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ABSTRACT 18 

Ecological forecasting models play an increasingly important role for managing natural 19 

resources and assessing our fundamental knowledge of processes driving ecological dynamics. 20 

The relevance of these models however, may depend on their transferability to novel conditions 21 

as global environmental change pushes ecosystems beyond their historical conditions. Because 22 

species interactions can alter resource use, timing of reproduction, and other aspects of a species’ 23 

realized niche, changes in biotic conditions, which can arise from community reorganization 24 

events in response to environmental change, have the potential to impact model transferability. 25 

Using a long-term experiment on desert rodents, we assessed model transferability under novel 26 

biotic conditions to better understand the limitations of ecological forecasts. We show that 27 

ecological forecasts can be less accurate when the models generating them are transferred to 28 

novel biotic conditions, and that the extent of model transferability can depend on the species 29 

being forecast. We also demonstrate the importance of incorporating uncertainty in forecast 30 

evaluation with transferred models generating less accurate and more uncertain forecasts. These 31 

results also suggest that how a species perceives its competitive landscape can influence model 32 

transferability, and that when uncertainties are properly accounted for, transferred models may 33 

still be appropriate for decision making. Assessing the extent of the transferability of forecasting 34 

models is a crucial step to increase the relevance of ecological forecasts in a changing world. 35 

INTRODUCTION 36 

Ecological forecasts - predictions for the future state of ecosystems - are increasingly 37 

important for understanding, managing, and conserving natural and managed systems (Clark et 38 

al., 2001; Dietze et al., 2018; Bodner et al., 2021; Lewis et al., 2023). Most ecological forecasts 39 
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are based on models that are fit to the dynamics of the ecosystem being studied. Making 40 

forecasts from these models assumes that the general behavior of the ecosystem will remain the 41 

same in the future. With climate change, land use change, and the spread of invasive species, 42 

however many ecosystems will be experiencing environmental shifts making it unclear how 43 

forecasting models will perform as altered conditions take effect (Yates et al. 2018). Deploying 44 

models in novel conditions is also important in ecology because data limitations often require us 45 

to use data and models developed in one ecosystem to develop models for less well-studied 46 

ecosystems (e.g., Fitzpatrick and Hargrove 2009,  McCune 2016). Evaluating  forecasting 47 

models in novel conditions can also provide an assessment of the generality of ecological theory 48 

(Lewis et al. 2023), strengthening our overall knowledge of how ecological systems operate. 49 

Therefore, a crucial step for ecological forecasting, and ecology more broadly, is understanding 50 

how well models, and predictions from those models, perform under conditions that differ from 51 

those used for model development (Werkowska et al. 2017; Yates et al., 2018; Charney et al. 52 

2021; Lewis et al., 2023). 53 

The effectiveness of models for making predictions under novel conditions is known as 54 

model transferability (Randin et al. 2006). In ecology, novel conditions can result from 55 

differences in abiotic conditions, the biotic context (e.g., the presence or abundance of other 56 

species), or both.  Studies of model transfer are limited in ecological forecasting (Lewis et al. 57 

2023), but initial analyses indicate that model transferability is negatively influenced by model 58 

complexity (with more complex models tending to generalize less successfully than simpler 59 

models; Wenger and Olden 2012, Liu et al. 2020, Lewis et al. 2023), and the degree of 60 

ecological novelty (with larger differences in environmental conditions resulting in poorer 61 

transfer; Sequeira et al 2018, Lewis et al. 2023). While analyses related to ecological novelty 62 
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often focus on abiotic conditions or coarse biotic conditions such as habitat structure (e.g., 63 

Spence and Tingley 2020, Qiao et al 2019, Regos et al 2019), altered biotic conditions are also a 64 

potential concern for model transferability.  Changes in the biotic conditions can fundamentally 65 

alter the observed dynamics between a species and their resources and environment (Casini et al. 66 

2009, Tingley et al. 2014). For example, the loss of a key species may impact the surrounding 67 

habitat and therefore the abundance of other species (Power et al. 1996, Goheen et al. 2018), the 68 

loss of predators or competitors may relieve biotic pressures on species allowing them to 69 

increase in abundance (e.g., Holt et al. 2008, Trewby et al 2007, Leal et al 1998), and the arrival 70 

of invasive species may dramatically depress abundances through predation and competition that 71 

the resident species are not adapted to deal with (Wiles et al. 2003, Gallardo et al 2016). Shifts in 72 

the strength and number of species interactions can also impact the skill of forecasts (Daugaard 73 

et al. 2022). Thus changes in biotic conditions can potentially alter the transferability of 74 

forecasting models even if other environmental conditions remain unchanged. Because many 75 

environmental issues involve both altered abiotic and biotic conditions (e.g., climate-induced 76 

range shifts, colonization of invasive species, global extinctions), understanding the impact of 77 

altered biotic conditions on forecasts is critical for understanding the potential limitations of 78 

model transferability for ecological forecasting. 79 

Little is known about the impact of altered biotic conditions on model transferability in 80 

forecasting because suitable data is limited (Paniw et al 2023). Community change -  caused by 81 

extinction, colonization, or shifts in dominance - generally co-occurs with larger-scale changes in 82 

abiotic environment, habitat structure, or other landscape-level alterations. Thus, disentangling 83 

the effects of community change on model transferability from other environmental changes 84 

requires experimental manipulations that selectively manipulate species to generate different 85 
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biotic communities experiencing the same general environment. Most experiments are short-86 

term, however, lasting on average one to three years (Field et al. 2007, Magnusson 1990), which 87 

reduces the data available to both fit a model and test the model outcomes, especially if assessing 88 

performance under natural environmental variation is a goal.  Therefore, to rigorously assess the 89 

impact of changing biotic composition on model transferability and forecast performance, long-90 

term experimental manipulations are required. 91 

Here, we assess model transferability under novel biotic conditions using a long-term 92 

experiment on desert rodents in the southwestern US. For over 40 years, the Portal Project has 93 

collected monthly data on natural and experimentally manipulated rodent communities all 94 

experiencing the same abiotic environment. In this experiment a competitively dominant genus, 95 

Dipodomys spp. (kangaroo rats), has been excluded resulting in significant impacts on other 96 

species in the system (Brown 1998, Bledsoe and Ernest 2019, Diaz and Ernest 2022). Using this 97 

unique dataset,  we investigate how biotic context influences forecast model parameters and 98 

prediction accuracy when models fit under one set of biotic conditions are used to forecast under 99 

a novel biotic regime.  Assessing forecast accuracy under novel biotic conditions can help us 100 

better understand the limitations of ecological forecasting and draw more accurate inferences 101 

about population dynamics under climate change.  102 

METHODS 103 

Rodent data 104 

To examine whether shifting biotic conditions can impact model transferability  we 105 

obtained data on rodent population dynamics from a long-term monitoring program in the 106 

Chihuahuan Desert near Portal, Arizona (Brown 1998 , Ernest et al. 2018). The 20 ha study site 107 
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consists of 24 50 m x 50 m plots, each enclosed with a 50 cm fence with different sized gates to 108 

manipulate rodent species access. Plots are randomly assigned to three levels of rodent 109 

community manipulation: controls (large gates, all rodents have full access to plots), kangaroo 110 

rat removals (small gates, behaviorally dominant seedeaters, Dipodomys spp., are excluded), and 111 

total rodent removals (no gates, all rodents excluded but occasional transient individuals occur). 112 

The rodent communities in each plot are censused monthly around the new moon using 49 113 

Sherman traps, and basic information is collected for all trapped rodents. Further details about 114 

the experimental setup and sampling methods are discussed elsewhere (Ernest et al. 2016, Ernest 115 

et al. 2018). In this study, we only used data on the communities found in long-term (i.e., 116 

treatments maintained across all years) controls (plots 4, 11, 14, 17) and kangaroo rat removal 117 

(plots 3, 15, 19, 21). Data were obtained using the ‘portalr’ package (Christensen et al. 2019) and 118 

are also archived on Zenodo (10.5281/zenodo.8436468). 119 

We used count data from long-term control and Dipodomys removal plots for the desert 120 

pocket mouse (C. penicillatus) and Bailey’s pocket mouse (C. baileyi). We selected these species 121 

because there were extended time periods when they were  relatively abundant in both control 122 

and kangaroo rat removal plots (i.e., fewer zeros which can complicate modeling) and both 123 

species respond strongly to the experimental removal of Dipodomys (Bledsoe and Ernest 2019, 124 

Diaz and Ernest 2022). Previous modeling efforts (Christensen et al. 2018) found five different 125 

community regimes at the site, so we selected the two regimes where each non-Dipodomys 126 

species was highly abundant. Regime transitions are probabilistic, so we used the edge of the 127 

range for the transition to ensure that the data was entirely within the regime and did not include 128 

transitions between the regimes. Continued trapping at the site suggests that the 2010-2015 129 

regime has continued and so we extended this time period to the end of 2019, shortly before an 130 

https://doi.org/10.5281/zenodo.8436468
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extensive gap in data collection due to the COVID-19 pandemic. This resulted in data for C. 131 

baileyi spanning from December 1999 to June 2009 (new moon number 278-396) and for C. 132 

penicillatus from September 2010 to December 2019 (new moon number 411-526). By selecting 133 

the dominant species during periods of stability in the community, the analysis was focused on 134 

the influence of the experimental manipulation of biotic conditions on forecast model transfer. 135 

Environmental covariates data 136 

 We used environmental covariates that are thought to be important drivers of ecological 137 

processes in this desert ecosystem. We obtained site-level monthly data on mean air temperature 138 

(°C) and cumulative precipitation (millimeters) that fell during warm or cool months (calculated 139 

as the sum of precipitation that fell on days when minimum temperature was > or < 4 °C) 140 

through the ‘portalr’ package (Christensen et al. 2019). This data is collected by an on-site 141 

weather station and any gaps are filled with modeled data from nearby regional weather stations 142 

(Ernest et al. 2018). Mean air temperature is a strong driver of seasonal abundance of C. 143 

penicillatus, and potentially other smaller rodent species, as it influences foraging effort and 144 

seasonal activity (i.e., entering bouts of torpor or seasonal dormancy; Reynolds and Haskell, 145 

1949, Meyer and Valone 1999).  We used a one-month lag to capture the time it takes for 146 

individuals to behaviorally respond to changing temperature. We used cumulative precipitation 147 

over the preceding 365-day as a covariate because the size of granivore populations responds to 148 

precipitation-related changes in annual seed production over the last year, with little carryover to 149 

subsequent years (Brown et al. 1979, Brown and Heske 1990). In this ecosystem, winter and 150 

summer precipitation have different influences on plant growth and seed production, with cool 151 

precipitation being important for the winter annual plant community and shrub growth and 152 

establishment, and warm precipitation being important for the summer annual plant community 153 
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and the perennial plant community (for information on the two mostly distinct annual plant 154 

communities at the site, see Ernest et al. 2018) .  155 

Modeling Approach 156 

To assess how well forecasting models can transfer to different biotic conditions, we fit 157 

models separately to the control plots (where  kangaroo rats are present) and the  Dipodomys  158 

removal plots (where kangaroo rats are absent). We fit these treatment-specific models for each 159 

species to allow us to compare the parameters of the models from the different treatments and 160 

assess how well the models from one treatment could predict abundances on the other treatment. 161 

The general model structure was an autoregressive model with 1 time-step and 1 year lags 162 

plus the three environmental covariates. Each time-series model had the form: 163 

𝑍𝑡  ~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝜆𝑡 , 𝜙)                     (Eqn. 1) 164 

𝜆𝑡 =  exp (𝛽0 + 𝛽1 log(𝑍𝑡−1 + 1) +  𝛽2 log(𝑍𝑡−12 + 1) + 𝜂1𝑇𝑡−1 + 𝜂2 ∑ 𝑃𝑤,𝑖
𝑡
𝑖=𝑡−12  +165 

𝜂3 ∑ 𝑃𝑐,𝑖) 𝑡
𝑖=𝑡−12    (Eqn. 2) 166 

where 𝑍𝑡, the species-specific count at time t is drawn from a negative binomial distribution with 167 

parameters 𝜆𝑡 (the conditional mean of abundance at time t) and 𝜙 (overdispersion). The 168 

conditional mean was modeled as a function of an intercept (𝛽
0
), autoregressive terms for the 169 

abundance of the previous observation ( 𝛽1𝑙𝑜𝑔(𝑍𝑡−1 + 1)) and the abundance at the same time in 170 

the previous year  𝛽2 𝑙𝑜𝑔(𝑍𝑡−12 + 1), i.e., 12 time steps), linear terms for the effects of mean 171 

temperature of the previous month ( 𝜂1𝑇𝑡−1) and the annual cumulative values of warm 172 

( 𝜂2 ∑𝑡
𝑖=𝑡−12 𝑃𝑤,𝑖) and cold ( 𝜂3 ∑𝑡

𝑖=𝑡−12 𝑃𝑐,𝑖) precipitation. The inclusion of weather data up 173 

to time t is realistic in the forecasting context of this system since the weather data is collected in 174 
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real-time and automatically integrated into the dataset (White et al. 2019) making it available for 175 

predictions for time t. Models were implemented in a frequentist framework using the ‘tscount’ 176 

package (Liboschik et al. 2017) in R version 4.1.1 (R Core Team, 2021). We chose to only 177 

include time-series terms based on the observed counts (excluding terms based on the 178 

conditional mean) to allow models to be effectively transferred. This means that “internal” and 179 

“external” forms of the model (see Liboschik et al. 2017) are the same. 180 

This modeling approach requires consistently sampled data (Liboschik et al. 2017), so 181 

values for the small number of missing samples (n = 9/116 (7.8%) for C. penicillatus and n = 182 

4/119 (3.4%) for C. baileyi) were imputed using linear interpolation. Because we trap as close as 183 

possible to the new moon (Ernest et al. 2018) the annual periodicity of sampling is not exactly 12 184 

periods. There are on average 12.37 new moons/year. Therefore we also fit the models using a 185 

13 period lag for comparison. The results were qualitatively similar (Appendix S2). Code used to 186 

conduct analyses is archived on Zenodo (10.5281/zenodo.10050035). 187 

To examine the relative importance of biotic conditions in driving variation in model 188 

parameters across the time-series, sequential model fitting with rolling origins was performed to 189 

generate a number of different forecasting models each with five years of training data (Simonis 190 

et al. 2021). Models were fit separately for data on  C. penicillatus and C. baileyi in control and 191 

removal plots. We used the ‘rsample’ package (Frick et al. 2022) to conduct rolling origin 192 

modeling on each dataset, with 60 data points (12 observations/year for 5 years) used for model 193 

training and 12 data points (12 observations/year for 1 year) for model evaluation. This produced 194 

45 sets of overlapping models and evaluations for  C. penicillatus and 48 sets for C. baileyi. 195 

https://zenodo.org/doi/10.5281/zenodo.10050034
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Comparing model parameters 196 

We compared the coefficients from each model for each treatment. We primarily focused on 197 

the actual parameter values by quantifying the degree of overlap in the probability distribution 198 

functions of each parameter. We obtained parameter values from each model and calculated the 199 

integral of the minimum between their probability densities using the overlap function in the 200 

‘overlapping’ package (Pastore et al. 2022). The resulting overlap index is on a scale from 0 to 1, 201 

with 0 indicating distinct distributions of parameters values indicating a strong change and 1 202 

indicating completely overlapping distributions indicating no change (Pastore et al. 2022). This 203 

analysis combines variation between the original non-transferred and transferred models for a 204 

single origin with variation within models among origins, providing perspective on whether the 205 

influence of biotic conditions is sufficiently strong to be observable even when temporal 206 

variation in parameter estimates is present. To also focus directly on the shift in parameter values 207 

in response to the experimental manipulation of biotic context, controlling for temporal variation 208 

in parameter estimates, we characterized the proportion of pairwise changes for each origin by 209 

calculating the difference in parameter estimates from each treatment (Appendix S1 Table 1).  210 

We checked to make sure that the interpretability of the parameters associated with 211 

individual environmental covariates was not unduly influenced by collinearity by performing 212 

pairwise correlation and covariance assessments among the covariates and their parameters. 213 

Environmental covariates used in the models had low correlations and the  covariances and 214 

correlation values of their coefficients were low (Appendix S1). 215 
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Model transfer 216 

To assess model transferability to different biotic contexts, we generated forecasts for both 217 

the treatment data to which the  model was fit (non-transferred  model) and to the data for the 218 

other treatment (transferred model). Forecasts from transferred models (e.g., model parameters 219 

for the removal model used to predict counts in the control plots) were made using the initial 220 

conditions from time-series being forecast, and the model parameters for the data the model was 221 

trained on. Similar steps were followed to generate forecasts for the  non-transferred model 222 

(where data and model were matched; e.g., control model used to predict control data). 223 

Forecasting evaluation 224 

We evaluated the models from each rolling origin using end-sample evaluation - 225 

forecasting past the end of the training time-series and evaluating on the observed test data 226 

(Simonis et al. 2021). We made forecasts for three-time horizons (1-step, approximately 1 227 

month; 6-steps, approximately half a year; and 12-steps, approximately 1 year) into the future for 228 

each rolling origin. The test data for each model were the subsequent 12 observations following 229 

each set of training data (following White et al. 2019). We assessed accuracy of point forecasts 230 

using root mean squared error (RMSE) and forecast uncertainty using Brier score, which is a 231 

proper scoring rule that extends the mean squared error to distributional forecasts (Simonis et al. 232 

2021). For each species non-transferred and transferred model RMSE values and Brier scores 233 

were calculated for each rolling origin model at each forecast horizon. We then calculated the 234 

difference between the pairs of RMSE values and Brier scores from each origin for the non-235 

transferred and transferred models to assess the effect of novel biotic conditions in driving 236 

forecast predictability. Negative values for RMSE and Brier score differences indicate better 237 
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forecast performance from the non-transferred model, and positive values indicate better forecast 238 

performance from the model transferred to the new biotic conditions.  239 

RESULTS 240 

Model parameter comparison 241 

The two species differed in whether their model parameters were influenced by the biotic 242 

context. For C. penicillatus, the parameter estimates generally did not differ significantly for 243 

models fit to data on control and removal plots, indicating similar associations between 244 

abundances and environmental variables in both plot types (Fig 2). This is indicated by relatively 245 

high overlap in the distributions of most of the parameters (range of overlap coefficient: 246 

0.83,0.90; Fig. 2). Pairwise comparisons of model parameters from the same origin show that 247 

most parameters did not shift in a consistent direction (Appendix S1 Table 1). In contrast,  C. 248 

baileyi parameter estimates tended to differ between models fit to data on control and removal 249 

plots, with parameter estimates for the environmental covariates showing relatively low overlap 250 

(range of overlap coefficient: 0.15-0.56). Autoregressive terms, on the other hand, exhibited 251 

more overlap (AR (1)= 0.69, AR (12) = 0.67; Fig. 2). C. baileyi also exhibited high proportions 252 

of pairwise shifts in one direction for all three environmental variables and the intercept 253 

(Appendix S1 Table 1).  In combination this suggests that the form of the forecasting model is 254 

dependent on the biotic context for this species. 255 

Model transferability under novel biotic conditions 256 

The two species also differed in how well transferred models performed at forecasting 257 

compared to the non-transferred models. For C. penicillatus the  transferred models performed 258 
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similarly to the non-transferred models on both control and removal plot data (Figs. 3 and 4). 259 

Both transferred and non-transferred models showed a consistent pattern of increasing prediction 260 

error with increasing forecast horizon length for both RMSE and Brier score (Fig. 4). In contrast, 261 

for  C. baileyi, the transferred models generally performed less well than the non-transferred 262 

models when making forecasts.  Point forecast (RMSE) scores showed a clear pattern of better 263 

performance for the non-transferred models for both control and removal data (Figs. 3 and 4). 264 

Brier scores were also generally better for the  non-transferred model, particularly on the 265 

removal plots. However, the Brier score result was less strong when evaluating forecasts made 266 

for the control data. While the majority of origins showed worse forecasts for the transferred 267 

model, the mode of the difference between the original and transferred model was near zero for 268 

all forecast horizons (Fig. 4). This suggests that there was higher uncertainty in the predictions 269 

from the models transferred from the removal plots, which counteracted the less accurate 270 

predictions from those models (as indicated by RMSE), making the transferred model on the 271 

controls less confident in the less accurate predictions. Finally, similar to the C. penicillatus 272 

models, both models fit to C. baileyi data exhibited decreasing model performance at increasing 273 

forecast horizons (Fig. 4).  274 

DISCUSSION 275 

 Ecological forecasts can be less accurate when models are transferred to novel biotic 276 

contexts. In this study, we observed this effect even though the long-term experimental nature of 277 

the Portal Project meant that plots with different species compositions were intermingled and 278 

there was no difference in the environmental conditions between the different biotic contexts. 279 

Decreased performance from models transferred to novel biotic conditions, however,  depended 280 
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on the species being forecast, with C. baileyi exhibiting significant shifts in both model 281 

parameters and forecast abundances, but C. penicillatus showing little change in either.  282 

This highlights the need to account for biotic interactions in forecasting models,and the need to 283 

understand when and why changes in the biotic context impact model transferability.  284 

We expect changes in the biotic context to impact forecasting models if shifts in the 285 

biotic context involve species with strong influences on the species being forecast. C. baileyi , 286 

which colonized the site in 1995, increased in abundance when Dipodomys were experimentally 287 

removed, demonstrating strong competitive impacts by Dipodomys (Ernest and Brown 2001, 288 

Thibault et al 2010, Bledsoe and Ernest 2019). Our forecast models reflect this competitive 289 

impact with higher intercepts for the removal models when compared to the controls, which 290 

causes some of the divergence in forecasts when models are transferred. While C. baileyi is 291 

competitively inferior to Dipodomys, it is larger and competitively dominant over its congener C. 292 

penicillatus. With the removal of Dipodomys, C. baileyi shifts its stature in the community to 293 

that of the competitive dominant, which increases not only its abundance but could allow C. 294 

baileyi to exploit regions of its fundamental niche that overlap with Dipodomys (Thibault et al 295 

2010, Diaz and Ernest 2022). A shift in the realized niche could explain differences in 296 

environmental parameters between control and removal plots as C. baileyi is no longer 297 

constrained by competition and can react more directly to the environmental drivers. The dual 298 

effect of altered competition on the intercept and environmental parameters then cause the 299 

transferred models to perform poorly (Fig. 2).  300 

Changes in biotic context do not always alter competitive hierarchies, however. Like C. 301 

baileyi, C. penicillatus increases in abundance when Dipodomys spp. are removed, indicating a 302 

strong competitive interaction between these species (Valone and Brown 1995, Bledsoe and 303 
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Ernest 2019, Diaz and Ernest 2022). With the establishment of C. baileyi on removal plots, 304 

however, the competitive pressures on Dipodomys removal plots increased. In response, C. 305 

penicillatus decreased their residency in the previously preferred plot (i.e., removals) and 306 

increased their probability of dispersing to nearby control plots (Bledsoe and Ernest 2019). 307 

Perhaps due to behavioral interactions between these territorial species, the less dominant C. 308 

penicillatus exhibited shifts in abundance between plots even when C. baileyi abundances 309 

decreased in 2010 (Bledsoe and Ernest 2019, Christensen et al 2019). Thus, C. penicillatus may 310 

perceive competition with its close congener as being a similar competitive environment to plots 311 

containing Dipodomys spp. This could explain the similarities in both the intercepts and the 312 

environmental parameters because competitive pressures are never alleviated and C. penicillatus 313 

has little opportunity to exploit unexpressed areas of its fundamental niche.  Species with many 314 

weak interactions seem to be more forecastable (Durgaard et al 2022) as changes in a single 315 

competitor in the network are unlikely to result in a large shift in the expressed niche of the focal 316 

species being forecast. The fact that C. penicillatus does not exhibit significantly different 317 

dynamics despite the removal of Dipodomys highlights the challenges of understanding when 318 

biotic context will influence ecological forecasting due to complex species networks in nature. 319 

Declines in the accuracy of forecasts with increasing forecast horizon exhibited an 320 

interesting interaction with model transfer to novel biotic contexts. Decreasing forecast 321 

performance as forecasts are made further into the future is a common pattern in ecological 322 

forecasts (Dietze et al. 2018, Harris et al. 2018) that is demonstrated by both C. baileyi and C. 323 

penicillatus models. However, transferred models for C. baileyi decrease in forecast accuracy 324 

more rapidly with the forecast horizon  (as indicated by increasing deviations between the 325 

original and transferred models, Fig. 3) . At short time-scales, the strong short-term 326 
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autoregressive components in the models allow good predictions even when transferring the 327 

model, but as the forecast horizon increases the differences in other model parameters become 328 

more prevalent leading to greater decay in accuracy for the transferred models (Fig. 1). This 329 

interaction suggests that estimates of decay in forecast accuracy may be overly optimistic if the 330 

composition of the community is also shifting at the time-scales of the forecasts. This lends 331 

experimental support to the idea that estimates of model transferability need to consider multiple 332 

aspects of transfer (Gavish et al. 2017), in this case including both transfer to novel biotic context 333 

and transfer outside of the historical window used for fitting the models. 334 

Differences between our two metrics for assessing forecast performance (RMSE and 335 

Brier score) demonstrate the importance of incorporating uncertainty in forecast evaluation and 336 

show an interesting interaction between uncertainty and model transfer to novel biotic contexts. 337 

The RMSE, which only evaluates point estimates (not uncertainty), was worse for transferred C. 338 

baileyi models on both control and removal plots, even at short horizons. The Brier score, which 339 

integrates model uncertainty, exhibited a similar pattern for the removal plot data, but showed 340 

reduced responses to model transfer on the control plots (Fig. 3). This difference between the 341 

Brier score and RMSE response suggests that while the predictions from the transferred removal 342 

models are less accurate, the uncertainty in those predictions is also higher, so the model is less 343 

confident in the less accurate predictions. Potentially, models fit to the removals exhibit better 344 

uncertainty under model transfer because these models are exposed to a wider range of variation 345 

in abundance than models fit to the control plots. Due to the competitive release from Dipodomys 346 

spp., C. baileyi abundances are typically higher and more variable in removal plots. This wider 347 

range of variation is likely due to reduced constraints on population growth during good years 348 

and potentially a shift in response to environmental drivers. If this increased variation is not fully 349 
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captured by the models’ dynamics it will result in increased error terms and uncertainty, thus 350 

resulting in predictions that are penalized less by evaluation metrics that include uncertainty.  351 

This complex interaction between model transfer, uncertainty, and experimental treatment 352 

suggests that it is important to incorporate uncertainty into the assessment of model 353 

transferability because it can provide insights that are different from point estimates alone. It also 354 

shows that, in some cases, transferred models may be appropriate for decision making even if 355 

they make less accurate point forecasts, as long as the decision making properly incorporates 356 

uncertainty. In general, evaluating uncertainty - either by using metrics that include it or by 357 

measuring model transferability and associated forecast uncertainties - will be important for 358 

assessing how effectively models can be transferred and their utility for implementing 359 

conservation strategies on species or locations with limited data availability (Houlahan et al. 360 

2017, Yates et al. 2018). 361 

In this study, we focused on single species models to demonstrate and assess model 362 

transferability under varying biotic conditions. Single species models are common in ecological 363 

modeling, forecasting, and management, but because they do not attempt to model species 364 

interactions these models are likely to be particularly susceptible to changes in the biotic context. 365 

Multivariate community models, which can include species interactions, have the potential to 366 

provide improved transfer to novel biotic conditions by incorporating information on processes 367 

such as competition. For example, for the control plots this type of model could include the 368 

interactions between C. baileyi and Dipodomys species, potentially allowing it to transfer more 369 

effectively to the removal plots where Dipodomys abundance would influence predictions as an 370 

observed value at or near zero. The use of these types of models in dynamic ecological 371 

forecasting remains  uncommon since the number of ecosystems with sufficiently long time-372 
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series on all of the key species in the community is limited. Since explicitly modeling 373 

interactions is important for modeling population dynamics (e.g., Lima et al. 2008), species 374 

distributions (e.g., Pollock et al. 2014), and model transferability, further exploration of 375 

multivariate community predictions will be an important next step for ecological forecasting. 376 

We have shown that changes in the presence of other species can impact both the 377 

parameters of ecological forecasting models and their predictions. This suggests that caution will 378 

be necessary when making forecasts in new systems or over long enough periods of time that the 379 

composition of other species in the community undergoes change. This is important because the 380 

development of ecological forecasting models is often limited by data availability, making the 381 

ability to transfer models to new scenarios important (Houlahan et al. 2017, Yates et al. 2018, 382 

Lewis et al. 2023) Therefore models that better represent the complex dynamics of biological 383 

interactions, and effectively predict beyond the conditions they were built on, are needed in an 384 

era of fast-paced environmental change (Yates et al. 2018). Developing such transferable 385 

models, in terms of space, time, and biotic context, and effectively communicating the 386 

uncertainties in their predictions, are important endeavors to facilitate the expanded development 387 

and use of ecological forecasts (Houlahan et al. 2017, Yates et al. 2018).   388 
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FIGURE LEGENDS 555 

Figure 1. Time-series data on Dipodomys spp. (blue lines), Chaetodipus baileyi (red lines), and 556 

C. penicillatus (green lines) on control plots (top panel) and removal plots (bottom panel) in a 557 

long-term experiment near Portal, AZ. The two species-specific periods used for modeling and 558 

forecasting Chaetodipus spp. are indicated by brackets. 559 

Figure 2. Comparison of parameter values obtained from models fit to data on C. penicillatus 560 

(top row) and C. baileyi (bottom row) on control plots (green densities) and removal plots (grey 561 

densities). 562 

Figure 3. Predictions for C. penicillatus (top two plots) and C. baileyi (bottom two plots) 563 

abundances from models fit to non-transferred (blue lines) and transferred (red lines) data. 564 

Figure 4. Root Mean Squared Error (RMSE, top plots) and Brier score (bottom plots) of non-565 

transferred and transferred models of C. penicillatus (left plots) and C. baileyi (right plots) on 566 

control (green) and removal plots (grey) at different forecast horizons. 567 
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APPENDIX S1 580 

METHODS 581 

Collinearity among predictors and estimated parameters 582 

We performed pairwise correlation tests on all possible pairs of the environmental 583 

covariates used in our models (i.e., mean temperature (lag=1), warm and cool precipitation) 584 

using Pearson’s correlation test. Then, we assessed the collinearity of the estimated parameters 585 

from each treatment-specific model by conducting covariance and correlation assessments on the 586 

estimated parameters generated from sequential model fitting. For each model fit at each origin, 587 

we computed a covariance matrix from a given Fisher information matrix by inversion using the 588 

invertinfo() function in the ‘tscount’ package. Collinearity was low for the covariates and their 589 

estimated parameters (Appendix S1 Figs.1-5).   590 
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TABLE LEGENDS 591 

Table 1. Proportion of positive shift in parameter values in response to the experiment. 592 

Proportions close to 0 or 1 indicate  that the parameters shifted consistently between 593 

treatments across origins. Cases where greater than 80% of the parameter shifts were in one 594 

direction are highlighted in bold. Difference in parameter values obtained from models fit to 595 

data on Chaetodipus penicillatus and C. baileyi on control and removal plots. 596 

TABLES 597 

Table 1.  598 

parameter C. penicillatus C. baileyi 

𝛽control - 𝛽removal > 0 𝛽control - 𝛽removal > 0 

intercept 0.48 0.00 

AR (1) 0.60 0.42 

AR( 12) 0.44 0.23 

mean temperature (lag=1) 0.69 0.96 

cool precipitation 0.18 0.88 

warm precipitation 0.62 0.81 

599 
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APPENDIX S1 FIGURES 600 

 601 

Appendix S1 Fig. 1. Covariances of the intercept and the slopes at different origins of time-series models fit to data on Chaetodipus 602 

penicillatus (left panel) and C. baileyi in control and removal plots.603 
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604 

 605 

Appendix S1 Fig. 2. Frequency of the correlation coefficients on the raw values of the 606 

environmental covariates used in models fit to data on Chaetodipus penicillatus (left panel) and 607 

C. baileyi (right panel) in a long-term experiment in Portal, AZ.608 
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 609 

Appendix S1 Fig. 3. Pairwise covariance of the environmental parameter estimates obtained from time-series models on C. 610 

penicillatus (left panel) and C. baileyi (right panel) on control (top panel) and removal (bottom panel) plots. 611 
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 612 

Appendix S1 Fig. 4. Pairwise correlation of the environmental parameter estimates obtained from time-series models on C. 613 

penicillatus (top panel; plots 1-3) and C. baileyi (bottom panel; plots 4-6) in control (left panel; plots 7-9) and removal (right panel; 614 

plots 10-12).  615 
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 616 

Appendix S1 Fig. 5. Distribution of pairwise changes in parameter estimates (difference in parameter estimates generated from 617 

control and removal models) fit to C. penicillatus (top panel) and C. baileyi (bottom panel) data.618 
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APPENDIX S2 619 

METHODS 620 

Refitting models to different model input configurations 621 

To assess the sensitivity of our results to variations in the configuration of model input, 622 

we re-fit the models with adjustments in the autoregressive terms and covariate specification 623 

(i.e., transformation). Specifically, we performed sequential model fitting with a similar model 624 

structure described in the main text but modified the AR terms. Since the annual periodicity of 625 

sampling is not fixed- some years there may be 13 new moons and therefore 13 sampling events- 626 

we fit a model with a 13 period lag with the structure:  627 

𝑍𝑡  ~ 𝑁𝑒𝑔𝐵𝑖𝑛 (𝜆𝑡 , 𝜙)                     (Eqn. 3) 628 

𝜆𝑡 =  𝛽0  + 𝛽1 𝑙𝑜𝑔(𝑍𝑡−1 + 1)  +  𝛽2 𝑙𝑜𝑔 (𝑍𝑡−13 + 1)  + 𝜂1𝑇𝑡−1 + 𝜂2 ∑𝑡
𝑖=𝑡−12 𝑃𝑤,𝑖  +629 

𝜂3 ∑𝑡
𝑖=𝑡−12 𝑃𝑐,𝑖    (Eqn. 4) 630 

We also assessed the sensitivity of our results to the specification of the environmental 631 

covariates we assumed would be important drivers of rodent abundances by refitting the similar 632 

models described in the main text but modified the environmental data by scaling and centering 633 

them using the scale function in R. We retained the default settings of the function, which means 634 

the centered and scaled values were obtained by subtracting the mean and dividing it by the 635 

standard deviation.   636 
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RESULTS 637 

Parameter comparison 638 

 For C. penicillatus, the degree of overlap in the parameters generated from models with 639 

AR (1,13) terms and models with covariates were scaled and centered were qualitatively similar 640 

as the ones presented in the main text. Degree of overlap was marginally higher for parameters 641 

from the models with scaled covariates (overlap range: 0.87-0.95; Appendix S2 Fig. 6)  than 642 

those with the AR (1, 13) terms(overlap range: 0.55-0.80; Appendix S2 Fig. 2) but these values 643 

were closely similar to the values obtained from the main models (described in the main text). 644 

Similarly, shifts in the parameters in response to the experiment were not consistent across both 645 

model configurations, with the positive shift ranging from 0.18-0.95 from the models fit with AR 646 

(1,13) terms and 0.28-0.69 from the models fit with the scaled covariates. In both instances, 647 

directional shift was highest in response to mean temperature (lag=1). Similar to the results 648 

presented in the main text, C. baileyi parameters showed relatively low overlap when models 649 

included an AR (13 term) (overlap range: 0.33-0.79; Appendix S2 Fig. 2) and when covariates 650 

were scaled and centered (overlap range: 0.29-0.69; Appendix S2 Fig. 6), with the highest 651 

overlap in cool precipitation, and lowest for mean temperature (lag=1). Moreover, environmental 652 

parameters and the intercept with the AR(13), and scaled covariates models  also exhibited 653 

largely similar directional shifts.    654 

Model transferability under novel biotic conditions 655 

We observed similar patterns in the performance of transferred and non-transferred 656 

models and their forecasts (Appendix S2 Figs. 3 and 6) for C. penicillatus in both model 657 

configurations based on point forecast accuracy metrics (Appendix Figs. 4 and 8) and metrics 658 
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that include uncertainty (Appendix S2 Figs. 5 and 9), with prediction error increasing at 659 

increasing forecast horizon lengths. Transferred models had a poorer performance than non-660 

transferred models based on both RMSE and Brier scores for C. baileyi. Similar to the results 661 

presented in the main text, Brier scores were better for non-transferred models fit to removal data 662 

under both model configurations (Appendix S2 Figs. 5 and 9).663 
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APPENDIX S2 Figures 664 

 665 

Appendix S2 Fig. 1. Full time-series data on Dipodomys spp., Chaetodipus penicillatus, and C. 666 

baileyi on control and removal plots in a long-term experiment near Portal, AZ from 1977-2019. 667 

  668 
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 669 

 670 

Appendix S2 Fig. 2. Comparison of overlap in parameter values obtained from models with AR 671 

(1, 13) terms fit to data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control 672 

(green densities) and removal (grey densities) plots.  673 
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674 

 675 

Appendix S2 Fig. 3. Predictions for C. penicillatus (top two plots) and C. baileyi (bottom two 676 

plots) abundances from models with AR (1,13) terms fit to non-transferred (blue lines) and 677 

transferred (red lines) data.678 
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679 

 680 

Appendix S2 Fig. 4. Performance (Root Mean Squared Error; RMSE) of non-transferred and 681 

transferred models with AR (1,13) terms fit to data on C. penicillatus (top panel) and C. baileyi 682 

(bottom panel) on control (green) and removal plots (grey) at different forecast horizons.683 
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684 

 685 

Appendix S2 Fig. 5. Performance (Brier score) of non-transferred and transferred models with 686 

AR (1,13) terms fit to data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control 687 

(green) and removal plots (grey) at different forecast horizons.  688 
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689 

690 

Appendix S2 Fig. 6. Comparison of overlap in parameter values obtained from models fit to 691 

data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control (green densities) and 692 

removal (grey densities) plots. Models included environmental covariates that were scaled.  693 
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694 

 695 

Appendix S2 Fig. 7. Predictions for C. penicillatus (top two plots) and C. baileyi (bottom two 696 

plots) abundances from models fit to non-transferred (blue lines) and transferred (red lines) data. 697 

Models included environmental covariates that were scaled.  698 
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699 

 700 

Appendix S2 Fig. 8. Performance (Root Mean Squared Error; RMSE) of non-transferred and 701 

transferred models fit to data on C. penicillatus (top panel) and C. baileyi (bottom panel) on 702 

control (green) and removal plots (grey) at different forecast horizons. Models included 703 

environmental covariates that were scaled.  704 
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705 

 706 

Appendix S2 Fig. 9. Performance (Brier score) of non-transferred and transferred models fit to 707 

data on C. penicillatus (top panel) and C. baileyi (bottom panel) on control (green) and removal 708 

plots (grey) at different forecast horizons. Models included environmental covariates that were 709 

scaled.  710 


