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Key Points:

« We present a novel machine learning time series classification method to catego-
rize draining, refreezing, and buried lakes on an ice-sheet-wide scale.

+ We find a greater percentage of lakes drain during a warmer melt year than dur-
ing a cooler one.

e Our 2-year dataset provides additional insight into dynamic factors that may con-
trol supraglacial lake hydrofracture events.
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Abstract

Supraglacial lakes on the Greenland Ice Sheet (GrIS) can impact both the ice sheet sur-
face mass balance and ice dynamics. Thus, understanding the evolution and dynamics

of supraglacial lakes is important to provide improved parameterizations for ice sheet
models to enable better projections of future GrIS changes. In this study, we utilize the
growing inventory of optical and microwave satellite imagery to automatically determine
the fate of Greenland-wide supraglacial lakes during 2018 and 2019; cool and warm melt
seasons respectively. We develop a novel time series classification method to categorize
lakes into four classes: 1) refreezing, 2) rapidly draining, 3) slowly draining, and 4) buried.
Our findings reveal significant interannual variability between the two melt seasons, with
a notable increase in the proportion of draining lakes in 2019. We also find that as mean
lake depth increases, so does the percentage of lakes that drain, indicating that lake depth
may influence hydrofracture potential. However, we also observe that non-draining lakes
are deeper during the cooler 2018 melt season, suggesting that additional factors may
predispose lakes to drain earlier in a warmer year. Our automatic classification approach
and the resulting two-year ice-sheet-wide dataset provide unprecedented insights into GrIS
supraglacial lake dynamics and evolution, offering a valuable resource for future research.

Plain Language Summary

Lakes form on the surface during the summer months along the margins of the Green-
land Ice Sheet. Throughout the summer, these lakes can drain rapidly over a few hours
or days through cracks in the ice, delivering water to the base of the ice sheet and in-
fluencing ice flow speed. At the end of the summer, remaining surface meltwater refreezes,
or can sometimes remain liquid buried just beneath the surface. The varying impact that
meltwater lakes can have on the ice sheet underscores the importance of understanding
their seasonal evolution in different regions of the ice sheet. Here, we develop a new method
to automatically categorize lakes that drain, refreeze, or become buried during a rela-
tively cool (2018) and warm (2019) summer. We find that a higher percentage of lakes
drain during a warmer year, a finding that has important implications in a warming cli-
mate. We also find that deeper lakes were more likely to drain, but that non-draining
lakes were also deeper during a colder year, suggesting that other factors also contribute
to lake drainage. Our new method and unique dataset provide new insight into Green-
land Ice Sheet surface lake dynamics and evolution.

1 Introduction

Meltwater features on the Greenland Ice Sheet (GrIS) impact ice sheet mass bal-
ance directly by removing mass via drainage and runoff, and indirectly by influencing
ice sheet dynamics (Chu, 2014). Supraglacial lakes form during the summer months along
low-elevation margins of the ice sheet in persistent topological depressions driven by bed
topography (Echelmeyer et al., 1991; McMillan et al., 2007; Sundal et al., 2009). Sum-
mer near-surface air temperature is non-linearly related to surface meltwater production
due to the positive melt-albedo feedback (Trusel et al., 2015) and in recent years, supraglacial
lakes and runoff have been observed at increasing elevations across the ice sheet (Howat
et al., 2013; Leeson et al., 2015; Tedstone & Machguth, 2022), a trend that is expected
to continue in a warming climate.

Supraglacial lakes can impact the ice sheet in a variety of ways. As temperatures
drop below 0°C' in the fall, remaining surface meltwater typically refreezes (Selmes et
al., 2011; Johansson et al., 2013). Refrozen meltwater creates solid, impermeable ice lay-
ers, thereby increasing firn density, decreasing available firn air content, and impacting
future meltwater percolation. During future melt seasons, these ice layers merge and thicken
as meltwater percolates and refreezes around them, resulting in expansive ice slabs that
inhibit downward percolation of meltwater (MacFerrin et al., 2019; Jullien et al., 2023)
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and limit future meltwater storage capacity within the firn (Machguth et al., 2016). The
formation of expansive ice slabs in Greenland’s accumulation zone has led to increased
ice sheet runoff (MacFerrin et al., 2019; Mikkelsen et al., 2016).

In some cases however, supraglacial lakes do not refreeze entirely and meltwater
can remain liquid insulated beneath the ice surface throughout the winter in features known
as ‘buried lakes’ (Koenig et al., 2015; Law et al., 2020; Schroder et al., 2020; Dunmire
et al., 2021). Buried lake meltwater storage may mitigate the ice sheet’s contribution to
sea level rise by storing water that might otherwise runoff (Harper et al., 2012; Forster
et al., 2014); however, once meltwater fills firn pore space, this pore space cannot be re-
generated quickly (Harper et al., 2012).

Supraglacial lakes can also drain throughout the melt season. These drainages can
be slow, as meltwater overflows lake basins and routes through surface channels (Catania
et al., 2008; Banwell et al., 2012), or rapid, as meltwater drains vertically through frac-
tures, a process known as hydrofracture (Das et al., 2008; Tedesco et al., 2013). Hydrofrac-
ture events inject meltwater to the bed of the ice sheet which reduces basal friction and

temporarily increases ice velocity (Zwally et al., 2002; Bartholomaus et al., 2008; Bartholomew

et al., 2010; Hoffman et al., 2011). Moulins formed via hydrofracture can persist through-
out the melt season and continually deliver meltwater to the base of the ice sheet, fur-
ther affecting basal friction and ice velocity throughout the remainder of the melt sea-
son (Catania & Neumann, 2010; Banwell et al., 2016).

Given the substantial and varied impact of supraglacial lakes on the GrIS, it is im-
portant to understand when, where, and how drainage and refreezing events occur to pro-
vide improved parameterizations for ice sheet models and to better project future ice sheet
changes. Previous work has detected GrIS supraglacial lakes and channels using a va-
riety of multi-spectral satellite images including the Moderate Resolution Imaging Spec-
troradiometer (MODIS; Box and Ski (2007), Sundal et al. (2009), Johansson and Brown
(2013), Williamson, Arnold, Banwell, and Willis (2017)), the Land Remote-Sensing Satel-
lite System (Landsat satellites; Banwell et al. (2014), Macdonald, Banwell, and MacAyeal
(2018)), Sentinel-2 (Hochreuther et al., 2021; Zhang et al., 2023), WorldView (Yang &
Smith, 2013; Daneshgar et al., 2019), or a combination of these various satellites (Williamson,
Banwell, et al., 2018; Wang & Sugiyama, 2024). More recently, Sentinel-1 Synthetic Aper-
ture Radar (SAR) observations have been used to detect supraglacial and buried melt-
water features across the GrIS (Miles et al., 2017; Schroder et al., 2020; Dunmire et al.,
2021; Benedek & Willis, 2021; Zheng et al., 2023). SAR can be used year round, regard-
less of the weather, and can penetrate the surface and detect meltwater buried several
meters beneath the surface (Rignot et al., 2001).

Current work investigating the seasonal evolution of GrlS supraglacial lakes is mostly
limited to a regional or individual drainage basin scale (McMillan et al., 2007; Sundal
et al., 2009; Morriss et al., 2013; Turton et al., 2021; Otto et al., 2022; Wang & Sugiyama,
2024; Glen et al., 2024), or is more than a decade old and relies on low-resolution MODIS
imagery for lake tracking (Selmes et al., 2011, 2013). Here, we develop and present a novel
classification method that utilizes time series of features from both optical and microwave
imagery to automatically classify GrIS supraglacial lakes into four behavioral categories:
1) refreezing, 2) rapidly draining, 3) slowly draining, and 4) those that transition to buried
lakes by the end of the melt season. We apply our classification method to supraglacial
lakes previously identified during the 2018 and 2019 melt seasons (Dunmire et al., 2021),
a cold and warm year respectively. In doing so, we provide a comprehensive dataset of
ice-sheet-wide lake drainage events and new insight into lake drainage and refreeze that
will aide future GrIS supraglacial lake and hydrofracture research.



121 2 Data

122 2.1 Greenland supraglacial lake dataset

123 For this study, we used the pan-Greenland supraglacial lake dataset from Dunmire
124 et al. (2021). This dataset contains high-resolution (30 m) outlines for supraglacial lakes
125 with a surface area > 0.05 km? from the 2018 and 2019 melt seasons across the 6 ma-
126 jor GrIS drainage basins, defined by Rignot and Mouginot (2012) (SW, CW, NW, NO,
127 NE, and SE). The dataset additionally provides lake surface area information and the

128 elevation for each supraglacial lake from the Greenland Ice Mapping Project (GIMP) el-
120 evation dataset (Howat et al., 2015). There are 3846 supraglacial lakes in 2018 and 6146

130 in 2019 (Dunmire et al., 2021). We chose this dataset because it covers the entire ice sheet
131 and is available at a high spatial resolution.

132 2.2 Satellite imagery

133 We obtained imagery from three different satellites on the Google Earth Engine

134 (GEE) platform (Gorelick et al., 2017): Sentinel-1 (S1, microwave), Sentinel-2 (S2, op-

135 tical), and Lansdat 8 (L8, optical). We utilized available imagery from these satellites

136 between January 1, 2018 and December 31, 2019.

137 The S1 satellite provides C-band SAR backscatter imagery over the entire GrlS.
138 For 2018 and 2019, the dual S1A and S1B satellites provided a maximum 6-day repeat
139 observation cycle. We used the horizontally-transmitted, vertically-received (HV) band
140 of the Interferometric Wide swath mode, which is available at a 10 m horizontal reso-
141 lution.

142 For optical imagery, we used the S2 Level-1C orthorectified top-of-atmosphere re-

143 flectance. Of the 13 spectral bands available from the S2 data, we used Band 2 (Blue,

144 20 m horizontal resolution), Band 3 (Green, 20 m), Band 4 (Red, 20 m), Band 10 (Cir-

145 rus, 60 m) and Band 11 (SWIR 1, 20 m). We also obtained optical imagery from the Land-
146 sat 8 calibrated top-of-atmosphere reflectance collection, utilizing Band 2 (Blue, 30 m),

147 Band 3 (Green, 30 m), Band 4 (Red, 30 m), and Band 6 (SWIR 1, 30 m).

148 2.3 Regional Climate Modeling data

149 We obtained near-surface (2 m) air temperature data from the west-domain of the

150 Copernicus Arctic Regional Reanalysis product (CARRA-West; Schyberg et al. (2020)).

151 This product provides 3-hourly analyses at a 2.5 km spatial resolution over the GrIS and

152 is forced at the boundaries with ERAS5 for the period of 1991 — present. For each supraglacial
153 lake outline in 2018 and 2019, we obtained an annual time series of mean daily near-surface

154 air temperatures from the CARRA-West grid cell containing the lake.

155 3 Methodology

156 3.1 Satellite Imagery Preprocessing

157 3.1.1 S1 tmagery time series

158 S1 imagery available on GEE is already preprocessed with the following steps: (1)

159 thermal noise removal, (2) radiometric calibration, (3) terrain correction using ASTER

160 DEM, and (4) values converted to decibels via log scaling. For each 2018 and 2019 supraglacial
161 lake outline (Dunmire et al., 2021), we utilized all available S1 imagery from January

162 1 through December 31 of the year the lake was detected. Then, from every available

163 S1 image, we computed the average HV value within each lake outline (HVj41.) and the

164 average HV value within 750 m outside the lake bounds (HVigckground). We then com-

165 puted a backscatter anomaly for the lake (HV,y,0m) following Equation 1:
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HVanom = HVvlak:e - H%ackground (1)

By computing a backscatter lake anomaly, we can better compare imagery between
orbits with different incidence angles. To obtain a complete annual time series of HV,0m
for each lake, we linearly interpolated between all observations. We then further smoothed
variability between observations from different S1 orbits by applying a 12-day smooth-
ing filter. (e.g. Fig. S1).

3.1.2 Optical imagery time series

S2 images with < 90% cloud coverage were obtained for each lake between May
1 and October 15 during the year that the lake was detected. Because top-of-atmosphere
S2 imagery in GEE is scaled by a factor of 10,000, we first divided all spectral bands by
10,000. For each image we then created a cloud pixel mask and a water pixel mask. Clouds
in S2 imagery were masked following Moussavi et al. (2020) where SWIR (B11) > 0.1
or Cirrus (B10) > 0.1. Water was masked where the Normalized Difference Water In-
dex (NDWI, Equation 2) > 0.18 (Moussavi et al., 2016; Pope et al., 2016; Yang & Smith,
2013; Moussavi et al., 2020). We did not use the Green - Red > 0.09 threshold for mask-
ing water from Moussavi et al. (2020) because we found that this excluded parts of lakes
with deep water.

We performed a similar cloud and water masking procedure for L8 imagery. Fol-
lowing Moussavi et al. (2020), we masked pixels as clouds where the Normalized Differ-
ence Snow Index (NDSI, Equation 3) < 0.8 or where SWIR (B6) > 0.1. Water in L8 im-
ages was masked where NDWI > 0.19 and where Blue - Green > 0.7. Again, we did not
use the Green - Red > 0.7 from Moussavi et al. (2020) because this threshold excluded
deeper water.

Blue — Red
NDWT = Blue + Red (2)
Green — SWIR
NDST = e s SWIR ®)

For both S2 and L8 imagery, we did not compute a Rock/Seawater mask because
we had pre-defined supraglacial lake outlines from Dunmire et al. (2021). After creat-
ing the cloud and water pixel masks for all S2 and L8 image, for each lake we then re-
moved images with pixels inside the lake’s bounds masked as clouds. We then computed
the percentage of pixels within the lake bounds masked as water (pyater). We determined
Pwater for each lake individually and from every non-cloudy optical image. We also ob-
tained the average solar zenith angle (SZA) within each of the lake bounds from every
optical image.

After combining pyqter from S2 and L8 imagery for a lake, the following steps were
taken at each time step t to remove outlier observations:

1. The observation was removed if:
¢ pwater(t) > 005, and
o SZA(t) > 75°

This was often the case during shoulder seasons when shadows were misclassified
as water (e.g. Fig. S2a).
2. The observation was removed if:

* pwater(t) > 0.4, and
¢ pwate?“(t - 1) < %pwater(t)7 and



207 ° pwater(t + 1) < %pwater(t) ) and

208 « at a previous time step (tprev.): Dwater (tprev.) > 0.8

200 This was often the case if there were cloud shadows within the lake bounds or for

210 shadows not removed in Step 1 (e.g. Fig. S2b). The specification that the lake pre-
211 viously had to have water (Pwater(tprev.) > 0.8) was applied so that observations

212 where the lake filled and drained rapidly were not excluded.

213 3. The observation was removed if:

214 * pwater(t - 1) _pwater(t) > 0.2, and

215 ° pwater(t + 1) - pwater(t) > 0.2

216 These outliers existed if clouds were missed by the cloud mask (e.g. Fig. S2c).

217 Finally, we linearly interpolated all observations to obtain an annually complete

218 time series of pyater for each lake.

219 3.2 Supraglacial lake classification

220 3.2.1 Supraglacial lake classes

21 Here, we classify supraglacial lakes into four categories based on their evolution through-
22 out the melt season. These lake classes are: 0) refreezes, 1) rapidly drains, 2) slowly drains,
23 and 3) becomes buried (Fig. 1). To create the training dataset for our model, which au-

204 tomatically classifies supraglacial lakes into these four classes, we manually labeled 1000

25 lakes, with 250 for each class. We defined rapidly draining lakes to be where pyqter de-

226 creases to 20% of the lake’s maximum value in a period shorter than 6 days, following

227 Morriss et al. (2013). While rapid drainage events can be defined over periods shorter

28 than this (i.e 2 days: (Das et al., 2008; Tedesco et al., 2013; Selmes et al., 2011) or 4 days:
229 (Williamson, Willis, et al., 2018; Doyle et al., 2014)), we use a more relaxed threshold

230 to accommodate the sometimes limited temporal resolution of clear-sky optical imagery

231 (Morriss et al., 2013).

232 Supraglacial lakes were labeled from all 6 GrIS regions and confirmed using GEE
233 optical and microwave imagery. Figure 1 shows example time series of pyater and H Vapom
234 for a lake from each class. From our labeled lakes dataset, we used 80% for training our
235 model, and set aside the remaining 20% for final model testing.

236 3.2.2 Time series classification model selection

237 Various deep learning techniques have been proposed for time series classification
238 including recurrent neural network-based models, distance-based models, feature-based
239 models, interval-based models, and kernel-based models. To classify supraglacial lakes

240 using the pyater and HVp0m time series, we utilized the sktime Python time series clas-
201 sification package (Loning et al., 2019). From sktime, we explored the recurrent neural
242 network-based algorithm LSTMFCNClassifier (Karim et al., 2019), distance-based al-

213 gorithm KNeighborsTimeSeriesClassifier, feature-based algorithm RandomIntervalClas-

284 sifier, kernel-based algorithm RocketClassifier (Dempster et al., 2020), and three interval-
25 based algorithms CanonicallntervalForest (Middlehurst et al., 2020), Supervised Time-
246 SeriesForest (Cabello et al., 2020), TimeSeriesForestClassifier (Deng et al., 2013).

247 Before training the models, we normalized the timeseries data into the range of [0,1].
28 The aforementioned models are evaluated with two different feature sets: one with only

249 HV;nom, and one with both HV, .o and pyater, to determine the added benefit of in-

250 cluding time series from optical imagery, which typically has more limited temporal cov-
251 erage than microwave imagery. We did not train a model with only pyater because the

252 optical imagery alone is insufficient to identify buried lakes. To avoid overfitting, we ap-
253 plied a k-fold cross-validation with 5 folds, where the model is alternatively tested on
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Figure 1. Example optical and microwave time series for each supraglacial lake class. (a) Map

of GrIS with lakes in b-e indicated with red dots, (b) refreeze (class 0), (c) rapidly drains (class
1), (d) slowly drains (class 2), and (e) becomes buried (class 3). Light blue lines indicate pwater,
with dots for each optical image of the lake (left y-axis) and dark blue lines represent time series
of HVynom (left y-axis).

one fold and trained on the other 4 folds. We trained the models using the previously
mentioned 1000 manually labeled supraglacial lakes, with 250 for each class (refreeze,
rapid drain, slow drain, and buried).

Table S1 summarizes the resulting accuracy from this cross-validation for the dif-
ferent time series classification techniques. We observe that the performance of all mod-
els improved substantially when p,,qter is incorporated, which is understandable given
that pyater provides additional useful information for the lake classifications. Moreover,
out of the 7 classification techniques, RocketClassifier achieved the most consistently high
accuracy in all scenarios (with and without pyater and using cross-validation). In addi-
tion, RocketClassifier has a significant computational advantage over the other complex
architectures of the other models. Therefore, we used RocketClassifer for the remain-
der of this study.

3.2.3 Time series classification with ROCKET

RocketClassifier (ROCKET, RandOM Convolutional KErnal Transform; Dempster
et al. (2020)) has previously been evaluated on benchmark datasets in the UCR Archive
(Dau et al., 2018) and can achieve the same accuracy as competing state-of-the-art al-
gorithms in a fraction of the training time. ROCKET applies random convolutional ker-
nels to transform the time series into features and then uses a linear classifier trained
with the features. We used 10,000 convolutional kernels and the linear Ridge Classifier
from the scikit learn python package (Pedregosa et al., 2011). We trained two separate
ROCKET models: one that classifies lakes using the optical pyqier lake time series (ROCKET,),)
and one that classifies lakes using the microwave H Vo lake time series (ROCK ETy;c).
Using these two separate models allows us to classify lakes using one imagery source if
the other is inadequate (i.e. limited availability of cloud-free optical images for a lake,
Fig. S3b). Because buried lakes are invisible in optical imagery, ROCK ET,, will never
be able to classify buried lakes correctly. As such, ROCK ETy, was only trained to clas-
sify lakes into classes 0, 1 and 2.



281 3.2.4 End-model to resolve classification discrepancies

28 In some cases, the time series created from microwave and optical imagery do not
283 agree, resulting in different lake classifications from the ROCKET,, and ROCK ET ;.
284 models (Fig. S3). To resolve discrepancies between ROCK ET,, and ROCK ET,,;. clas-

285 sifications, we further trained an end-model that uses the following features to make a

286 final classification for the lake:

287 « ROCKET,, prediction (categorical)

288 « ROCKET,, class 0 (refreeze) confidence score(numerical)

289 « ROCKET,, class 1 (rapid drain) confidence score(numerical)

290 « ROCKET,, class 2 (slow drain) confidence score(numerical)

201 + ROCKET,,;. prediction (categorical)

202 s ROCKET,,;. class 0 (refreeze) confidence score(numerical)

203 * ROCKET,;. class 1 (rapid drain) confidence score(numerical)

204 * ROCKET,;. class 2 (slow drain) confidence score(numerical)

205 + ROCKET,,;. class 3 (buried) confidence score (numerical)

296 « lake elevation (numerical)

207 + lake area (numerical)

208 e Maximum Pyater during the season (numerical)

209 « number of days it takes for pyater to decrease to 20% of the lake’s maximum value
300 (‘drain time’, numerical)

301 « temporal resolution of S1 observations during drain time (numerical)

302 + temporal resolution of optical observations during drain time (numerical)

303 » Average HV,om for the lake between October 15 and November 1 (numerical)

304 The confidence score for each class comes from the sklearn RidgeClassifier model

30 output and is proportional to the signed distance of that sample to the hyperplane. We
306 trained the end-model using the PyCaret python package for automating machine learn-
307 ing workflows (Moez, 2020). Numerical features were normalized and categorical features
308 were one-hot encoded. We used 5-fold cross-validation to compare PyCaret classifica-

300 tion models and to tune our model with a grid search of 500 iterations. With a cross-

310 validation F1 score of 0.9543, the optimal end-model was a CatBoost classifier (Prokhorenkova

311 et al., 2018).

312 This end-model was only applied when discrepancies between ROCK ET,, and ROCK ET;.
313 exist. Examples of such discrepancies are for buried lakes (because ROCK ET,, will never

314 be able to classify buried lakes, e.g., Fig. S3b), lakes at low elevation where the HV,,om

315 time series is similar to that of buried lakes (e.g., Fig. S3c), or lake drainage events where

316 the HV,,0m time series does not capture the drainage in the same way as the pyqter time

317 series (e.g., Fig. S3d). If, for a given lake, the classifications from ROCK ET,, and ROCKFET,,;.
318 were the same, then this classification was the final label given to the lake, and the end-

319 model was not utilized.

320 After training ROCKET,,, ROCK ET,;., and the end-model, we tested our en-

321 tire pipeline on 200 independent samples (~50 per class). On this test sample, our model

322 had 98% accuracy and an F1 score of 0.98, with confusion for 4 lakes between the re-

323 freeze and slow drain classes (Fig. S4).

304 3.3 Supraglacial lake analysis

35 After training and testing our approach, we applied our model on all 2018 and 2019

326 supraglacial lakes, giving each lake a label based on its evolution throughout each melt

327 season.
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3.3.1 Lake depth

For each lake with a maximum pyqter > 0.5 and no greater than a 31 day gap be-
tween optical observations, we calculated the mean lake depth at the time when pyqter
was at its maximum. First, we found the date of maximum p,,q¢e, for the lake. Then,
using GEE, we retrieved either the S2 or L8 image from this date, preferring to use S2
where possible due to S2’s higher spatial resolution. To compute lake depth for each pixel
(2piz), we followed Williamson, Banwell, et al. (2018), which uses Equation 4 below, de-
veloped by Pope et al. (2016) based on the attenuation of optical light in a water col-
umn:

o = n(a = ) —gln(RpiI ~ Rao)] @

where Ay is the lake-bottom albedo, R, is the reflectance for optically deep wa-
ter, and R, is the pixel reflectance, and g is the coefficient for the losses in upward and
downward travel through a water column. For both S2 and L8 imagery, we averaged depths
calculated using the red (B4) and green (B3) top-of-atmosphere reflectance data. A; was
calculated as the average reflectance of the relevant band for the ring of pixels immedi-
ately surrounding the lake (ring of 3 pixels for S2; Williamson, Banwell, et al. (2018))
and R., was approximated as 0 (Banwell et al., 2019; Dell et al., 2020). For L8 imagery,
we used g = 0.7507 for the red band and g = 0.1413 for the green band (Pope et al.,
2016). We used S2 g values determined by Williamson, Banwell, et al. (2018) (g = 0.8304
for the red band and g = 0.1413 for the green band). We determined the mean lake depth
after calculating z;, for each pixel within the lake bounds.

3.3.2 Drainage date

For each supraglacial lake that was labeled to have undergone rapid drainage, we
also determined the drainage date. To do this, we found the last time step ¢ where pyater(t) <
0.8 and puyater(t) < maz(pwater). Even though this time step is before the respective
lake drainage event, we label it as the ‘drainage date’ as it is the last available optical
image where the lake is full of water.

4 Results

Comparing our results for the colder 2018 and warmer 2019 melt seasons, we ob-
serve both interannual variability in surface meltwater production and total number of
supraglacial lakes, as well as a shift in supraglacial lake dynamics (Fig. 2, Tab. S2). The
total number of supraglacial lakes increases by 60% from 2018 (3846 lakes) to 2019 (6146
lakes) (Dunmire et al., 2021). Correspondingly, there is a substantial expansion in supraglacial
lake area, increasing from 1242 km? in 2018 to 2569 km? in 2019 (+107%). Despite a
more than doubling of supraglacial lake area between the two years, in this study we find
that refrozen lake area increases by only 7.6% and the total number of refreezing lakes
actually decreases from 1330 lakes (34% of all 2018 lakes) to 1096 lakes (18% of all 2019
lakes). The proportion of refreezing supraglacial lakes changes the most drastically in
the Northern GrIS regions. For example, in NO Greenland, more than 50% of identified
supraglacial lakes refreeze in 2018 while only 21% refreeze in 2019, with the total refrozen
lake area actually diminishing by 27%.

Coincident with the observed decrease in the proportion of refreezing lakes in 2019,
we observe a substantial rise in the proportion of lakes that drain slowly, increasing from
26% of all GrIS supraglacial lakes in 2018 to 40% in 2019. Again, this change is most
prominent in the Northern GrIS regions, where the incidence of slowly draining lakes in-
creases by 190%, 269%, and 334% in the NW, NO, and NE, respectively.
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Figure 2. The percentage of lakes that refreeze, drain rapidly, drain slowly, or become buried
in 2018 and 2019 for each GrIS region (as indicated in Fig. 1.)

Figure 3 illustrates this shift from predominately refreezing lakes in 2018 to drain-
ing lakes in 2019 for a case study area in NE Greenland. Within this approximately 20
x 15 km? region, 16 distinct lakes were detected in 2018 (Fig. 3b,c) and 15 were detected
in 2019 (Fig. 3d,e). The onset of mean daily air temperatures above freezing for this re-
gion in 2019 occurrs on June 11 (Fig. 3h). Over the ensuing week (June 11 - June 17),
the mean 2019 air temperature is 6.7 °C' higher compared to the corresponding period
in 2018, during which the mean daily air temperature remains below freezing until June
25. During July and August, mean air temperatures remain 2.7 °C' cooler in 2018 rel-
ative to 2019.

We suggest that this interannual variability in air temperature not only results in
differences in surface meltwater production between the two melt seasons, but also a shift
in supraglacial lake dynamics. For example, in this area of NE Greenland, 11 of 16 (69%)
lakes refreeze during the 2018 melt season (Fig. 3f). In contrast, in 2019 (Fig. 3g), nearly
all the lakes drain either slowly (9 of 15, 60%) or rapidly (4 of 15, 27%). Despite late Au-
gust 2018 experiencing average air temperatures nearly 4 °C' cooler than the same pe-
riod in 2019, we observe a greater presence of ponded meltwater during this period in
the 2018 melt season (Fig. 3c,e). The absence of ponded meltwater in late August 2019
is attributed to the lakes in this area having previously drained.

The proportion of lakes that rapidly drain also increases between the two years,
from 18% of all GrIS lakes in 2018 to 23% in 2019. The relative increase in rapid lake
drainage events is most substantial in Western Greenland, where the number of rapid
lake drainages increases by 93%, 141%, and 217% in the SW, CW, and NW regions re-
spectively, despite these regions experiencing 41%, 47%, and 64% increases in the total
number of supraglacial lakes. Figure 4 demonstrates this shift for a case study area in
CW Greenland. Within this area, 4 of the 18 (22%) identified supraglacial lakes refreeze
in 2018, with the remaining lakes transitioning to buried lakes at the end of the melt sea-
son (4b, e). There are no lake drainage events in this area in 2018. In contrast, in 2019,

9 of the 17 (53%) identified lakes drain rapidly, with a multi-lake hydrofracture event
occurring sometime between July 23 and 26, 2019 (4c¢,d,f). In this area, early season (May
1 - June 15) average daily air temperatures are substantially warmer (45.9 °C) in 2019
relative to 2018. Despite the daily mean air temperature rising above freezing for the

first time earlier during the 2018 melt season (June 4), throughout the remainder of June
and July 2019, daily air temperatures remain 2.1 °C' warmer than in 2018. Much of this
area in the CW region is located relatively far inland, and the 2019 rapidly draining lakes
here have an average elevation of 1490 m, higher than the 99th percentile elevation for
rapidly draining lakes in CW Greenland in 2018.
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Figure 3. Example supraglacial lake changes for a case study area in NE Greenland, indi-
cated by the red dot in (a). (b-e) S2 imagery from July 2, 2018 (b), August 25, 2018 (c), July 2,
2019 (d) and August 25, 2019 (e). 2018 (b,c) and 2019 (d,e) Detected lakes from 2018 (b,c) and
2019 (d,e) are outlined and colored corresponding to their evolution classification throughout the
melt season. (f-g) Time series of pyater for each lake in 2018 (f) and 2019 (g). Time series are
colored corresponding to the each lake’s evolution classification. (h) Time series of mean daily air
temperature for this region in 2018 (blue) and 2019 (red). The colored bar at the top of the plot

represents the difference in 7-day mean air temperatures between the two years (2019 - 2018).
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(2019 - 2018).

—12—



409

435

436

437

438

442

443

444

445

446

447

448

450

451

453

454

455

456

In accordance with Selmes et al. (Selmes et al., 2013), we observe, across all regions
of the GrIS and over both years, that draining lakes are located at lower elevations than
lakes that refreeze or become buried (Fig. 5). In the Northern GrIS regions (NW, NO,
and NE), where lakes typically form at lower elevations, rapid lake drainages occur at
a mean elevation of 641 £+ 361 m (£ 1 standard deviation) and slow lake drainages oc-
cur at a mean elevation of 752 £+ 346 m. In contrast, lakes that do not drain, but either
refreeze or become buried, are located at mean elevations of 939 + 381 m and 1099 =+
390 m, respectively. In Southern Greenland (SW, CW, SE), rapid and slow drainage events
occur at mean elevations of 1159 + 323 m and 1199 + 298 m, respectively, while refreez-
ing and buried lakes are located at average elevations of 1408 £ 267 m and 1544 + 227
m.

Figure 5 also demonstrates that draining lakes are typically deeper than non-draining
lakes. During both years, the mean depth for all rapidly draining lakes is 3.27 £ 0.99 m
and varies about 35% between the six regions, with a minimum mean depth of 2.81 m
in NO Greenland and a maximum mean depth of 3.62 m in SE Greenland. The regional
variability in mean lake depth for other types of lakes is slightly larger, from 1.80 m (NO)
to 2.99 m (SE) for refreezing lakes (47% of the mean), 2.06 m (NO) to 3.32 m (SE) for
slowly draining lakes (43% of the mean), and 1.78 m (NO) to 3.12 m (SE) for buried lakes
(54% of the mean).

Across the entire ice sheet, and for both years, 56% of lakes drain either rapidly
or slowly. However, for lakes with a mean depth < 2 m, only 35% drain, with propor-
tionally more refreezing or becoming buried (36% refreeze, 29% buried). In addition, most
lakes that drain with mean depths shallower than 2 m drain slowly (27%), as opposed
to rapidly (8%). As lakes deepen, there appears to be an increasing likelihood that they
will drain, particularly rapidly, and a decreasing likelihood of refreezing (Fig. 6). For ex-
ample, above 4 m depth, 70% of lakes drain (35% rapidly and 35% slowly).

Surprisingly, we find that lakes are deeper on average during the colder 2018 melt
season (Fig. 7). The ice-sheet-wide mean lake depth in 2018 is 3.06 m, compared to 2.66 m
in 2019, an approximate 13% reduction in mean lake depth. The depth reduction from
2018 to 2019 is greatest in NO Greenland, where the 2018 mean depth (2.36 m) is 21%
deeper than in 2019 (1.87 m), and smallest in SW Greenland, where the 2018 mean depth
(3.00 m) is only 3% deeper than in 2019 (2.91 m). The mean lake depth difference be-
tween 2018 and 2019 is also substantially larger for lakes that do not drain rapidly (Fig.

7). For example, refreezing lakes have a mean depth of 2.87 m in 2018 and 2.11 m in 2019,
a 26% reduction. The reduction in mean depth from 2018 to 2019 is only 2.7% for rapidly
draining lakes.

Finally, we observe that rapid lake drainages occur earlier during the 2019 melt sea-
son compared to 2018. The mean drainage date across all regions during the 2019 melt
season (June 22 + 20 days) is 17 days earlier than in 2018 (July 9 4 15 days); a differ-
ence that is fairly consistent across all 6 regions. Figure 8 demonstrates a major change
in the timing of lake drainage for a case study area in NE Greenland. In 2019, lakes in
the area delineated by the black box in Figure 8 drain between June 13 and 18, an av-
erage of 44 days earlier than in 2018. This 2019 drainage period is also even before melt-
water begins to pond on the surface during the 2018 melt season. In 2018, lakes in this
area form after July 1 and drain primarily between July 28 and August 1. Also notable
is that these lakes in 2018 have a larger surface area compared to 2019 (mean of 0.48 km?
in 2018 compared to 0.28 km? in 2019) and remain full for a longer period of time be-
fore draining (Fig. 8c).
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Figure 5. 2D histograms of mean lake depth vs. elevation for each region of the GrIS (in-
cludes both 2018 and 2019 lakes). The distribution for lakes that drain (either rapidly or slowly)
is shown in red-orange while the distribution for lakes that do not drain (refreezing or buried

lakes) is shown in blue-green.

5 Discussion

After applying our novel time series classification model, utilizing time series of both
optical and microwave imagery, to a dataset of supraglacial lakes across the entire GrIS,
we find that 18% and 23% of all lakes drain rapidly in 2018 and 2019, respectively. These
proportions are larger than the 13% reported by Selmes et al. (2011), in which 2600 lakes
were mapped over 5 different years (2005-2009). While this present study only spans 2
years, it includes nearly 10000 lakes and incorporates lakes smaller than those studied
in Selmes et al. (2011), which was made possible by the finer spatial resolution available
from the S1 and S2 imagery.

Additionally, previous work has concluded that interannual variability in lake evo-
lution is much smaller than regional variability (Selmes et al., 2011, 2013). The work pre-
sented here does not support this conclusion. For example, in 2018 the percentage of re-
freezing lakes varies regionally from 22.5% in CW Greenland to 50.3% in NO Greenland,
comparable to the interannual change in the percentage of refreezing lakes in NO Green-
land between 2018 and 2019 (51.3% and 21.2%, respectively). This finding suggests that
climatic controls, particularly near surface air temperature, effect not only the amount
of surface meltwater production, but also how hydrologic systems develop and evolve through-
out the melt season.

During the warmer 2019 melt season there were more supraglacial lakes and there-
fore more supraglacial lake drainage events. Importantly, however, in this study we also
observe an increased proportion of draining lakes in 2019 relative to 2018 (Fig. 2). These
findings have important implications in a warming climate. During future warmer melt
seasons we can expect (a) increased runoff which enhances surface mass loss (Trusel et
al., 2018; Hanna et al., 2008), (b) increased total volume of meltwater injected to the bedrock

—14—
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and (c) increased moulin density as a result of more rapid lake drainages, which in turn
impacts subglacial water pressures, basal sliding rates, and ice motion (Banwell et al.,
2016). Given the proportional increase in both slow and rapid lake drainages and pro-
portional decrease in refreezing lakes between 2018 and 2019, we hypothesize that these
processes may act non-linearly in a warming climate.

Our new method enables large-scale, ice-sheet-wide classification of draining and
refreezing lakes, providing us with a comprehensive dataset of lake drainage events, and
new insights into the potential controls on lake drainage. Previous work has suggested
that an upper elevation hydrofracture limit (~1600 m) exists, above which moulins are
unlikely to form (Poinar et al., 2015). More recently, Christoffersen et al. (2018) showed
the presence of water-filled crevasses at an elevation of 1800 m in SW Greenland. In this
work, our automated method detected, and we visually confirmed, numerous (> 50) rapid
lake drainage events above this hypothesized hydrofracture elevation limit, including events
at or above 1800 m elevation in both SW and SE Greenland (Fig. 9). While it is not pos-
sible to fully confirm the presence of moulins due to the horizontal resolution of the S2
images, these lake drainage events occur between images several (2-3) days apart, with
no evidence of overflow drainage, and do not coincide with lake volume decreases for nearby
meltwater features. These findings challenge the hypothesis of an upper elevation hy-
drofracture limit and high-elevation rapid lake drainage events should be investigated
in future work.

We further compared lake depth between 2018 and 2019 for different lake types.
Previous studies have found little relationship between lake depth and drainage likeli-
hood (Fitzpatrick et al., 2014; Williamson, Willis, et al., 2018). We find that lake depth
does appear to control drainage likelihood in some fashion and demonstrate that lake
drainage occurrence increases with mean lake depth (Fig. 6). For example, of all 2018
and 2019 supraglacial lakes in SW Greenland with a mean depth > 3 m (45% of all SW
GrIS lakes), 41% drain rapidly, a much higher percentage than those that drain rapidly
with mean depths < 2 m (8.7%).

Despite expectations that 2019 lakes would be deeper than in 2018, due to it be-
ing a warmer melt season, our observations suggest otherwise. Similar to Selmes et al.
(2013), we observe cases where 2018 lakes grew larger and deeper than in 2019 when they
rapidly drained. Moreover, we find that non-draining lakes were, on average, deeper across
all regions during the colder 2018 melt season. We propose three potential explanations
for this phenomenon. First, 2019 lake depths may be limited by shallower basins due to
the refreezing of meltwater in these basins in 2018. Second, the calculation of lake depth
is sensitive to the reflectance of pixels immediately surrounding the lake, a factor that
may vary between years.

Third, we suggest that various dynamical controls may initiate rapid lake drainage
events at shallower depths during the warmer 2019 melt season. Warmer early melt sea-
son air temperatures have substantial hydrological consequences. The earlier melting of
surface snow exposes bare ice, crevasses, and fractures, and expedites the development
of supraglacial to basal hydrologic routing networks. As such, meltwater can access the
bed earlier in a warmer year, enhancing basal slip, a process that has also been shown
to initiate rapid lake drainage (Stevens et al., 2015), and thereby increasing localized ice
velocity speed-ups earlier in the melt season. Rapid lake drainage events further result
in a tensile shock that establishes new surface-to-bed moulins by initiating additional
rapid drainage events through a cascading process (Christoffersen et al., 2018). Addi-
tionally, elastic stress coupling from one rapid lake drainage event can trigger other nearby
lakes to drain (Stevens et al., 2024). We finally hypothesize that lake filling speed may
also influence hydrofracture potential, with faster filling lakes at increasing risk of rapid
drainage. During the 2019 melt season, these dynamical processes may initiate rapid lake
drainages at shallower depths than in 2018, not allowing many lakes to reach their max-
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imum 2018 extent. These potential controls on rapid lake drainage should be further in-
vestigated in future work.

Finally, earlier rapid lake drainage events and surface-to-bed moulin development
facilitate a prolonged influx of meltwater to the ice-bed interface (Banwell et al., 2016).
This accelerated development of the supraglacial, englacial and subglacial hydrological

routing systems in warmer melt seasons may explain the substantial increase in 2019 slowly

draining lakes. Conversely, in cooler years, the hydrological network may not be fully
developed to facilitate efficient meltwater drainage when air temperatures drop in the
fall, resulting in a greater proportion of refreezing lakes.

5.1 Limitations and uncertainty
5.1.1 Supraglacial lake types

Distinguishing between rapidly and slowly draining lakes is a non-trivial task, with
various definitions proposed in the literature (Das et al., 2008; Williamson, Willis, et al.,
2018; Morriss et al., 2013). Here, we follow Morriss et al. (2013) by adopting a more con-
servative definition (6 days) in constructing our training dataset to accommodate the
occasionally limited temporal resolution of clear-sky optical imagery. The implications
of this may be the categorization of some lakes as rapidly draining, while other studies
would consider them slowly draining. Additionally, drainage events occurring towards
the end of the melt season (mid-late August) may be misclassified as refreezing, as both
events involve a sharp decrease in water presence. Our testing dataset reveals that dif-
ferentiating between refreeze and slow drain classifications is the most challenging, with
all misclassifications occurring between these two classes (Fig. S4). Some lakes may both
partially drain and then refreeze, further complicating this distinction.

The labeled lakes used for model training and testing were lakes where we could
clearly distinguish the classification. However, this is not the case for all lakes on which
the algorithm was applied. We test the robustness of our findings and quantify uncer-
tainty by comparing our results with those from the subset of lakes where the ROCK ET,,
and ROCK ET,,;. classifications agree, as we believe these cases have the highest cer-
tainty. For ~3% of the 9992 total lakes there is either insufficient optical or microwave
imagery and thus only one model can be used for the classification. Disregarding buried
lake classifications (as the ROCK ET,, will never be able to classify buried lakes), the
two models further disagree for 28% of the lakes’ classifications.

The two models disagree most frequently, and thus the uncertainty is highest, in
the SW and NE regions (32% disagreement in both regions). The uncertainty is lowest
in CW Greenland, with 23% disagreement between the two models (Fig. S5). As slow
drainages can be easily confused between both rapid drainage and refreeze, we under-
standably find the highest disagreement between ROCK ET,, and ROCK ET,,;. for the
slow drainage class (Fig. S5).

For the majority of cases in which the two models disagree (87%), the final clas-
sification aligns with that from ROCK ET,,. This makes sense as S1 backscatter can
be noisy, particularly for smaller lakes, and depends on factors other than liquid water
presence (i.e. volume scattering, surface roughness, satellite geometry). Figure S6 shows
changes to the lake type proportions (ignoring buried lakes) when only considering these
lakes with higher confidence classifications (where the ROCKET,, and ROCKET,,;.
models agree). We find minimal changes in the proportion of lake classifications in the
SW and CW regions. In NO and SE Greenland, we see that the proportion of refreez-
ing lakes increases and the proportion of slowly draining lakes decreases when only con-
sidering these higher confidence lakes. However, the pattern of interannual changes be-
tween 2018 and 2019, described above in the results, remains robust.
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5.1.2 Supraglacial lake depths

We retrieved lake depth from optical imagery using a radiative transfer equation
(Pope et al., 2016; Williamson, Banwell, et al., 2018), which is known to systematically
underestimate lake depths using the red band and overestimate shallow lake depths us-
ing the green band (Melling et al., 2024; Lutz et al., 2024). Given the known limitations
of this method, we do not recommend using the absolute lake values shown here to pre-
scribe lake depth and volume limits for hydrofracture. We chose to use this radiative trans-
fer method for obtaining lake depths due to its ability to scale to the entire Greenland
Ice Sheet easily.

From our lake depth analysis, we highlight two key findings: 1) lake drainage oc-
currence increases as lake depth increases and 2) non-draining lakes were deeper in 2018
than in 2019, despite 2018 being a colder melt season. Lake depths calculated using var-
ious bands in the radiative transfer equation are positively correlated with depths cal-
culated using other bands and from other methods (e.g. ICESat-2, depression topogra-
phy method, empirical formulation) (Pope et al., 2016; Melling et al., 2024). As such,
we expect that these two findings, which focus on a relative lake depth comparison be-
tween lake classes and melt seasons, to remain robust.

6 Conclusions

In this work we build upon previous, regional supraglacial lake evolution studies
by providing an GrIS-wide data set covering the fate of nearly 10,000 supraglacial lakes
during the 2018 and 2019 melt seasons. We first develop a new time series classification
method that incorporates optical and microwave imagery to classify GrlS supraglacial
lakes into four categories automatically: 1) refreeze, 2) rapid drainage, 3) slow drainage,
and 4) buried. We then apply our method to supraglacial lakes detected during the 2018
and 2019 melt seasons, enabling us to compare lake characteristics between the two years,
and provide new insights into factors controlling lake evolution and drainage.

We demonstrate that substantial interannual variability in lake evolution exists be-
tween the cooler 2018 and warmer 2019 melt seasons, a finding that is robust to uncer-
tainty in our classifications. An increasing proportion of lake drainage events in a warmer
year may indicate a non-linearity in the potential for hydrofracture with increasing sum-
mer air temperatures. We further provide evidence for several high elevation lake drainage
events, above the previously hypothesized 1600 m elevation hydrofracture limit (Poinar
et al., 2015). Our results additionally suggest that mean lake depth is related to drainage
potential, as the proportion of draining lakes increases with mean depth. However, we
surprisingly find deeper non-draining lakes during the cooler 2018 melt season, a topic
that should be the focus of future work. The novel supraglacial lake classification method
presented here, and the unique resulting dataset, provide important new insight into lake
drainage and refreeze and will be useful for future GrIS supraglacial lake and hydrofrac-
ture research.

7 Open Research

GrIS supraglacial lake outlines from the 2018 and 2019 melt seasons can be found
at: https://zenodo.org/records/4813833. All satellite imagery used is freely avail-
able on Google Earth Engine (GEE) at the following GEE identifier snippets — Sentinel
1: ee.ImageCollection(” COPERNICUS/S1_GRD”), Sentinel 2:
ee.ImageCollection(” COPERNICUS/S2_ HARMONIZED” ), and Landsat 8:
ee.ImageCollection("LANDSAT/LC08/C02/T1_-TOA”). CARRA data is publicly avail-
able on Copernicus’ C3S Climate Data Store (DOI: DOL: 10.24381/cds.713858f6)
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629 Time series model classification code and output can be obtained by request dur-
630 ing the review process and will be made publicly available on Zenodo after review.
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