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ARTICLE INFO ABSTRACT

Keywords: Heteroanionic materials are of current research interest owing to their varied structural chemistry and proper-

Oxychalc?gemdes ties. Recently, a number of heteroanionic materials have been synthesized that can be used for water splitting,

getefr(';amons battery materials, thermoelectrics, and nonlinear optical applications. Birefringent heteroanionic materials are
irefringence

still rarely researched. Herein, we report a series of new oxychalcogenides, AGe,04Q (A = Ba, Sr; Q = S, Se), that
are synthesized by solid-state reactions in fused silica tubes with their structures determined by single-crystal X-
ray diffraction. Optical property measurements show that AGe204Q (A = Ba, Sr; Q = S, Se) exhibit large bi-
refringences, 0.13-0.19 @ 1064 nm. These are one-order of magnitude larger than their single-anionic homo-
logue, BaGeyOs - 0.03 @ 1064 nm. This suggests that constructing heteroanions through using chalcogenides to
partially substitute O in tetrahedral foundation building units (FBUs) is a viable method for designing new
birefringent materials. Furthermore, the crystal structures, UV-vis-NIR diffuse reflectance spectra, infrared and
Raman spectra as well as the first-principles calculations for AGe304Q (A = Ba, Sr; Q = S, Se) are also reported.

Crystal structures

1. Introduction

Birefringence originates from the optical anisotropy of materials and
plays indispensable important role for the development of advanced
technology [1-6]. During the past decades, a number of the oxide-based
birefringent crystals, such as YVO4 [7], TiO2 [8], LiNbO3 [9] and CaCO3
[10], have been discovered and commercialized in ultraviolet (UV) and
visible regions. Recently, some borates with large birefringence and
short UV cut-off edges (Acutoff < 200 nm), such as NagBaz(B30g)2F
(0.113@589 nm) [11], BayCa(B30¢)2 (0.124@589 nm) [12], BayMg
(B30¢)2 (0.110@589 nm) [13], MBaYBgO12 (M = Rb, Cs) (0.120@589
nm) [14], and Ca(BO3), (0.134@589 nm) [15] have also been re-
ported. These materials may be potential deep-UV birefringent crystals.
However, compared with UV, deep-UV and visible regions, the bire-
fringent crystals in the infrared (IR) regions are rarely reported.

For design of the IR birefringent crystals, chalcogenides may be a
good materials class because they can exhibit excellent transmission in
wide IR regions [16,17]. Typically, sulfides are transparent to ~11 pm,
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selenides to ~15 pm, and tellurides to beyond 20 pm [18-20]. But for
chalcogenide crystals, they generally possess narrow band-gaps, which
are unfavorable for materials to exhibit high laser damage thresholds
(LDT). That will limit their applications in the high-energy laser systems
that are important for environmental monitoring and information
communication [21-23]. In recent research, it has been shown that
heteroanionic compounds can exhibit superior functional properties
than the single-anionic compounds because the former can integrate the
properties of the different anion groups [24,25]. Especially in the oxy-
chalcogenides, many interesting functional materials have been found,
such as the excellent thermoelectric materials, e.g. BiCuSeO [26],
high-capacity battery cathode material, e.g. Ag2V20eF2 [27], and the
excellent nonlinear optical crystal, e.g. SrgGe3OSe;; [28].

In the reported research, we believe that the heteroanionic oxy-
chalcogenides will be interesting for the design of IR birefringent crys-
tals. Firstly, the intrinsic difference between M-O and M-Q bonds in the
heteroanionic [MOxQy] (Q = S, Se) groups is helpful for enhancing op-
tical anisotropy of materials which can make materials to produce a
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large birefringence. Secondly, in heteroanionic [MOxQy] (Q = S, Se)
groups, the M-Q bonds are helpful to reduce the IR absorptions of ma-
terials so that the materials can exhibit wide IR transmission regions
[29-32]. Our research in the heteroanionic A-Ge-O-Q (A = alkaline
earth; Q = S, Se) system have resulted in the discovery of four new
heteroanionic oxychalcogenides, AGe;04Q (A = Ba, Sr; Q =S, Se). They
all exhibit large birefringence at 1064 nm, 0.13, 0.16, 0.15, 0.19 for
BaGey04S, BaGey04Se, SrGep04S and SrGeo04Se, respectively. These
birefringences are one-order magnitude larger than the one of their
corresponding single-anionic homologue, BaGe;0Os (0.03 at 1064 nm)
[33], indicating the effectiveness of heteroanionic groups for the design
of the birefringent crystals. In addition, UV-VIS-NIR diffusion spectra
and IR spectra also show these compounds also have wide band-gaps
and wide IR transmission regions. Therefore, AGe204Q (A = Ba, Sr; Q
= S, Se) may be potentials as IR birefringent crystals. Herein, we will
report their syntheses, crystal structures, optical properties and the first
principle calculations.

2. Experimental section
2.1. Reagents

BaF; (Aladdin Chemistry Co., Ltd., 99.9 %), Ba (Beijing Hawk Sci-
ence and Technology Co. Ltd. 99.9 %), GeO2 (Aladdin Chemistry Co.,
Ltd., 99.5 %), Ge (Beijing Hawk Science and Technology Co. Ltd. 98 %),
SrS (Beijing Hawk Science and Technology Co. Ltd. 98 %), SrSe (Beijing
Hawk Science and Technology Co. Ltd. 98 %), S (Aladdin Chemistry Co.,
Ltd., 99.5 %), and Se (Aladdin Chemistry Co., Ltd., 99.9 %) were used as
received from commercial sources without any further purification.

2.2. Synthesis

AGe204Q (A = Ba, Sr; Q = S, Se) were all synthesized by the solid-
state reactions in the fused silica tube. For BaGe304S(Se), the starting
materials of BaFg (0.67 mmol, 0.1175 g), Ba (0.67 mmol, 0.0920 g),
GeOy (1.00 mmol, 0.1046 g), Ge (0.33 mmol, 0.0240 g), and S/Se (1.33
mmol, 0.0426/0.1050 g) were used. For SrGe,04S(Se), stoichiometric
mixture of starting materials SrS/SrSe (1.00 mmol, 0.1197/0.1666 g)
and GeO (2.00 mmol, 0.2093 g) were used. These starting materials
were put into graphite crucibles and were flame-sealed into 10 mm
(inner diameter) fused-silica tubes under vacuum (~103 Pa), respec-
tively. These tubes were then placed into a temperature controlled
muffle furnace, heated from room temperature to 1123 K for BaGe204S
(Se) (1198 K for SrGe204S(Se)) in 40 h, kept at these temperatures for
96 h, and then cooled to room temperature at 2.5 °C/h. Colourless
crystals of Ba(Sr)Ge04S (~45 % yield based on GeO,) and light yellow
crystals of Ba(Sr)Ge;04Se (~40 % yield based on GeOy)were obtained
(Fig. S1).

2.3. Single-crystal structure determination

High-quality block single crystals of AGe;04Q (A = Ba, Sr; Q =S, Se)
were selected for single-crystal X-ray diffraction (XRD). Diffraction data
were collected by using Mo Ka radiation (A = 0.71073 A) on a Bruker
SMART APEX II diffractometer equipped with a 4K CCD detector at
room temperature [34]. Their structures were solved by direct methods
and refined by full-matrix least-squares method on F? with anisotropic
thermal parameters for all atoms using SHELXTL program package [35].
Besides, the PLATON program was used to check the symmetry, and no
other missed or higher symmetry element was found [36]. Crystal data
and structure refinement information were showed in Table 1. The
atomic coordinates, equivalent isotropic displacement parameters and
selected interatomic distances and angles of AGe204Q (A =Ba, Sr; Q =S,
Se) were listed in Table S1 and Table S2 in the Supporting Information,
respectively.
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Table 1
Crystal data and structure refinement for AGe,04Q (A = Ba, Sr; Q = S, Se).
Empirical BaGe,;04S BaGe,04Se SrGe,04S SrGe,04Se
formula
Formula weight 378.58 425.48 328.86 375.76
Space group P2;/c
a (A) a = 6.9990 a=7.179(7) a = 6.6983 a=6.7928
(12) an (6)
b (A) b =9.4705 b =9.592(9) b =9.4824 b =9.5694
pC) (18) /= 96.160 a4 (8,
p =94.6110 3) p = 94.355 p = 95.357
(6) 5) 5
c (10\) c=28.2181 c = 8.491(8) c=8.1342 c =8.2785
a4 13) ©)
Volume(A%) 542.97(17) 581.3(10) 515.16(14) 535.78(13)
Z 4
pcaled (8/cm3) 4.631 4.862 4.240 4.662
Completeness 99.90 % 99.30 % 99.60 % 100.0 %
Data/ 1254/73 1336/73 1185/73 1233/74
parameters
Goodness-of-fit 1.091 1.070 1.046 1.051
on F2
Final R indexes Ry = R; = 0.0574, Ry = R; = 0.0225,
[F2>2s(F)]° 0.0425, WRy = 0.0279, WRy =
WRy = 0.1552 WRy = 0.0376
0.1005 0.0545
Largest diff. 1.778 and 2.001 and 0.818 and 0.669 and
peak and hole —3.604 —4.555 —0.787 —0.634
(eA™®

* Ry = Y||Fo - [Fel /3 |Fol, WR2 = {[W(Fs - FOY*1/3 w(FS)*1H72.
2.4. Powder X-ray diffraction

Powder X-ray diffraction (PXRD) of AGe204Q (A = Ba, Sr; Q =S, Se)
compounds were measured on the SmartLab9KW X-ray diffractometer
analyzer with Cu-Ka radiation (A = 1.5418 f\) in reflection mode at room
temperature with a step size of 0.02° in the range of 260 = 10—70°. The
measured PXRD patterns exhibit a good consistency with the simulated
ones except for a small amount of BaSe was detected in BaGep,O4Se
(Fig. 1).

2.5. UV-vis-IR diffuse reflectance spectroscopy and IR spectroscopy

Optical diffuse reflectance spectra were performed at room temper-
ature with A Shimadzu SolidSpec-3700DUV spectrophotometer. Data
were collected in the wavelength range 200-2400 nm. The IR spectra
were recorded at room temperature by a Nicolet iS50 FT-IR spectrom-
eter transform IR spectrometer in the 400-4000 cm™' range. Poly-
crystalline powder of AGe;04Q (A = Ba, Sr; Q =S, Se) were directly put
on the test platform to obtain IR spectral vibration peaks.

2.6. Raman spectroscopy

The Raman spectra were collected with small bulk crystals on a
confocal microscope-laser Raman spectrometer (WITec) equipped with
a CCD detector using 532 nm radiation from a diode laser. Crystals were
selected and loaded on a SiOs slide; then, a 50x objective lens was used
to choose the area to be measured on the crystal. The spectrum data was
collected using an integration time of 10 s.

2.7. Birefringence measurement

The birefringence of AGe204Q (A = Ba, Sr; Q =S, Se) were measured
by using a cross-polarizing microscope. According to the equation R =
An x d, An can be obtained, where R, An, and d are retardation, bire-
fringence, and thickness, respectively.
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Fig. 1. Powder XRD of (a) BaGe;04S, (b) BaGe,04Se, (c) SrGe,04S, and (d) SrGe,O4Se.
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Fig. 2. The structure of BaGe,04S: (a) [Ge(1)O04] unit; (b) [Ge(2)03S] unit; (c) [BaOsS3] unit; (d) 2D [Ge;04S]., layered structure formed by the 16-membered rings
and 8-membered rings; (e) the arrangement of 2D layered structures of anion units along b-direction.
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2.8. Theoretical calculations

First-principles calculations of AGe204Q (A = Ba, Sr; Q = S, Se) were
performed by a plane-wave pseudopotential density functional theory
(DFT) method implemented on CASTEP software [37,38]. For
embodying correlation, core—electron interactions were characterized
by norm-conserving pseudopotentials (NCP) [39]. Meanwhile, the
generalized gradient approximation (GGA) of Perdew-Buker-Ernzerhof
(PBE) was exerted [40]. The valence states are as follows: Ba 5p6652,
Sr 4p%5s2, Ge 4s24p?, S 3s23p*, Se 4s24p*, and O 2s%2p*. To achieve en-
ergy convergence, the plane-wave energy cutoff was set at 810 eV for
AGe304Q (A =Ba, Sr; Q = S, Se). The Brillouin zone involved 5 x 4 x 4
for AGey04S (A = Ba, Sr), and 5 x 3 x 4 for AGe;04Se (A = Ba, Sr).

3. Results and discussion
3.1. Crystal structures

AGez04Q (A = Ba, Sr; Q = S, Se) crystallize in monoclinic space
group P2;/c. As AGe204Q (A = Ba, Sr; Q =S, Se), are iso-structural, only
BaGey04S is illustrated in detail as a representative. The asymmetric
unit of BaGe,04S contains one Ba atom, two Ge atoms, four O atoms and
one S atom, which all occupy the Wyckoff positions of 4e. For Ge atoms,
they are all coordinated by O or O/S atoms to form tetrahedral single-
anionic [GeO4] and heteroanionic [GeO3S] units (Fig. 2a and b), with
the Ge-O bond distances ranging from 1.683(9) to 1.794(8) ;\, and Ge-S
bond distance is 2.103(4) A. All of these Ge—O or Ge-S bonds have the
consistent distances with the ones in other germinates or Ge-containing
sulfides [41,42]. In the structure, the [GeO4] and [GeOsS] tetrahedra
alternatively connect with each other to form the 16-membered rings
and 8-membered rings, and then these 16-membered rings and
8-membered rings are further linked to form the two-dimensional (2D)
[Ge204S], layers by sharing O atoms (Fig. 2d). In connectivity terms,
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the structure may be written as {[Ge(1)O3,201,1]1[Ge(2)O3,251 /1]}2'
with Ba?* cations filled between adjacent two layers to maintain the
charges balanced (Fig. 2c, e). Remarkably, Ge(2)O3S and Ge(1)O4 are
staggered and antiparallel arranged with each other in the same layers,
which cancels the macro-polarity and results in their centrosymmetric
structures. The bond valence sum (BVS) calculations for Ba: 1.92; Ge:
4.20—4.25; S: 2.02 and O: 1.93—2.18 are agreement with their normal
oxidation states, assuring the consistency of the crystal structures [43].

3.2. Structural comparison

From the viewpoint of structure, the heteroanionic BaGe;04S can be
seen as the derivative of BaGe;Os with one O atom is substituted by S
atom (Fig. 3). But remarkably, BaGe;Os and BaGey04S are not iso-
structural. BaGe;Os features a 2D [GeyOsl,, layer that is composed of
the [GeO4] and [GeOg] octahedra (Fig. 3a, c). For BaGe204S, although it
also features a 2D [Gey04S],, layer, the layer is constructed of the
tetrahedral [GeO4] and [GeO3S] units (Fig. 3d, f). That is, from BaGe2Os5
to BaGep04S, the [GeOg] octahedra change to the [GeOsS] tetrahedra.
The structural transformation can be understood based on the difference
of ionic radius of O and S atoms and the valence matching principle
[44]. In BaGeyOs, all Ba®* cations are only coordinated by the 0% an-
ions. Because of the large difference of ionic radius of Ba®>* and 0%~
anions, Ba2* cations tend to be coordinated by more 0%~ anions (twelve
0% ions in BaGeyOs) (Fig. 3b). That makes Ba2*t cations have the low
Lewis acid strength (2/12 = 0.17). As such, the coordinated O atoms of
Ba®" cations should be the bridged O atoms between GeO4 and GeOg
units because these bridged O atoms will have little residual negative
charges and low Lewis base strengths. In addition, these bridged O
atoms cannot be the bridged O atoms between GeO4 and GeOg units
because these bridged O atoms will have no more residual negative
charges (Fig. 3g). In BaGeyOs, two different coordination environments
of Ge atoms, the [GeO4] tetrahedra and the [GeOg] octahedra, are
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Fig. 3. (a) Ge(2)Og¢ unit of BaGe,Os; (b) BaO; 5 unit of BaGe,Os; (¢) Ge(1)O4 unit of BaGe,Os; (d) Ge(2)03S unit of BaGe;04S; (€) BaOsS3 unit of BaGeo04S; (f) Ge(1)

04 unit of BaGe;04S; (g) the structure of BaGe,Os; (h) the structure of BaGe;04S.
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observed. In BaGe;04S, however, S%~ anions have closer ionic radius
with Ba?* cations. So, the coordination numbers of Ba®* cations is less
(eight in BaGey04S) and hence the Ba?" cations have the relatively
higher Lewis acid strength (2/8 = 0.25) (Fig. 3e). Thus, the coordinated
0/S atoms of Ba?* cations can be the terminal O/S atoms. But as the
Lewis acid strength of Ba®" cations is not high enough, the corre-
sponding Ge-O/S bonds for the terminal O/S ions are shorten so that
they have the relatively little negative charges left to match the Lewis
acid strength of Ba®" cations (Table S2). So, the basic building units
(BBUs) in BaGe04S must be tetrahedral [GeO4] and the [GeO3S] units
(Fig. 3h). But the [GeOg] octahedra are impossible for BaGe;04S
because the residual negative charges of terminal O atoms for octahedral
[GeOg] would be too high, which cannot match with the Lewis acid
strength of Ba®* cations. Based on the above discussion, we can see that
the heteroanionic BaGe;04S can exhibit larger structural anisotropy
because of the intrinsic differences between Ge-O and Ge-S as well as
the shorter terminal Ge-O/S distances (perpendicular to [Gep04S],,
layer) than the bridged Ge-O distances (in the [Ge304S] layer). The
large structural anisotropy may be helpful to generate a large
birefringence.

3.3. Birefringence measurements

The birefringence of AGe204Q (A = Ba, Sr; Q = S, Se) was measured

*
|Vector angle: 216 87 degrees  Vector length: 10 pixels 5 9.3 Mu |
.

3 *
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by a cross-polarizing microscope in the visible region. The observed
interference colors in cross-polarized light were second-order blue for
BaGe,04S and SrGe,04S. And, the interference color observed is second-
order green under cross-polarized for BaGepO4Se and SrGepO4Se
(Fig. 4). Matching with the Michal-Levy chart, the retardations (R
values) were found to be 790 nm for second-order blue and 810 nm for
second-order green. And their crystal thicknesses were found to be 9.3,
6.0, 9.5 and 6.8 um, respectively. Following the equation R = An x d, we
can obtain that the birefringence of BaGe;04S, BaGey04Se, SrGez04S
and SrGep04Se are 0.09, 0.14, 0.08 and 0.12 in the visible region.
Remarkably, as the cross-polarizing microscope can only measure the
birefringence in the crystal wafers, the measured value may be smaller
than the largest birefringence of materials. That means the birefringence
of AGe204Q (A = Ba, Sr; Q = S, Se) may be larger than the measured
values. The large birefringence might be favorable for their potential
application as birefringent crystals.

3.4. UV-vis-NIR diffuse reflectance spectroscopy and IR spectroscopy

Furthermore, the optical band-gaps of AGe204Q (A =Ba, Sr; Q =S,
Se) were also measured by the UV-vis-NIR diffuse reflectance spectra
and they were converted into the absorption based on Kubelka—-Munk
Equation: F(R)=K/S=(1 — R)%/2R [45]. As shown in Fig. 5, the optical
band gaps of AGe204Q (A =Ba, Sr; Q =S, Se) are 4.32 eV, 3.68 eV, 4.20

2
|Vector angle: 188.13 degrees Vector length: 6 pixela 6.0 M}
. -

(a)

B *
Vector angle: 270 00 degrees Vectorlength: 10 pixelsy 9.5 Mus
. -

Fy 3

5 L

|Vector angle: 203 20 degrees  Vector length: 7 pixels :GBW
*

*

(c)

(d)

Fig. 4. The photographs of crystal size and their interference colors observed in the cross-polarized light for (a) BaGe,04S (b) BaGe;04Se (c) SrGe,04S and

(d) SrGe,04Se.
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Fig. 5. UV-vis-NIR optical absorption spectra of AGe,04Q (A = Ba, Sr; Q =
S, Se).

eV and 3.48 eV, respectively, which are larger than singe-anionic clas-
sical chalcogenide compounds, such as AgGaS; (2.56 eV) [46], AgGaSe;
(1.83 eV) [47], and can be comparable to some oxide-based crystals,
such as Sr,CdGe07 (2.89 eV) [48], NaCasVs017 (2.74 eV) [49], LigK4.
TiOGe4012 (4.43 eV) [50], etc. Meanwhile, in order to evaluate the IR
transmission of AGe304Q (A = Ba, Sr; Q = S, Se), their IR spectra were
also measured (Fig. S2). That shows that there are no distinct absorption
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peaks existing in the range from 4000 to 1050 cm ™, corresponding to
wide transmission range from 2.5 pm to 9.5 pm. Therefore, AGe204Q (A
=Ba, Sr; Q =S, Se) would be potential as mid-IR optical materials. Then,
there are three absorption peaks (~1050, 700 and 500 cm ™) observed
in their respective IR spectra, which can be attributed to the Ge-O and
Ge-S/Se stretching mode [51,52]. All of these assignments are consis-
tent with those of other compounds containing Ge-S/Se and Ge-O
groups, such as GeO; [53], GeSs [54], Ae3Q[GeOQs3] (Ae =Ba, Sr; Q =S,
Se) [51], etc.

3.5. Raman spectroscopy

To deeply analyze the specific absorption spectra of different units,
the Raman spectra of AGe304Q (A = Ba, Sr; Q = S, Se) were measured
using the micron-sized crystals. As shown in Fig. S3, the strong ab-
sorption peaks in the range of 874—472 cm™! can be attributed to the
characteristic vibrations of the Ge—O—Ge bonds, while the peaks in the
range of 377—260 cm ! are for the Ge—S/Se bonds. The appearance of
these vibrational peaks also shows that there are Ge-O or Ge-S/Se bonds
in the compounds of AGe204Q (A = Ba, Sr; Q = S, Se). Besides, these
absorption peaks below 200 cm ™! might be related to the vibrations of
Ba/Sr-S or Ba/Sr-Se bonds, respectively [55-57].

3.6. Theoretical calculations

The electronic band structures of AGe;04Q (A = Ba, Sr; Q = S, Se)
were calculated by the DFT as shown in Fig. S4. For AGes04Q (A = Ba,
Sr; Q = S, Se), the top of the valence band (VB) and the bottom of the
conduction band (CB) are located at the same G-point, describing the
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Fig. 6. Calculated total and partial DOS for (a) BaGe,04S, (b) BaGe;04Se, (c) SrGe,04S, and (d) SrGe;04Se.
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indirect bandgaps of 2.83 eV for BaGe204S, 2.33 eV for BaGey04Se, 2.60
eV for SrGep04S and 2.13 eV for SrGe,04Se, respectively. Clearly, these
band-gaps are underestimated by the GGA as the exchange—correlation
functional [40]. Four compounds also exhibit the similar density of
states (DOS) and partial density of states (PDOS) (Fig. 6). The Ge 4s,4p,
S/Se 3p, and O 2p orbitals construct the top region of valence states from
—9.6 to 0 eV. Their wide hybridization in this area indicates that Ge-O
and Ge-S/Se bonds make the main contribution of the upper side of the
valence band. The bottom region of conduction states mainly is
composed of 4s, 4p states of Ge, 3p state of S/Se, and 2p state of O. Thus,
[GeO3S/Se] and [GeO4] tetrahedra have the significant effect on its
optical properties, which determine the birefringent of AGe204Q (A =
Ba, Sr; Q = S, Se).

The refractive indices of AGe;04Q (A = Ba, Sr; Q = S, Se) and
BaGe,Os were also calculated by DFT. As shown in Fig. 7, the calculated
birefringence values for BaGe204S, BaGey04Se, SrGep04S and
SrGe04Se at 1064 nm are 0.13, 0.16, 0.15 and 0.19, respectively, while
the birefringence of BaGeyOs is only 0.03 at 1064 nm. Therefore, it is
clear that the birefringence of compounds is indeed largely enhanced
from single-anionic compounds to heteroanionic compounds. The bire-
fringence values of AGe304Q (A = Ba, Sr; Q = S, Se) are comparable to
those of the commercialized birefringent crystals, such as a-BaB204 (An
= 0.116 at 1064 nm) [58], YVO4 (An = 0.225 at 1064 nm) [7] and
CaCOs (An = 0.171 at 633 nm) [10]. So, they are potentials as IR
birefringent crystals.

3.7. The dipole moment calculations

As is well known, the anisotropic polarization of the structure is the
main cause of material birefringence [59]. Due to the fact that alkaline
cations typically exhibit spherically symmetric coordination, their
contribution to birefringence can be negligible. The birefringence is
mainly determined by the highly asymmetric anion groups [60]. In
order to further understand the relationship between the structure and
birefringence, the anisotropy of anion groups can be quantified by
calculating their dipole moments. As described above, the dipole mo-
ments of the anion groups, the [GeOg] polyhedra and [GeO4] tetrahedra
in BaGe,Os, and the [GeO4] and [GeO3Q] tetrahedra in BaGe;04Q, are
calculated according to the bond valences method [42]. As shown in
Table 2, the dipole moments from the [GeOg] polyhedra and [GeOy4]
tetrahedra in BaGe,Os are very small (p = 2.99 and 0.44 Debye (D),
respectively). However, in BaGes04Q, the heteroanions [GeO3Q] (Q =S,

0.3
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SrGe,0,Se An =0.19 at 1064 nm
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Fig. 7. Dispersion of birefringence (An) of BaGe,04S, BaGe;04Se, SrGe;04S,
SrGe,0,4Se and BaGe,Os.
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Table 2
Comparison of dipole moments for GeO3S/Se mixed-anion units and GeO4 and
GeOg single-anionic units.

Compounds Polyhedra Magnitude (D) An (at 1064 nm)

BaGe,Os GeOg 2.99 0.03
GeOy 0.44

BaGe04S GeO3S 7.25 0.13
GeOy 4.16

BaGe,04Se GeO3Se 14.11 0.16
GeOy 4.64

SrGe;04S GeO3S 5.50 0.15
GeOy 4.58

SrGe;04Se GeO3Se 11.32 0.19
GeOy 4.76

Se) and [GeO4] units have larger dipole moments, 5.5-14.11 D and
4.16-4.76 D, respectively. Generally, the larger dipole moments can
generate the larger birefringence [61-63]. Therefore, the calculations of
dipole moments are also consistent with their birefringence magnitudes.

4. Conclusion

In summary, four new heteroanionic oxychalcogenides, AGe304Q (A
= Ba, Sr; Q = S, Se), have been synthesized by the solid-state reaction.
They all contain 2D heteroanionic [Ge204Q] layers. Compared with the
single-anionic BaGeyOs, the octahedral [GeOg] units are changed to
tetrahedral [GeOsQ] units. And owing to the larger polarization
anisotropy of [GeO4] and [GeO3Q] units, AGe;04Q (A =Ba, Sr; Q =S,
Se) all exhibit relatively large birefringence, 0.13, 0.16, 0.15 and 0.19 at
1064 nm, for BaGe;04S, BaGey04Se, SrGe,04S and SrGe,04Se respec-
tively. These birefringence values are one-order magnitude larger than
their single-anionic germanate, BaGe;Os (0.03 @ 1064 nm). It indicates
that constructing heteroanionic oxychalcogenides is a feasible strategy
for enhancing the birefringence of materials. In addition, AGe204Q (A =
Ba, Sr; Q = S, Se) all exhibit large E; (3.48-4.32 eV) and wide the IR
transparent region (2.5-9.5 pm). Therefore, AGe204Q (A =Ba, Sr; Q =S,
Se) may be potential as IR birefringent crystals.
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