compared to baseline meth-
ods across Eastern North America (ENA), Western North America
(WNA), and Bay of Bengal (BoB) regions. Specifically, in the ENA
region, Ki-CDPM with variogram regularizer achieves an RMSE of
194.83, MAE of 158.62, PCC of 0.95, and CRPS of 0.08, significantly
outperforming the model without the regularizer. These results
highlight the versatility and robustness of Ki-CDPM in accurately
downscaling diverse climate variables.
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Table 3: Performance comparison of Ki-CDPM and baseline methods using RMSE, MAE, and PCC on sea-level elevation.

Model Eastern North America (ENA) Western North America (WNA) Bay of Bengal (BoB)

RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑
Bicubic Interpolation 18.7 14.8 0.72 25.1 18.3 0.68 29.7 22.9 0.65
CNN-based Downscaling [43] 6.3 5.6 0.81 11.4 8.8 0.78 13.4 11.8 0.74
GAN-based Downscaling [9] 4.8 4.1 0.87 8.3 6.2 0.81 9.8 8.3 0.78
Baseline Diffusion Downscaling [47] 2.5 1.9 0.91 4.6 3.4 0.87 6.1 5.1 0.82
Ki-CDPM 1.1 0.8 0.94 2.4 2.1 0.91 4.0 3.2 0.86

(a) Coarse-Resolution Input Data (b) Ground Truth High-Res. Data

(c) Baseline Diffusion Output (d) Ki-CDPM Output

(e) Difference b/w baseline diffusion & ground truth (f) Difference b/w Ki-CDPM & ground truth

Figure 7: Qualitative Analysis on sea-level elevation in ENA region (Best in color).

Table 4: Performance comparison of Ki-CDPM and baseline methods
using CRPS on sea-level elevation .

Model CRPS↓
ENA WNA BoB

Baseline Diffusion Downscaling 0.13 0.31 0.37
Ki-CDPM 0.09 0.22 0.31

Table 5: Ablation study on the impact of variogram regularizer in
Ki-CDPM on sea-level elevation in Eastern North America (ENA).

Method RMSE↓ MAE↓ PCC↑ CRPS↓
Ki-CDPM (wvariogram) 1.1 0.8 0.94 0.09
Ki-CDPM (w/o variogram) 1.3 1.0 0.92 0.11

Qualitative results: Figure 7 illustrates the comparative perfor-
mance of Ki-CDPM against the ground truth and baseline diffusion
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Table 6: Performance comparison of Ki-CDPM and baseline methods using RMSE, MAE, and PCC on eddy kinetic energy (EKE).

Model Eastern North America (ENA) Western North America (WNA) Bay of Bengal (BoB)

RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑ RMSE↓ MAE↓ PCC↑
Bicubic Interpolation 1524.67 1207.52 0.71 1762.34 1415.88 0.67 1985.19 1603.27 0.64
CNN-based Downscaling 752.14 621.87 0.82 869.42 733.64 0.77 1052.76 895.41 0.74
GAN-based Downscaling 493.58 425.36 0.86 647.25 557.43 0.82 751.09 663.71 0.79
Baseline Diffusion Downscaling 266.27 219.84 0.92 411.92 347.66 0.88 486.91 419.52 0.83
Ki-CDPM 194.83 158.62 0.95 293.51 246.83 0.91 354.07 301.14 0.86

Table 7: Performance comparison of Ki-CDPM and baseline methods
using CRPS on eddy kinetic energy (EKE).

Model CRPS↓
ENA WNA BoB

Baseline Diffusion Downscaling 0.14 0.30 0.39
Ki-CDPM 0.08 0.23 0.30

Table 8: Ablation study on the impact of variogram regularizer in
Ki-CDPM on eddy kinetic energy (EKE) in Eastern North America
(ENA).

Method RMSE↓ MAE↓ PCC↑ CRPS↓
Ki-CDPM w/ variogram) 194.83 158.62 0.95 0.08
Ki-CDPM (w/o variogram) 250.25 198.27 0.93 0.11

model for sea-level elevation at a single timestep. The baseline
model, conditioned on bicubic interpolation of coarse data, exhibits
limitations in predicting values closer to the coastline and produces
some pixelated artifacts. In contrast, Ki-CDPM leverages the spa-
tial dependency structure provided by Kriging and the variogram,
resulting in superior downscaling with finer details and improved
accuracy. Resolving these fine-scale structures and gradients in
sea-level elevation is essential to predict better regional impacts of
sea-level rise and better model spatial variability in sea-level eleva-
tion. The fine-scale eddy features seen in the downscaled maps of
sea level elevation play a crucial role in ocean dynamics and the
evolution of the ocean fields. The 1 deg coarse resolution model
outputs, which is the typical resolution of current generation cli-
mate models, do not resolve these features in the ocean. Hence,
resolving them and seeing their evolution in time helps predict the
changes to ocean circulation and their impact on rising sea levels
in coastal communities.

In the study, the satellite observed a high-resolution sea-level
elevation map at 0.25 degrees resolution, which serves as the ac-
curacy benchmark, while a coarser 1-degree resolution map is uti-
lized as input data. The main text compares the proposed method’s
performance with a state-of-the-art traditional diffusion model,
showcasing qualitative results.

5 Related Work
Spatial variability [7] is a significant characteristic of all geographic
phenomena, such as climate zones, USDA plant hardiness zones
[41], and different terrestrial habitats like forests, grasslands, wet-
lands, and deserts. This variability influences the flora and fauna
within different regions. Additionally, variations in laws, policies,
and cultural norms are evident across and within nations. Often

referred to as geography’s second law, spatial variability is utilized
in analytical models like geographically weighted regression (GWR)
[27] to measure the interactions between variables in a given area.
The challenge of quantifying spatial variability stems from many
geophysical elements affecting it. Soil scientists, for example, study
soil attributes such as carbon content to evaluate agricultural yield
and have noted considerable variation in soil samples within a mere
100 m2 due to aspects like tillage, soil makeup, vegetation, land
management, and topography.

Traditional machine learning models, primarily designed for im-
age processing, encounter several obstacles, including the absence
of physical constraints, difficulties withmanaging high-dimensional
climate data, and their inability to yield probabilistic outputs in
climate data. For instance, Autoregressive models (ARs) [33, 42] are
capable of model log-likelihood and complex distributions, Varia-
tional Autoencoders (VAEs) [18, 30] provide rapid sampling capa-
bilities, Generative Adversarial Networks (GANs) [6] favored for
tasks like class-conditional image generation etc. Climate downscal-
ing [10, 17, 23, 24] is widely used to facilitate understanding and
planning for climate impacts at regional or local levels, with ma-
chine learning models also applied in statistical downscaling [20].
Recently, diffusion models have gained interest in climate science
due to their capacity to model non-linear relationships, although
they struggle with generalization, maintaining physical consistency,
and non-stationarity. For example, [45, 47] overlook spatial depen-
dencies, leading to inaccurate depictions of physical processes like
ocean currents, wind patterns, and temperature gradients. This
work introduces Ki-CPDM, incorporating geostatistical capabilities
with a Conditional Diffusion Model to effectively capture spatial
variability in climate model variables such as sea level rise.

Domain Background: The SWOT (Surface Water and Ocean
Topography) [37] satellite mission offers significant advancements
over the TOPEX/Poseidon mission in measuring sea level and sur-
face water elevation.While TOPEX provided accurate ocean surface
topography data, SWOT extends this capability to measure ocean
and freshwater bodies with unprecedented detail. SWOT’s higher-
resolution measurements enable precise monitoring of smaller-
scale ocean phenomena and inland water bodies, which is crucial
for understanding climate change impacts. Its innovative Ka-band
Radar Interferometer delivers finer spatial resolution, enhancing
our ability to track water storage and movement changes. This
comprehensive data set supports improved global water resource
management, disaster response, and climate prediction models,
addressing modern environmental challenges through advanced
computational analysis.
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(a) Coarse-Resolution Input Data (b) Ground Truth High-Res. Data

(c) Baseline Diffusion Output (d) Ki-CDPM Output

(e) Difference b/w baseline diffusion & ground truth (f) Difference b/w Ki-CDPM & ground truth

Figure 8: Qualitative Analysis on eddy kinetic energy (EKE) in ENA region (Best in color).

6 Conclusion and Future Work
We proposed the Kriging-Informed Conditional Diffusion Proba-
bilistic Model (Ki-CDPM) to address the challenge of downscaling
sea-level elevation data from coarse to fine resolution. We further
integrated Universal Kriging via the Matérn variogram model with
the Conditional Diffusion Probabilistic Model (CDPM), leveraging
the strength of geostatistical interpolation to enhance the resolution
and realism of downscaled data. Experimental results demonstrate
that Ki-CDPM outperforms state-of-the-art methods, generating
high-resolution sea-level projections essential for regional climate
impact assessments and coastal management.

Future Work: We will explore the application of the Ki-CDPM
to other climate variables, such as temperature and precipitation,
to evaluate its versatility and robustness across different datasets.
Investigating additional geostatistical models could further improve
the quality and diversity of the generated outputs. Moreover, devel-
oping strategies incorporating domain knowledge such as ocean
bed topology and mass balance will be beneficial. Finally, we plan to

optimize the computational efficiency of the diffusion model by us-
ing novel sampling methods to reduce its computational demands.
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