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ABSTRACT

Ecological forecasting models play an increasingly important role for managing natural
resources and assessing our fundamental knowledge of processes driving ecological dynamics.
The relevance of these models however, may depend on their transferability to novel conditions
as global environmental change pushes ecosystems beyond their historical conditions. Because
species interactions can alter resource use, timing of reproduction, and other aspects of a species’
realized niche, changes in biotic conditions, which can arise from community reorganization
events in response to environmental change, have the potential to impact model transferability.
Using a long-term experiment on desert rodents, we assessed model transferability under novel
biotic conditions to better understand the limitations of ecological forecasts. We show that
ecological forecasts can be less accurate when the models generating them are transferred to
novel biotic conditions, and that the extent of model transferability can depend on the species
being forecast. We also demonstrate the importance of incorporating uncertainty in forecast
evaluation with transferred models generating less accurate and more uncertain forecasts. These
results also suggest that how a species perceives its competitive landscape can influence model
transferability, and that when uncertainties are properly accounted for, transferred models may
still be appropriate for decision making. Assessing the extent of the transferability of forecasting

models is a crucial step to increase the relevance of ecological forecasts in a changing world.

INTRODUCTION

Ecological forecasts - predictions for the future state of ecosystems - are increasingly
important for understanding, managing, and conserving natural and managed systems (Clark et

al., 2001; Dietze et al., 2018; Bodner et al., 2021; Lewis et al., 2023). Most ecological forecasts



40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

are based on models that are fit to the dynamics of the ecosystem being studied. Making
forecasts from these models assumes that the general behavior of the ecosystem will remain the
same in the future. With climate change, land use change, and the spread of invasive species,
however many ecosystems will be experiencing environmental shifts making it unclear how
forecasting models will perform as altered conditions take effect (Yates et al. 2018). Deploying
models in novel conditions is also important in ecology because data limitations often require us
to use data and models developed in one ecosystem to develop models for less well-studied
ecosystems (e.g., Fitzpatrick and Hargrove 2009, McCune 2016). Evaluating forecasting
models in novel conditions can also provide an assessment of the generality of ecological theory
(Lewis et al. 2023), strengthening our overall knowledge of how ecological systems operate.
Therefore, a crucial step for ecological forecasting, and ecology more broadly, is understanding
how well models, and predictions from those models, perform under conditions that differ from
those used for model development (Werkowska et al. 2017; Yates et al., 2018; Charney et al.
2021; Lewis et al., 2023).

The effectiveness of models for making predictions under novel conditions is known as
model transferability (Randin et al. 2006). In ecology, novel conditions can result from
differences in abiotic conditions, the biotic context (e.g., the presence or abundance of other
species), or both. Studies of model transfer are limited in ecological forecasting (Lewis et al.
2023), but initial analyses indicate that model transferability is negatively influenced by model
complexity (with more complex models tending to generalize less successfully than simpler
models; Wenger and Olden 2012, Liu et al. 2020, Lewis et al. 2023), and the degree of
ecological novelty (with larger differences in environmental conditions resulting in poorer

transfer; Sequeira et al 2018, Lewis et al. 2023). While analyses related to ecological novelty
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often focus on abiotic conditions or coarse biotic conditions such as habitat structure (e.g.,
Spence and Tingley 2020, Qiao et al 2019, Regos et al 2019), altered biotic conditions are also a
potential concern for model transferability. Changes in the biotic conditions can fundamentally
alter the observed dynamics between a species and their resources and environment (Casini et al.
2009, Tingley et al. 2014). For example, the loss of a key species may impact the surrounding
habitat and therefore the abundance of other species (Power et al. 1996, Goheen et al. 2018), the
loss of predators or competitors may relieve biotic pressures on species allowing them to
increase in abundance (e.g., Holt et al. 2008, Trewby et al 2007, Leal et al 1998), and the arrival
of invasive species may dramatically depress abundances through predation and competition that
the resident species are not adapted to deal with (Wiles et al. 2003, Gallardo et al 2016). Shifts in
the strength and number of species interactions can also impact the skill of forecasts (Daugaard
et al. 2022). Thus changes in biotic conditions can potentially alter the transferability of
forecasting models even if other environmental conditions remain unchanged. Because many
environmental issues involve both altered abiotic and biotic conditions (e.g., climate-induced
range shifts, colonization of invasive species, global extinctions), understanding the impact of
altered biotic conditions on forecasts is critical for understanding the potential limitations of
model transferability for ecological forecasting.

Little is known about the impact of altered biotic conditions on model transferability in
forecasting because suitable data is limited (Paniw et al 2023). Community change - caused by
extinction, colonization, or shifts in dominance - generally co-occurs with larger-scale changes in
abiotic environment, habitat structure, or other landscape-level alterations. Thus, disentangling
the effects of community change on model transferability from other environmental changes

requires experimental manipulations that selectively manipulate species to generate different



86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

biotic communities experiencing the same general environment. Most experiments are short-
term, however, lasting on average one to three years (Field et al. 2007, Magnusson 1990), which
reduces the data available to both fit a model and test the model outcomes, especially if assessing
performance under natural environmental variation is a goal. Therefore, to rigorously assess the
impact of changing biotic composition on model transferability and forecast performance, long-
term experimental manipulations are required.

Here, we assess model transferability under novel biotic conditions using a long-term
experiment on desert rodents in the southwestern US. For over 40 years, the Portal Project has
collected monthly data on natural and experimentally manipulated rodent communities all
experiencing the same abiotic environment. In this experiment a competitively dominant genus,
Dipodomys spp. (kangaroo rats), has been excluded resulting in significant impacts on other
species in the system (Brown 1998, Bledsoe and Ernest 2019, Diaz and Ernest 2022). Using this
unique dataset, we investigate how biotic context influences forecast model parameters and
prediction accuracy when models fit under one set of biotic conditions are used to forecast under
a novel biotic regime. Assessing forecast accuracy under novel biotic conditions can help us
better understand the limitations of ecological forecasting and draw more accurate inferences

about population dynamics under climate change.

METHODS

Rodent data

To examine whether shifting biotic conditions can impact model transferability we
obtained data on rodent population dynamics from a long-term monitoring program in the

Chihuahuan Desert near Portal, Arizona (Brown 1998 , Ernest et al. 2018). The 20 ha study site



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

consists of 24 50 m x 50 m plots, each enclosed with a 50 cm fence with different sized gates to
manipulate rodent species access. Plots are randomly assigned to three levels of rodent
community manipulation: controls (large gates, all rodents have full access to plots), kangaroo
rat removals (small gates, behaviorally dominant seedeaters, Dipodomys spp., are excluded), and
total rodent removals (no gates, all rodents excluded but occasional transient individuals occur).
The rodent communities in each plot are censused monthly around the new moon using 49
Sherman traps, and basic information is collected for all trapped rodents. Further details about
the experimental setup and sampling methods are discussed elsewhere (Ernest et al. 2016, Ernest
et al. 2018). In this study, we only used data on the communities found in long-term (i.e.,
treatments maintained across all years) controls (plots 4, 11, 14, 17) and kangaroo rat removal
(plots 3, 15, 19, 21). Data were obtained using the ‘portalr’ package (Christensen et al. 2019) and

are also archived on Zenodo (10.5281/zenodo.8436468).

We used count data from long-term control and Dipodomys removal plots for the desert
pocket mouse (C. penicillatus) and Bailey’s pocket mouse (C. baileyi). We selected these species
because there were extended time periods when they were relatively abundant in both control
and kangaroo rat removal plots (i.e., fewer zeros which can complicate modeling) and both
species respond strongly to the experimental removal of Dipodomys (Bledsoe and Ernest 2019,
Diaz and Ernest 2022). Previous modeling efforts (Christensen et al. 2018) found five different
community regimes at the site, so we selected the two regimes where each non-Dipodomys
species was highly abundant. Regime transitions are probabilistic, so we used the edge of the
range for the transition to ensure that the data was entirely within the regime and did not include
transitions between the regimes. Continued trapping at the site suggests that the 2010-2015

regime has continued and so we extended this time period to the end of 2019, shortly before an
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extensive gap in data collection due to the COVID-19 pandemic. This resulted in data for C.
baileyi spanning from December 1999 to June 2009 (new moon number 278-396) and for C.
penicillatus from September 2010 to December 2019 (new moon number 411-526). By selecting
the dominant species during periods of stability in the community, the analysis was focused on

the influence of the experimental manipulation of biotic conditions on forecast model transfer.

Environmental covariates data

We used environmental covariates that are thought to be important drivers of ecological
processes in this desert ecosystem. We obtained site-level monthly data on mean air temperature
(°C) and cumulative precipitation (millimeters) that fell during warm or cool months (calculated
as the sum of precipitation that fell on days when minimum temperature was > or < 4 °C)
through the ‘portalr’ package (Christensen et al. 2019). This data is collected by an on-site
weather station and any gaps are filled with modeled data from nearby regional weather stations
(Ernest et al. 2018). Mean air temperature is a strong driver of seasonal abundance of C.
penicillatus, and potentially other smaller rodent species, as it influences foraging effort and
seasonal activity (i.e., entering bouts of torpor or seasonal dormancy; Reynolds and Haskell,
1949, Meyer and Valone 1999). We used a one-month lag to capture the time it takes for
individuals to behaviorally respond to changing temperature. We used cumulative precipitation
over the preceding 365-day as a covariate because the size of granivore populations responds to
precipitation-related changes in annual seed production over the last year, with little carryover to
subsequent years (Brown et al. 1979, Brown and Heske 1990). In this ecosystem, winter and
summer precipitation have different influences on plant growth and seed production, with cool
precipitation being important for the winter annual plant community and shrub growth and

establishment, and warm precipitation being important for the summer annual plant community
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and the perennial plant community (for information on the two mostly distinct annual plant

communities at the site, see Ernest et al. 2018) .
Modeling Approach

To assess how well forecasting models can transfer to different biotic conditions, we fit
models separately to the control plots (where kangaroo rats are present) and the Dipodomys
removal plots (where kangaroo rats are absent). We fit these treatment-specific models for each
species to allow us to compare the parameters of the models from the different treatments and

assess how well the models from one treatment could predict abundances on the other treatment.

The general model structure was an autoregressive model with 1 time-step and 1 year lags

plus the three environmental covariates. Each time-series model had the form:

Zy ~NegBin (A, 9) (Eqn. 1)
Ae = exp (By + Prlog(Ze—; + 1)+ Lo log(Ze—jp+ 1) + 1Ty + 15 Zfzt—u Py +

M3 Xi—e_2Pei)  (Eqn.2)

where Z;, the species-specific count at time ¢ is drawn from a negative binomial distribution with
parameters A, (the conditional mean of abundance at time ¢) and ¢ (overdispersion). The
conditional mean was modeled as a function of an intercept (5,), autoregressive terms for the
abundance of the previous observation ( S;log(Z;_; + 1)) and the abundance at the same time in
the previous year 3, log(Z,_;, + 1), i.e., 12 time steps), linear terms for the effects of mean
temperature of the previous month ( ;T;_;) and the annual cumulative values of warm
(Xt s P,, ;) and cold (1; Y P, ;) precipitation. The inclusion of weather data up

to time ¢ is realistic in the forecasting context of this system since the weather data is collected in
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real-time and automatically integrated into the dataset (White et al. 2019) making it available for
predictions for time z. Models were implemented in a frequentist framework using the ‘tscount’
package (Liboschik et al. 2017) in R version 4.1.1 (R Core Team, 2021). We chose to only
include time-series terms based on the observed counts (excluding terms based on the
conditional mean) to allow models to be effectively transferred. This means that “internal” and

“external” forms of the model (see Liboschik et al. 2017) are the same.

This modeling approach requires consistently sampled data (Liboschik et al. 2017), so
values for the small number of missing samples (n = 9/116 (7.8%) for C. penicillatus and n =
4/119 (3.4%) for C. baileyi) were imputed using linear interpolation. Because we trap as close as
possible to the new moon (Ernest et al. 2018) the annual periodicity of sampling is not exactly 12
periods. There are on average 12.37 new moons/year. Therefore we also fit the models using a

13 period lag for comparison. The results were qualitatively similar (Appendix S2). Code used to

conduct analyses is archived on Zenodo (10.5281/zenodo.10050035).

To examine the relative importance of biotic conditions in driving variation in model
parameters across the time-series, sequential model fitting with rolling origins was performed to
generate a number of different forecasting models each with five years of training data (Simonis
et al. 2021). Models were fit separately for data on C. penicillatus and C. baileyi in control and
removal plots. We used the ‘rsample’ package (Frick et al. 2022) to conduct rolling origin
modeling on each dataset, with 60 data points (12 observations/year for 5 years) used for model
training and 12 data points (12 observations/year for 1 year) for model evaluation. This produced

45 sets of overlapping models and evaluations for C. penicillatus and 48 sets for C. baileyi.
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Comparing model parameters

We compared the coefficients from each model for each treatment. We primarily focused on
the actual parameter values by quantifying the degree of overlap in the probability distribution
functions of each parameter. We obtained parameter values from each model and calculated the
integral of the minimum between their probability densities using the overlap function in the
‘overlapping’ package (Pastore et al. 2022). The resulting overlap index is on a scale from 0 to 1,
with 0 indicating distinct distributions of parameters values indicating a strong change and 1
indicating completely overlapping distributions indicating no change (Pastore et al. 2022). This
analysis combines variation between the original non-transferred and transferred models for a
single origin with variation within models among origins, providing perspective on whether the
influence of biotic conditions is sufficiently strong to be observable even when temporal
variation in parameter estimates is present. To also focus directly on the shift in parameter values
in response to the experimental manipulation of biotic context, controlling for temporal variation
in parameter estimates, we characterized the proportion of pairwise changes for each origin by

calculating the difference in parameter estimates from each treatment (Appendix S1 Table 1).

We checked to make sure that the interpretability of the parameters associated with
individual environmental covariates was not unduly influenced by collinearity by performing
pairwise correlation and covariance assessments among the covariates and their parameters.
Environmental covariates used in the models had low correlations and the covariances and

correlation values of their coefficients were low (Appendix S1).
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Model transfer

To assess model transferability to different biotic contexts, we generated forecasts for both
the treatment data to which the model was fit (non-transferred model) and to the data for the
other treatment (transferred model). Forecasts from transferred models (e.g., model parameters
for the removal model used to predict counts in the control plots) were made using the initial
conditions from time-series being forecast, and the model parameters for the data the model was
trained on. Similar steps were followed to generate forecasts for the non-transferred model

(where data and model were matched; e.g., control model used to predict control data).

Forecasting evaluation

We evaluated the models from each rolling origin using end-sample evaluation -
forecasting past the end of the training time-series and evaluating on the observed test data
(Simonis et al. 2021). We made forecasts for three-time horizons (1-step, approximately 1
month; 6-steps, approximately half a year; and 12-steps, approximately 1 year) into the future for
each rolling origin. The test data for each model were the subsequent 12 observations following
each set of training data (following White et al. 2019). We assessed accuracy of point forecasts
using root mean squared error (RMSE) and forecast uncertainty using Brier score, which is a
proper scoring rule that extends the mean squared error to distributional forecasts (Simonis et al.
2021). For each species non-transferred and transferred model RMSE values and Brier scores
were calculated for each rolling origin model at each forecast horizon. We then calculated the
difference between the pairs of RMSE values and Brier scores from each origin for the non-
transferred and transferred models to assess the effect of novel biotic conditions in driving

forecast predictability. Negative values for RMSE and Brier score differences indicate better

11
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forecast performance from the non-transferred model, and positive values indicate better forecast

performance from the model transferred to the new biotic conditions.

RESULTS

Model parameter comparison

The two species differed in whether their model parameters were influenced by the biotic
context. For C. penicillatus, the parameter estimates generally did not differ significantly for
models fit to data on control and removal plots, indicating similar associations between
abundances and environmental variables in both plot types (Fig 2). This is indicated by relatively
high overlap in the distributions of most of the parameters (range of overlap coefficient:
0.83,0.90; Fig. 2). Pairwise comparisons of model parameters from the same origin show that
most parameters did not shift in a consistent direction (Appendix S1 Table 1). In contrast, C.
baileyi parameter estimates tended to differ between models fit to data on control and removal
plots, with parameter estimates for the environmental covariates showing relatively low overlap
(range of overlap coefficient: 0.15-0.56). Autoregressive terms, on the other hand, exhibited
more overlap (AR (1)=0.69, AR (12) = 0.67; Fig. 2). C. baileyi also exhibited high proportions
of pairwise shifts in one direction for all three environmental variables and the intercept
(Appendix S1 Table 1). In combination this suggests that the form of the forecasting model is

dependent on the biotic context for this species.

Model transferability under novel biotic conditions

The two species also differed in how well transferred models performed at forecasting

compared to the non-transferred models. For C. penicillatus the transferred models performed

12
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similarly to the non-transferred models on both control and removal plot data (Figs. 3 and 4).
Both transferred and non-transferred models showed a consistent pattern of increasing prediction
error with increasing forecast horizon length for both RMSE and Brier score (Fig. 4). In contrast,
for C. baileyi, the transferred models generally performed less well than the non-transferred
models when making forecasts. Point forecast (RMSE) scores showed a clear pattern of better
performance for the non-transferred models for both control and removal data (Figs. 3 and 4).
Brier scores were also generally better for the non-transferred model, particularly on the
removal plots. However, the Brier score result was less strong when evaluating forecasts made
for the control data. While the majority of origins showed worse forecasts for the transferred
model, the mode of the difference between the original and transferred model was near zero for
all forecast horizons (Fig. 4). This suggests that there was higher uncertainty in the predictions
from the models transferred from the removal plots, which counteracted the less accurate
predictions from those models (as indicated by RMSE), making the transferred model on the
controls less confident in the less accurate predictions. Finally, similar to the C. penicillatus
models, both models fit to C. baileyi data exhibited decreasing model performance at increasing

forecast horizons (Fig. 4).

DISCUSSION

Ecological forecasts can be less accurate when models are transferred to novel biotic
contexts. In this study, we observed this effect even though the long-term experimental nature of
the Portal Project meant that plots with different species compositions were intermingled and
there was no difference in the environmental conditions between the different biotic contexts.

Decreased performance from models transferred to novel biotic conditions, however, depended

13
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on the species being forecast, with C. baileyi exhibiting significant shifts in both model
parameters and forecast abundances, but C. penicillatus showing little change in either.
This highlights the need to account for biotic interactions in forecasting models,and the need to
understand when and why changes in the biotic context impact model transferability.

We expect changes in the biotic context to impact forecasting models if shifts in the
biotic context involve species with strong influences on the species being forecast. C. baileyi ,
which colonized the site in 1995, increased in abundance when Dipodomys were experimentally
removed, demonstrating strong competitive impacts by Dipodomys (Ernest and Brown 2001,
Thibault et al 2010, Bledsoe and Ernest 2019). Our forecast models reflect this competitive
impact with higher intercepts for the removal models when compared to the controls, which
causes some of the divergence in forecasts when models are transferred. While C. baileyi is
competitively inferior to Dipodomys, it is larger and competitively dominant over its congener C.
penicillatus. With the removal of Dipodomys, C. baileyi shifts its stature in the community to
that of the competitive dominant, which increases not only its abundance but could allow C.
baileyi to exploit regions of its fundamental niche that overlap with Dipodomys (Thibault et al
2010, Diaz and Ernest 2022). A shift in the realized niche could explain differences in
environmental parameters between control and removal plots as C. baileyi is no longer
constrained by competition and can react more directly to the environmental drivers. The dual
effect of altered competition on the intercept and environmental parameters then cause the

transferred models to perform poorly (Fig. 2).

Changes in biotic context do not always alter competitive hierarchies, however. Like C.
baileyi, C. penicillatus increases in abundance when Dipodomys spp. are removed, indicating a

strong competitive interaction between these species (Valone and Brown 1995, Bledsoe and
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Ernest 2019, Diaz and Ernest 2022). With the establishment of C. baileyi on removal plots,
however, the competitive pressures on Dipodomys removal plots increased. In response, C.
penicillatus decreased their residency in the previously preferred plot (i.e., removals) and
increased their probability of dispersing to nearby control plots (Bledsoe and Ernest 2019).
Perhaps due to behavioral interactions between these territorial species, the less dominant C.
penicillatus exhibited shifts in abundance between plots even when C. baileyi abundances
decreased in 2010 (Bledsoe and Ernest 2019, Christensen et al 2019). Thus, C. penicillatus may
perceive competition with its close congener as being a similar competitive environment to plots
containing Dipodomys spp. This could explain the similarities in both the intercepts and the
environmental parameters because competitive pressures are never alleviated and C. penicillatus
has little opportunity to exploit unexpressed areas of its fundamental niche. Species with many
weak interactions seem to be more forecastable (Durgaard et al 2022) as changes in a single
competitor in the network are unlikely to result in a large shift in the expressed niche of the focal
species being forecast. The fact that C. penicillatus does not exhibit significantly different
dynamics despite the removal of Dipodomys highlights the challenges of understanding when

biotic context will influence ecological forecasting due to complex species networks in nature.

Declines in the accuracy of forecasts with increasing forecast horizon exhibited an
interesting interaction with model transfer to novel biotic contexts. Decreasing forecast
performance as forecasts are made further into the future is a common pattern in ecological
forecasts (Dietze et al. 2018, Harris et al. 2018) that is demonstrated by both C. baileyi and C.
penicillatus models. However, transferred models for C. baileyi decrease in forecast accuracy
more rapidly with the forecast horizon (as indicated by increasing deviations between the

original and transferred models, Fig. 3) . At short time-scales, the strong short-term
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autoregressive components in the models allow good predictions even when transferring the
model, but as the forecast horizon increases the differences in other model parameters become
more prevalent leading to greater decay in accuracy for the transferred models (Fig. 1). This
interaction suggests that estimates of decay in forecast accuracy may be overly optimistic if the
composition of the community is also shifting at the time-scales of the forecasts. This lends
experimental support to the idea that estimates of model transferability need to consider multiple
aspects of transfer (Gavish et al. 2017), in this case including both transfer to novel biotic context

and transfer outside of the historical window used for fitting the models.

Differences between our two metrics for assessing forecast performance (RMSE and
Brier score) demonstrate the importance of incorporating uncertainty in forecast evaluation and
show an interesting interaction between uncertainty and model transfer to novel biotic contexts.
The RMSE, which only evaluates point estimates (not uncertainty), was worse for transferred C.
baileyi models on both control and removal plots, even at short horizons. The Brier score, which
integrates model uncertainty, exhibited a similar pattern for the removal plot data, but showed
reduced responses to model transfer on the control plots (Fig. 3). This difference between the
Brier score and RMSE response suggests that while the predictions from the transferred removal
models are less accurate, the uncertainty in those predictions is also higher, so the model is less
confident in the less accurate predictions. Potentially, models fit to the removals exhibit better
uncertainty under model transfer because these models are exposed to a wider range of variation
in abundance than models fit to the control plots. Due to the competitive release from Dipodomys
spp., C. baileyi abundances are typically higher and more variable in removal plots. This wider
range of variation is likely due to reduced constraints on population growth during good years

and potentially a shift in response to environmental drivers. If this increased variation is not fully
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captured by the models’ dynamics it will result in increased error terms and uncertainty, thus
resulting in predictions that are penalized less by evaluation metrics that include uncertainty.
This complex interaction between model transfer, uncertainty, and experimental treatment
suggests that it is important to incorporate uncertainty into the assessment of model
transferability because it can provide insights that are different from point estimates alone. It also
shows that, in some cases, transferred models may be appropriate for decision making even if
they make less accurate point forecasts, as long as the decision making properly incorporates
uncertainty. In general, evaluating uncertainty - either by using metrics that include it or by
measuring model transferability and associated forecast uncertainties - will be important for
assessing how effectively models can be transferred and their utility for implementing
conservation strategies on species or locations with limited data availability (Houlahan et al.

2017, Yates et al. 2018).

In this study, we focused on single species models to demonstrate and assess model
transferability under varying biotic conditions. Single species models are common in ecological
modeling, forecasting, and management, but because they do not attempt to model species
interactions these models are likely to be particularly susceptible to changes in the biotic context.
Multivariate community models, which can include species interactions, have the potential to
provide improved transfer to novel biotic conditions by incorporating information on processes
such as competition. For example, for the control plots this type of model could include the
interactions between C. baileyi and Dipodomys species, potentially allowing it to transfer more
effectively to the removal plots where Dipodomys abundance would influence predictions as an
observed value at or near zero. The use of these types of models in dynamic ecological

forecasting remains uncommon since the number of ecosystems with sufficiently long time-
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series on all of the key species in the community is limited. Since explicitly modeling
interactions is important for modeling population dynamics (e.g., Lima et al. 2008), species
distributions (e.g., Pollock et al. 2014), and model transferability, further exploration of

multivariate community predictions will be an important next step for ecological forecasting.

We have shown that changes in the presence of other species can impact both the
parameters of ecological forecasting models and their predictions. This suggests that caution will
be necessary when making forecasts in new systems or over long enough periods of time that the
composition of other species in the community undergoes change. This is important because the
development of ecological forecasting models is often limited by data availability, making the
ability to transfer models to new scenarios important (Houlahan et al. 2017, Yates et al. 2018,
Lewis et al. 2023) Therefore models that better represent the complex dynamics of biological
interactions, and effectively predict beyond the conditions they were built on, are needed in an
era of fast-paced environmental change (Yates et al. 2018). Developing such transferable
models, in terms of space, time, and biotic context, and effectively communicating the
uncertainties in their predictions, are important endeavors to facilitate the expanded development

and use of ecological forecasts (Houlahan et al. 2017, Yates et al. 2018).
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FIGURE LEGENDS

Figure 1. Time-series data on Dipodomys spp. (blue lines), Chaetodipus baileyi (red lines), and
C. penicillatus (green lines) on control plots (top panel) and removal plots (bottom panel) in a
long-term experiment near Portal, AZ. The two species-specific periods used for modeling and

forecasting Chaetodipus spp. are indicated by brackets.

Figure 2. Comparison of parameter values obtained from models fit to data on C. penicillatus
(top row) and C. baileyi (bottom row) on control plots (green densities) and removal plots (grey

densities).

Figure 3. Predictions for C. penicillatus (top two plots) and C. baileyi (bottom two plots)

abundances from models fit to non-transferred (blue lines) and transferred (red lines) data.

Figure 4. Root Mean Squared Error (RMSE, top plots) and Brier score (bottom plots) of non-
transferred and transferred models of C. penicillatus (left plots) and C. baileyi (right plots) on

control (green) and removal plots (grey) at different forecast horizons.
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APPENDIX S1

METHODS

Collinearity among predictors and estimated parameters

We performed pairwise correlation tests on all possible pairs of the environmental
covariates used in our models (i.e., mean temperature (lag=1), warm and cool precipitation)
using Pearson’s correlation test. Then, we assessed the collinearity of the estimated parameters
from each treatment-specific model by conducting covariance and correlation assessments on the
estimated parameters generated from sequential model fitting. For each model fit at each origin,
we computed a covariance matrix from a given Fisher information matrix by inversion using the
invertinfo() function in the ‘tscount’ package. Collinearity was low for the covariates and their

estimated parameters (Appendix S1 Figs.1-5).
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TABLE LEGENDS

Table 1. Proportion of positive shift in parameter values in response to the experiment.

Proportions close to 0 or 1 indicate that the parameters shifted consistently between

treatments across origins. Cases where greater than 80% of the parameter shifts were in one

direction are highlighted in bold. Difference in parameter values obtained from models fit to

data on Chaetodipus penicillatus and C. baileyi on control and removal plots.

TABLES
Table 1.
parameter C. penicillatus C. baileyi
B control = ﬁ removal = 0 ﬂ control = ,Bremoval >0
intercept 0.48 0.00
AR (1) 0.60 0.42
AR(12) 0.44 0.23
mean temperature (lag=1) 0.69 0.96
cool precipitation 0.18 0.88
warm precipitation 0.62 0.81
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602  Appendix S1 Fig. 1. Covariances of the intercept and the slopes at different origins of time-series models fit to data on Chaetodipus
603  penicillatus (left panel) and C. baileyi in control and removal plots.
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Appendix S1 Fig. 3. Pairwise covariance of the environmental parameter estimates obtained from time-series models on C.

penicillatus (left panel) and C. baileyi (right panel) on control (top panel) and removal (bottom panel) plots.
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plots 10-12).
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APPENDIX S2

METHODS

Refitting models to different model input configurations

To assess the sensitivity of our results to variations in the configuration of model input,
we re-fit the models with adjustments in the autoregressive terms and covariate specification
(i.e., transformation). Specifically, we performed sequential model fitting with a similar model
structure described in the main text but modified the AR terms. Since the annual periodicity of
sampling is not fixed- some years there may be 13 new moons and therefore 13 sampling events-

we fit a model with a 13 period lag with the structure:

Z; ~NegBin (A, ) (Eqn. 3)

A= Bo + B log(Ze—y+ 1) + Brlog (Ze—jz+ 1) +mTeey+ 020 ;; Pui +

M3 Xiet—i2  Pei (Eqn. 4)

We also assessed the sensitivity of our results to the specification of the environmental
covariates we assumed would be important drivers of rodent abundances by refitting the similar
models described in the main text but modified the environmental data by scaling and centering
them using the scale function in R. We retained the default settings of the function, which means
the centered and scaled values were obtained by subtracting the mean and dividing it by the

standard deviation.

38



637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

RESULTS

Parameter comparison

For C. penicillatus, the degree of overlap in the parameters generated from models with
AR (1,13) terms and models with covariates were scaled and centered were qualitatively similar
as the ones presented in the main text. Degree of overlap was marginally higher for parameters
from the models with scaled covariates (overlap range: 0.87-0.95; Appendix S2 Fig. 6) than
those with the AR (1, 13) terms(overlap range: 0.55-0.80; Appendix S2 Fig. 2) but these values
were closely similar to the values obtained from the main models (described in the main text).
Similarly, shifts in the parameters in response to the experiment were not consistent across both
model configurations, with the positive shift ranging from 0.18-0.95 from the models fit with AR
(1,13) terms and 0.28-0.69 from the models fit with the scaled covariates. In both instances,
directional shift was highest in response to mean temperature (lag=1). Similar to the results
presented in the main text, C. baileyi parameters showed relatively low overlap when models
included an AR (13 term) (overlap range: 0.33-0.79; Appendix S2 Fig. 2) and when covariates
were scaled and centered (overlap range: 0.29-0.69; Appendix S2 Fig. 6), with the highest
overlap in cool precipitation, and lowest for mean temperature (lag=1). Moreover, environmental
parameters and the intercept with the AR(13), and scaled covariates models also exhibited

largely similar directional shifts.

Model transferability under novel biotic conditions

We observed similar patterns in the performance of transferred and non-transferred
models and their forecasts (Appendix S2 Figs. 3 and 6) for C. penicillatus in both model

configurations based on point forecast accuracy metrics (Appendix Figs. 4 and 8) and metrics
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660

661

662

663

that include uncertainty (Appendix S2 Figs. 5 and 9), with prediction error increasing at
increasing forecast horizon lengths. Transferred models had a poorer performance than non-
transferred models based on both RMSE and Brier scores for C. baileyi. Similar to the results
presented in the main text, Brier scores were better for non-transferred models fit to removal data

under both model configurations (Appendix S2 Figs. 5 and 9).
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APPENDIX S2 Figures
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Appendix S2 Fig. 1. Full time-series data on Dipodomys spp., Chaetodipus penicillatus, and C.

baileyi on control and removal plots in a long-term experiment near Portal, AZ from 1977-2019.
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Appendix S2 Fig. 2. Comparison of overlap in parameter values obtained from models with AR
(1, 13) terms fit to data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control

(green densities) and removal (grey densities) plots.
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676  Appendix S2 Fig. 3. Predictions for C. penicillatus (top two plots) and C. baileyi (bottom two
677  plots) abundances from models with AR (1,13) terms fit to non-transferred (blue lines) and

678 transferred (red lines) data.
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681  Appendix S2 Fig. 4. Performance (Root Mean Squared Error; RMSE) of non-transferred and

682 transferred models with AR (1,13) terms fit to data on C. penicillatus (top panel) and C. baileyi

683  (bottom panel) on control (green) and removal plots (grey) at different forecast horizons.



684

685
686

687

688

h=1
non-=transterred better tit transterred better ftit
-0.2 -0.1 0.0 0.1 0.2
m h=6
3
~—
B
S
S
q_) T T T T
S -02 -0.1 0.0 0.1 0.2
O h=13
-0.2 -0.1 0.0 0.1 0.2
h=1
non-transferred better fit transferred better fit
-0.4 -0.2 0.0 0.2 0.4
h=6
k)
©
Q T T T T
G 04 -0.2 0.0 0.2 0.4
h=13
-0.4 -0.2 0.0 0.2 0.4

Brier score difference (non—-transferred — transferred)

treatment control removal
Appendix S2 Fig. 5. Performance (Brier score) of non-transferred and transferred models with
AR (1,13) terms fit to data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control

(green) and removal plots (grey) at different forecast horizons.
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Appendix S2 Fig. 6. Comparison of overlap in parameter values obtained from models fit to
data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control (green densities) and

removal (grey densities) plots. Models included environmental covariates that were scaled.
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698  Models included environmental covariates that were scaled.
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701 Appendix S2 Fig. 8. Performance (Root Mean Squared Error; RMSE) of non-transferred and
702 transferred models fit to data on C. penicillatus (top panel) and C. baileyi (bottom panel) on
703 control (green) and removal plots (grey) at different forecast horizons. Models included

704  environmental covariates that were scaled.
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707  Appendix S2 Fig. 9. Performance (Brier score) of non-transferred and transferred models fit to
708  data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control (green) and removal
709  plots (grey) at different forecast horizons. Models included environmental covariates that were
710  scaled.
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