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A B S T R A C T   

Heteroanionic materials are of current research interest owing to their varied structural chemistry and proper
ties. Recently, a number of heteroanionic materials have been synthesized that can be used for water splitting, 
battery materials, thermoelectrics, and nonlinear optical applications. Birefringent heteroanionic materials are 
still rarely researched. Herein, we report a series of new oxychalcogenides, AGe2O4Q (A = Ba, Sr; Q = S, Se), that 
are synthesized by solid-state reactions in fused silica tubes with their structures determined by single-crystal X- 
ray diffraction. Optical property measurements show that AGe2O4Q (A = Ba, Sr; Q = S, Se) exhibit large bi
refringences, 0.13–0.19 @ 1064 nm. These are one-order of magnitude larger than their single-anionic homo
logue, BaGe2O5 - 0.03 @ 1064 nm. This suggests that constructing heteroanions through using chalcogenides to 
partially substitute O in tetrahedral foundation building units (FBUs) is a viable method for designing new 
birefringent materials. Furthermore, the crystal structures, UV–vis–NIR diffuse reflectance spectra, infrared and 
Raman spectra as well as the first-principles calculations for AGe2O4Q (A = Ba, Sr; Q = S, Se) are also reported.   

1. Introduction 

Birefringence originates from the optical anisotropy of materials and 
plays indispensable important role for the development of advanced 
technology [1–6]. During the past decades, a number of the oxide-based 
birefringent crystals, such as YVO4 [7], TiO2 [8], LiNbO3 [9] and CaCO3 
[10], have been discovered and commercialized in ultraviolet (UV) and 
visible regions. Recently, some borates with large birefringence and 
short UV cut-off edges (λcut-off < 200 nm), such as Na3Ba2(B3O6)2F 
(0.113@589 nm) [11], Ba2Ca(B3O6)2 (0.124@589 nm) [12], Ba2Mg 
(B3O6)2 (0.110@589 nm) [13], MBaYB6O12 (M = Rb, Cs) (0.120@589 
nm) [14], and Ca(BO2)2 (0.134@589 nm) [15] have also been re
ported. These materials may be potential deep-UV birefringent crystals. 
However, compared with UV, deep-UV and visible regions, the bire
fringent crystals in the infrared (IR) regions are rarely reported. 

For design of the IR birefringent crystals, chalcogenides may be a 
good materials class because they can exhibit excellent transmission in 
wide IR regions [16,17]. Typically, sulfides are transparent to ~11 μm, 

selenides to ~15 μm, and tellurides to beyond 20 μm [18–20]. But for 
chalcogenide crystals, they generally possess narrow band-gaps, which 
are unfavorable for materials to exhibit high laser damage thresholds 
(LDT). That will limit their applications in the high-energy laser systems 
that are important for environmental monitoring and information 
communication [21–23]. In recent research, it has been shown that 
heteroanionic compounds can exhibit superior functional properties 
than the single-anionic compounds because the former can integrate the 
properties of the different anion groups [24,25]. Especially in the oxy
chalcogenides, many interesting functional materials have been found, 
such as the excellent thermoelectric materials, e.g. BiCuSeO [26], 
high-capacity battery cathode material, e.g. Ag2V2O6F2 [27], and the 
excellent nonlinear optical crystal, e.g. Sr6Ge3OSe11 [28]. 

In the reported research, we believe that the heteroanionic oxy
chalcogenides will be interesting for the design of IR birefringent crys
tals. Firstly, the intrinsic difference between M-O and M-Q bonds in the 
heteroanionic [MOxQy] (Q = S, Se) groups is helpful for enhancing op
tical anisotropy of materials which can make materials to produce a 
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large birefringence. Secondly, in heteroanionic [MOxQy] (Q = S, Se) 
groups, the M-Q bonds are helpful to reduce the IR absorptions of ma
terials so that the materials can exhibit wide IR transmission regions 
[29–32]. Our research in the heteroanionic A-Ge-O-Q (A = alkaline 
earth; Q = S, Se) system have resulted in the discovery of four new 
heteroanionic oxychalcogenides, AGe2O4Q (A = Ba, Sr; Q = S, Se). They 
all exhibit large birefringence at 1064 nm, 0.13, 0.16, 0.15, 0.19 for 
BaGe2O4S, BaGe2O4Se, SrGe2O4S and SrGe2O4Se, respectively. These 
birefringences are one-order magnitude larger than the one of their 
corresponding single-anionic homologue, BaGe2O5 (0.03 at 1064 nm) 
[33], indicating the effectiveness of heteroanionic groups for the design 
of the birefringent crystals. In addition, UV-VIS-NIR diffusion spectra 
and IR spectra also show these compounds also have wide band-gaps 
and wide IR transmission regions. Therefore, AGe2O4Q (A = Ba, Sr; Q 
= S, Se) may be potentials as IR birefringent crystals. Herein, we will 
report their syntheses, crystal structures, optical properties and the first 
principle calculations. 

2. Experimental section 

2.1. Reagents 

BaF2 (Aladdin Chemistry Co., Ltd., 99.9 %), Ba (Beijing Hawk Sci
ence and Technology Co. Ltd. 99.9 %), GeO2 (Aladdin Chemistry Co., 
Ltd., 99.5 %), Ge (Beijing Hawk Science and Technology Co. Ltd. 98 %), 
SrS (Beijing Hawk Science and Technology Co. Ltd. 98 %), SrSe (Beijing 
Hawk Science and Technology Co. Ltd. 98 %), S (Aladdin Chemistry Co., 
Ltd., 99.5 %), and Se (Aladdin Chemistry Co., Ltd., 99.9 %) were used as 
received from commercial sources without any further purification. 

2.2. Synthesis 

AGe2O4Q (A = Ba, Sr; Q = S, Se) were all synthesized by the solid- 
state reactions in the fused silica tube. For BaGe2O4S(Se), the starting 
materials of BaF2 (0.67 mmol, 0.1175 g), Ba (0.67 mmol, 0.0920 g), 
GeO2 (1.00 mmol, 0.1046 g), Ge (0.33 mmol, 0.0240 g), and S/Se (1.33 
mmol, 0.0426/0.1050 g) were used. For SrGe2O4S(Se), stoichiometric 
mixture of starting materials SrS/SrSe (1.00 mmol, 0.1197/0.1666 g) 
and GeO2 (2.00 mmol, 0.2093 g) were used. These starting materials 
were put into graphite crucibles and were flame-sealed into 10 mm 
(inner diameter) fused-silica tubes under vacuum (~10−3 Pa), respec
tively. These tubes were then placed into a temperature controlled 
muffle furnace, heated from room temperature to 1123 K for BaGe2O4S 
(Se) (1198 K for SrGe2O4S(Se)) in 40 h, kept at these temperatures for 
96 h, and then cooled to room temperature at 2.5 ◦C/h. Colourless 
crystals of Ba(Sr)Ge2O4S (~45 % yield based on GeO2) and light yellow 
crystals of Ba(Sr)Ge2O4Se (~40 % yield based on GeO2)were obtained 
(Fig. S1). 

2.3. Single-crystal structure determination 

High-quality block single crystals of AGe2O4Q (A = Ba, Sr; Q = S, Se) 
were selected for single-crystal X-ray diffraction (XRD). Diffraction data 
were collected by using Mo Kα radiation (λ = 0.71073 Å) on a Bruker 
SMART APEX II diffractometer equipped with a 4K CCD detector at 
room temperature [34]. Their structures were solved by direct methods 
and refined by full-matrix least-squares method on F2 with anisotropic 
thermal parameters for all atoms using SHELXTL program package [35]. 
Besides, the PLATON program was used to check the symmetry, and no 
other missed or higher symmetry element was found [36]. Crystal data 
and structure refinement information were showed in Table 1. The 
atomic coordinates, equivalent isotropic displacement parameters and 
selected interatomic distances and angles of AGe2O4Q (A = Ba, Sr; Q = S, 
Se) were listed in Table S1 and Table S2 in the Supporting Information, 
respectively. 

2.4. Powder X-ray diffraction 

Powder X-ray diffraction (PXRD) of AGe2O4Q (A = Ba, Sr; Q = S, Se) 
compounds were measured on the SmartLab9KW X-ray diffractometer 
analyzer with Cu-Kα radiation (λ = 1.5418 Å) in reflection mode at room 
temperature with a step size of 0.02◦ in the range of 2θ = 10−70◦. The 
measured PXRD patterns exhibit a good consistency with the simulated 
ones except for a small amount of BaSe was detected in BaGe2O4Se 
(Fig. 1). 

2.5. UV–vis-IR diffuse reflectance spectroscopy and IR spectroscopy 

Optical diffuse reflectance spectra were performed at room temper
ature with A Shimadzu SolidSpec-3700DUV spectrophotometer. Data 
were collected in the wavelength range 200–2400 nm. The IR spectra 
were recorded at room temperature by a Nicolet iS50 FT-IR spectrom
eter transform IR spectrometer in the 400–4000 cm−1 range. Poly
crystalline powder of AGe2O4Q (A = Ba, Sr; Q = S, Se) were directly put 
on the test platform to obtain IR spectral vibration peaks. 

2.6. Raman spectroscopy 

The Raman spectra were collected with small bulk crystals on a 
confocal microscope-laser Raman spectrometer (WITec) equipped with 
a CCD detector using 532 nm radiation from a diode laser. Crystals were 
selected and loaded on a SiO2 slide; then, a 50× objective lens was used 
to choose the area to be measured on the crystal. The spectrum data was 
collected using an integration time of 10 s. 

2.7. Birefringence measurement 

The birefringence of AGe2O4Q (A = Ba, Sr; Q = S, Se) were measured 
by using a cross-polarizing microscope. According to the equation R =
Δn × d, Δn can be obtained, where R, Δn, and d are retardation, bire
fringence, and thickness, respectively. 

Table 1 
Crystal data and structure refinement for AGe2O4Q (A = Ba, Sr; Q = S, Se).  

Empirical 
formula 

BaGe2O4S BaGe2O4Se SrGe2O4S SrGe2O4Se 

Formula weight 378.58 425.48 328.86 375.76 
Space group P21/c 
a (Å) a = 6.9990 

(12) 
a = 7.179(7) a = 6.6983 

(11) 
a = 6.7928 
(6) 

b (Å) 
β(◦) 

b = 9.4705 
(18) 
β = 94.6110 
(6) 

b = 9.592(9) 
β = 96.160 
(3) 

b = 9.4824 
(14) 
β = 94.355 
(5) 

b = 9.5694 
(8), 
β = 95.357 
(5) 

c (Å) c = 8.2181 
(14) 

c = 8.491(8) c = 8.1342 
(13) 

c = 8.2785 
(9) 

Volume(Å3) 542.97(17) 581.3(10) 515.16(14) 535.78(13) 
Z 4 
ρCalcd (g/cm3) 4.631 4.862 4.240 4.662 
Completeness 99.90 % 99.30 % 99.60 % 100.0 % 
Data/ 

parameters 
1254/73 1336/73 1185/73 1233/74 

Goodness-of-fit 
on F2 

1.091 1.070 1.046 1.051 

Final R indexes 
[Fo

2>2s(Fo
2)]a 

R1 =

0.0425, 
wR2 =

0.1005 

R1 = 0.0574, 
wR2 =

0.1552 

R1 =

0.0279, 
wR2 =

0.0545 

R1 = 0.0225, 
wR2 =

0.0376 

Largest diff. 
peak and hole 
(e.Å−3) 

1.778 and 
−3.604 

2.001 and 
−4.555 

0.818 and 
−0.787 

0.669 and 
−0.634  

a R1 =
∑

||Fo| - |Fc||/
∑

|Fo|, wR2 = {
∑

[w(Fo
2 - Fc

2)2]/
∑

[w(Fo
2)2]}1/2. 
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Fig. 1. Powder XRD of (a) BaGe2O4S, (b) BaGe2O4Se, (c) SrGe2O4S, and (d) SrGe2O4Se.  

Fig. 2. The structure of BaGe2O4S: (a) [Ge(1)O4] unit; (b) [Ge(2)O3S] unit; (c) [BaO5S3] unit; (d) 2D [Ge2O4S]∞ layered structure formed by the 16-membered rings 
and 8-membered rings; (e) the arrangement of 2D layered structures of anion units along b-direction. 
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2.8. Theoretical calculations 

First-principles calculations of AGe2O4Q (A = Ba, Sr; Q = S, Se) were 
performed by a plane-wave pseudopotential density functional theory 
(DFT) method implemented on CASTEP software [37,38]. For 
embodying correlation, core−electron interactions were characterized 
by norm-conserving pseudopotentials (NCP) [39]. Meanwhile, the 
generalized gradient approximation (GGA) of Perdew-Buker-Ernzerhof 
(PBE) was exerted [40]. The valence states are as follows: Ba 5p66s2, 
Sr 4p65s2, Ge 4s24p2, S 3s23p4, Se 4s24p4, and O 2s22p4. To achieve en
ergy convergence, the plane-wave energy cutoff was set at 810 eV for 
AGe2O4Q (A = Ba, Sr; Q = S, Se). The Brillouin zone involved 5 × 4 × 4 
for AGe2O4S (A = Ba, Sr), and 5 × 3 × 4 for AGe2O4Se (A = Ba, Sr). 

3. Results and discussion 

3.1. Crystal structures 

AGe2O4Q (A = Ba, Sr; Q = S, Se) crystallize in monoclinic space 
group P21/c. As AGe2O4Q (A = Ba, Sr; Q = S, Se), are iso-structural, only 
BaGe2O4S is illustrated in detail as a representative. The asymmetric 
unit of BaGe2O4S contains one Ba atom, two Ge atoms, four O atoms and 
one S atom, which all occupy the Wyckoff positions of 4e. For Ge atoms, 
they are all coordinated by O or O/S atoms to form tetrahedral single- 
anionic [GeO4] and heteroanionic [GeO3S] units (Fig. 2a and b), with 
the Ge–O bond distances ranging from 1.683(9) to 1.794(8) Å, and Ge–S 
bond distance is 2.103(4) Å. All of these Ge–O or Ge–S bonds have the 
consistent distances with the ones in other germinates or Ge-containing 
sulfides [41,42]. In the structure, the [GeO4] and [GeO3S] tetrahedra 
alternatively connect with each other to form the 16-membered rings 
and 8-membered rings, and then these 16-membered rings and 
8-membered rings are further linked to form the two-dimensional (2D) 
[Ge2O4S]∞ layers by sharing O atoms (Fig. 2d). In connectivity terms, 

the structure may be written as {[Ge(1)O3/2O1/1][Ge(2)O3/2S1/1]}2- 

with Ba2+ cations filled between adjacent two layers to maintain the 
charges balanced (Fig. 2c, e). Remarkably, Ge(2)O3S and Ge(1)O4 are 
staggered and antiparallel arranged with each other in the same layers, 
which cancels the macro-polarity and results in their centrosymmetric 
structures. The bond valence sum (BVS) calculations for Ba: 1.92; Ge: 
4.20−4.25; S: 2.02 and O: 1.93−2.18 are agreement with their normal 
oxidation states, assuring the consistency of the crystal structures [43]. 

3.2. Structural comparison 

From the viewpoint of structure, the heteroanionic BaGe2O4S can be 
seen as the derivative of BaGe2O5 with one O atom is substituted by S 
atom (Fig. 3). But remarkably, BaGe2O5 and BaGe2O4S are not iso- 
structural. BaGe2O5 features a 2D [Ge2O5]∞ layer that is composed of 
the [GeO4] and [GeO6] octahedra (Fig. 3a, c). For BaGe2O4S, although it 
also features a 2D [Ge2O4S]∞ layer, the layer is constructed of the 
tetrahedral [GeO4] and [GeO3S] units (Fig. 3d, f). That is, from BaGe2O5 
to BaGe2O4S, the [GeO6] octahedra change to the [GeO3S] tetrahedra. 
The structural transformation can be understood based on the difference 
of ionic radius of O and S atoms and the valence matching principle 
[44]. In BaGe2O5, all Ba2+ cations are only coordinated by the O2− an
ions. Because of the large difference of ionic radius of Ba2+ and O2−

anions, Ba2+ cations tend to be coordinated by more O2− anions (twelve 
O2− ions in BaGe2O5) (Fig. 3b). That makes Ba2+ cations have the low 
Lewis acid strength (2/12 = 0.17). As such, the coordinated O atoms of 
Ba2+ cations should be the bridged O atoms between GeO4 and GeO6 
units because these bridged O atoms will have little residual negative 
charges and low Lewis base strengths. In addition, these bridged O 
atoms cannot be the bridged O atoms between GeO4 and GeO6 units 
because these bridged O atoms will have no more residual negative 
charges (Fig. 3g). In BaGe2O5, two different coordination environments 
of Ge atoms, the [GeO4] tetrahedra and the [GeO6] octahedra, are 

Fig. 3. (a) Ge(2)O6 unit of BaGe2O5; (b) BaO12 unit of BaGe2O5; (c) Ge(1)O4 unit of BaGe2O5; (d) Ge(2)O3S unit of BaGe2O4S; (e) BaO5S3 unit of BaGe2O4S; (f) Ge(1) 
O4 unit of BaGe2O4S; (g) the structure of BaGe2O5; (h) the structure of BaGe2O4S. 
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observed. In BaGe2O4S, however, S2− anions have closer ionic radius 
with Ba2+ cations. So, the coordination numbers of Ba2+ cations is less 
(eight in BaGe2O4S) and hence the Ba2+ cations have the relatively 
higher Lewis acid strength (2/8 = 0.25) (Fig. 3e). Thus, the coordinated 
O/S atoms of Ba2+ cations can be the terminal O/S atoms. But as the 
Lewis acid strength of Ba2+ cations is not high enough, the corre
sponding Ge–O/S bonds for the terminal O/S ions are shorten so that 
they have the relatively little negative charges left to match the Lewis 
acid strength of Ba2+ cations (Table S2). So, the basic building units 
(BBUs) in BaGe2O4S must be tetrahedral [GeO4] and the [GeO3S] units 
(Fig. 3h). But the [GeO6] octahedra are impossible for BaGe2O4S 
because the residual negative charges of terminal O atoms for octahedral 
[GeO6] would be too high, which cannot match with the Lewis acid 
strength of Ba2+ cations. Based on the above discussion, we can see that 
the heteroanionic BaGe2O4S can exhibit larger structural anisotropy 
because of the intrinsic differences between Ge–O and Ge–S as well as 
the shorter terminal Ge–O/S distances (perpendicular to [Ge2O4S]∞ 
layer) than the bridged Ge–O distances (in the [Ge2O4S]∞ layer). The 
large structural anisotropy may be helpful to generate a large 
birefringence. 

3.3. Birefringence measurements 

The birefringence of AGe2O4Q (A = Ba, Sr; Q = S, Se) was measured 

by a cross-polarizing microscope in the visible region. The observed 
interference colors in cross-polarized light were second-order blue for 
BaGe2O4S and SrGe2O4S. And, the interference color observed is second- 
order green under cross-polarized for BaGe2O4Se and SrGe2O4Se 
(Fig. 4). Matching with the Michal–Levy chart, the retardations (R 
values) were found to be 790 nm for second-order blue and 810 nm for 
second-order green. And their crystal thicknesses were found to be 9.3, 
6.0, 9.5 and 6.8 μm, respectively. Following the equation R = Δn × d, we 
can obtain that the birefringence of BaGe2O4S, BaGe2O4Se, SrGe2O4S 
and SrGe2O4Se are 0.09, 0.14, 0.08 and 0.12 in the visible region. 
Remarkably, as the cross-polarizing microscope can only measure the 
birefringence in the crystal wafers, the measured value may be smaller 
than the largest birefringence of materials. That means the birefringence 
of AGe2O4Q (A = Ba, Sr; Q = S, Se) may be larger than the measured 
values. The large birefringence might be favorable for their potential 
application as birefringent crystals. 

3.4. UV–vis–NIR diffuse reflectance spectroscopy and IR spectroscopy 

Furthermore, the optical band-gaps of AGe2O4Q (A = Ba, Sr; Q = S, 
Se) were also measured by the UV–vis–NIR diffuse reflectance spectra 
and they were converted into the absorption based on Kubelka–Munk 
Equation: F (R) = K/S = (1 − R)2/2R [45]. As shown in Fig. 5, the optical 
band gaps of AGe2O4Q (A = Ba, Sr; Q = S, Se) are 4.32 eV, 3.68 eV, 4.20 

Fig. 4. The photographs of crystal size and their interference colors observed in the cross-polarized light for (a) BaGe2O4S (b) BaGe2O4Se (c) SrGe2O4S and 
(d) SrGe2O4Se. 
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eV and 3.48 eV, respectively, which are larger than singe-anionic clas
sical chalcogenide compounds, such as AgGaS2 (2.56 eV) [46], AgGaSe2 
(1.83 eV) [47], and can be comparable to some oxide-based crystals, 
such as Sr2CdGe2O7 (2.89 eV) [48], NaCa4V5O17 (2.74 eV) [49], Li2K4

TiOGe4O12 (4.43 eV) [50], etc. Meanwhile, in order to evaluate the IR 
transmission of AGe2O4Q (A = Ba, Sr; Q = S, Se), their IR spectra were 
also measured (Fig. S2). That shows that there are no distinct absorption 

peaks existing in the range from 4000 to 1050 cm−1, corresponding to 
wide transmission range from 2.5 μm to 9.5 μm. Therefore, AGe2O4Q (A 
= Ba, Sr; Q = S, Se) would be potential as mid-IR optical materials. Then, 
there are three absorption peaks (≈1050, 700 and 500 cm−1) observed 
in their respective IR spectra, which can be attributed to the Ge–O and 
Ge–S/Se stretching mode [51,52]. All of these assignments are consis
tent with those of other compounds containing Ge–S/Se and Ge–O 
groups, such as GeO2 [53], GeS2 [54], Ae3Q[GeOQ3] (Ae = Ba, Sr; Q = S, 
Se) [51], etc. 

3.5. Raman spectroscopy 

To deeply analyze the specific absorption spectra of different units, 
the Raman spectra of AGe2O4Q (A = Ba, Sr; Q = S, Se) were measured 
using the micron-sized crystals. As shown in Fig. S3, the strong ab
sorption peaks in the range of 874−472 cm−1 can be attributed to the 
characteristic vibrations of the Ge−O−Ge bonds, while the peaks in the 
range of 377−260 cm−1 are for the Ge−S/Se bonds. The appearance of 
these vibrational peaks also shows that there are Ge–O or Ge–S/Se bonds 
in the compounds of AGe2O4Q (A = Ba, Sr; Q = S, Se). Besides, these 
absorption peaks below 200 cm−1 might be related to the vibrations of 
Ba/Sr–S or Ba/Sr–Se bonds, respectively [55–57]. 

3.6. Theoretical calculations 

The electronic band structures of AGe2O4Q (A = Ba, Sr; Q = S, Se) 
were calculated by the DFT as shown in Fig. S4. For AGe2O4Q (A = Ba, 
Sr; Q = S, Se), the top of the valence band (VB) and the bottom of the 
conduction band (CB) are located at the same G-point, describing the 

Fig. 5. UV–vis–NIR optical absorption spectra of AGe2O4Q (A = Ba, Sr; Q =

S, Se). 

Fig. 6. Calculated total and partial DOS for (a) BaGe2O4S, (b) BaGe2O4Se, (c) SrGe2O4S, and (d) SrGe2O4Se.  

D. Gao et al.                                                                                                                                                                                                                                     



Solid State Sciences 147 (2024) 107361

7

indirect bandgaps of 2.83 eV for BaGe2O4S, 2.33 eV for BaGe2O4Se, 2.60 
eV for SrGe2O4S and 2.13 eV for SrGe2O4Se, respectively. Clearly, these 
band-gaps are underestimated by the GGA as the exchange–correlation 
functional [40]. Four compounds also exhibit the similar density of 
states (DOS) and partial density of states (PDOS) (Fig. 6). The Ge 4s,4p, 
S/Se 3p, and O 2p orbitals construct the top region of valence states from 
−9.6 to 0 eV. Their wide hybridization in this area indicates that Ge–O 
and Ge–S/Se bonds make the main contribution of the upper side of the 
valence band. The bottom region of conduction states mainly is 
composed of 4s, 4p states of Ge, 3p state of S/Se, and 2p state of O. Thus, 
[GeO3S/Se] and [GeO4] tetrahedra have the significant effect on its 
optical properties, which determine the birefringent of AGe2O4Q (A =
Ba, Sr; Q = S, Se). 

The refractive indices of AGe2O4Q (A = Ba, Sr; Q = S, Se) and 
BaGe2O5 were also calculated by DFT. As shown in Fig. 7, the calculated 
birefringence values for BaGe2O4S, BaGe2O4Se, SrGe2O4S and 
SrGe2O4Se at 1064 nm are 0.13, 0.16, 0.15 and 0.19, respectively, while 
the birefringence of BaGe2O5 is only 0.03 at 1064 nm. Therefore, it is 
clear that the birefringence of compounds is indeed largely enhanced 
from single-anionic compounds to heteroanionic compounds. The bire
fringence values of AGe2O4Q (A = Ba, Sr; Q = S, Se) are comparable to 
those of the commercialized birefringent crystals, such as α-BaB2O4 (Δn 
= 0.116 at 1064 nm) [58], YVO4 (Δn = 0.225 at 1064 nm) [7] and 
CaCO3 (Δn = 0.171 at 633 nm) [10]. So, they are potentials as IR 
birefringent crystals. 

3.7. The dipole moment calculations 

As is well known, the anisotropic polarization of the structure is the 
main cause of material birefringence [59]. Due to the fact that alkaline 
cations typically exhibit spherically symmetric coordination, their 
contribution to birefringence can be negligible. The birefringence is 
mainly determined by the highly asymmetric anion groups [60]. In 
order to further understand the relationship between the structure and 
birefringence, the anisotropy of anion groups can be quantified by 
calculating their dipole moments. As described above, the dipole mo
ments of the anion groups, the [GeO6] polyhedra and [GeO4] tetrahedra 
in BaGe2O5, and the [GeO4] and [GeO3Q] tetrahedra in BaGe2O4Q, are 
calculated according to the bond valences method [42]. As shown in 
Table 2, the dipole moments from the [GeO6] polyhedra and [GeO4] 
tetrahedra in BaGe2O5 are very small (μ = 2.99 and 0.44 Debye (D), 
respectively). However, in BaGe2O4Q, the heteroanions [GeO3Q] (Q = S, 

Se) and [GeO4] units have larger dipole moments, 5.5–14.11 D and 
4.16–4.76 D, respectively. Generally, the larger dipole moments can 
generate the larger birefringence [61–63]. Therefore, the calculations of 
dipole moments are also consistent with their birefringence magnitudes. 

4. Conclusion 

In summary, four new heteroanionic oxychalcogenides, AGe2O4Q (A 
= Ba, Sr; Q = S, Se), have been synthesized by the solid-state reaction. 
They all contain 2D heteroanionic [Ge2O4Q] layers. Compared with the 
single-anionic BaGe2O5, the octahedral [GeO6] units are changed to 
tetrahedral [GeO3Q] units. And owing to the larger polarization 
anisotropy of [GeO4] and [GeO3Q] units, AGe2O4Q (A = Ba, Sr; Q = S, 
Se) all exhibit relatively large birefringence, 0.13, 0.16, 0.15 and 0.19 at 
1064 nm, for BaGe2O4S, BaGe2O4Se, SrGe2O4S and SrGe2O4Se respec
tively. These birefringence values are one-order magnitude larger than 
their single-anionic germanate, BaGe2O5 (0.03 @ 1064 nm). It indicates 
that constructing heteroanionic oxychalcogenides is a feasible strategy 
for enhancing the birefringence of materials. In addition, AGe2O4Q (A =
Ba, Sr; Q = S, Se) all exhibit large Eg (3.48–4.32 eV) and wide the IR 
transparent region (2.5–9.5 μm). Therefore, AGe2O4Q (A = Ba, Sr; Q = S, 
Se) may be potential as IR birefringent crystals. 
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Fig. 7. Dispersion of birefringence (Δn) of BaGe2O4S, BaGe2O4Se, SrGe2O4S, 
SrGe2O4Se and BaGe2O5. 

Table 2 
Comparison of dipole moments for GeO3S/Se mixed-anion units and GeO4 and 
GeO6 single-anionic units.  

Compounds Polyhedra Magnitude (D) Δn (at 1064 nm) 

BaGe2O5 GeO6 2.99 0.03 
GeO4 0.44 

BaGe2O4S GeO3S 7.25 0.13 
GeO4 4.16 

BaGe2O4Se GeO3Se 14.11 0.16 
GeO4 4.64 

SrGe2O4S GeO3S 5.50 0.15 
GeO4 4.58 

SrGe2O4Se GeO3Se 11.32 0.19 
GeO4 4.76  
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