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Microbial ecology is moving away from purely descriptive
analyses to experiments that can determine the underlying
mechanisms driving changes in community assembly and
function. More species-rich microbial communities generally
have higher functional capabilities depending on if there is
positive selection of certain species or complementarity among
different species. When building synthetic communities or
laboratory enrichment cultures, there are specific choices that
can increase the number of species able to coexist. Higher
resource complexity or the addition of physical niches are two
of the many factors leading to greater biodiversity and
associated increases in functional capabilities. We can use
principles from community ecology and knowledge of microbial
physiology to generate improved microbiomes for use in
medicine, agriculture, or environmental management.
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Introduction

All ecological communities are formed by the interplay
of four general processes: dispersal, selection, diversifi-
cation, and drift [1,2]. The relative influence of these
processes depends on the abiotic and biotic context; for
example, if a certain habitat has one primary food source
and constant high temperatures, these factors will
strongly filter the species able to colonize and thrive in
the habitat, resulting in conditions where ecological se-
lection is likely to play a larger role than dispersal or
drift. Communities of microbes are affected by the four
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processes just like those of animals or plants, although
distinctive features of some microbes (e.g. long-term
dormancy or global dispersal on air currents) can shift
which processes dominate [2]. These processes drive
community assembly, affecting both composition and,
perhaps most importantly, function.

Community function is studied in a few different ways.
One approach is through examining traits of different
species and summarizing them across a community or
assemblage [3]. Another approach is using the concept of
ecosystem functioning — an ambiguous term that
sometimes refers to the way in which energy or nutrients
move through an ecosystem, while at other times, it is
used in a more human-centric way to refer to ecosystem
services [4]. It can be difficult to determine which me-
chanisms drive relevant functions for a particular com-
munity or ecosystem, even if the general goal is defined
(e.g. a function-related goal might be increased biomass
production or increased resistance to perturbations).
Furthermore, some of the more general ‘community
functions’ used for microbial communities, such as re-
spiration, may not capture other more nuanced func-
tions, such as hydrolytic enzyme activity, that are more
likely to vary in a focal ecosystem and could affect end
goals [5]. Thus, a researcher must be familiar with their
particular system in order to identify the traits or eco-
system functions of interest.

Synthetic, or constructed, microbial communities
(SynComs) are built by combining individual strains, while
enrichment communities are sampled from natural sources
and established in laboratory conditions through environ-
mental selection. Defining key functions in SynComs is
often simpler than for enrichment cultures or wild com-
munities because the goal is usually the degradation or
generation of certain compounds, often related to the
health of a host. For example, in the human gut micro-
biome, there are four main categories of beneficial func-
tions: cometabolism, fermentation, ecoresilience, and
immune training [6]. Cometabolism is when microbes
utilize compounds produced by the host, fermentation is
when they assist with digestion, ecoresilience is stability in
the face of pathogens or perturbations, and immune
training primes the host immune system. For the most
part, these categories apply to other types of host-asso-
ciated microbiomes as well. For example, in an agricultural
setting, managers would likely want to know how their
plant-associated microbiomes act in terms of cometabo-
lism, ecoresilience, and immune training,
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2 Microbial Systems and Synthetic Biology

This review highlights recent literature and concepts
connecting assembly and function of microbial commu-
nities. A primary link between microbial community
assembly and functioning is through increased coex-
istence that supports higher species richness; therefore, I
emphasize recent insights into the mechanisms sup-
porting microbial biodiversity such as resource com-
plexity, cross-feeding, and other factors that expand
niche space or reduce fitness differences. The review
focuses on bacterial communities, reflecting the majority
of studies in this field. However, as a scientific com-
munity, microbial ecology needs to move beyond char-
acterizing just the interactions among bacteria to also
include the other players in microbial communities. For
example, fungi and bacteria interact to produce unique
functions such as flavor in fermented foods [7], the al-
leviation of amino acid and iron limitation in bacteria [8],
or more effective suppression of plant disease [9]. Mul-
titrophic interactions, such as predator—prey relation-
ships between protozoa and bacteria [10] or viral
infections that alter nutrient cycling [11,12], can also
have large effects on community composition and
function. Overall, even though the scientific literature
(including this review) often uses the term ‘community’
for a single taxonomic grouping, communities are in-
herently multitrophic and contain species across dif-

Current research is uncovering the connections between
community assembly and function and the mechanisms
driving observed patterns.
inform how researchers build synthetic communities,
with great potential for improving human health, agri-
culture, and ecological restoration. A variety of different
factors affect how a SynCom or enrichment community
will assemble and function,
plexity, the timing and strength of dilutions, and the
source and starting point of the community, among
others. I will discuss these factors after outlining the
connection between community assembly and function.

Increased knowledge will

including resource com-

The connection between microbial

community assembly and function

Community assembly is intertwined with community
function because both the identity and the interactions of
the species in a focal community will affect its functional
capabilities. In the Biodiversity Ecosystem Functioning
(BEF) literature, studies generally find positive relation-
ships where higher biodiversity (or richness) leads to
higher ecosystem function (e.g. productivity) in plant or
microbial communities [4,15,16] (Figure 1). A positive
relationship between biodiversity and ecosystem function
can be attributed to either selection or complementarity

ferent domains of life.
broader diversity by including

cukaryotes (e.g. [9,13,14]), and hopefully, many others

will follow in their footsteps.

Figure 1

Some recent studies reflect a

[17]. Here, selection refers to sampling effects: if there are
more species, it 1s more likely that a high-functioning
species is present in the community. Complementarity
refers to how niche partitioning or facilitation can lead to a
higher functional output when species are together
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Conceptual diagram highlighting some of the factors affecting community richness (more vs fewer species) and the connection to community
functioning. Organism abundance is similar on each side, with large differences in richness. The triangles in the middle represent how different factors
contribute to biodiversity. Note that this diagram represents the norm, but fewer species can lead to higher functioning (e.g. when certain species are
good competitors and high producers) and vice versa.
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instead of alone. Despite the prevalence of positive BEF
relationships, a recent study used a dynamical consumer-
resource model of microbial decomposer communities to
investigate the circumstances where a negative BEF re-
lationship might emerge and found that these relation-
ships occurred when different species inhibited the
functioning of others (negative complementarity) or when
a competitive hierarchy was present, and better compe-
titors were not strong producers (negative selection) [18].
However, as also reflected in the rest of the literature, the
majority of situations in this modeling study led to posi-
tive BEF relationships.

In some cases, particular species drive ecosystem or host
effects, while in other cases, it appears to be more of a
whole-community effect. In an example where particular
species drive relevant function, a study measuring plant-
pathogen defense by 130 leaf-associated, 5-species
SynComs found that strain identity mattered most for
pathogen reduction [19]. Further research identified how
opportunistic Xanthomonas pathogens could trigger
whole-community dysbiosis via enzyme secretion from
their Type II Secretion System [20]. A whole-commu-
nity effect has been observed in other studies. A 10-
strain SynCom, on average, increased microbial pro-
ductivity and host plant growth more than single-strain
inoculations [21]. Rare species drove multifunctionality
(a combination of 16 ecosystem functions related to
nutrient provisioning, element cycling, pathogen control,
and plant-microbe symbiosis) in a study of agricultural
soils [22]. A particular bacterial community increased
growth of a carnivorous pitcher plant — likely via as-
sistance with insect prey degradation — but the effect
could not be tied to particular bacteria and was likely
caused by a functional rather than taxonomic shift [23].
In general, it appears that the community assembly
factors driving higher species richness are also relevant
for ecosystem functioning (Figure 1).

Common abiotic factors driving microbial
community assembly and function

One of the most important factors affecting microbial
community assembly is the complexity of resources
provided (Figure 1). Microbial communities experience
stronger selection when only a single carbon or nitrogen
source is used. This is in part due to strong competition
for the available resource (e.g. see Tilman’s R* theory
[24]) and in part because only certain species may have
the metabolic machinery to use a particular resource.
Recent research shows that microbial use of particular
carbon sources can be predictable [25-29]. For example,
genome content can predict catabolic preferences [27]
and metabolically similar substrates select for tax-
onomically similar communities [25], while community
richness only increases by one species, on average, with
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one additional resource [26]. Importantly, a more com-
plex resource, such as cellulose, that can generate more
metabolic products, can support many more species than
a simple resource, such as citrate [26]. As researchers
move forward in investigating the effects of different
resources, we need to use more realistic and complex
mixed-resource substrates because these will increase
the richness and complexity of the microbial commu-
nities we can assemble and their resulting functional
potential [5] (Figure 1).

Resource concentration also affects biodiversity, but
with mixed results. Recent studies have found that
bacterial richness decreases with higher resource con-
centrations, although the decrease is less prominent
when using more complex resources [30-32]. There are
probably multiple mechanisms driving this observation,
including stronger competition among species at higher
resource levels and also how certain fast-growing species
can change their environment to make it unfavorable to
other species by altering pH or producing toxic meta-
bolites [30]. Laboratory experiments generally use far
higher resource concentrations than those found in nat-
ural environments, and this may skew findings, as the-
oretical studies predict higher diversity at higher
nutrient flux [33]. Real ecosystems likely do not obey a
universal nutrient—diversity relationship [34]. In situa-
tions where the desired functional outcome is biomass
production, then higher resource concentrations are ne-
cessary, even if diversity is reduced, in order to build
additional biomass. Thus, higher concentrations of more
complex resources would be the best way to minimize
biodiversity reduction while supporting higher overall
biomass.

Beyond resources, another consideration when working
with microbial communities in a laboratory setting is the
dilution ratio and the timing of passages. The dilution
rate and frequency set a minimal average division time
that each species needs to achieve to survive. A higher
dilution of the cells making up the community (e.g., 1 to
1000 vs 1 to 10) will allow for more growth in the new
media, which could increase a focal function of interest
but will also create a bottleneck where less abundant
organisms might not be transferred, thus increasing the
effects of drift. Similarly, more frequent transfers or di-
lutions will allow for more generations but will favor fast-
growing species that use up the most accessible re-
sources first and may not give time for cross-feeding or
the breakdown of more recalcitrant compounds. For
example, in a bacterial community made up of glucose
specialists and acetate specialists, the acetate specialists
were excluded when only glucose was supplied and the
transfer time was shortened from 48 to 12 hours due to a
lack of time for organic acids to accumulate and support
growth via cross-feeding [28].
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Interactions and species-specific functional
differences affect community assembly and
function

Strains may not grow well alone in part because they rely
on cross-feeding (Figure 1), which is widespread in mi-
crobial communities. Certain metabolic pathways often
require different microbes to complete them; for ex-
ample, complete anaerobic digestion of plant matter, such
as in a rumen, requires three different microbial func-
tional groups [35]. In the ocean, complete denitrifiers
exist, but the vast majority of microbes only have genes
for some of the steps of the NOj™ to N, pathway [36].
Beyond these examples, cross-feeding can also happen
even when multiple species are not required to complete
a metabolic pathway. Sometimes fast growth leads to
overflow metabolism, where a species capable of the
whole pathway only completes the first part and excretes
metabolites that are useful for other species. This was
found for glucose specialists that produce acetate and
support organic acid specialists [28]. Interestingly, more
metabolically similar substrates select for taxonomically
similar communities because the substrates lead to more
similar metabolic by-products that are used by particular
species [25]. To further support our knowledge of bac-
terial cross-feeding, an ecology-based computational
method, GutCP, was recently developed to predict cross-
feeding interactions in the human gut microbiome [37].
The increase in genomic information and metabolic
modeling for bacteria should help to elucidate the full
complexity of these relationships and which partners
might be necessary for building synthetic communities
that excel in particular functions.

An emerging axis for defining metabolic capability in
microbial communities is if species preferentially de-
grade carbon compounds using glycolytic or gluconeo-
genic pathways. In a set of 186 heterotrophic marine
microbes, their sugar to organic acid preference was
highly correlated (R =0.92) with the first principal
component of variation in growth over 17 days on 118
different substrates, as well as how quickly strains would
switch between substrates [27]. There is a lag time in
two-resource media with a trade-off between fast
growers being slow switchers and slow growers being
faster switchers [38,39]. This allows for more coexistence
in multiresource environments [40]. Furthermore, spatial
organization within a community can affect growth re-
sumption after an environmental shift. For example, if
one species is metabolically dependent on another, then
the cells closest to partner cells will restart growth more
quickly, leading to a population bottleneck [41]. Thus,
coexistence and even intraspecific diversity can depend
on differences in functional traits and spatial organiza-
tion among different cross-feeding taxa.

It can be difficult to build microbial communities from
individual strains [42]. Using enrichment cultures from

natural sources is often more effective than building
SynComs from individual axenic strains. This could be
due to the humpty-dumpty effect [43], which states that
a community cannot be put back together by combining
just the species currently present, or it could be because
it is difficult to obtain all of the community members as
axenic strains in culture. In the latter situation, an en-
richment is effectively aiding the dispersal and arrival of
species that cannot grow alone. Enrichments are gen-
erally more even and diverse and fluctuate less over time
than synthetic communities [44] (Figure 1). This begs
the question of what we are missing when we build
communities one by one. What are the emergent prop-
erties that we could harness to increase richness, stabi-
lity, and functional output in synthetic communities?

Interactions among species certainly affect biodiversity
and function, but it is unclear if higher richness and
stability are supported more by positive or negative in-
teractions. Among microbial ecologists, a controversy has
emerged regarding the prevalence and functional effects
of positive versus negative interactions in bacterial
communities [13,45,46]. Necessary and mutually bene-
ficial interactions between two species (i.e. obligate
mutualisms) are relatively rare, as they require both
species to be present and interacting in a particular way
and can lead to constraints on evolution or community
collapse when a keystone partner is not present. How-
ever, beneficial interactions can also be one-sided (i.e.
commensalism or parasitism) or opportunistic and not
required for survival. We know that competition (a ne-
gative-negative interaction) is common in bacterial
communities [46], but metabolic cross-feeding (most
often a positive-neutral interaction) is also very common
[37,45]. Laboratory studies generally use high nutrient
conditions with low toxicity and stable environments
that promote competitive interactions, while harsher
environments may better support facilitation among taxa
[47]. A global, observational, field study of multitrophic
soil communities found that positive associations among
both species pairs and triads governed microbial net-
works and supported higher biodiversity and resistance
to disturbances [13]. Perhaps, the most productive ap-
proach is to recognize that both negative and positive
interactions are present and that direct interactions in
microbial communities are as relevant and as likely to
affect richness and stability as those of animal or plant
communities [48].

Connecting ecological theories of
coexistence with microbial community
function

Ecological theory developed in plant or animal systems can
inform our understanding of coexistence in microbial
communities and how it leads to increased diversity and
function. Most studies exploring coexistence mechanisms,
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and even our underlying mathematical theory, focus on
very few species. Often only two species or strains are used
[49-51], which limits our understanding of the mechanisms
contributing to coexistence in complex microbial commu-
nities. Modern Coexistence Theory (MCT) [52] is a
widely used approach that focuses on species’ rates of in-
vasion into a community from low abundances as a metric
of coexistence. It also highlights the two main factors
driving coexistence: niche differences and fitness differ-
ences. MCT has drawbacks (e.g. see Ref. [53]) and even
recent advances have primarily been applied to relatively
species-poor plant and animal systems [54]. But new im-
plementations might have potential for more diverse and
realistic communities, like those involving microbes. Al-
ternatively, it may be best to move away from heavy use of
the competitive exclusion principle and instead of asking
why so many species are able to coexist, we should ask
why species do not coexist when we see a clear prevalence
of species-rich communities in natural systems [55].

Traditional methods for growing bacteria or yeasts were
developed for single-species cultures and thus do not
promote multispecies coexistence. One of the likely
reasons why it is difficult to generate stable, diverse
communities in the laboratory is that sufficient habitat
and community complexity must be present in order to
provide sufficient niche space for different organisms to
thrive and coexist. Ecological theory highlights how
spatial structure, temperature fluctuations, dispersal, and
other habitat characteristics that lead to temporal asyn-
chrony can all increase the stability of biodiverse com-
munities [56-58]. Empirical examples with microbes
support this theory and show how physical or temporal
niche space can be incorporated into SynCom design.

With regard to physical niche space (Figure 1), a 2008
study of a three-species synthetic community found that
microscale spatial structure was both necessary and suf-
ficient for the stable coexistence of the species [59].
Similarly, the use of a sterile soil silt matrix allowed for a
more biodiverse soil-based SynCom [60]. Fluctuations in
the environment (Figure 1) lead to increases in temporal
niche space and asynchronous responses of taxa. A study
of a kefir microbial community found that spatio-
temporal niche partitioning led to stable coexistence of
diverse community members [61]. A SynCom experi-
ment of wood decay fungi found that temperature fluc-
tuations facilitated coexistence as well as decomposition
[62]. And a mesocosm study of soil microbial commu-
nities found that higher diversity and asynchrony in ac-
tivity led to increased stability in terms of ecosystem
functions (here measured as biomass production, plant
diversity, litter decomposition, and soil carbon assimila-
tion). Different bacteria and fungi were active at dif-
ferent times, complementing each other [14]. Even the
interactions among species can lead to additional niches.
Two recent studies found that diversity begets diversity
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in microbial community assembly, where metabolic
niche construction and cross-feeding interactions lead to
new niche space [63,64]. Together, the evidence sug-
gests that increasing niches via spatial and temporal di-
versity in laboratory conditions will likely lead to higher
overall community richness and associated increases in
ecosystem function for synthetic microbial communities.

Conclusions

In recent years, our understanding of the mechanisms
driving change in microbial community composition and
function has grown considerably. Microbial communities
in laboratory settings are likely to contain more species
and greater functional capabilities when grown with in-
creased physical niche space, no extreme dilution bot-
tlenecks, fluctuations in their environments, and more
complex resources to promote cross-feeding (Figure 1).
We can harness the ecological processes of dispersal,
selection, diversification, and drift in order to increase
the biodiversity and resilience of synthetic communities
used for industrial processes or for host and ecosystem
health.
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