

1 **Greenland Ice Sheet wide supraglacial lake evolution**
2 **and dynamics: insights from the 2018 and 2019 melt**
3 **seasons**

4 **D. Dunmire^{1,2}, A. C. Subramanian¹, E. Hossain³, M. O. Gani³, A. F.**
5 **Banwell⁴, H. Younas⁵, B. Myers^{1,6}**

6 ¹Department of Atmospheric and Oceanic Sciences, University of Colorado - Boulder, Boulder, USA

7 ²Department of Earth and Environmental Sciences, KU Leuven, Belgium

8 ³Department of Information Systems, University of Maryland Baltimore County, Baltimore, USA

9 ⁴Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder,

10 Boulder, USA

11 ⁵St. John's School, Houston, USA

12 ⁶National Center for Atmospheric Research (NCAR), Boulder, USA

13 **Key Points:**

14

- 15 We present a novel machine learning time series classification method to categorize draining, refreezing, and buried lakes on an ice-sheet-wide scale.
- 16 We find a greater percentage of lakes drain during a warmer melt year than during a cooler one.
- 17
- 18 Our 2-year dataset provides additional insight into dynamic factors that may control supraglacial lake hydrofracture events.
- 19

20 This is a non-peer reviewd pre-print. This manuscript is currently under revision
21 at Earth and Space Sciences.

22 **Abstract**

23 Supraglacial lakes on the Greenland Ice Sheet (GrIS) can impact both the ice sheet sur-
 24 face mass balance and ice dynamics. Thus, understanding the evolution and dynamics
 25 of supraglacial lakes is important to provide improved parameterizations for ice sheet
 26 models to enable better projections of future GrIS changes. In this study, we utilize the
 27 growing inventory of optical and microwave satellite imagery to automatically determine
 28 the fate of Greenland-wide supraglacial lakes during 2018 and 2019; cool and warm melt
 29 seasons respectively. We develop a novel time series classification method to categorize
 30 lakes into four classes: 1) refreezing, 2) rapidly draining, 3) slowly draining, and 4) buried.
 31 Our findings reveal significant interannual variability between the two melt seasons, with
 32 a notable increase in the proportion of draining lakes in 2019. We also find that as mean
 33 lake depth increases, so does the percentage of lakes that drain, indicating that lake depth
 34 may influence hydrofracture potential. However, we also observe that non-draining lakes
 35 are deeper during the cooler 2018 melt season, suggesting that additional factors may
 36 predispose lakes to drain earlier in a warmer year. Our automatic classification approach
 37 and the resulting two-year ice-sheet-wide dataset provide unprecedented insights into GrIS
 38 supraglacial lake dynamics and evolution, offering a valuable resource for future research.

39 **Plain Language Summary**

40 Lakes form on the surface during the summer months along the margins of the Green-
 41 land Ice Sheet. Throughout the summer, these lakes can drain rapidly over a few hours
 42 or days through cracks in the ice, delivering water to the base of the ice sheet and in-
 43 fluencing ice flow speed. At the end of the summer, remaining surface meltwater refreezes,
 44 or can sometimes remain liquid buried just beneath the surface. The varying impact that
 45 meltwater lakes can have on the ice sheet underscores the importance of understanding
 46 their seasonal evolution in different regions of the ice sheet. Here, we develop a new method
 47 to automatically categorize lakes that drain, refreeze, or become buried during a rela-
 48 tively cool (2018) and warm (2019) summer. We find that a higher percentage of lakes
 49 drain during a warmer year, a finding that has important implications in a warming cli-
 50 mate. We also find that deeper lakes were more likely to drain, but that non-draining
 51 lakes were also deeper during a colder year, suggesting that other factors also contribute
 52 to lake drainage. Our new method and unique dataset provide new insight into Green-
 53 land Ice Sheet surface lake dynamics and evolution.

54 **1 Introduction**

55 Meltwater features on the Greenland Ice Sheet (GrIS) impact ice sheet mass bal-
 56 ance directly by removing mass via drainage and runoff, and indirectly by influencing
 57 ice sheet dynamics (Chu, 2014). Supraglacial lakes form during the summer months along
 58 low-elevation margins of the ice sheet in persistent topological depressions driven by bed
 59 topography (Echelmeyer et al., 1991; McMillan et al., 2007; Sundal et al., 2009). Sum-
 60 mer near-surface air temperature is non-linearly related to surface meltwater production
 61 due to the positive melt-albedo feedback (Trusel et al., 2015) and in recent years, supraglacial
 62 lakes and runoff have been observed at increasing elevations across the ice sheet (Howat
 63 et al., 2013; Leeson et al., 2015; Tedstone & Machguth, 2022), a trend that is expected
 64 to continue in a warming climate.

65 Supraglacial lakes can impact the ice sheet in a variety of ways. As temperatures
 66 drop below 0°C in the fall, remaining surface meltwater typically refreezes (Selmes et
 67 al., 2011; Johansson et al., 2013). Refrozen meltwater creates solid, impermeable ice lay-
 68 ers, thereby increasing firn density, decreasing available firn air content, and impacting
 69 future meltwater percolation. During future melt seasons, these ice layers merge and thicken
 70 as meltwater percolates and refreezes around them, resulting in expansive ice slabs that
 71 inhibit downward percolation of meltwater (MacFerrin et al., 2019; Jullien et al., 2023)

72 and limit future meltwater storage capacity within the firn (Machguth et al., 2016). The
 73 formation of expansive ice slabs in Greenland's accumulation zone has led to increased
 74 ice sheet runoff (MacFerrin et al., 2019; Mikkelsen et al., 2016).

75 In some cases however, supraglacial lakes do not refreeze entirely and meltwater
 76 can remain liquid insulated beneath the ice surface throughout the winter in features known
 77 as 'buried lakes' (Koenig et al., 2015; Law et al., 2020; Schröder et al., 2020; Dunmire
 78 et al., 2021). Buried lake meltwater storage may mitigate the ice sheet's contribution to
 79 sea level rise by storing water that might otherwise runoff (Harper et al., 2012; Forster
 80 et al., 2014); however, once meltwater fills firn pore space, this pore space cannot be re-
 81 generated quickly (Harper et al., 2012).

82 Supraglacial lakes can also drain throughout the melt season. These drainages can
 83 be slow, as meltwater overflows lake basins and routes through surface channels (Catania
 84 et al., 2008; Banwell et al., 2012), or rapid, as meltwater drains vertically through frac-
 85 tures, a process known as hydrofracture (Das et al., 2008; Tedesco et al., 2013). Hydrofrac-
 86 ture events inject meltwater to the bed of the ice sheet which reduces basal friction and
 87 temporarily increases ice velocity (Zwally et al., 2002; Bartholomaus et al., 2008; Bartholomew
 88 et al., 2010; Hoffman et al., 2011). Moulins formed via hydrofracture can persist through-
 89 out the melt season and continually deliver meltwater to the base of the ice sheet, fur-
 90 ther affecting basal friction and ice velocity throughout the remainder of the melt sea-
 91 son (Catania & Neumann, 2010; Banwell et al., 2016).

92 Given the substantial and varied impact of supraglacial lakes on the GrIS, it is im-
 93 portant to understand when, where, and how drainage and refreezing events occur to pro-
 94 vide improved parameterizations for ice sheet models and to better project future ice sheet
 95 changes. Previous work has detected GrIS supraglacial lakes and channels using a va-
 96 riety of multi-spectral satellite images including the Moderate Resolution Imaging Spec-
 97 troradiometer (MODIS; Box and Ski (2007), Sundal et al. (2009), Johansson and Brown
 98 (2013), Williamson, Arnold, Banwell, and Willis (2017)), the Land Remote-Sensing Satel-
 99 lite System (Landsat satellites; Banwell et al. (2014), Macdonald, Banwell, and MacAyeal
 100 (2018)), Sentinel-2 (Hochreuther et al., 2021; Zhang et al., 2023), WorldView (Yang &
 101 Smith, 2013; Daneshgar et al., 2019), or a combination of these various satellites (Williamson,
 102 Banwell, et al., 2018; Wang & Sugiyama, 2024). More recently, Sentinel-1 Synthetic Aper-
 103 ture Radar (SAR) observations have been used to detect supraglacial and buried melt-
 104 water features across the GrIS (Miles et al., 2017; Schröder et al., 2020; Dunmire et al.,
 105 2021; Benedek & Willis, 2021; Zheng et al., 2023). SAR can be used year round, regard-
 106 less of the weather, and can penetrate the surface and detect meltwater buried several
 107 meters beneath the surface (Rignot et al., 2001).

108 Current work investigating the seasonal evolution of GrIS supraglacial lakes is mostly
 109 limited to a regional or individual drainage basin scale (McMillan et al., 2007; Sundal
 110 et al., 2009; Morriss et al., 2013; Turton et al., 2021; Otto et al., 2022; Wang & Sugiyama,
 111 2024; Glen et al., 2024), or is more than a decade old and relies on low-resolution MODIS
 112 imagery for lake tracking (Selmes et al., 2011, 2013). Here, we develop and present a novel
 113 classification method that utilizes time series of features from both optical and microwave
 114 imagery to automatically classify GrIS supraglacial lakes into four behavioral categories:
 115 1) refreezing, 2) rapidly draining, 3) slowly draining, and 4) those that transition to buried
 116 lakes by the end of the melt season. We apply our classification method to supraglacial
 117 lakes previously identified during the 2018 and 2019 melt seasons (Dunmire et al., 2021),
 118 a cold and warm year respectively. In doing so, we provide a comprehensive dataset of
 119 ice-sheet-wide lake drainage events and new insight into lake drainage and refreeze that
 120 will aide future GrIS supraglacial lake and hydrofracture research.

121 **2 Data**122 **2.1 Greenland supraglacial lake dataset**

123 For this study, we used the pan-Greenland supraglacial lake dataset from Dunmire
 124 et al. (2021). This dataset contains high-resolution (30 m) outlines for supraglacial lakes
 125 with a surface area $> 0.05 \text{ km}^2$ from the 2018 and 2019 melt seasons across the 6 major
 126 GrIS drainage basins, defined by Rignot and Mouginot (2012) (SW, CW, NW, NO,
 127 NE, and SE). The dataset additionally provides lake surface area information and the
 128 elevation for each supraglacial lake from the Greenland Ice Mapping Project (GIMP) el-
 129 evation dataset (Howat et al., 2015). There are 3846 supraglacial lakes in 2018 and 6146
 130 in 2019 (Dunmire et al., 2021). We chose this dataset because it covers the entire ice sheet
 131 and is available at a high spatial resolution.

132 **2.2 Satellite imagery**

133 We obtained imagery from three different satellites on the Google Earth Engine
 134 (GEE) platform (Gorelick et al., 2017): Sentinel-1 (S1, microwave), Sentinel-2 (S2, opti-
 135 cal), and Lansdat 8 (L8, optical). We utilized available imagery from these satellites
 136 between January 1, 2018 and December 31, 2019.

137 The S1 satellite provides C-band SAR backscatter imagery over the entire GrIS.
 138 For 2018 and 2019, the dual S1A and S1B satellites provided a maximum 6-day repeat
 139 observation cycle. We used the horizontally-transmitted, vertically-received (HV) band
 140 of the Interferometric Wide swath mode, which is available at a 10 m horizontal reso-
 141 lution.

142 For optical imagery, we used the S2 Level-1C orthorectified top-of-atmosphere re-
 143 flectance. Of the 13 spectral bands available from the S2 data, we used Band 2 (Blue,
 144 20 m horizontal resolution), Band 3 (Green, 20 m), Band 4 (Red, 20 m), Band 10 (Cir-
 145 rus, 60 m) and Band 11 (SWIR 1, 20 m). We also obtained optical imagery from the Land-
 146 sat 8 calibrated top-of-atmosphere reflectance collection, utilizing Band 2 (Blue, 30 m),
 147 Band 3 (Green, 30 m), Band 4 (Red, 30 m), and Band 6 (SWIR 1, 30 m).

148 **2.3 Regional Climate Modeling data**

149 We obtained near-surface (2 m) air temperature data from the west-domain of the
 150 Copernicus Arctic Regional Reanalysis product (CARRA-West; Schyberg et al. (2020)).
 151 This product provides 3-hourly analyses at a 2.5 km spatial resolution over the GrIS and
 152 is forced at the boundaries with ERA5 for the period of 1991 – present. For each supraglacial
 153 lake outline in 2018 and 2019, we obtained an annual time series of mean daily near-surface
 154 air temperatures from the CARRA-West grid cell containing the lake.

155 **3 Methodology**156 **3.1 Satellite Imagery Preprocessing**157 **3.1.1 S1 imagery time series**

158 S1 imagery available on GEE is already preprocessed with the following steps: (1)
 159 thermal noise removal, (2) radiometric calibration, (3) terrain correction using ASTER
 160 DEM, and (4) values converted to decibels via log scaling. For each 2018 and 2019 supraglacial
 161 lake outline (Dunmire et al., 2021), we utilized all available S1 imagery from January
 162 1 through December 31 of the year the lake was detected. Then, from every available
 163 S1 image, we computed the average HV value within each lake outline (HV_{lake}) and the
 164 average HV value within 750 m outside the lake bounds ($HV_{background}$). We then com-
 165 puted a backscatter anomaly for the lake (HV_{anom}) following Equation 1:

$$HV_{anom} = HV_{lake} - HV_{background} \quad (1)$$

166 By computing a backscatter lake anomaly, we can better compare imagery between
 167 orbits with different incidence angles. To obtain a complete annual time series of HV_{anom}
 168 for each lake, we linearly interpolated between all observations. We then further smoothed
 169 variability between observations from different S1 orbits by applying a 12-day smoothing
 170 filter. (e.g. Fig. S1).

171 **3.1.2 Optical imagery time series**

172 S2 images with $\leq 90\%$ cloud coverage were obtained for each lake between May
 173 1 and October 15 during the year that the lake was detected. Because top-of-atmosphere
 174 S2 imagery in GEE is scaled by a factor of 10,000, we first divided all spectral bands by
 175 10,000. For each image we then created a cloud pixel mask and a water pixel mask. Clouds
 176 in S2 imagery were masked following Moussavi et al. (2020) where $SWIR(B11) > 0.1$
 177 or $Cirrus(B10) > 0.1$. Water was masked where the Normalized Difference Water In-
 178 dex (NDWI, Equation 2) > 0.18 (Moussavi et al., 2016; Pope et al., 2016; Yang & Smith,
 179 2013; Moussavi et al., 2020). We did not use the Green - Red > 0.09 threshold for mask-
 180 ing water from Moussavi et al. (2020) because we found that this excluded parts of lakes
 181 with deep water.

182 We performed a similar cloud and water masking procedure for L8 imagery. Fol-
 183 lowing Moussavi et al. (2020), we masked pixels as clouds where the Normalized Differ-
 184 ence Snow Index (NDSI, Equation 3) < 0.8 or where $SWIR(B6) > 0.1$. Water in L8 im-
 185 ages was masked where $NDWI > 0.19$ and where $Blue - Green > 0.7$. Again, we did not
 186 use the Green - Red > 0.7 from Moussavi et al. (2020) because this threshold excluded
 187 deeper water.

$$NDWI = \frac{Blue - Red}{Blue + Red} \quad (2)$$

$$NDSI = \frac{Green - SWIR}{Green + SWIR} \quad (3)$$

188 For both S2 and L8 imagery, we did not compute a Rock/Seawater mask because
 189 we had pre-defined supraglacial lake outlines from Dummine et al. (2021). After creat-
 190 ing the cloud and water pixel masks for all S2 and L8 image, for each lake we then re-
 191 moved images with pixels inside the lake's bounds masked as clouds. We then computed
 192 the percentage of pixels within the lake bounds masked as water (p_{water}). We determined
 193 p_{water} for each lake individually and from every non-cloudy optical image. We also ob-
 194 tained the average solar zenith angle (SZA) within each of the lake bounds from every
 195 optical image.

196 After combining p_{water} from S2 and L8 imagery for a lake, the following steps were
 197 taken at each time step t to remove outlier observations:

199 1. The observation was removed if:

200 • $p_{water}(t) > 0.05$, and
 201 • $SZA(t) > 75^\circ$

202 This was often the case during shoulder seasons when shadows were misclassified
 203 as water (e.g. Fig. S2a).

204 2. The observation was removed if:

205 • $p_{water}(t) > 0.4$, and
 206 • $p_{water}(t - 1) < \frac{1}{2}p_{water}(t)$, and

207 • $p_{water}(t+1) < \frac{1}{2}p_{water}(t)$, and
 208 • at a previous time step ($t_{prev.}$): $p_{water}(t_{prev.}) > 0.8$

209 This was often the case if there were cloud shadows within the lake bounds or for
 210 211 shadows not removed in Step 1 (e.g. Fig. S2b). The specification that the lake pre-
 212 213 viously had to have water ($p_{water}(t_{prev.}) > 0.8$) was applied so that observations
 214 215 where the lake filled and drained rapidly were not excluded.

216 3. The observation was removed if:

217 • $p_{water}(t-1) - p_{water}(t) > 0.2$, and
 218 • $p_{water}(t+1) - p_{water}(t) > 0.2$

219 These outliers existed if clouds were missed by the cloud mask (e.g. Fig. S2c).

220 Finally, we linearly interpolated all observations to obtain an annually complete
 221 222 time series of p_{water} for each lake.

223 3.2 Supraglacial lake classification

224 3.2.1 Supraglacial lake classes

225 Here, we classify supraglacial lakes into four categories based on their evolution through-
 226 227 out the melt season. These lake classes are: 0) refreezes, 1) rapidly drains, 2) slowly drains,
 228 229 and 3) becomes buried (Fig. 1). To create the training dataset for our model, which au-
 230 231 tomatically classifies supraglacial lakes into these four classes, we manually labeled 1000
 232 233 lakes, with 250 for each class. We defined rapidly draining lakes to be where p_{water} de-
 234 235 creases to 20% of the lake's maximum value in a period shorter than 6 days, following
 236 237 Morriess et al. (2013). While rapid drainage events can be defined over periods shorter
 238 239 than this (i.e 2 days: (Das et al., 2008; Tedesco et al., 2013; Selmes et al., 2011) or 4 days:
 240 241 (Williamson, Willis, et al., 2018; Doyle et al., 2014)), we use a more relaxed threshold
 242 243 to accommodate the sometimes limited temporal resolution of clear-sky optical imagery
 244 245 (Morriess et al., 2013).

246 Supraglacial lakes were labeled from all 6 GrIS regions and confirmed using GEE
 247 248 optical and microwave imagery. Figure 1 shows example time series of p_{water} and HV_{anom}
 249 250 for a lake from each class. From our labeled lakes dataset, we used 80% for training our
 251 252 model, and set aside the remaining 20% for final model testing.

253 3.2.2 Time series classification model selection

254 Various deep learning techniques have been proposed for time series classification
 255 256 including recurrent neural network-based models, distance-based models, feature-based
 257 258 models, interval-based models, and kernel-based models. To classify supraglacial lakes
 259 260 using the p_{water} and HV_{anom} time series, we utilized the *sktime* Python time series clas-
 261 262 sification package (Löning et al., 2019). From *sktime*, we explored the recurrent neural
 263 264 network-based algorithm LSTMFCNClassifier (Karim et al., 2019), distance-based al-
 265 266 gorithm KNeighborsTimeSeriesClassifier, feature-based algorithm RandomIntervalClas-
 267 268 sifier, kernel-based algorithm RocketClassifier (Dempster et al., 2020), and three interval-
 269 270 based algorithms CanonicalIntervalForest (Middlehurst et al., 2020), SupervisedTime-
 271 272 SeriesForest (Cabello et al., 2020), TimeSeriesForestClassifier (Deng et al., 2013).

273 Before training the models, we normalized the timeseries data into the range of [0,1].
 274 The aforementioned models are evaluated with two different feature sets: one with only
 275 276 HV_{anom} , and one with both HV_{anom} and p_{water} , to determine the added benefit of in-
 277 278 cluding time series from optical imagery, which typically has more limited temporal cov-
 279 280 erage than microwave imagery. We did not train a model with only p_{water} because the
 281 282 optical imagery alone is insufficient to identify buried lakes. To avoid overfitting, we ap-
 283 284 plied a k -fold cross-validation with 5 folds, where the model is alternatively tested on

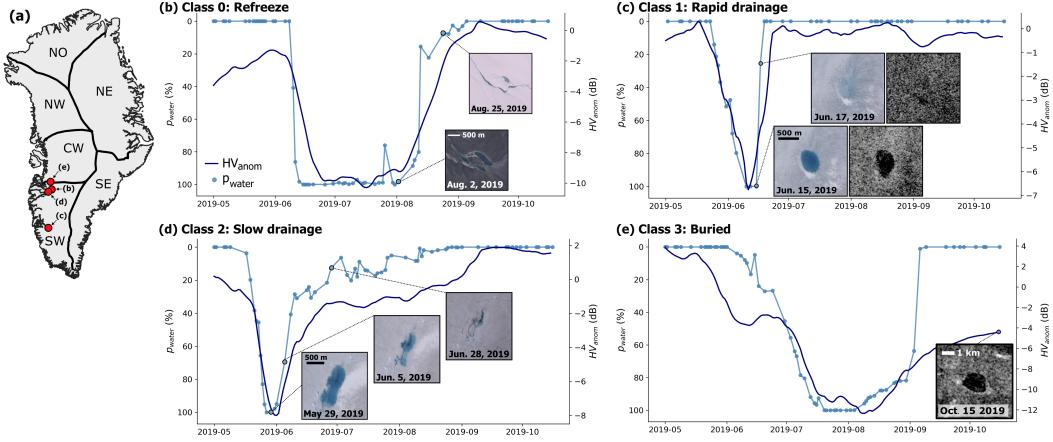


Figure 1. Example optical and microwave time series for each supraglacial lake class. (a) Map of GrIS with lakes in b-e indicated with red dots, (b) refreeze (class 0), (c) rapidly drains (class 1), (d) slowly drains (class 2), and (e) becomes buried (class 3). Light blue lines indicate p_{water} , with dots for each optical image of the lake (left y-axis) and dark blue lines represent time series of HV_{anom} (left y-axis).

one fold and trained on the other 4 folds. We trained the models using the previously mentioned 1000 manually labeled supraglacial lakes, with 250 for each class (refreeze, rapid drain, slow drain, and buried).

Table S1 summarizes the resulting accuracy from this cross-validation for the different time series classification techniques. We observe that the performance of all models improved substantially when p_{water} is incorporated, which is understandable given that p_{water} provides additional useful information for the lake classifications. Moreover, out of the 7 classification techniques, RocketClassifier achieved the most consistently high accuracy in all scenarios (with and without p_{water} and using cross-validation). In addition, RocketClassifier has a significant computational advantage over the other complex architectures of the other models. Therefore, we used RocketClassifier for the remainder of this study.

3.2.3 Time series classification with *ROCKET*

RocketClassifier (ROCKET, RandOM Convolutional Kernal Transform; Dempster et al. (2020)) has previously been evaluated on benchmark datasets in the UCR Archive (Dau et al., 2018) and can achieve the same accuracy as competing state-of-the-art algorithms in a fraction of the training time. ROCKET applies random convolutional kernels to transform the time series into features and then uses a linear classifier trained with the features. We used 10,000 convolutional kernels and the linear Ridge Classifier from the *scikit learn* python package (Pedregosa et al., 2011). We trained two separate ROCKET models: one that classifies lakes using the optical p_{water} lake time series ($ROCKET_{op}$) and one that classifies lakes using the microwave HV_{anom} lake time series ($ROCKET_{mic}$). Using these two separate models allows us to classify lakes using one imagery source if the other is inadequate (i.e. limited availability of cloud-free optical images for a lake, Fig. S3b). Because buried lakes are invisible in optical imagery, $ROCKET_{op}$ will never be able to classify buried lakes correctly. As such, $ROCKET_{op}$ was only trained to classify lakes into classes 0, 1 and 2.

281 **3.2.4 End-model to resolve classification discrepancies**

282 In some cases, the time series created from microwave and optical imagery do not
 283 agree, resulting in different lake classifications from the $ROCKET_{op}$ and $ROCKET_{mic}$
 284 models (Fig. S3). To resolve discrepancies between $ROCKET_{op}$ and $ROCKET_{mic}$ clas-
 285 sifications, we further trained an end-model that uses the following features to make a
 286 final classification for the lake:

- 287 • $ROCKET_{op}$ prediction (categorical)
- 288 • $ROCKET_{op}$ class 0 (refreeze) confidence score(numerical)
- 289 • $ROCKET_{op}$ class 1 (rapid drain) confidence score(numerical)
- 290 • $ROCKET_{op}$ class 2 (slow drain) confidence score(numerical)
- 291 • $ROCKET_{mic}$ prediction (categorical)
- 292 • $ROCKET_{mic}$ class 0 (refreeze) confidence score(numerical)
- 293 • $ROCKET_{mic}$ class 1 (rapid drain) confidence score(numerical)
- 294 • $ROCKET_{mic}$ class 2 (slow drain) confidence score(numerical)
- 295 • $ROCKET_{mic}$ class 3 (buried) confidence score (numerical)
- 296 • lake elevation (numerical)
- 297 • lake area (numerical)
- 298 • maximum p_{water} during the season (numerical)
- 299 • number of days it takes for p_{water} to decrease to 20% of the lake's maximum value
 300 ('drain time', numerical)
- 301 • temporal resolution of S1 observations during drain time (numerical)
- 302 • temporal resolution of optical observations during drain time (numerical)
- 303 • Average HV_{anom} for the lake between October 15 and November 1 (numerical)

304 The confidence score for each class comes from the sklearn RidgeClassifier model
 305 output and is proportional to the signed distance of that sample to the hyperplane. We
 306 trained the end-model using the *PyCaret* python package for automating machine learn-
 307 ing workflows (Moez, 2020). Numerical features were normalized and categorical features
 308 were one-hot encoded. We used 5-fold cross-validation to compare PyCaret classifica-
 309 tion models and to tune our model with a grid search of 500 iterations. With a cross-
 310 validation F1 score of 0.9543, the optimal end-model was a CatBoost classifier (Prokhorenkova
 311 et al., 2018).

312 This end-model was only applied when discrepancies between $ROCKET_{op}$ and $ROCKET_{mic}$
 313 exist. Examples of such discrepancies are for buried lakes (because $ROCKET_{op}$ will never
 314 be able to classify buried lakes, e.g., Fig. S3b), lakes at low elevation where the HV_{anom}
 315 time series is similar to that of buried lakes (e.g., Fig. S3c), or lake drainage events where
 316 the HV_{anom} time series does not capture the drainage in the same way as the p_{water} time
 317 series (e.g., Fig. S3d). If, for a given lake, the classifications from $ROCKET_{op}$ and $ROCKET_{mic}$
 318 were the same, then this classification was the final label given to the lake, and the end-
 319 model was not utilized.

320 After training $ROCKET_{op}$, $ROCKET_{mic}$, and the end-model, we tested our en-
 321 tire pipeline on 200 independent samples (~50 per class). On this test sample, our model
 322 had 98% accuracy and an F1 score of 0.98, with confusion for 4 lakes between the re-
 323 freeze and slow drain classes (Fig. S4).

324 **3.3 Supraglacial lake analysis**

325 After training and testing our approach, we applied our model on all 2018 and 2019
 326 supraglacial lakes, giving each lake a label based on its evolution throughout each melt
 327 season.

328 **3.3.1 Lake depth**

329 For each lake with a maximum $p_{water} > 0.5$ and no greater than a 31 day gap be-
 330 tween optical observations, we calculated the mean lake depth at the time when p_{water}
 331 was at its maximum. First, we found the date of maximum p_{water} for the lake. Then,
 332 using GEE, we retrieved either the S2 or L8 image from this date, preferring to use S2
 333 where possible due to S2's higher spatial resolution. To compute lake depth for each pixel
 334 (z_{pix}), we followed Williamson, Banwell, et al. (2018), which uses Equation 4 below, de-
 335 veloped by Pope et al. (2016) based on the attenuation of optical light in a water col-
 336 umn:

$$z_{pix} = \frac{[\ln(A_d - R_\infty) - \ln(R_{pix} - R_\infty)]}{g}, \quad (4)$$

337 where A_d is the lake-bottom albedo, R_∞ is the reflectance for optically deep wa-
 338 ter, and R_{pix} is the pixel reflectance, and g is the coefficient for the losses in upward and
 339 downward travel through a water column. For both S2 and L8 imagery, we averaged depths
 340 calculated using the red (B4) and green (B3) top-of-atmosphere reflectance data. A_d was
 341 calculated as the average reflectance of the relevant band for the ring of pixels imme-
 342 diately surrounding the lake (ring of 3 pixels for S2; Williamson, Banwell, et al. (2018))
 343 and R_∞ was approximated as 0 (Banwell et al., 2019; Dell et al., 2020). For L8 imagery,
 344 we used $g = 0.7507$ for the red band and $g = 0.1413$ for the green band (Pope et al.,
 345 2016). We used S2 g values determined by Williamson, Banwell, et al. (2018) ($g = 0.8304$
 346 for the red band and $g = 0.1413$ for the green band). We determined the mean lake depth
 347 after calculating z_{pix} for each pixel within the lake bounds.

348 **3.3.2 Drainage date**

349 For each supraglacial lake that was labeled to have undergone rapid drainage, we
 350 also determined the drainage date. To do this, we found the last time step t where $p_{water}(t) <$
 351 0.8 and $p_{water}(t) < \max(p_{water})$. Even though this time step is before the respective
 352 lake drainage event, we label it as the 'drainage date' as it is the last available optical
 353 image where the lake is full of water.

354 **4 Results**

355 Comparing our results for the colder 2018 and warmer 2019 melt seasons, we ob-
 356 serve both interannual variability in surface meltwater production and total number of
 357 supraglacial lakes, as well as a shift in supraglacial lake dynamics (Fig. 2, Tab. S2). The
 358 total number of supraglacial lakes increases by 60% from 2018 (3846 lakes) to 2019 (6146
 359 lakes) (Dunmire et al., 2021). Correspondingly, there is a substantial expansion in supraglacial
 360 lake area, increasing from 1242 km^2 in 2018 to 2569 km^2 in 2019 (+107%). Despite a
 361 more than doubling of supraglacial lake area between the two years, in this study we find
 362 that refrozen lake area increases by only 7.6% and the total number of refreezing lakes
 363 actually decreases from 1330 lakes (34% of all 2018 lakes) to 1096 lakes (18% of all 2019
 364 lakes). The proportion of refreezing supraglacial lakes changes the most drastically in
 365 the Northern GrIS regions. For example, in NO Greenland, more than 50% of identified
 366 supraglacial lakes refreeze in 2018 while only 21% refreeze in 2019, with the total refrozen
 367 lake area actually diminishing by 27%.

368 Coincident with the observed decrease in the proportion of refreezing lakes in 2019,
 369 we observe a substantial rise in the proportion of lakes that drain slowly, increasing from
 370 26% of all GrIS supraglacial lakes in 2018 to 40% in 2019. Again, this change is most
 371 prominent in the Northern GrIS regions, where the incidence of slowly draining lakes in-
 372 creases by 190%, 269%, and 334% in the NW, NO, and NE, respectively.

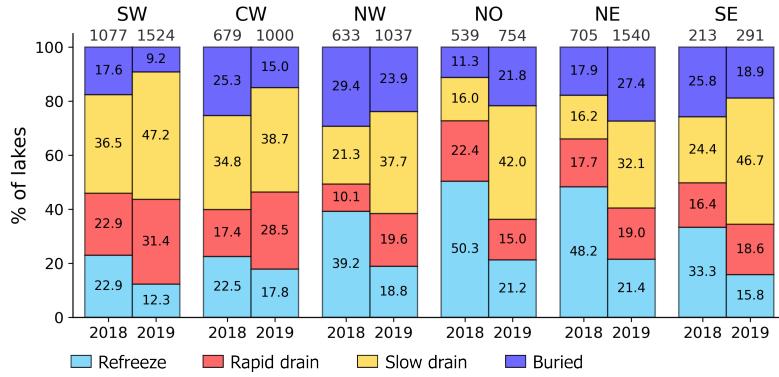


Figure 2. The percentage of lakes that refreeze, drain rapidly, drain slowly, or become buried in 2018 and 2019 for each GrIS region (as indicated in Fig. 1.)

Figure 3 illustrates this shift from predominately refreezing lakes in 2018 to draining lakes in 2019 for a case study area in NE Greenland. Within this approximately $20 \times 15 \text{ km}^2$ region, 16 distinct lakes were detected in 2018 (Fig. 3b,c) and 15 were detected in 2019 (Fig. 3d,e). The onset of mean daily air temperatures above freezing for this region in 2019 occurs on June 11 (Fig. 3h). Over the ensuing week (June 11 - June 17), the mean 2019 air temperature is 6.7°C higher compared to the corresponding period in 2018, during which the mean daily air temperature remains below freezing until June 25. During July and August, mean air temperatures remain 2.7°C cooler in 2018 relative to 2019.

We suggest that this interannual variability in air temperature not only results in differences in surface meltwater production between the two melt seasons, but also a shift in supraglacial lake dynamics. For example, in this area of NE Greenland, 11 of 16 (69%) lakes refreeze during the 2018 melt season (Fig. 3f). In contrast, in 2019 (Fig. 3g), nearly all the lakes drain either slowly (9 of 15, 60%) or rapidly (4 of 15, 27%). Despite late August 2018 experiencing average air temperatures nearly 4°C cooler than the same period in 2019, we observe a greater presence of ponded meltwater during this period in the 2018 melt season (Fig. 3c,e). The absence of ponded meltwater in late August 2019 is attributed to the lakes in this area having previously drained.

The proportion of lakes that rapidly drain also increases between the two years, from 18% of all GrIS lakes in 2018 to 23% in 2019. The relative increase in rapid lake drainage events is most substantial in Western Greenland, where the number of rapid lake drainages increases by 93%, 141%, and 217% in the SW, CW, and NW regions respectively, despite these regions experiencing 41%, 47%, and 64% increases in the total number of supraglacial lakes. Figure 4 demonstrates this shift for a case study area in CW Greenland. Within this area, 4 of the 18 (22%) identified supraglacial lakes refreeze in 2018, with the remaining lakes transitioning to buried lakes at the end of the melt season (4b, e). There are no lake drainage events in this area in 2018. In contrast, in 2019, 9 of the 17 (53%) identified lakes drain rapidly, with a multi-lake hydrofracture event occurring sometime between July 23 and 26, 2019 (4c,d,f). In this area, early season (May 1 - June 15) average daily air temperatures are substantially warmer ($+5.9^\circ\text{C}$) in 2019 relative to 2018. Despite the daily mean air temperature rising above freezing for the first time earlier during the 2018 melt season (June 4), throughout the remainder of June and July 2019, daily air temperatures remain 2.1°C warmer than in 2018. Much of this area in the CW region is located relatively far inland, and the 2019 rapidly draining lakes here have an average elevation of 1490 m, higher than the 99th percentile elevation for rapidly draining lakes in CW Greenland in 2018.

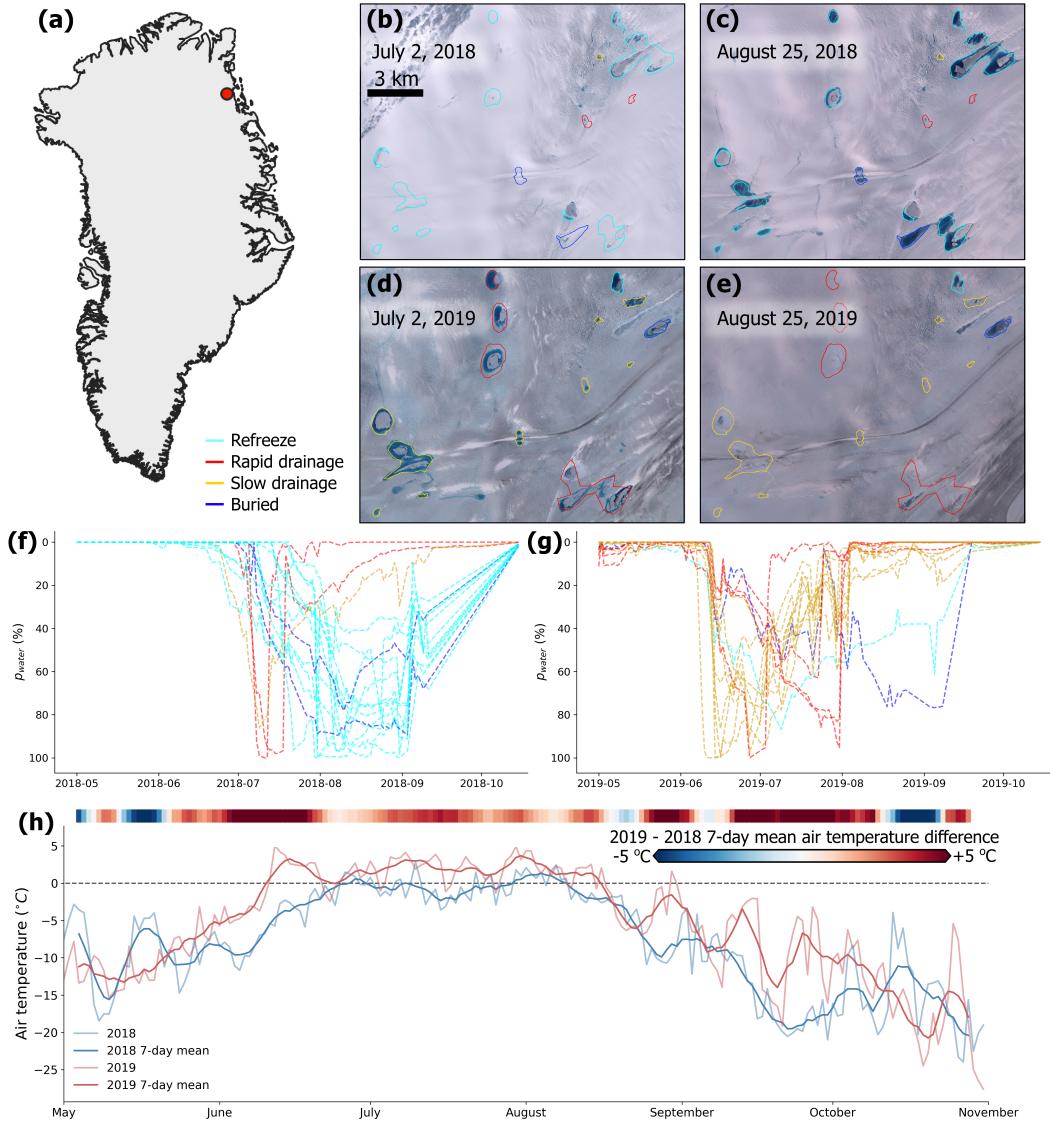


Figure 3. Example supraglacial lake changes for a case study area in NE Greenland, indicated by the red dot in (a). (b-e) S2 imagery from July 2, 2018 (b), August 25, 2018 (c), July 2, 2019 (d) and August 25, 2019 (e). 2018 (b,c) and 2019 (d,e) Detected lakes from 2018 (b,c) and 2019 (d,e) are outlined and colored corresponding to their evolution classification throughout the melt season. (f-g) Time series of p_{water} for each lake in 2018 (f) and 2019 (g). Time series are colored corresponding to the each lake's evolution classification. (h) Time series of mean daily air temperature for this region in 2018 (blue) and 2019 (red). The colored bar at the top of the plot represents the difference in 7-day mean air temperatures between the two years (2019 - 2018).

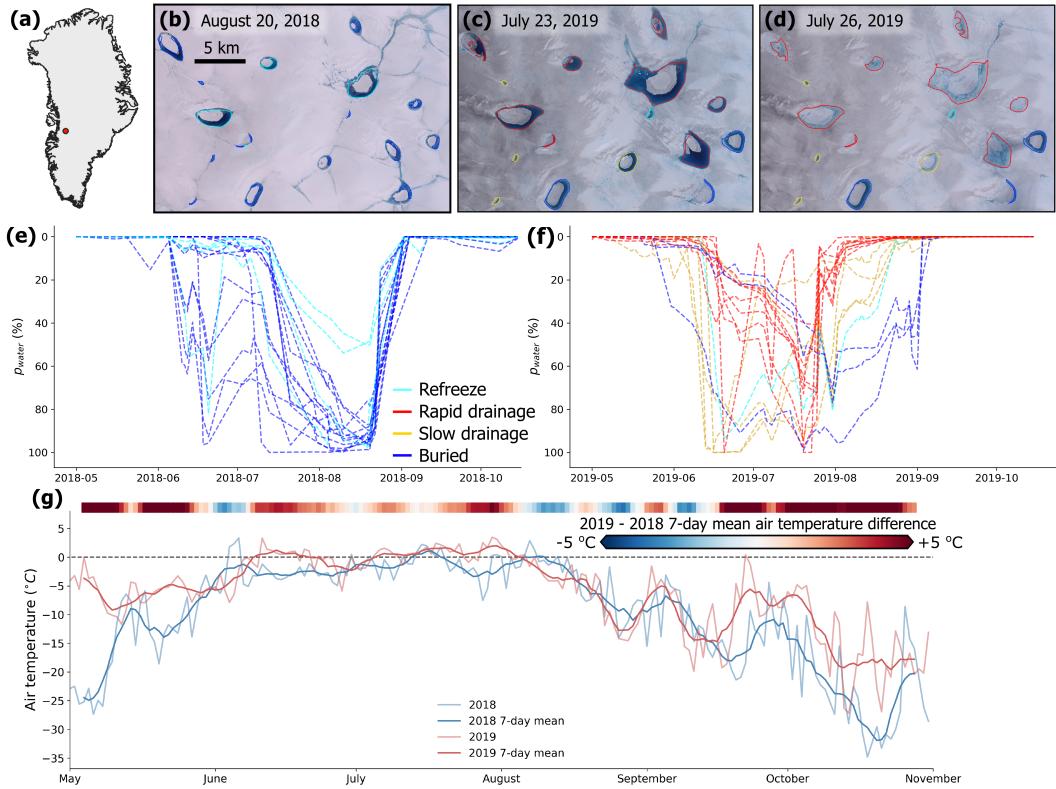


Figure 4. Example supraglacial lake changes for a region in CW Greenland (a). (b-d) S2 imagery from August 20, 2018 (b), July 23, 2019 (c), and July 26, 2019. Detected lakes from 2018 (b) and 2019 (c,d) are outlined and colored corresponding to their evolution classification throughout the melt season. (e-f) Time series of p_{water} for each lake in 2018 (e) and 2019 (f). Time series are colored corresponding to the lake's evolution classification. (g) Time series of mean daily air temperature for this region in 2018 (blue) and 2019 (red). The colored bar at the top of the plot represents the difference in 7-day mean air temperatures between the two years (2019 - 2018).

409 In accordance with Selmes et al. (Selmes et al., 2013), we observe, across all regions
 410 of the GrIS and over both years, that draining lakes are located at lower elevations than
 411 lakes that refreeze or become buried (Fig. 5). In the Northern GrIS regions (NW, NO,
 412 and NE), where lakes typically form at lower elevations, rapid lake drainages occur at
 413 a mean elevation of 641 ± 361 m (± 1 standard deviation) and slow lake drainages oc-
 414 cur at a mean elevation of 752 ± 346 m. In contrast, lakes that do not drain, but either
 415 refreeze or become buried, are located at mean elevations of 939 ± 381 m and $1099 \pm$
 416 390 m, respectively. In Southern Greenland (SW, CW, SE), rapid and slow drainage events
 417 occur at mean elevations of 1159 ± 323 m and 1199 ± 298 m, respectively, while refreez-
 418 ing and buried lakes are located at average elevations of 1408 ± 267 m and 1544 ± 227
 419 m.

420 Figure 5 also demonstrates that draining lakes are typically deeper than non-draining
 421 lakes. During both years, the mean depth for all rapidly draining lakes is 3.27 ± 0.99 m
 422 and varies about 35% between the six regions, with a minimum mean depth of 2.81 m
 423 in NO Greenland and a maximum mean depth of 3.62 m in SE Greenland. The regional
 424 variability in mean lake depth for other types of lakes is slightly larger, from 1.80 m (NO)
 425 to 2.99 m (SE) for refreezing lakes (47% of the mean), 2.06 m (NO) to 3.32 m (SE) for
 426 slowly draining lakes (43% of the mean), and 1.78 m (NO) to 3.12 m (SE) for buried lakes
 427 (54% of the mean).

428 Across the entire ice sheet, and for both years, 56% of lakes drain either rapidly
 429 or slowly. However, for lakes with a mean depth < 2 m, only 35% drain, with propor-
 430 tionally more refreezing or becoming buried (36% refreeze, 29% buried). In addition, most
 431 lakes that drain with mean depths shallower than 2 m drain slowly (27%), as opposed
 432 to rapidly (8%). As lakes deepen, there appears to be an increasing likelihood that they
 433 will drain, particularly rapidly, and a decreasing likelihood of refreezing (Fig. 6). For ex-
 434 ample, above 4 m depth, 70% of lakes drain (35% rapidly and 35% slowly).

435 Surprisingly, we find that lakes are deeper on average during the colder 2018 melt
 436 season (Fig. 7). The ice-sheet-wide mean lake depth in 2018 is 3.06 m, compared to 2.66 m
 437 in 2019, an approximate 13% reduction in mean lake depth. The depth reduction from
 438 2018 to 2019 is greatest in NO Greenland, where the 2018 mean depth (2.36 m) is 21%
 439 deeper than in 2019 (1.87 m), and smallest in SW Greenland, where the 2018 mean depth
 440 (3.00 m) is only 3% deeper than in 2019 (2.91 m). The mean lake depth difference be-
 441 tween 2018 and 2019 is also substantially larger for lakes that do not drain rapidly (Fig.
 442 7). For example, refreezing lakes have a mean depth of 2.87 m in 2018 and 2.11 m in 2019,
 443 a 26% reduction. The reduction in mean depth from 2018 to 2019 is only 2.7% for rapidly
 444 draining lakes.

445 Finally, we observe that rapid lake drainages occur earlier during the 2019 melt sea-
 446 son compared to 2018. The mean drainage date across all regions during the 2019 melt
 447 season (June 22 ± 20 days) is 17 days earlier than in 2018 (July 9 ± 15 days); a differ-
 448 ence that is fairly consistent across all 6 regions. Figure 8 demonstrates a major change
 449 in the timing of lake drainage for a case study area in NE Greenland. In 2019, lakes in
 450 the area delineated by the black box in Figure 8 drain between June 13 and 18, an av-
 451 erage of 44 days earlier than in 2018. This 2019 drainage period is also even before melt-
 452 water begins to pond on the surface during the 2018 melt season. In 2018, lakes in this
 453 area form after July 1 and drain primarily between July 28 and August 1. Also notable
 454 is that these lakes in 2018 have a larger surface area compared to 2019 (mean of 0.48 km^2
 455 in 2018 compared to 0.28 km^2 in 2019) and remain full for a longer period of time be-
 456 fore draining (Fig. 8c).

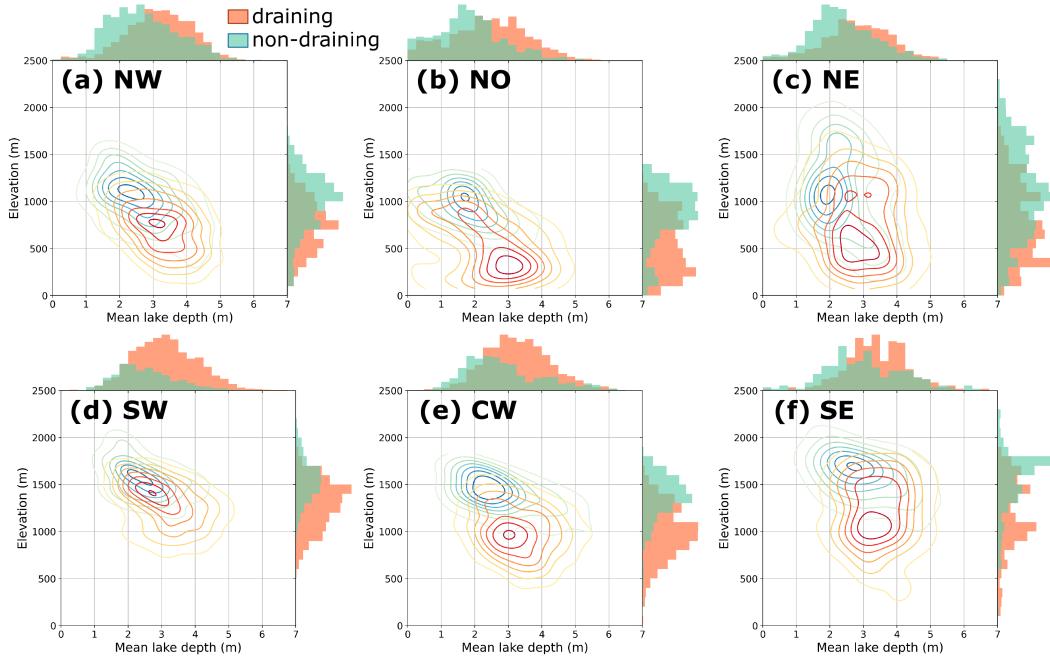


Figure 5. 2D histograms of mean lake depth vs. elevation for each region of the GrIS (includes both 2018 and 2019 lakes). The distribution for lakes that drain (either rapidly or slowly) is shown in red-orange while the distribution for lakes that do not drain (refreezing or buried lakes) is shown in blue-green.

5 Discussion

After applying our novel time series classification model, utilizing time series of both optical and microwave imagery, to a dataset of supraglacial lakes across the entire GrIS, we find that 18% and 23% of all lakes drain rapidly in 2018 and 2019, respectively. These proportions are larger than the 13% reported by Selmes et al. (2011), in which 2600 lakes were mapped over 5 different years (2005–2009). While this present study only spans 2 years, it includes nearly 10000 lakes and incorporates lakes smaller than those studied in Selmes et al. (2011), which was made possible by the finer spatial resolution available from the S1 and S2 imagery.

Additionally, previous work has concluded that interannual variability in lake evolution is much smaller than regional variability (Selmes et al., 2011, 2013). The work presented here does not support this conclusion. For example, in 2018 the percentage of refreezing lakes varies regionally from 22.5% in CW Greenland to 50.3% in NO Greenland, comparable to the interannual change in the percentage of refreezing lakes in NO Greenland between 2018 and 2019 (51.3% and 21.2%, respectively). This finding suggests that climatic controls, particularly near surface air temperature, effect not only the amount of surface meltwater production, but also how hydrologic systems develop and evolve throughout the melt season.

During the warmer 2019 melt season there were more supraglacial lakes and therefore more supraglacial lake drainage events. Importantly, however, in this study we also observe an increased proportion of draining lakes in 2019 relative to 2018 (Fig. 2). These findings have important implications in a warming climate. During future warmer melt seasons we can expect (a) increased runoff which enhances surface mass loss (Trusel et al., 2018; Hanna et al., 2008), (b) increased total volume of meltwater injected to the bedrock

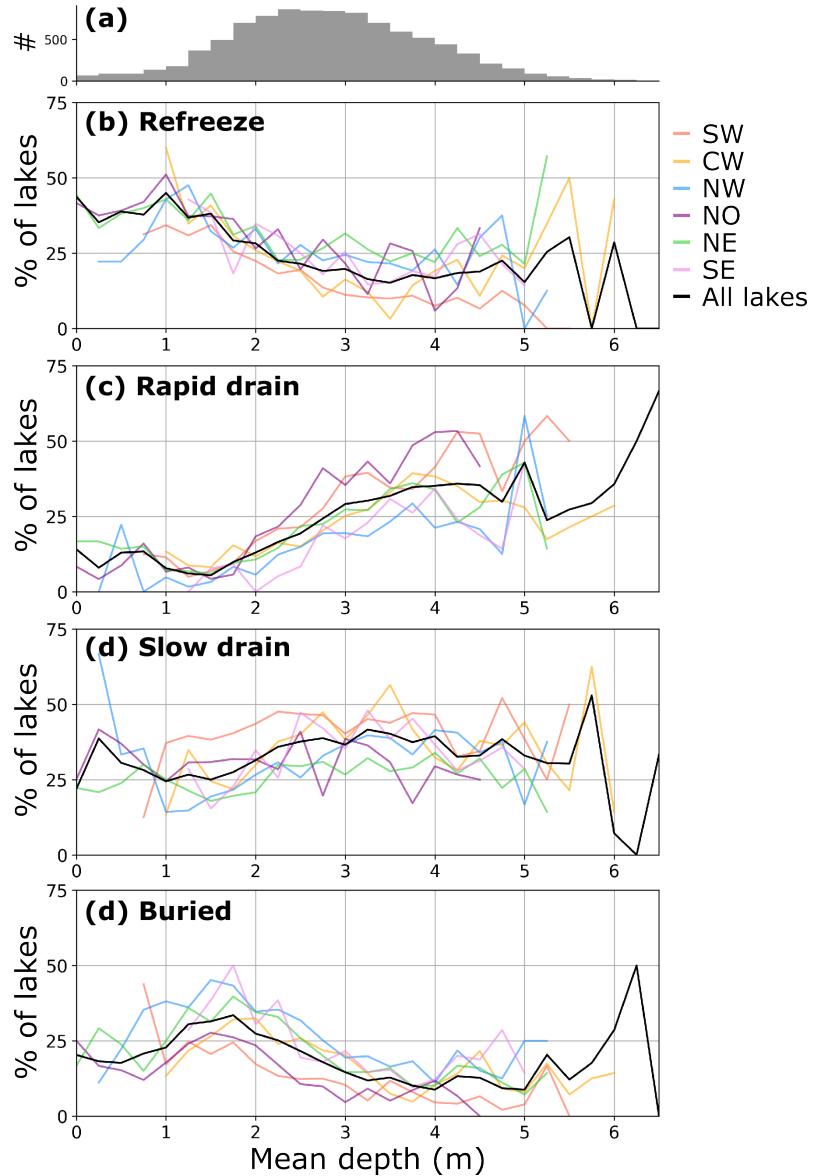


Figure 6. Percentage of lakes classified into each class with mean lake depth. (a) Histogram distribution of mean lake depths, including both 2018 and 2019 lakes. (b-d) The percentage of all lakes that refreeze (a), drain rapidly (b), drain slowly (c), or become buried (d) with increasing mean lake depth. Data is only plotted for each region if there are 5 or more lakes with that mean depth.

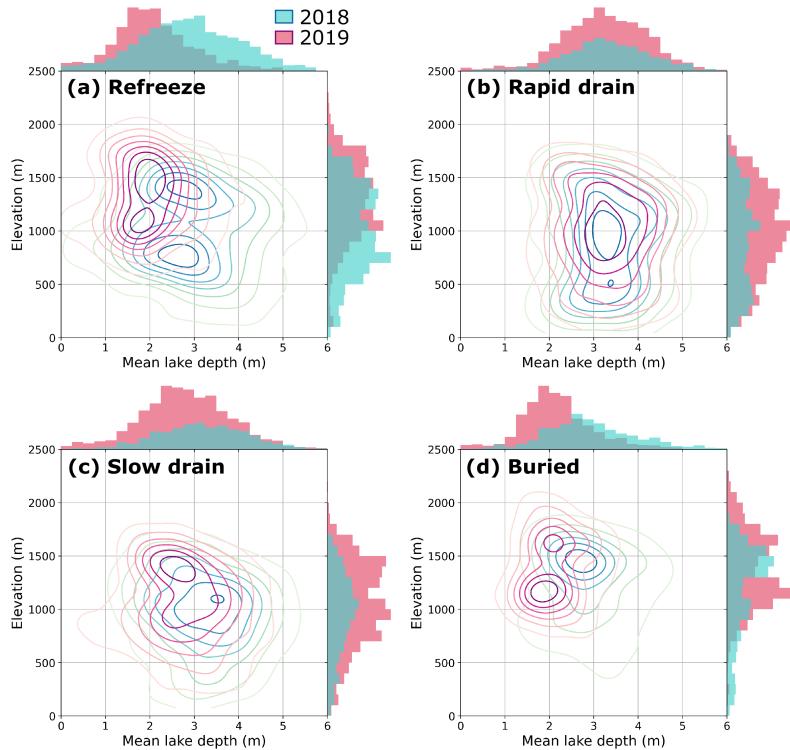


Figure 7. 2D histograms of maximum lake depth vs. elevation for each type of lake, compared between years. The distribution for 2018 lakes is shown in blue-green while the distribution for 2019 lakes is shown in pink-red.

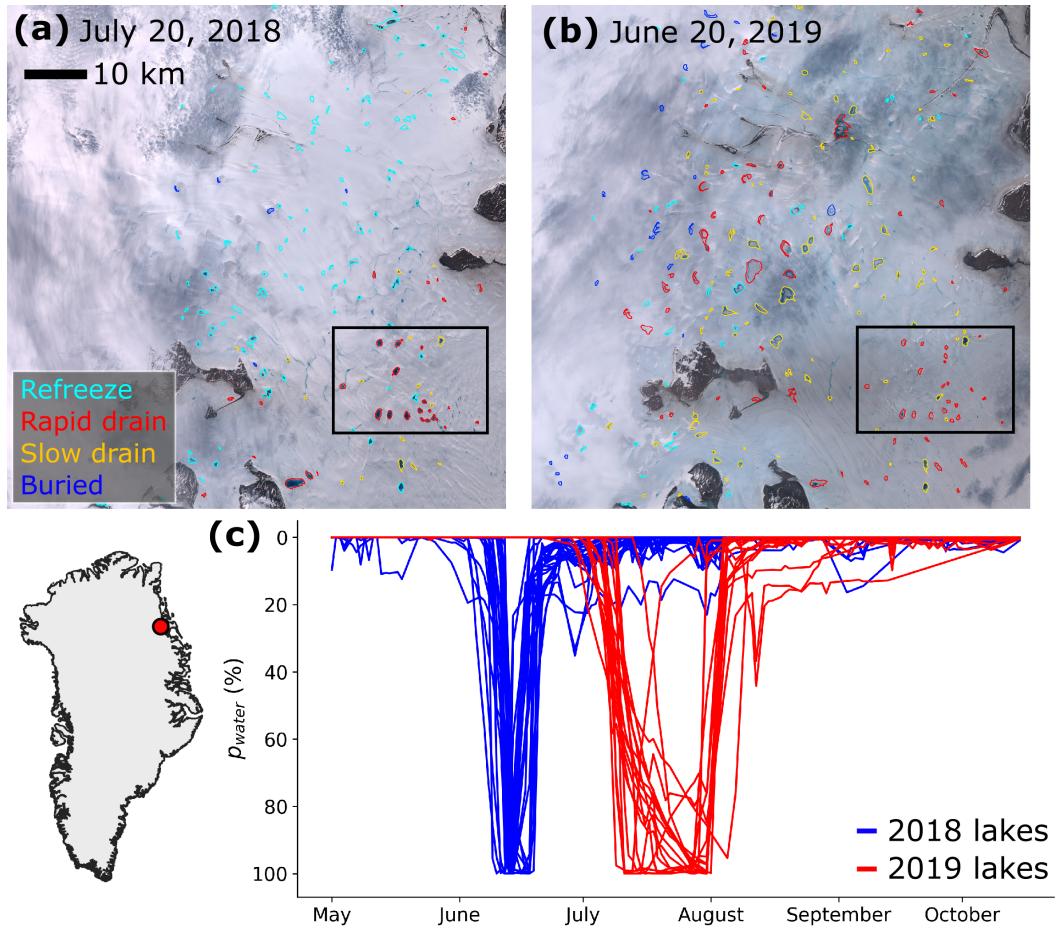


Figure 8. Interannual supraglacial lakes drainage date comparison in NE Greenland. (a) S2 image from July 20, 2018, with lakes outlined according to their classification. S2 image from June 20, 2019 with lakes outlined according to their classification. (c) Time series of p_{water} for rapidly draining lakes for a area outlined by the black box in (a) and (b).

481 and (c) increased moulin density as a result of more rapid lake drainages, which in turn
 482 impacts subglacial water pressures, basal sliding rates, and ice motion (Banwell et al.,
 483 2016). Given the proportional increase in both slow and rapid lake drainages and pro-
 484 portional decrease in refreezing lakes between 2018 and 2019, we hypothesize that these
 485 processes may act non-linearly in a warming climate.

486 Our new method enables large-scale, ice-sheet-wide classification of draining and
 487 refreezing lakes, providing us with a comprehensive dataset of lake drainage events, and
 488 new insights into the potential controls on lake drainage. Previous work has suggested
 489 that an upper elevation hydrofracture limit (~ 1600 m) exists, above which moulins are
 490 unlikely to form (Poinar et al., 2015). More recently, Christoffersen et al. (2018) showed
 491 the presence of water-filled crevasses at an elevation of 1800 m in SW Greenland. In this
 492 work, our automated method detected, and we visually confirmed, numerous (> 50) rapid
 493 lake drainage events above this hypothesized hydrofracture elevation limit, including events
 494 at or above 1800 m elevation in both SW and SE Greenland (Fig. 9). While it is not pos-
 495 sible to fully confirm the presence of moulins due to the horizontal resolution of the S2
 496 images, these lake drainage events occur between images several (2–3) days apart, with
 497 no evidence of overflow drainage, and do not coincide with lake volume decreases for nearby
 498 meltwater features. These findings challenge the hypothesis of an upper elevation hy-
 499 drofracture limit and high-elevation rapid lake drainage events should be investigated
 500 in future work.

501 We further compared lake depth between 2018 and 2019 for different lake types.
 502 Previous studies have found little relationship between lake depth and drainage likeli-
 503 hood (Fitzpatrick et al., 2014; Williamson, Willis, et al., 2018). We find that lake depth
 504 does appear to control drainage likelihood in some fashion and demonstrate that lake
 505 drainage occurrence increases with mean lake depth (Fig. 6). For example, of all 2018
 506 and 2019 supraglacial lakes in SW Greenland with a mean depth > 3 m (45% of all SW
 507 GrIS lakes), 41% drain rapidly, a much higher percentage than those that drain rapidly
 508 with mean depths < 2 m (8.7%).

509 Despite expectations that 2019 lakes would be deeper than in 2018, due to it be-
 510 ing a warmer melt season, our observations suggest otherwise. Similar to Selmes et al.
 511 (2013), we observe cases where 2018 lakes grew larger and deeper than in 2019 when they
 512 rapidly drained. Moreover, we find that non-draining lakes were, on average, deeper across
 513 all regions during the colder 2018 melt season. We propose three potential explanations
 514 for this phenomenon. First, 2019 lake depths may be limited by shallower basins due to
 515 the refreezing of meltwater in these basins in 2018. Second, the calculation of lake depth
 516 is sensitive to the reflectance of pixels immediately surrounding the lake, a factor that
 517 may vary between years.

518 Third, we suggest that various dynamical controls may initiate rapid lake drainage
 519 events at shallower depths during the warmer 2019 melt season. Warmer early melt sea-
 520 son air temperatures have substantial hydrological consequences. The earlier melting of
 521 surface snow exposes bare ice, crevasses, and fractures, and expedites the development
 522 of supraglacial to basal hydrologic routing networks. As such, meltwater can access the
 523 bed earlier in a warmer year, enhancing basal slip, a process that has also been shown
 524 to initiate rapid lake drainage (Stevens et al., 2015), and thereby increasing localized ice
 525 velocity speed-ups earlier in the melt season. Rapid lake drainage events further result
 526 in a tensile shock that establishes new surface-to-bed moulins by initiating additional
 527 rapid drainage events through a cascading process (Christoffersen et al., 2018). Addi-
 528 tionally, elastic stress coupling from one rapid lake drainage event can trigger other nearby
 529 lakes to drain (Stevens et al., 2024). We finally hypothesize that lake filling speed may
 530 also influence hydrofracture potential, with faster filling lakes at increasing risk of rapid
 531 drainage. During the 2019 melt season, these dynamical processes may initiate rapid lake
 532 drainages at shallower depths than in 2018, not allowing many lakes to reach their max-

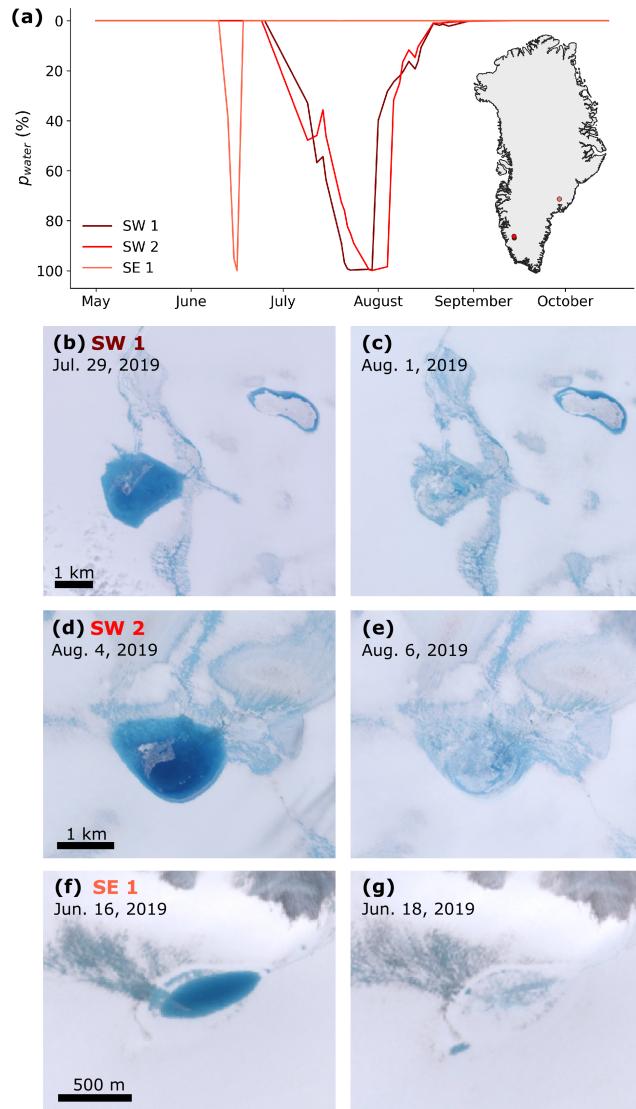


Figure 9. Examples of three high elevation rapid lake drainage events in SW and SE Greenland. (a) Time series of p_{water} for the three lakes, with their locations indicated on the GrIS map. (b,c) Sentinel-2 imagery before (b) and after (c) the rapid drainage of lake SW 1, located at 1898 m elevation. (d,e) Sentinel-2 imagery before (d) and after (e) the rapid drainage of lake SW 2, located at 1887 m elevation. (f,g) Sentinel-2 imagery before (f) and after (g) the rapid drainage of lake SE 1, located at 1793 m elevation.

533 imum 2018 extent. These potential controls on rapid lake drainage should be further in-
 534 vestigated in future work.

535 Finally, earlier rapid lake drainage events and surface-to-bed moulin development
 536 facilitate a prolonged influx of meltwater to the ice-bed interface (Banwell et al., 2016).
 537 This accelerated development of the supraglacial, englacial and subglacial hydrological
 538 routing systems in warmer melt seasons may explain the substantial increase in 2019 slowly
 539 draining lakes. Conversely, in cooler years, the hydrological network may not be fully
 540 developed to facilitate efficient meltwater drainage when air temperatures drop in the
 541 fall, resulting in a greater proportion of refreezing lakes.

542 5.1 Limitations and uncertainty

543 5.1.1 Supraglacial lake types

544 Distinguishing between rapidly and slowly draining lakes is a non-trivial task, with
 545 various definitions proposed in the literature (Das et al., 2008; Williamson, Willis, et al.,
 546 2018; Morriss et al., 2013). Here, we follow Morriss et al. (2013) by adopting a more con-
 547 servative definition (6 days) in constructing our training dataset to accommodate the
 548 occasionally limited temporal resolution of clear-sky optical imagery. The implications
 549 of this may be the categorization of some lakes as rapidly draining, while other studies
 550 would consider them slowly draining. Additionally, drainage events occurring towards
 551 the end of the melt season (mid-late August) may be misclassified as refreezing, as both
 552 events involve a sharp decrease in water presence. Our testing dataset reveals that dif-
 553 ferentiating between refreeze and slow drain classifications is the most challenging, with
 554 all misclassifications occurring between these two classes (Fig. S4). Some lakes may both
 555 partially drain and then refreeze, further complicating this distinction.

556 The labeled lakes used for model training and testing were lakes where we could
 557 clearly distinguish the classification. However, this is not the case for all lakes on which
 558 the algorithm was applied. We test the robustness of our findings and quantify uncer-
 559 tainty by comparing our results with those from the subset of lakes where the $ROCKET_{op}$
 560 and $ROCKET_{mic}$ classifications agree, as we believe these cases have the highest cer-
 561 tainty. For $\sim 3\%$ of the 9992 total lakes there is either insufficient optical or microwave
 562 imagery and thus only one model can be used for the classification. Disregarding buried
 563 lake classifications (as the $ROCKET_{op}$ will never be able to classify buried lakes), the
 564 two models further disagree for 28% of the lakes' classifications.

565 The two models disagree most frequently, and thus the uncertainty is highest, in
 566 the SW and NE regions (32% disagreement in both regions). The uncertainty is lowest
 567 in CW Greenland, with 23% disagreement between the two models (Fig. S5). As slow
 568 drainages can be easily confused between both rapid drainage and refreeze, we under-
 569 standably find the highest disagreement between $ROCKET_{op}$ and $ROCKET_{mic}$ for the
 570 slow drainage class (Fig. S5).

571 For the majority of cases in which the two models disagree (87%), the final clas-
 572 sification aligns with that from $ROCKET_{op}$. This makes sense as S1 backscatter can
 573 be noisy, particularly for smaller lakes, and depends on factors other than liquid water
 574 presence (i.e. volume scattering, surface roughness, satellite geometry). Figure S6 shows
 575 changes to the lake type proportions (ignoring buried lakes) when only considering these
 576 lakes with higher confidence classifications (where the $ROCKET_{op}$ and $ROCKET_{mic}$
 577 models agree). We find minimal changes in the proportion of lake classifications in the
 578 SW and CW regions. In NO and SE Greenland, we see that the proportion of refreeze-
 579 ing lakes increases and the proportion of slowly draining lakes decreases when only con-
 580 sidering these higher confidence lakes. However, the pattern of interannual changes be-
 581 tween 2018 and 2019, described above in the results, remains robust.

582 **5.1.2 Supraglacial lake depths**

583 We retrieved lake depth from optical imagery using a radiative transfer equation
 584 (Pope et al., 2016; Williamson, Banwell, et al., 2018), which is known to systematically
 585 underestimate lake depths using the red band and overestimate shallow lake depths us-
 586 ing the green band (Melling et al., 2024; Lutz et al., 2024). Given the known limitations
 587 of this method, we do not recommend using the absolute lake values shown here to pre-
 588 scribe lake depth and volume limits for hydrofracture. We chose to use this radiative trans-
 589 fer method for obtaining lake depths due to its ability to scale to the entire Greenland
 590 Ice Sheet easily.

591 From our lake depth analysis, we highlight two key findings: 1) lake drainage oc-
 592 currence increases as lake depth increases and 2) non-draining lakes were deeper in 2018
 593 than in 2019, despite 2018 being a colder melt season. Lake depths calculated using var-
 594 ious bands in the radiative transfer equation are positively correlated with depths cal-
 595 culated using other bands and from other methods (e.g. ICESat-2, depression topogra-
 596 phy method, empirical formulation) (Pope et al., 2016; Melling et al., 2024). As such,
 597 we expect that these two findings, which focus on a relative lake depth comparison be-
 598 tween lake classes and melt seasons, to remain robust.

599 **6 Conclusions**

600 In this work we build upon previous, regional supraglacial lake evolution studies
 601 by providing an GrIS-wide data set covering the fate of nearly 10,000 supraglacial lakes
 602 during the 2018 and 2019 melt seasons. We first develop a new time series classification
 603 method that incorporates optical and microwave imagery to classify GrIS supraglacial
 604 lakes into four categories automatically: 1) refreeze, 2) rapid drainage, 3) slow drainage,
 605 and 4) buried. We then apply our method to supraglacial lakes detected during the 2018
 606 and 2019 melt seasons, enabling us to compare lake characteristics between the two years,
 607 and provide new insights into factors controlling lake evolution and drainage.

608 We demonstrate that substantial interannual variability in lake evolution exists be-
 609 tween the cooler 2018 and warmer 2019 melt seasons, a finding that is robust to uncer-
 610 tainty in our classifications. An increasing proportion of lake drainage events in a warmer
 611 year may indicate a non-linearity in the potential for hydrofracture with increasing sum-
 612 mer air temperatures. We further provide evidence for several high elevation lake drainage
 613 events, above the previously hypothesized 1600 m elevation hydrofracture limit (Poinar
 614 et al., 2015). Our results additionally suggest that mean lake depth is related to drainage
 615 potential, as the proportion of draining lakes increases with mean depth. However, we
 616 surprisingly find deeper non-draining lakes during the cooler 2018 melt season, a topic
 617 that should be the focus of future work. The novel supraglacial lake classification method
 618 presented here, and the unique resulting dataset, provide important new insight into lake
 619 drainage and refreeze and will be useful for future GrIS supraglacial lake and hydrofrac-
 620 ture research.

621 **7 Open Research**

622 GrIS supraglacial lake outlines from the 2018 and 2019 melt seasons can be found
 623 at: <https://zenodo.org/records/4813833>. All satellite imagery used is freely avail-
 624 able on Google Earth Engine (GEE) at the following GEE identifier snippets – Sentinel
 625 1: ee.ImageCollection("COPERNICUS/S1_GRD"), Sentinel 2:
 626 ee.ImageCollection("COPERNICUS/S2_HARMONIZED"), and Landsat 8:
 627 ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA"). CARRA data is publicly avail-
 628 able on Copernicus' C3S Climate Data Store (DOI: DOI: 10.24381/cds.713858f6)

629 Time series model classification code and output can be obtained by request dur-
 630 ing the review process and will be made publicly available on Zenodo after review.

631 8 Author Contributions

632 DD initially designed the study and led the analysis and writing. ACS and AFB
 633 helped interpret the results of the study. EH and MOG contributed to the machine learn-
 634 ing model selection, training, and cross-validation. HY helped label supraglacial lakes
 635 for model training and helped prepare figures. BM provided and processed CARRA near-
 636 surface temperature data. All authors helped with writing and editing the manuscript.

637 Acknowledgments

638 DD, ACS, EH, MOG and AFB were supported by the iHARP HDR Institute (NSF award
 639 #2118285). We acknowledge high-performance computing support from Cheyenne (<https://doi.org/10.5065/D6RX99H>) provided by NCAR's Computational and Information Sys-
 640 tems Laboratory, sponsored by the NSF. This work also utilized the Summit supercom-
 641 puter, which is supported by the NSF (awards ACI-1532235 and ACI-1532236) and is
 642 a joint effort of the University of Colorado Boulder, and Colorado State University.
 643

644 References

Banwell, A. F., Arnold, N. S., Willis, I. C., Tedesco, M., & Ahlstrm, A. P.
 645 (2012). Modeling supraglacial water routing and lake filling on the Green-
 646 land Ice Sheet. *Journal of Geophysical Research: Earth Surface*. doi:
 647 10.1029/2012JF002393

Banwell, A. F., Caballero, M., Arnold, N. S., Glasser, N. F., Cathles, L. M., &
 648 MacAyeal, D. R. (2014). Supraglacial lakes on the Larsen B ice shelf, Antarc-
 649 tica, and at Paakitsoq, West Greenland: A comparative study. *Annals of*
 650 *Glaciology*, 55(66), 1–8. doi: 10.3189/2014AoG66A049

Banwell, A. F., Hewitt, I., Willis, I., & Arnold, N. (2016). Moulin density controls
 651 drainage development beneath the Greenland ice sheet. *Journal of Geophysical*
 652 *Research: Earth Surface*, 121(12), 2248–2269. doi: 10.1002/2015JF003801

Banwell, A. F., Willis, I. C., Macdonald, G. J., Goodsell, B., & MacAyeal,
 653 D. R. (2019). Direct measurements of ice-shelf flexure caused by sur-
 654 face meltwater ponding and drainage. *Nature Communications*. doi:
 655 10.1038/s41467-019-10852-5

Bartholomaus, T. C., Anderson, R. S., & Anderson, S. P. (2008). Response of glacier
 656 basal motion to transient water storage. *Nature Geoscience*, 1(1), 33–37. doi:
 657 10.1038/ngeo.2007.52

Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., & Sole, A. (2010,
 658 6). Seasonal evolution of subglacial drainage and acceleration in a Greenland
 659 outlet glacier. *Nature Geoscience*, 3(6), 408–411. doi: 10.1038/ngeo863

Benedek, C. L., & Willis, I. C. (2021). Winter drainage of surface lakes on the
 660 Greenland Ice Sheet from Sentinel-1 SAR imagery. *The Cryosphere*, 15(3),
 661 1587–1606. Retrieved from <https://tc.copernicus.org/articles/15/1587/2021/> doi: 10.5194/tc-15-1587-2021

Box, J. E., & Ski, K. (2007). Remote sounding of Greenland supraglacial melt lakes:
 662 Implications for subglacial hydraulics. *Journal of Glaciology*, 53(181), 257–265.
 663 doi: 10.3189/172756507782202883

Cabello, N., Naghizade, E., Qi, J., & Kulik, L. (2020). Fast and accurate time se-
 664 ries classification through supervised interval search. In *2020 ieee international*
 665 *conference on data mining (icdm)* (pp. 948–953). IEEE.

Catania, G. A., & Neumann, T. A. (2010). Persistent englacial drainage features
 666 in the Greenland Ice Sheet. *Geophysical Research Letters*, 37(2), 1–5. doi: 10
 667

678 .1029/2009GL041108

679 Catania, G. A., Neumann, T. A., & Price, S. F. (2008). Characterizing englacial
680 drainage in the ablation zone of the Greenland ice sheet. *Journal of Glaciology*,
681 54(187), 567–578. doi: 10.3189/002214308786570854

682 Christoffersen, P., Bougamont, M., Hubbard, A., Doyle, S. H., Grigsby, S., & Pet-
683 tersson, R. (2018). Cascading lake drainage on the Greenland Ice Sheet
684 triggered by tensile shock and fracture. *Nature Communications*, 9(1), 1064.
685 doi: 10.1038/s41467-018-03420-8

686 Chu, V. W. (2014). Greenland ice sheet hydrology. *Progress in Physical Geography:*
687 *Earth and Environment*, 38(1), 19–54. doi: 10.1177/0309133313507075

688 Daneshgar, A. S., Chu, V. W., Noshad, M., & Yang, K. (2019). Extract-
689 ing Supraglacial Streams on Greenland Ice Sheet Using High-Resolution
690 Satellite Imagery. In *American geophysical union*. San Francisco. doi:
691 2019AGUFM.H21N1947D

692 Das, S. B., Joughin, I., Behn, M. D., Howat, I. M., King, M. A., Lizarralde, D.,
693 & Bhatia, M. P. (2008). Fracture Propagation to the Base of the Green-
694 land Ice Sheet During Supraglacial Lake Drainage. *Science*, 320(5877), 778–
695 781. Retrieved from <https://www.science.org/lookup/doi/10.1126/science.1153360> doi: 10.1126/science.1153360

696 Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., ...
697 Hexagon-ML (2018). *The UCR Time Series Classification Archive*.

698 Dell, R., Arnold, N., Willis, I., Banwell, A. F., Williamson, A. G., Pritchard, H., &
699 Orr, A. (2020). Lateral meltwater transfer across an Antarctic ice shelf. *The
700 Cryosphere*, 14(7), 2313–2330. doi: 10.5194/tc-14-2313-2020

701 Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: exceptionally
702 fast and accurate time series classification using random convolutional ker-
703 nels. *Data Mining and Knowledge Discovery*, 34(5), 1454–1495. doi:
704 10.1007/s10618-020-00701-z

705 Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for clas-
706 sification and feature extraction. *Information Sciences*, 239, 142–153. doi: 10
707 .1016/j.ins.2013.02.030

708 Doyle, S. H., Hubbard, A., Fitzpatrick, A. A. W., van As, D., Mikkelsen, A. B.,
709 Pettersson, R., & Hubbard, B. (2014). Persistent flow acceleration within
710 the interior of the Greenland ice sheet. *Geophysical Research Letters*, 41(3),
711 899–905. doi: 10.1002/2013GL058933

712 Dunmire, D., Banwell, A. F., Lenaerts, J., & Datta, R. T. (2021). Contrasting
713 regional variability of buried meltwater extent over two years across the Green-
714 land Ice Sheet. *The Cryosphere Discussions*. doi: 10.5194/tc-2021-3

715 Echelmeyer, K., Clarke, T. S., & Harrison, W. D. (1991). Surficial glaciology of
716 Jakobshavn Isbrae, West Greenland: part I. Surface morphology. *Journal of
717 Glaciology*, 37(127), 368–382. doi: 10.1017/S0022143000005803

718 Fitzpatrick, A. A. W., Hubbard, A. L., Box, J. E., Quincey, D. J., van As, D.,
719 Mikkelsen, A. P. B., ... Jones, G. A. (2014). A decade (2002–2012) of
720 supraglacial lake volume estimates across Russell Glacier, West Greenland.
721 *The Cryosphere*, 8(1), 107–121. doi: 10.5194/tc-8-107-2014

722 Forster, R. R., Box, J. E., Van Den Broeke, M. R., Miège, C., Burgess, E. W.,
723 Van Angelen, J. H., ... McConnell, J. R. (2014). Extensive liquid meltwa-
724 ter storage in firn within the Greenland ice sheet. *Nature Geoscience*. doi:
725 10.1038/ngeo2043

726 Glen, E., Leeson, A. A., Banwell, A. F., Maddalena, J., Corr, D., Noël, B., & McMil-
727 lan, M. (2024). A comparison of supraglacial meltwater features throughout
728 contrasting melt seasons: Southwest Greenland. *The Cryosphere Discussions*.

729 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R.
730 (2017). Remote Sensing of Environment Google Earth Engine : Planetary-
731 scale geospatial analysis for everyone. *Remote Sensing of Environment*. doi:
732

733 10.1016/j.rse.2017.06.031

734 Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., ... Griffiths, M. (2008). Increased Runoff from Melt from the Greenland Ice Sheet:

735 A Response to Global Warming. *Journal of Climate*, 21(2), 331–341. doi: 10.1175/2007JCLI1964.1

736 Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., & Fettweis, X. (2012). Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. *Nature*. doi: 10.1038/nature11566

737 Hochreuther, P., Neckel, N., Reimann, N., Humbert, A., & Braun, M. (2021). Fully automated detection of supraglacial lake area for northeast greenland using sentinel-2 time-series. *Remote Sensing*, 13(2), 1–24. doi: 10.3390/rs13020205

738 Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C., & Rumrill, J. A. (2011). Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. *Journal of Geophysical Research: Earth Surface*, 116(4), 1–16. doi: 10.1029/2010JF001934

739 Howat, I. M., de la Peña, S., van Angelen, J. H., Lenaerts, J. T. M., & van den Broeke, M. R. (2013). <i>Brief Communication</i>; <u>Expansion of meltwater lakes on the Greenland Ice Sheet</u>; *The Cryosphere*. doi: 10.5194/tc-7-201-2013

740 Howat, I. M., Negrete, A., & Smith, B. E. (2015). MEaSUREs Greenland Ice Sheet Mapping Project (GIMP) Digital Elevation Model. *Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center*.

741 Johansson, A. M., & Brown, I. A. (2013). Adaptive Classification of Supra-Glacial Lakes on the West Greenland Ice Sheet. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 6(4), 1998–2007. doi: 10.1109/JSTARS.2012.2233722

742 Johansson, A. M., Jansson, P., & Brown, I. A. (2013). Spatial and temporal variations in lakes on the Greenland Ice Sheet. *Journal of Hydrology*. doi: 10.1016/j.jhydrol.2012.10.045

743 Jullien, N., Tedstone, A. J., Machguth, H., Karlsson, N. B., & Helm, V. (2023). Greenland Ice Sheet Ice Slab Expansion and Thickening. *Geophysical Research Letters*, 50(10). doi: 10.1029/2022GL100911

744 Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019). Multivariate LSTM-FCNs for time series classification. *Neural Networks*, 116, 237–245. doi: 10.1016/j.neunet.2019.04.014

745 Koenig, L. S., Lampkin, D. J., Montgomery, L. N., Hamilton, S. L., Turrin, J. B., Joseph, C. A., ... Gogineni, P. (2015). Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. *Cryosphere*. doi: 10.5194/tc-9-1333-2015

746 Law, R., Arnold, N., Benedek, C., Tedesco, M., Banwell, A. F., & Willis, I. (2020). Over-winter persistence of supraglacial lakes on the Greenland Ice Sheet: Results and insights from a new model. *Journal of Glaciology*. doi: 10.1017/jog.2020.7

747 Leeson, A. A., Shepherd, A., Briggs, K., Howat, I., Fettweis, X., Morlighem, M., & Rignot, E. (2015). Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. *Nature Climate Change*. doi: 10.1038/nclimate2463

748 Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., & Király, F. J. (2019). sktime: A Unified Interface for Machine Learning with Time Series. *ArXiV*.

749 Lutz, K., Sommer, C., Humbert, A., & Braun, M. (2024). Evaluation of supraglacial lake depth estimation techniques using Sentinel-2, ICESat-2, TanDEM-X, and in situ data, along with an analysis of rapid drainage events over Northeast Greenland. In *Egu general assembly 2024*. Vienna, Austria.

750 Macdonald, G. J., Banwell, A. F., & MacAyeal, D. R. (2018). Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. *An-*

788 *nals of Glaciology*, 59(76pt1), 56–65. doi: 10.1017/aog.2018.9

789 MacFerrin, M., Machguth, H., As, D. v., Charalampidis, C., Stevens, C. M., Heilig,
 790 A., ... Abdalati, W. (2019). Rapid expansion of Greenland's low-permeability
 791 ice slabs. *Nature*, 573(7774), 403–407. Retrieved from <https://doi.org/10.1038/s41586-019-1550-3> doi: 10.1038/s41586-019-1550-3

792 Machguth, H., Macferrin, M., Van As, D., Box, J. E., Charalampidis, C., Col-
 793 gan, W., ... Van De Wal, R. S. (2016). Greenland meltwater storage in
 794 firn limited by near-surface ice formation. *Nature Climate Change*. doi:
 795 10.1038/nclimate2899

796 McMillan, M., Nienow, P., Shepherd, A., Benham, T., & Sole, A. (2007). Seasonal
 797 evolution of supra-glacial lakes on the Greenland Ice Sheet. *Earth and Plane-
 798 tary Science Letters*. doi: 10.1016/j.epsl.2007.08.002

799 Melling, L., Leeson, A., McMillan, M., Maddalena, J., Bowling, J., Glen, E., ...
 800 Lørup Arildsen, R. (2024). Evaluation of satellite methods for estimating
 801 supraglacial lake depth in southwest Greenland. *The Cryosphere*, 18(2), 543–
 802 558. doi: 10.5194/tc-18-543-2024

803 Middlehurst, M., Large, J., & Bagnall, A. (2020). The Canonical Interval Forest
 804 (CIF) Classifier for Time Series Classification. In *2020 ieee international con-
 805 ference on big data* (pp. 188–195). IEEE.

806 Mikkelsen, A. B., Hubbard, A., Macferrin, M., Eric Box, J., Doyle, S. H., Fitz-
 807 patrick, A., ... Pettersson, R. (2016). Extraordinary runoff from the Green-
 808 land ice sheet in 2012 amplified by hypsometry and depleted firn retention.
 809 *Cryosphere*, 10(3), 1147–1159. doi: 10.5194/tc-10-1147-2016

810 Miles, K. E., Willis, I. C., Benedek, C. L., Williamson, A. G., & Tedesco, M. (2017).
 811 Toward monitoring surface and subsurface lakes on the Greenland ice sheet
 812 using sentinel-1 SAR and landsat-8 OLI imagery. *Frontiers in Earth Science*,
 813 5(July), 1–17. doi: 10.3389/feart.2017.00058

814 Moez, A. (2020). *PyCaret: An open source, low-code machine learning library in
 815 Python*.

816 Morris, B. F., Hawley, R. L., Chipman, J. W., Andrews, L. C., Catania, G. A.,
 817 Hoffman, M. J., ... Neumann, T. A. (2013). A ten-year record of supraglacial
 818 lake evolution and rapid drainage in West Greenland using an automated pro-
 819 cessing algorithm for multispectral imagery. *Cryosphere*, 7(6), 1869–1877. doi:
 820 10.5194/tc-7-1869-2013

821 Moussavi, M. S., Abdalati, W., Pope, A., Scambos, T., Tedesco, M., MacFerrin, M.,
 822 & Grigsby, S. (2016). Derivation and validation of supraglacial lake volumes on
 823 the Greenland Ice Sheet from high-resolution satellite imagery. *Remote Sensing
 824 of Environment*, 183, 294–303. Retrieved from <http://dx.doi.org/10.1016/j.rse.2016.05.024> doi: 10.1016/j.rse.2016.05.024

825 Moussavi, M. S., Pope, A., Halberstadt, A. R. W., Trusel, L. D., Cioffi, L., & Ab-
 826 dalati, W. (2020). Antarctic Supraglacial Lake Detection Using Landsat 8 and
 827 Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes. *remote
 828 sensing*, 12(1).

829 Otto, J., Holmes, F. A., & Kirchner, N. (2022). Supraglacial lake expansion, inten-
 830 sified lake drainage frequency, and first observation of coupled lake drainage,
 831 during 1985–2020 at Ryder Glacier, Northern Greenland. *Frontiers in Earth
 832 Science*, 10. doi: 10.3389/feart.2022.978137

833 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ...
 834 Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. *Journal of
 835 Machine Learning Research*, 12, 2825–2830.

836 Poinar, K., Jougin, I., Das, S. B., Behn, M. D., Lenaerts, J. T. M., & Broeke,
 837 M. R. (2015). Limits to future expansion of surface-melt-enhanced ice flow
 838 into the interior of western Greenland. *Geophysical Research Letters*, 42(6),
 839 1800–1807. Retrieved from <https://onlinelibrary.wiley.com/doi/abs/10.1002/2015GL063192> doi: 10.1002/2015GL063192

843 Pope, A., Scambos, T. A., Moussavi, M., Tedesco, M., Willis, M., Shean, D., &
 844 Grigsby, S. (2016). Estimating supraglacial lake depth in West Greenland us-
 845 ing Landsat 8 and comparison with other multispectral methods. *Cryosphere*,
 846 10(1), 15–27. doi: 10.5194/tc-10-15-2016

847 Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018).
 848 CatBoost: Unbiased Boosting with Categorical Features. In *Proceedings of the*
 849 *32nd international conference on neural information processing systems* (pp.
 850 6639–6649). Red Hook, NY, USA: Curran Associates Inc.

851 Rignot, E., Echelmeyer, K., & Krabill, W. (2001). Penetration depth of interfero-
 852 metric synthetic-aperture radar signals in snow and ice. *Geophysical Research*
 853 *Letters*. doi: 10.1029/2000GL012484

854 Rignot, E., & Mouginot, J. (2012). Ice flow in Greenland for the International Polar
 855 Year 2008–2009. *Geophysical Research Letters*. doi: 10.1029/2012GL051634

856 Schröder, L., Neckel, N., Zindler, R., & Humbert, A. (2020). Perennial Supraglacial
 857 Lakes in Northeast Greenland Observed by Polarimetric SAR. *Remote Sens-*
 858 *ing*, 12(17), 2798. Retrieved from <https://www.mdpi.com/2072-4292/12/17/2798> doi: 10.3390/rs12172798

859 Schyberg, H., Yang, X., Køltzow, M., Amstrup, B., Bakketun, , Bazile, E., ...
 860 Wang, Z. (2020). *Arctic regional reanalysis on single levels from 1991 to*
 861 *present*.

862 Selmes, N., Murray, T., & James, T. D. (2011). Fast draining lakes on the Green-
 863 land Ice Sheet. *Geophysical Research Letters*. doi: 10.1029/2011GL047872

864 Selmes, N., Murray, T., & James, T. D. (2013). Characterizing supraglacial lake
 865 drainage and freezing on the Greenland Ice Sheet. *The Cryosphere Discus-*
 866 *sions*.

867 Stevens, L. A., Behn, M. D., McGuire, J. J., Das, S. B., Joughin, I., Herring,
 868 T., ... King, M. A. (2015). Greenland supraglacial lake drainages trig-
 869 gered by hydrologically induced basal slip. *Nature*, 522(7554), 73–76. doi:
 870 10.1038/nature14480

871 Stevens, L. A., Das, S. B., Behn, M. D., McGuire, J. J., Lai, C., Joughin, I., ... Net-
 872 tles, M. (2024). Elastic Stress Coupling Between Supraglacial Lakes. *Journal*
 873 *of Geophysical Research: Earth Surface*, 129(5). doi: 10.1029/2023JF007481

874 Sundal, A. V., Shepherd, A., Nienow, P., Hanna, E., Palmer, S., & Huybrechts, P.
 875 (2009). Evolution of supra-glacial lakes across the Greenland Ice Sheet. *Re-*
 876 *mote Sensing of Environment*, 113(10), 2164–2171. Retrieved from <http://dx.doi.org/10.1016/j.rse.2009.05.018> doi: 10.1016/j.rse.2009.05.018

877 Tedesco, M., Willis, I. C., Hoffman, M. J., Banwell, A. F., Alexander, P., &
 878 Arnold, N. S. (2013). Ice dynamic response to two modes of surface lake
 879 drainage on the Greenland ice sheet. *Environmental Research Letters*. doi:
 880 10.1088/1748-9326/8/3/034007

881 Tedstone, A. J., & Machguth, H. (2022). Increasing surface runoff from Greenland's
 882 firn areas. *Nature Climate Change*, 12(7), 672–676. doi: 10.1038/s41558-022
 883 -01371-z

884 Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B. E., Fettweis, X.,
 885 ... van den Broeke, M. R. (2018). Nonlinear rise in Greenland runoff in re-
 886 sponse to post-industrial Arctic warming. *Nature*, 564(7734), 104–108. doi:
 887 10.1038/s41586-018-0752-4

888 Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke, P.,
 889 Van Meijgaard, E., & Van Den Broeke, M. R. (2015). *Divergent trajectories of*
 890 *Antarctic surface melt under two twenty-first-century climate scenarios*. doi:
 891 10.1038/ngeo2563

892 Turton, J. V., Hochreuther, P., Reimann, N., & Blau, M. T. (2021, 8). The dis-
 893 tribution and evolution of supraglacial lakes on 79° N Glacier (north-eastern
 894 Greenland) and interannual climatic controls. *The Cryosphere*, 15, 3877–3896.
 895 doi: 10.5194/tc-15-3877-2021

898 Wang, Y., & Sugiyama, S. (2024, 3). Supraglacial lake evolution on Tracy and Heil-
899 prin Glaciers in northwestern Greenland from 2014 to 2021. *Remote Sensing of*
900 *Environment*, 303, 114006. doi: 10.1016/j.rse.2024.114006

901 Williamson, A. G., Arnold, N. S., Banwell, A. F., & Willis, I. C. (2017). A Fully
902 Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm:
903 Development and application using MODIS imagery of West Greenland. *Re-*
904 *mote Sensing of Environment*. doi: 10.1016/j.rse.2017.04.032

905 Williamson, A. G., Banwell, A. F., Willis, I. C., & Arnold, N. S. (2018). Dual-
906 satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in
907 Greenland. *The Cryosphere*, 12(9), 3045–3065. Retrieved from <https://tc.copernicus.org/articles/12/3045/2018/> doi: 10.5194/tc-12-3045-2018

908 Williamson, A. G., Willis, I. C., Arnold, N. S., & Banwell, A. F. (2018). Controls
909 on rapid supraglacial lake drainage in West Greenland: An Exploratory Data
910 Analysis approach. *Journal of Glaciology*. doi: 10.1017/jog.2018.8

911 Yang, K., & Smith, L. C. (2013). Supraglacial streams on the greenland ice sheet
912 delineated from combined spectral-shape information in high-resolution satel-
913 lite imagery. *IEEE Geoscience and Remote Sensing Letters*, 10(4), 801–805.
914 doi: 10.1109/LGRS.2012.2224316

915 Zhang, W., Yang, K., Smith, L. C., Wang, Y., van As, D., Noël, B., ... Liu, J.
916 (2023, 11). Pan-Greenland mapping of supraglacial rivers, lakes, and water-
917 filled crevasses in a cool summer (2018) and a warm summer (2019). *Remote*
918 *Sensing of Environment*, 297, 113781. doi: 10.1016/j.rse.2023.113781

919 Zheng, L., Li, L., Chen, Z., He, Y., Mo, L., Chen, D., ... Cheng, X. (2023). Multi-
920 sensor imaging of winter buried lakes in the Greenland Ice Sheet. *Remote*
921 *Sensing of Environment*, 295, 113688. doi: 10.1016/j.rse.2023.113688

922 Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., & Steffen, K. (2002).
923 Surface Melt – Induced Acceleration of Greenland Ice-Sheet Flow. *Science*,
924 297(July), 218–223.

925