

1 **Journal:** Ecology

2 **Manuscript type:** Article

3 **Title:** Transferability of ecological forecasting models to novel biotic conditions in a long-term
4 experimental study

5 **Authors:** Patricia Kaye T. Dumandan¹, Juniper L. Simonis³, Glenda M. Yenni², S. K. Morgan
6 Ernest², and Ethan P. White²

7 **Institutional Affiliations:**

8 1. School of Natural Resources and Environment, University of Florida, Gainesville, FL,
9 USA

10 2. Department of Wildlife Ecology and Conservation, University of Florida, Gainesville,
11 FL, USA

12 3. DAPPER Stats, Portland, OR, USA

13 **Corresponding author:** S. K. Morgan Ernest (skmorgane@ufl.edu)

14 **Open Research Statement:** Data ([10.5281/zenodo.8436468](https://doi.org/10.5281/zenodo.8436468)) and code

15 ([10.5281/zenodo.10050035](https://doi.org/10.5281/zenodo.10050035)) used to conduct data analyses are archived in Zenodo.

16 **Key words:** competition, ecological forecasting, long-term data, model transferability, species
17 interactions, time series

18 **ABSTRACT**

19 Ecological forecasting models play an increasingly important role for managing natural
20 resources and assessing our fundamental knowledge of processes driving ecological dynamics.
21 The relevance of these models however, may depend on their transferability to novel conditions
22 as global environmental change pushes ecosystems beyond their historical conditions. Because
23 species interactions can alter resource use, timing of reproduction, and other aspects of a species'
24 realized niche, changes in biotic conditions, which can arise from community reorganization
25 events in response to environmental change, have the potential to impact model transferability.
26 Using a long-term experiment on desert rodents, we assessed model transferability under novel
27 biotic conditions to better understand the limitations of ecological forecasts. We show that
28 ecological forecasts can be less accurate when the models generating them are transferred to
29 novel biotic conditions, and that the extent of model transferability can depend on the species
30 being forecast. We also demonstrate the importance of incorporating uncertainty in forecast
31 evaluation with transferred models generating less accurate and more uncertain forecasts. These
32 results also suggest that how a species perceives its competitive landscape can influence model
33 transferability, and that when uncertainties are properly accounted for, transferred models may
34 still be appropriate for decision making. Assessing the extent of the transferability of forecasting
35 models is a crucial step to increase the relevance of ecological forecasts in a changing world.

36 **INTRODUCTION**

37 Ecological forecasts - predictions for the future state of ecosystems - are increasingly
38 important for understanding, managing, and conserving natural and managed systems (Clark et
39 al., 2001; Dietze et al., 2018; Bodner et al., 2021; Lewis et al., 2023). Most ecological forecasts

40 are based on models that are fit to the dynamics of the ecosystem being studied. Making
41 forecasts from these models assumes that the general behavior of the ecosystem will remain the
42 same in the future. With climate change, land use change, and the spread of invasive species,
43 however many ecosystems will be experiencing environmental shifts making it unclear how
44 forecasting models will perform as altered conditions take effect (Yates et al. 2018). Deploying
45 models in novel conditions is also important in ecology because data limitations often require us
46 to use data and models developed in one ecosystem to develop models for less well-studied
47 ecosystems (e.g., Fitzpatrick and Hargrove 2009, McCune 2016). Evaluating forecasting
48 models in novel conditions can also provide an assessment of the generality of ecological theory
49 (Lewis et al. 2023), strengthening our overall knowledge of how ecological systems operate.
50 Therefore, a crucial step for ecological forecasting, and ecology more broadly, is understanding
51 how well models, and predictions from those models, perform under conditions that differ from
52 those used for model development (Werkowska et al. 2017; Yates et al., 2018; Charney et al.
53 2021; Lewis et al., 2023).

54 The effectiveness of models for making predictions under novel conditions is known as
55 model transferability (Randin et al. 2006). In ecology, novel conditions can result from
56 differences in abiotic conditions, the biotic context (e.g., the presence or abundance of other
57 species), or both. Studies of model transfer are limited in ecological forecasting (Lewis et al.
58 2023), but initial analyses indicate that model transferability is negatively influenced by model
59 complexity (with more complex models tending to generalize less successfully than simpler
60 models; Wenger and Olden 2012, Liu et al. 2020, Lewis et al. 2023), and the degree of
61 ecological novelty (with larger differences in environmental conditions resulting in poorer
62 transfer; Sequeira et al 2018, Lewis et al. 2023). While analyses related to ecological novelty

63 often focus on abiotic conditions or coarse biotic conditions such as habitat structure (e.g.,
64 Spence and Tingley 2020, Qiao et al 2019, Regos et al 2019), altered biotic conditions are also a
65 potential concern for model transferability. Changes in the biotic conditions can fundamentally
66 alter the observed dynamics between a species and their resources and environment (Casini et al.
67 2009, Tingley et al. 2014). For example, the loss of a key species may impact the surrounding
68 habitat and therefore the abundance of other species (Power et al. 1996, Goheen et al. 2018), the
69 loss of predators or competitors may relieve biotic pressures on species allowing them to
70 increase in abundance (e.g., Holt et al. 2008, Trewby et al 2007, Leal et al 1998), and the arrival
71 of invasive species may dramatically depress abundances through predation and competition that
72 the resident species are not adapted to deal with (Wiles et al. 2003, Gallardo et al 2016). Shifts in
73 the strength and number of species interactions can also impact the skill of forecasts (Daugaard
74 et al. 2022). Thus changes in biotic conditions can potentially alter the transferability of
75 forecasting models even if other environmental conditions remain unchanged. Because many
76 environmental issues involve both altered abiotic and biotic conditions (e.g., climate-induced
77 range shifts, colonization of invasive species, global extinctions), understanding the impact of
78 altered biotic conditions on forecasts is critical for understanding the potential limitations of
79 model transferability for ecological forecasting.

80 Little is known about the impact of altered biotic conditions on model transferability in
81 forecasting because suitable data is limited (Paniw et al 2023). Community change - caused by
82 extinction, colonization, or shifts in dominance - generally co-occurs with larger-scale changes in
83 abiotic environment, habitat structure, or other landscape-level alterations. Thus, disentangling
84 the effects of community change on model transferability from other environmental changes
85 requires experimental manipulations that selectively manipulate species to generate different

86 biotic communities experiencing the same general environment. Most experiments are short-
87 term, however, lasting on average one to three years (Field et al. 2007, Magnusson 1990), which
88 reduces the data available to both fit a model and test the model outcomes, especially if assessing
89 performance under natural environmental variation is a goal. Therefore, to rigorously assess the
90 impact of changing biotic composition on model transferability and forecast performance, long-
91 term experimental manipulations are required.

92 Here, we assess model transferability under novel biotic conditions using a long-term
93 experiment on desert rodents in the southwestern US. For over 40 years, the Portal Project has
94 collected monthly data on natural and experimentally manipulated rodent communities all
95 experiencing the same abiotic environment. In this experiment a competitively dominant genus,
96 *Dipodomys* spp. (kangaroo rats), has been excluded resulting in significant impacts on other
97 species in the system (Brown 1998, Bledsoe and Ernest 2019, Diaz and Ernest 2022). Using this
98 unique dataset, we investigate how biotic context influences forecast model parameters and
99 prediction accuracy when models fit under one set of biotic conditions are used to forecast under
100 a novel biotic regime. Assessing forecast accuracy under novel biotic conditions can help us
101 better understand the limitations of ecological forecasting and draw more accurate inferences
102 about population dynamics under climate change.

103 **METHODS**

104 **Rodent data**

105 To examine whether shifting biotic conditions can impact model transferability we
106 obtained data on rodent population dynamics from a long-term monitoring program in the
107 Chihuahuan Desert near Portal, Arizona (Brown 1998 , Ernest et al. 2018). The 20 ha study site

108 consists of 24 50 m x 50 m plots, each enclosed with a 50 cm fence with different sized gates to
109 manipulate rodent species access. Plots are randomly assigned to three levels of rodent
110 community manipulation: controls (large gates, all rodents have full access to plots), kangaroo
111 rat removals (small gates, behaviorally dominant seedeaters, *Dipodomys* spp., are excluded), and
112 total rodent removals (no gates, all rodents excluded but occasional transient individuals occur).
113 The rodent communities in each plot are censused monthly around the new moon using 49
114 Sherman traps, and basic information is collected for all trapped rodents. Further details about
115 the experimental setup and sampling methods are discussed elsewhere (Ernest et al. 2016, Ernest
116 et al. 2018). In this study, we only used data on the communities found in long-term (i.e.,
117 treatments maintained across all years) controls (plots 4, 11, 14, 17) and kangaroo rat removal
118 (plots 3, 15, 19, 21). Data were obtained using the ‘portalr’ package (Christensen et al. 2019) and
119 are also archived on Zenodo ([10.5281/zenodo.8436468](https://doi.org/10.5281/zenodo.8436468)).

120 We used count data from long-term control and *Dipodomys* removal plots for the desert
121 pocket mouse (*C. penicillatus*) and Bailey’s pocket mouse (*C. baileyi*). We selected these species
122 because there were extended time periods when they were relatively abundant in both control
123 and kangaroo rat removal plots (i.e., fewer zeros which can complicate modeling) and both
124 species respond strongly to the experimental removal of *Dipodomys* (Bledsoe and Ernest 2019,
125 Diaz and Ernest 2022). Previous modeling efforts (Christensen et al. 2018) found five different
126 community regimes at the site, so we selected the two regimes where each non-*Dipodomys*
127 species was highly abundant. Regime transitions are probabilistic, so we used the edge of the
128 range for the transition to ensure that the data was entirely within the regime and did not include
129 transitions between the regimes. Continued trapping at the site suggests that the 2010-2015
130 regime has continued and so we extended this time period to the end of 2019, shortly before an

131 extensive gap in data collection due to the COVID-19 pandemic. This resulted in data for *C.*
132 *baileyi* spanning from December 1999 to June 2009 (new moon number 278-396) and for *C.*
133 *penicillatus* from September 2010 to December 2019 (new moon number 411-526). By selecting
134 the dominant species during periods of stability in the community, the analysis was focused on
135 the influence of the experimental manipulation of biotic conditions on forecast model transfer.

136 **Environmental covariates data**

137 We used environmental covariates that are thought to be important drivers of ecological
138 processes in this desert ecosystem. We obtained site-level monthly data on mean air temperature
139 (°C) and cumulative precipitation (millimeters) that fell during warm or cool months (calculated
140 as the sum of precipitation that fell on days when minimum temperature was > or < 4 °C)
141 through the ‘portalr’ package (Christensen et al. 2019). This data is collected by an on-site
142 weather station and any gaps are filled with modeled data from nearby regional weather stations
143 (Ernest et al. 2018). Mean air temperature is a strong driver of seasonal abundance of *C.*
144 *penicillatus*, and potentially other smaller rodent species, as it influences foraging effort and
145 seasonal activity (i.e., entering bouts of torpor or seasonal dormancy; Reynolds and Haskell,
146 1949, Meyer and Valone 1999). We used a one-month lag to capture the time it takes for
147 individuals to behaviorally respond to changing temperature. We used cumulative precipitation
148 over the preceding 365-day as a covariate because the size of granivore populations responds to
149 precipitation-related changes in annual seed production over the last year, with little carryover to
150 subsequent years (Brown et al. 1979, Brown and Heske 1990). In this ecosystem, winter and
151 summer precipitation have different influences on plant growth and seed production, with cool
152 precipitation being important for the winter annual plant community and shrub growth and
153 establishment, and warm precipitation being important for the summer annual plant community

154 and the perennial plant community (for information on the two mostly distinct annual plant
155 communities at the site, see Ernest et al. 2018) .

156 **Modeling Approach**

157 To assess how well forecasting models can transfer to different biotic conditions, we fit
158 models separately to the control plots (where kangaroo rats are present) and the *Dipodomys*
159 removal plots (where kangaroo rats are absent). We fit these treatment-specific models for each
160 species to allow us to compare the parameters of the models from the different treatments and
161 assess how well the models from one treatment could predict abundances on the other treatment.

162 The general model structure was an autoregressive model with 1 time-step and 1 year lags
163 plus the three environmental covariates. Each time-series model had the form:

164 $Z_t \sim NegBin(\lambda_t, \phi)$ (Eqn. 1)

165 $\lambda_t = \exp(\beta_0 + \beta_1 \log(Z_{t-1} + I) + \beta_2 \log(Z_{t-12} + I) + \eta_1 T_{t-1} + \eta_2 \sum_{i=t-12}^t P_{w,i} +$
166 $\eta_3 \sum_{i=t-12}^t P_{c,i})$ (Eqn. 2)

167 where Z_t , the species-specific count at time t is drawn from a negative binomial distribution with
168 parameters λ_t (the conditional mean of abundance at time t) and ϕ (overdispersion). The
169 conditional mean was modeled as a function of an intercept (β_0), autoregressive terms for the
170 abundance of the previous observation ($\beta_1 \log(Z_{t-1} + I)$) and the abundance at the same time in
171 the previous year ($\beta_2 \log(Z_{t-12} + I)$, i.e., 12 time steps), linear terms for the effects of mean
172 temperature of the previous month ($\eta_1 T_{t-1}$) and the annual cumulative values of warm
173 ($\eta_2 \sum_{i=t-12}^t P_{w,i}$) and cold ($\eta_3 \sum_{i=t-12}^t P_{c,i}$) precipitation. The inclusion of weather data up
174 to time t is realistic in the forecasting context of this system since the weather data is collected in

175 real-time and automatically integrated into the dataset (White et al. 2019) making it available for
176 predictions for time t . Models were implemented in a frequentist framework using the ‘tscount’
177 package (Liboschik et al. 2017) in R version 4.1.1 (R Core Team, 2021). We chose to only
178 include time-series terms based on the observed counts (excluding terms based on the
179 conditional mean) to allow models to be effectively transferred. This means that “internal” and
180 “external” forms of the model (see Liboschik et al. 2017) are the same.

181 This modeling approach requires consistently sampled data (Liboschik et al. 2017), so
182 values for the small number of missing samples ($n = 9/116$ (7.8%) for *C. penicillatus* and $n =$
183 $4/119$ (3.4%) for *C. baileyi*) were imputed using linear interpolation. Because we trap as close as
184 possible to the new moon (Ernest et al. 2018) the annual periodicity of sampling is not exactly 12
185 periods. There are on average 12.37 new moons/year. Therefore we also fit the models using a
186 13 period lag for comparison. The results were qualitatively similar (Appendix S2). Code used to
187 conduct analyses is archived on Zenodo ([10.5281/zenodo.10050035](https://doi.org/10.5281/zenodo.10050035)).

188 To examine the relative importance of biotic conditions in driving variation in model
189 parameters across the time-series, sequential model fitting with rolling origins was performed to
190 generate a number of different forecasting models each with five years of training data (Simonis
191 et al. 2021). Models were fit separately for data on *C. penicillatus* and *C. baileyi* in control and
192 removal plots. We used the ‘rsample’ package (Frick et al. 2022) to conduct rolling origin
193 modeling on each dataset, with 60 data points (12 observations/year for 5 years) used for model
194 training and 12 data points (12 observations/year for 1 year) for model evaluation. This produced
195 45 sets of overlapping models and evaluations for *C. penicillatus* and 48 sets for *C. baileyi*.

196 **Comparing model parameters**

197 We compared the coefficients from each model for each treatment. We primarily focused on
198 the actual parameter values by quantifying the degree of overlap in the probability distribution
199 functions of each parameter. We obtained parameter values from each model and calculated the
200 integral of the minimum between their probability densities using the overlap function in the
201 ‘overlapping’ package (Pastore et al. 2022). The resulting overlap index is on a scale from 0 to 1,
202 with 0 indicating distinct distributions of parameters values indicating a strong change and 1
203 indicating completely overlapping distributions indicating no change (Pastore et al. 2022). This
204 analysis combines variation between the original non-transferred and transferred models for a
205 single origin with variation within models among origins, providing perspective on whether the
206 influence of biotic conditions is sufficiently strong to be observable even when temporal
207 variation in parameter estimates is present. To also focus directly on the shift in parameter values
208 in response to the experimental manipulation of biotic context, controlling for temporal variation
209 in parameter estimates, we characterized the proportion of pairwise changes for each origin by
210 calculating the difference in parameter estimates from each treatment (Appendix S1 Table 1).

211 We checked to make sure that the interpretability of the parameters associated with
212 individual environmental covariates was not unduly influenced by collinearity by performing
213 pairwise correlation and covariance assessments among the covariates and their parameters.
214 Environmental covariates used in the models had low correlations and the covariances and
215 correlation values of their coefficients were low (Appendix S1).

216 **Model transfer**

217 To assess model transferability to different biotic contexts, we generated forecasts for both
218 the treatment data to which the model was fit (non-transferred model) and to the data for the
219 other treatment (transferred model). Forecasts from transferred models (e.g., model parameters
220 for the removal model used to predict counts in the control plots) were made using the initial
221 conditions from time-series being forecast, and the model parameters for the data the model was
222 trained on. Similar steps were followed to generate forecasts for the non-transferred model
223 (where data and model were matched; e.g., control model used to predict control data).

224 **Forecasting evaluation**

225 We evaluated the models from each rolling origin using end-sample evaluation -
226 forecasting past the end of the training time-series and evaluating on the observed test data
227 (Simonis et al. 2021). We made forecasts for three-time horizons (1-step, approximately 1
228 month; 6-steps, approximately half a year; and 12-steps, approximately 1 year) into the future for
229 each rolling origin. The test data for each model were the subsequent 12 observations following
230 each set of training data (following White et al. 2019). We assessed accuracy of point forecasts
231 using root mean squared error (RMSE) and forecast uncertainty using Brier score, which is a
232 proper scoring rule that extends the mean squared error to distributional forecasts (Simonis et al.
233 2021). For each species non-transferred and transferred model RMSE values and Brier scores
234 were calculated for each rolling origin model at each forecast horizon. We then calculated the
235 difference between the pairs of RMSE values and Brier scores from each origin for the non-
236 transferred and transferred models to assess the effect of novel biotic conditions in driving
237 forecast predictability. Negative values for RMSE and Brier score differences indicate better

238 forecast performance from the non-transferred model, and positive values indicate better forecast
239 performance from the model transferred to the new biotic conditions.

240 **RESULTS**

241 **Model parameter comparison**

242 The two species differed in whether their model parameters were influenced by the biotic
243 context. For *C. penicillatus*, the parameter estimates generally did not differ significantly for
244 models fit to data on control and removal plots, indicating similar associations between
245 abundances and environmental variables in both plot types (Fig 2). This is indicated by relatively
246 high overlap in the distributions of most of the parameters (range of overlap coefficient:
247 0.83,0.90; Fig. 2). Pairwise comparisons of model parameters from the same origin show that
248 most parameters did not shift in a consistent direction (Appendix S1 Table 1). In contrast, *C.*
249 *baileyi* parameter estimates tended to differ between models fit to data on control and removal
250 plots, with parameter estimates for the environmental covariates showing relatively low overlap
251 (range of overlap coefficient: 0.15-0.56). Autoregressive terms, on the other hand, exhibited
252 more overlap (AR (1)= 0.69, AR (12) = 0.67; Fig. 2). *C. baileyi* also exhibited high proportions
253 of pairwise shifts in one direction for all three environmental variables and the intercept
254 (Appendix S1 Table 1). In combination this suggests that the form of the forecasting model is
255 dependent on the biotic context for this species.

256 **Model transferability under novel biotic conditions**

257 The two species also differed in how well transferred models performed at forecasting
258 compared to the non-transferred models. For *C. penicillatus* the transferred models performed

259 similarly to the non-transferred models on both control and removal plot data (Figs. 3 and 4).
260 Both transferred and non-transferred models showed a consistent pattern of increasing prediction
261 error with increasing forecast horizon length for both RMSE and Brier score (Fig. 4). In contrast,
262 for *C. baileyi*, the transferred models generally performed less well than the non-transferred
263 models when making forecasts. Point forecast (RMSE) scores showed a clear pattern of better
264 performance for the non-transferred models for both control and removal data (Figs. 3 and 4).
265 Brier scores were also generally better for the non-transferred model, particularly on the
266 removal plots. However, the Brier score result was less strong when evaluating forecasts made
267 for the control data. While the majority of origins showed worse forecasts for the transferred
268 model, the mode of the difference between the original and transferred model was near zero for
269 all forecast horizons (Fig. 4). This suggests that there was higher uncertainty in the predictions
270 from the models transferred from the removal plots, which counteracted the less accurate
271 predictions from those models (as indicated by RMSE), making the transferred model on the
272 controls less confident in the less accurate predictions. Finally, similar to the *C. penicillatus*
273 models, both models fit to *C. baileyi* data exhibited decreasing model performance at increasing
274 forecast horizons (Fig. 4).

275 **DISCUSSION**

276 Ecological forecasts can be less accurate when models are transferred to novel biotic
277 contexts. In this study, we observed this effect even though the long-term experimental nature of
278 the Portal Project meant that plots with different species compositions were intermingled and
279 there was no difference in the environmental conditions between the different biotic contexts.
280 Decreased performance from models transferred to novel biotic conditions, however, depended

281 on the species being forecast, with *C. baileyi* exhibiting significant shifts in both model
282 parameters and forecast abundances, but *C. penicillatus* showing little change in either.
283 This highlights the need to account for biotic interactions in forecasting models, and the need to
284 understand when and why changes in the biotic context impact model transferability.

285 We expect changes in the biotic context to impact forecasting models if shifts in the
286 biotic context involve species with strong influences on the species being forecast. *C. baileyi*,
287 which colonized the site in 1995, increased in abundance when *Dipodomys* were experimentally
288 removed, demonstrating strong competitive impacts by *Dipodomys* (Ernest and Brown 2001,
289 Thibault et al 2010, Bledsoe and Ernest 2019). Our forecast models reflect this competitive
290 impact with higher intercepts for the removal models when compared to the controls, which
291 causes some of the divergence in forecasts when models are transferred. While *C. baileyi* is
292 competitively inferior to *Dipodomys*, it is larger and competitively dominant over its congener *C.*
293 *penicillatus*. With the removal of *Dipodomys*, *C. baileyi* shifts its stature in the community to
294 that of the competitive dominant, which increases not only its abundance but could allow *C.*
295 *baileyi* to exploit regions of its fundamental niche that overlap with *Dipodomys* (Thibault et al
296 2010, Diaz and Ernest 2022). A shift in the realized niche could explain differences in
297 environmental parameters between control and removal plots as *C. baileyi* is no longer
298 constrained by competition and can react more directly to the environmental drivers. The dual
299 effect of altered competition on the intercept and environmental parameters then cause the
300 transferred models to perform poorly (Fig. 2).

301 Changes in biotic context do not always alter competitive hierarchies, however. Like *C.*
302 *baileyi*, *C. penicillatus* increases in abundance when *Dipodomys* spp. are removed, indicating a
303 strong competitive interaction between these species (Valone and Brown 1995, Bledsoe and

304 Ernest 2019, Diaz and Ernest 2022). With the establishment of *C. baileyi* on removal plots,
305 however, the competitive pressures on *Dipodomys* removal plots increased. In response, *C.*
306 *penicillatus* decreased their residency in the previously preferred plot (i.e., removals) and
307 increased their probability of dispersing to nearby control plots (Bledsoe and Ernest 2019).
308 Perhaps due to behavioral interactions between these territorial species, the less dominant *C.*
309 *penicillatus* exhibited shifts in abundance between plots even when *C. baileyi* abundances
310 decreased in 2010 (Bledsoe and Ernest 2019, Christensen et al 2019). Thus, *C. penicillatus* may
311 perceive competition with its close congener as being a similar competitive environment to plots
312 containing *Dipodomys* spp. This could explain the similarities in both the intercepts and the
313 environmental parameters because competitive pressures are never alleviated and *C. penicillatus*
314 has little opportunity to exploit unexpressed areas of its fundamental niche. Species with many
315 weak interactions seem to be more forecastable (Durgaard et al 2022) as changes in a single
316 competitor in the network are unlikely to result in a large shift in the expressed niche of the focal
317 species being forecast. The fact that *C. penicillatus* does not exhibit significantly different
318 dynamics despite the removal of *Dipodomys* highlights the challenges of understanding when
319 biotic context will influence ecological forecasting due to complex species networks in nature.

320 Declines in the accuracy of forecasts with increasing forecast horizon exhibited an
321 interesting interaction with model transfer to novel biotic contexts. Decreasing forecast
322 performance as forecasts are made further into the future is a common pattern in ecological
323 forecasts (Dietze et al. 2018, Harris et al. 2018) that is demonstrated by both *C. baileyi* and *C.*
324 *penicillatus* models. However, transferred models for *C. baileyi* decrease in forecast accuracy
325 more rapidly with the forecast horizon (as indicated by increasing deviations between the
326 original and transferred models, Fig. 3) . At short time-scales, the strong short-term

327 autoregressive components in the models allow good predictions even when transferring the
328 model, but as the forecast horizon increases the differences in other model parameters become
329 more prevalent leading to greater decay in accuracy for the transferred models (Fig. 1). This
330 interaction suggests that estimates of decay in forecast accuracy may be overly optimistic if the
331 composition of the community is also shifting at the time-scales of the forecasts. This lends
332 experimental support to the idea that estimates of model transferability need to consider multiple
333 aspects of transfer (Gavish et al. 2017), in this case including both transfer to novel biotic context
334 and transfer outside of the historical window used for fitting the models.

335 Differences between our two metrics for assessing forecast performance (RMSE and
336 Brier score) demonstrate the importance of incorporating uncertainty in forecast evaluation and
337 show an interesting interaction between uncertainty and model transfer to novel biotic contexts.
338 The RMSE, which only evaluates point estimates (not uncertainty), was worse for transferred *C.*
339 *baileyi* models on both control and removal plots, even at short horizons. The Brier score, which
340 integrates model uncertainty, exhibited a similar pattern for the removal plot data, but showed
341 reduced responses to model transfer on the control plots (Fig. 3). This difference between the
342 Brier score and RMSE response suggests that while the predictions from the transferred removal
343 models are less accurate, the uncertainty in those predictions is also higher, so the model is less
344 confident in the less accurate predictions. Potentially, models fit to the removals exhibit better
345 uncertainty under model transfer because these models are exposed to a wider range of variation
346 in abundance than models fit to the control plots. Due to the competitive release from *Dipodomys*
347 spp., *C. baileyi* abundances are typically higher and more variable in removal plots. This wider
348 range of variation is likely due to reduced constraints on population growth during good years
349 and potentially a shift in response to environmental drivers. If this increased variation is not fully

350 captured by the models' dynamics it will result in increased error terms and uncertainty, thus
351 resulting in predictions that are penalized less by evaluation metrics that include uncertainty.
352 This complex interaction between model transfer, uncertainty, and experimental treatment
353 suggests that it is important to incorporate uncertainty into the assessment of model
354 transferability because it can provide insights that are different from point estimates alone. It also
355 shows that, in some cases, transferred models may be appropriate for decision making even if
356 they make less accurate point forecasts, as long as the decision making properly incorporates
357 uncertainty. In general, evaluating uncertainty - either by using metrics that include it or by
358 measuring model transferability and associated forecast uncertainties - will be important for
359 assessing how effectively models can be transferred and their utility for implementing
360 conservation strategies on species or locations with limited data availability (Houlahan et al.
361 2017, Yates et al. 2018).

362 In this study, we focused on single species models to demonstrate and assess model
363 transferability under varying biotic conditions. Single species models are common in ecological
364 modeling, forecasting, and management, but because they do not attempt to model species
365 interactions these models are likely to be particularly susceptible to changes in the biotic context.
366 Multivariate community models, which can include species interactions, have the potential to
367 provide improved transfer to novel biotic conditions by incorporating information on processes
368 such as competition. For example, for the control plots this type of model could include the
369 interactions between *C. baileyi* and *Dipodomys* species, potentially allowing it to transfer more
370 effectively to the removal plots where *Dipodomys* abundance would influence predictions as an
371 observed value at or near zero. The use of these types of models in dynamic ecological
372 forecasting remains uncommon since the number of ecosystems with sufficiently long time-

373 series on all of the key species in the community is limited. Since explicitly modeling
374 interactions is important for modeling population dynamics (e.g., Lima et al. 2008), species
375 distributions (e.g., Pollock et al. 2014), and model transferability, further exploration of
376 multivariate community predictions will be an important next step for ecological forecasting.

377 We have shown that changes in the presence of other species can impact both the
378 parameters of ecological forecasting models and their predictions. This suggests that caution will
379 be necessary when making forecasts in new systems or over long enough periods of time that the
380 composition of other species in the community undergoes change. This is important because the
381 development of ecological forecasting models is often limited by data availability, making the
382 ability to transfer models to new scenarios important (Houlahan et al. 2017, Yates et al. 2018,
383 Lewis et al. 2023) Therefore models that better represent the complex dynamics of biological
384 interactions, and effectively predict beyond the conditions they were built on, are needed in an
385 era of fast-paced environmental change (Yates et al. 2018). Developing such transferable
386 models, in terms of space, time, and biotic context, and effectively communicating the
387 uncertainties in their predictions, are important endeavors to facilitate the expanded development
388 and use of ecological forecasts (Houlahan et al. 2017, Yates et al. 2018).

389 **ACKNOWLEDGMENTS**

390 We thank the volunteers, staff, and research assistants, who collected the Portal Project data over
391 the years. This work was supported by research grants awarded to SKM Ernest and EP White by
392 the US National Science Foundation (NSF DEB-1929730), USDA National Institute of Food and
393 Agriculture, Hatch Project FLA-WEC-005983 (Ernest) and FLA-WEC-005944 (White).

394 **CONFLICT OF INTEREST STATEMENT**

395 The authors declare no conflict of interest.

396 **REFERENCES**

397 Bledsoe, E.K., and S. K. M. Ernest. 2019. "Temporal Changes in Species Composition Affect a
398 Ubiquitous Species' Use of Habitat Patches." *Ecology* 100(11):e02869. doi:
399 10.1002/ecy.2869.

400 Bodner, K., C. R. Firkowski, J. R. Bennett, C. Brookson, M. Dietze, S. Green, J. Hughes, J.
401 Kerr, et. al. 2021. "Bridging the Divide between Ecological Forecasts and Environmental
402 Decision Making." *Ecosphere* 12(12):e03869. doi: 10.1002/ecs2.3869.

403 Brown, J. H., D. W. Davidson, and O. J. Reichman. 1979. "An Experiment Study of Competition
404 between Seed-eating Desert Rodents and Ants". *American Zoologist* 19(4): 1129-1143.

405 Brown, J. H., and J. C. Munger. 1985. "Experimental Manipulation of a Desert Rodent
406 Community: Food Addition and Species Removal." *Ecology* 66(5):1545–63. doi:
407 10.2307/1938017.

408 Brown, James H. 1998. "The desert granivory experiments at Portal." *Experimental Ecology:*
409 *Issues and Perspectives*. Oxford University Press, New York: 71-95.

410 Brown, J. H., and E. J. Heske. 1990. Control of a desert-grassland transition by a keystone rodent
411 guild. *Science* 250 (4988): 1705-1707.

412 Casini, M., J. Hjelm, J. Molinero, J. Lövgren, M. Cardinale, V. Bartolino, A. Belgrano, et al.
413 2009. "Trophic Cascades Promote Threshold-like Shifts in Pelagic Marine Ecosystems."
414 *Proceedings of the National Academy of Sciences* 106(1):197–202. doi:
415 10.1073/pnas.0806649105.

416 Charney, N. D., S. Record, B. E. Gerstner, C. Merow, P. L. Zarnetske, and B. J. Enquist. 2021.

417 “A Test of Species Distribution Model Transferability Across Environmental and Geographic

418 Space for 108 Western North American Tree Species.” *Frontiers in Ecology and Evolution* 9.

419 Christensen, E. M., D. J. Harris, and S. K. M. Ernest. 2018. “Long-Term Community Change

420 through Multiple Rapid Transitions in a Desert Rodent Community.” *Ecology* 99(7):1523–29.

421 doi: 10.1002/ecy.2373.

422 Christensen, E. M., Yenni, G. M., Ye, H., Simonis, J. L., Bledsoe, E. K., Diaz, R., ... & Ernest, S.

423 M. (2019). *portalr: an R package for summarizing and using the Portal Project Data*. *Journal*

424 *of Open Source Software*, 4(33): 1098.

425 Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, J. A. Foley, D. M. Lodge, et al.

426 2001. “Ecological Forecasts: An Emerging Imperative.” *Science* 293(5530):657–60. doi:

427 10.1126/science.293.5530.657.

428 Daugaard, U., S. B. Munch, D. Inauen, F. Pennekamp, and O. L. Petchey. 2022. “Forecasting in

429 the Face of Ecological Complexity: Number and Strength of Species Interactions Determine

430 Forecast Skill in Ecological Communities.” *Ecology Letters* 25(9):1974–85. doi:

431 10.1111/ele.14070.

432 Diaz, R.M., and S. K. M. Ernest. 2022. “Maintenance of Community Function through

433 Compensation Breaks down over Time in a Desert Rodent Community.” *Ecology*

434 103(7):e3709. doi: 10.1002/ecy.3709.

435 Dietze, M. C., A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B. Hooten, C. S. Jarnevich, T.

436 H. Keitt, et al. 2018. “Iterative Near-Term Ecological Forecasting: Needs, Opportunities, and

437 Challenges.” *Proceedings of the National Academy of Sciences* 115(7):1424–32. doi:

438 10.1073/pnas.1710231115.

439 Ernest, S. K. M., and J. H. Brown. 2001. Delayed compensation for missing keystone species by
440 colonization. *Science* 292 (5514): 101-104.

441 Ernest, S. K. M., G. M. Yenni, G. Allington, E. M. Christensen, K. Geluso, J. R. Goheen, M. R.
442 Schutzenhofe, et al. 2016. “Long-term Monitoring and Experimental Manipulation of a
443 Chihuahuan Desert Ecosystem near Portal, Arizona (1977–2013)”
444 (<https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-2115.1>).

445 Ernest, S. K. M., G. M. Yenni, G. Allington, E. K. Bledsoe, E. M. Christensen, R. M. Diaz, K.
446 Geluso, et al. 2018. *The Portal Project: A Long-Term Study of a Chihuahuan Desert*
447 *Ecosystem. preprint*. Ecology. doi: 10.1101/332783.

448 Field, S. A., P. J. O’Connor, A. J. Tyre, and H. P. Possingham. 2007. “Making Monitoring
449 Meaningful.” *Austral Ecology* 32(5):485–91. doi: 10.1111/j.1442-9993.2007.01715.x.

450 Fitzpatrick, M. C., and W. W. Hargrove. 2009. “The Projection of Species Distribution Models
451 and the Problem of Non-Analog Climate.” *Biodiversity and Conservation* 18(8):2255–61. doi:
452 10.1007/s10531-009-9584-8.

453 Frick H, F. Chow, K. M, M. Mahoney, S. J., and H. Wickham. 2022. “rsample: General
454 Resampling Infrastructure”. R package version 1.1.1, <[https://CRAN.R-
455 project.org/package=rsample](https://CRAN.R-project.org/package=rsample)>.

456 Gallardo, B., M. Clavero, M. I. Sánchez, and M. Vilà. 2016. “Global Ecological Impacts of
457 Invasive Species in Aquatic Ecosystems.” *Global Change Biology* 22(1):151–63. doi:
458 10.1111/gcb.13004.

459 Gavish, Y., J. O’Connell, and T. G. Benton. 2018. “Quantifying and Modelling Decay in
460 Forecast Proficiency Indicates the Limits of Transferability in Land-Cover Classification.”
461 *Methods in Ecology and Evolution* 9(2):235–44. doi: 10.1111/2041-210X.12870.

462 Goheen, J. R., D. J. Augustine, K. E. Veblen, D. M. Kimuyu, T. M. Palmer, L. M. Porensky, R.
463 M. Pringle, et al. 2018. "Conservation Lessons from Large-mammal Manipulations in East
464 African Savannas: The KLEE, UHURU, and GLADE Experiments." *Annals of the New York
465 Academy of Sciences* 1429(1):31–49. doi: 10.1111/nyas.13848.

466 Harris, D. J., S. D. Taylor, and E. P. White. 2018. "Forecasting biodiversity in breeding birds
467 using best practices." *PeerJ* 6:e4278.

468 Holt, A. R., Zoe G. Davies, C. Tyler, and S. Staddon. 2008. "Meta-Analysis of the Effects of
469 Predation on Animal Prey Abundance: Evidence from UK Vertebrates." *PLOS ONE*
470 3(6):e2400. doi: 10.1371/journal.pone.0002400.

471 Houlahan, Jeff E., Shawn T. McKinney, T. Michael Anderson, and Brian J. McGill. 2017. "The
472 Priority of Prediction in Ecological Understanding." *Oikos* 126(1):1–7. doi:
473 10.1111/oik.03726.

474 Leal, M., J. Rodríguez-Robles, and J. Losos. 1998. "An Experimental Study of Interspecific
475 Interactions between Two Puerto Rican Anolis Lizards." *Oecologia* 117:273–78. doi:
476 10.1007/s004420050658.

477 Lewis, A. S. L., C. R. Rollinson, A. J. Allyn, J. Ashander, S. Brodie, C. B. Brookson, E. Collins,
478 et al. 2023. "The Power of Forecasts to Advance Ecological Theory." *Methods in Ecology and
479 Evolution* 14(3):746–56. doi: 10.1111/2041-210X.13955.

480 Liboschik T, K. Fokianos, and K. Fried. 2017. "tscount: An R Package for Analysis of Count
481 Time Series Following Generalized Linear Models." *Journal of Statistical Software* 82 (5): 1-
482 51. doi: 10.18637/jss.v082.i05

483 Lima, M., S. K. M. Ernest, J. H. Brown, A. Belgrano, and N. C. Stenseth. 2008. "Chihuahuan
484 desert kangaroo rats: Nonlinear Effects of Population Dynamics, Competition, And Rainfall."
485 *Ecology* 89(9):2594–2603. doi: 10.1890/07-1246.1.

486 Liu, C., C. Wolter, W. Xian, and J. M. Jeschke. 2020. "Species Distribution Models Have
487 Limited Spatial Transferability for Invasive Species." *Ecology Letters* 23(11):1682–92. doi:
488 10.1111/ele.13577.

489 MacArthur, R. H., and E. R. Pianka. 1966. "On Optimal Use of a Patchy Environment." *The
490 American Naturalist* 100(916):603–9.

491 Magnuson, J. J. 1990. "Long-Term Ecological Research and the Invisible Present." *BioScience*
492 40(7):495–501. doi: 10.2307/1311317.

493 McCune, J. L. 2016. "Species Distribution Models Predict Rare Species Occurrences despite
494 Significant Effects of Landscape Context." *Journal of Applied Ecology* 53(6):1871–79. doi:
495 10.1111/1365-2664.12702.

496 Meyer, M. D., and T. J. Valone. 1999. "Foraging under multiple costs: the importance of
497 predation, energetic, and assessment error costs to a desert forager." *Oikos* 571:579.

498 Paniw, M., D. García-Callejas, F. Lloret, R. D. Bassar, J. Travis, and O. Godoy. 2023. "Pathways
499 to Global-Change Effects on Biodiversity: New Opportunities for Dynamically Forecasting
500 Demography and Species Interactions." *Proceedings of the Royal Society B: Biological
Sciences* 290(1993):20221494. doi: 10.1098/rspb.2022.1494.

502 Pastore, M, P. A. D. Loro, M. Mingione, A. Calcagni. 2022. "Overlapping: Estimation of
503 Overlapping in Empirical Distributions". R package version 2.1, <<https://CRAN.R-project.org/package=overlapping>>.

505 Pollock, L. J., R. Tingley, W. K. Morris, N. Golding, R. B. O'Hara, K. M. Parris, P. A. Vesk,
506 and M. A. McCarthy. 2014. "Understanding Co-Occurrence by Modelling Species
507 Simultaneously with a Joint Species Distribution Model (JSDM)." *Methods in Ecology and*
508 *Evolution* 5(5):397–406. doi: 10.1111/2041-210X.12180.

509 Power, M. E., D. Tilman, J. A. Estes, B. A. Menge, W. J. Bond, L. S. Mills, G. Daily, et al. 1996.
510 "Challenges in the Quest for Keystones." *BioScience* 46(8):609–20. doi: 10.2307/1312990.

511 Quiao, H., X. Feng, L. E. Escobar, A. T. Peterson, J. Soberon, G. Zhu, and M. Papes. 2019. "An
512 Evaluation of Transferability of Ecological Niche Models." *Ecography* 42:521–34. doi:
513 10.1111/ecog.03986.

514 R Core Team. 2021. "R: A language and environment for statistical computing". *R Foundation
515 for Statistical Computing*. Vienna, Austria. <http://www.R-project.org>

516 Randin, C. F., T. Dirnböck, S. Dullinger, N. E. Zimmermann, M. Zappa, and A. Guisan. 2006.
517 "Are Niche-based Species Distribution Models Transferable in Space?" *Journal of
518 Biogeography* 33(10):1689–1703. doi: 10.1111/j.1365-2699.2006.01466.x.

519 Regos, A., L. Gagne, D. Alcaraz-Segura, J. P. Honrado, and J. Domínguez. 2019. "Effects of
520 Species Traits and Environmental Predictors on Performance and Transferability of
521 Ecological Niche Models." *Scientific Reports* 9(1):4221. doi: 10.1038/s41598-019-40766-5.

522 Reynolds, H.G., and H. S. Haskell. 1949. "Life history notes on Price and Bailey pocket mice of
523 southern Arizona." *Journal of Mammalogy* 30 (2): 150-156.

524 Sequeira, A. M. M., P. J. Bouchet, K. L. Yates, K. Mengersen, and M. J. Caley. 2018.
525 "Transferring Biodiversity Models for Conservation: Opportunities and Challenges." *Methods
526 in Ecology and Evolution* 9(5):1250–64. doi: 10.1111/2041-210X.12998.

527 Spence, A. R., and M. W. Tingley. 2020. "The Challenge of Novel Abiotic Conditions for
528 Species Undergoing Climate-Induced Range Shifts." *Ecography* 43(11):1571–90. doi:
529 10.1111/ecog.05170.

530 Thibault, K. M., S. K. M. Ernest, E. P. White, J. H. Brown, and J. R. Goheen. 2010. "Long-Term
531 Insights into the Influence of Precipitation on Community Dynamics in Desert Rodents."
532 *Journal of Mammalogy* 91(4): 787–97. <https://doi.org/10.1644/09-MAMM-S-142.1>.

533 Tingley, R., M. Vallinoto, F. Sequiera, and M. R. Kearney. 2014. "Realized Niche Shift during a
534 Global Biological Invasion." 2014. <https://doi.org/10.1073/pnas.1405766111>.

535 Trewby, I. D., G. J. Wilson, R. J. Delahay, N. Walker, R. Young, J. Davison, C. Cheeseman, P.
536 A. et al. 2008. "Experimental Evidence of Competitive Release in Sympatric Carnivores."
537 *Biology Letters* 4(2):170–72. doi: 10.1098/rsbl.2007.0516.

538 Valone, T. J., and J. H. Brown. 1995. "Effects of Competition, Colonization, and Extinction on
539 Rodent Species Diversity." *Science* 267(5199):880–83.

540 Wenger, S. J., and J. D. Olden. 2012. "Assessing Transferability of Ecological Models: An
541 Underappreciated Aspect of Statistical Validation." *Methods in Ecology and Evolution*
542 3(2):260–67. doi: 10.1111/j.2041-210X.2011.00170.x.

543 Werkowska, W., A. L. Márquez, R. Raimundo, and P. Acevedo. 2017. "A Practical Overview of
544 Transferability in Species Distribution Modeling." *Environmental Reviews* 25 (1): 127-133.

545 White, E. P., G. M. Yenni, S. D. Taylor, E. M. Christensen, E. K. Bledsoe, J. L. Simonis, and S.
546 K. M. Ernest. 2019. "Developing an Automated Iterative Near-Term Forecasting System for
547 an Ecological Study." *Methods in Ecology and Evolution* 10(3):332–44. doi: 10.1111/2041-
548 210X.13104.

549 Wiles, G. J., J. Bart, R. E. Beck, and C. F. Aguon. 2003. "Impacts of the Brown Tree Snake:
550 Patterns of Decline and Species Persistence in Guam's Avifauna." *Conservation Biology*
551 17(5):1350–60. doi: 10.1046/j.1523-1739.2003.01526.x.
552 Yates, K. L., P. J. Bouchet, M. J. Caley, K. Mengersen, C. F. Randin, S. Parnell, A. H. Fielding,
553 et al. 2018. "Outstanding Challenges in the Transferability of Ecological Models." *Trends in*
554 *Ecology & Evolution* 33(10):790–802. doi: 10.1016/j.tree.2018.08.001.

555 **FIGURE LEGENDS**

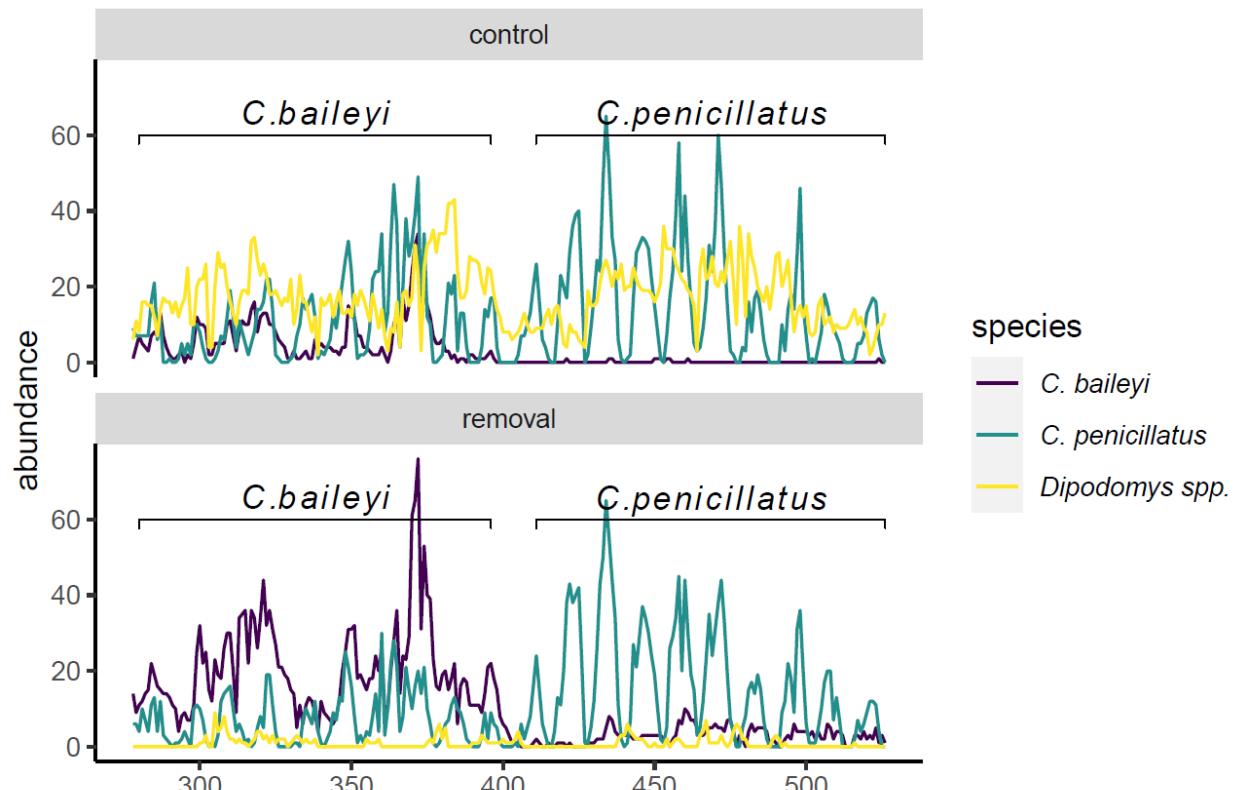
556 **Figure 1.** Time-series data on *Dipodomys* spp. (blue lines), *Chaetodipus baileyi* (red lines), and
557 *C. penicillatus* (green lines) on control plots (top panel) and removal plots (bottom panel) in a
558 long-term experiment near Portal, AZ. The two species-specific periods used for modeling and
559 forecasting *Chaetodipus* spp. are indicated by brackets.

560 **Figure 2.** Comparison of parameter values obtained from models fit to data on *C. penicillatus*
561 (top row) and *C. baileyi* (bottom row) on control plots (green densities) and removal plots (grey
562 densities).

563 **Figure 3.** Predictions for *C. penicillatus* (top two plots) and *C. baileyi* (bottom two plots)
564 abundances from models fit to non-transferred (blue lines) and transferred (red lines) data.

565 **Figure 4.** Root Mean Squared Error (RMSE, top plots) and Brier score (bottom plots) of non-
566 transferred and transferred models of *C. penicillatus* (left plots) and *C. baileyi* (right plots) on
567 control (green) and removal plots (grey) at different forecast horizons.

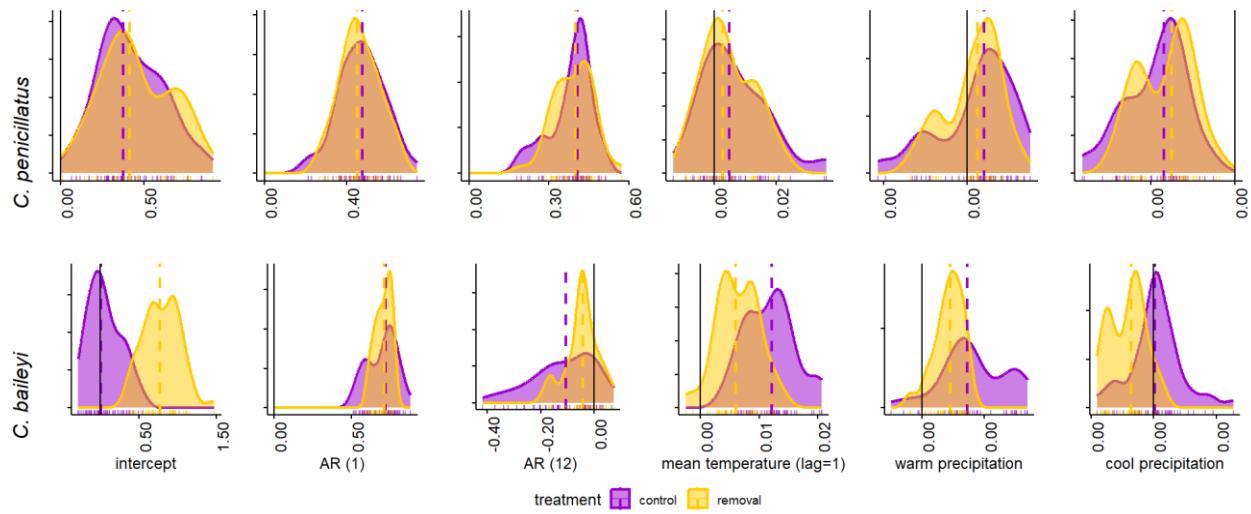
568 **FIGURES**



569

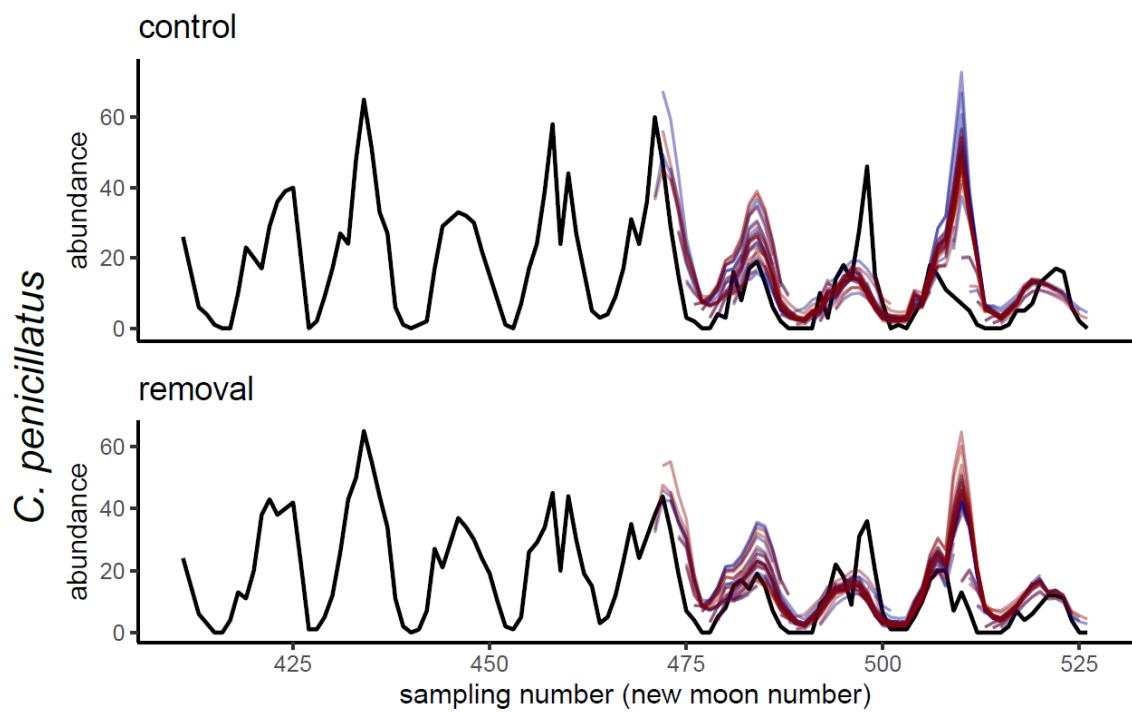
570 **Figure 1.**

571

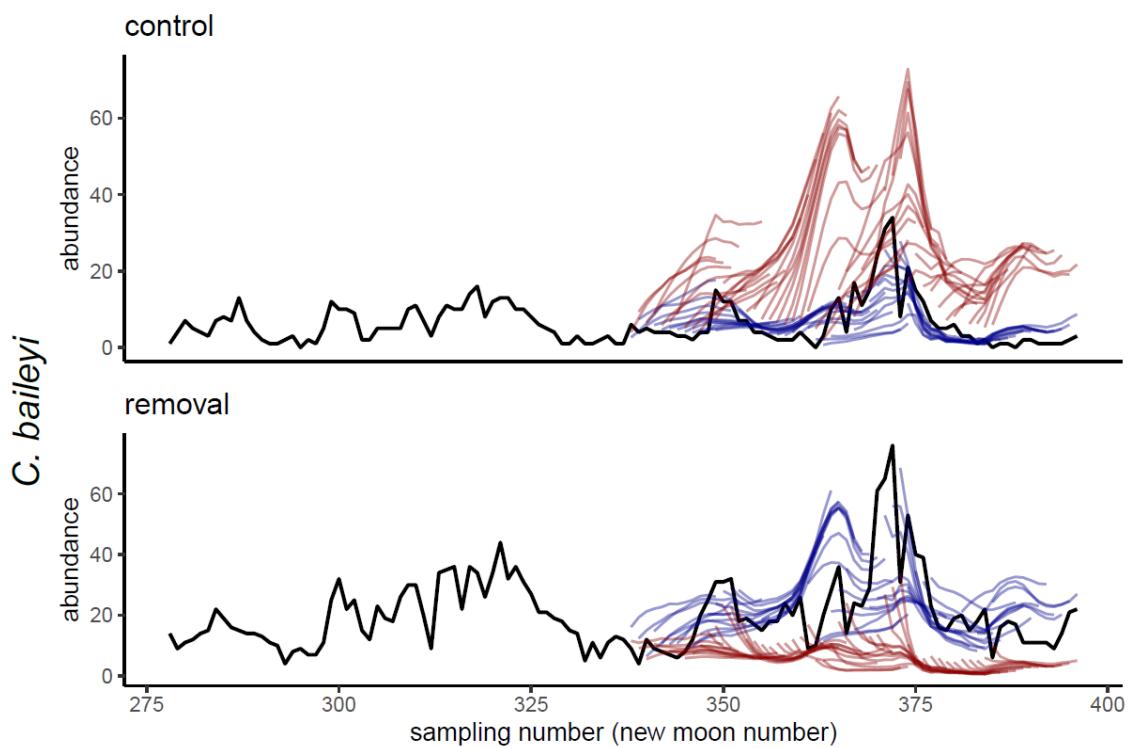


572

573 **Figure 2.**



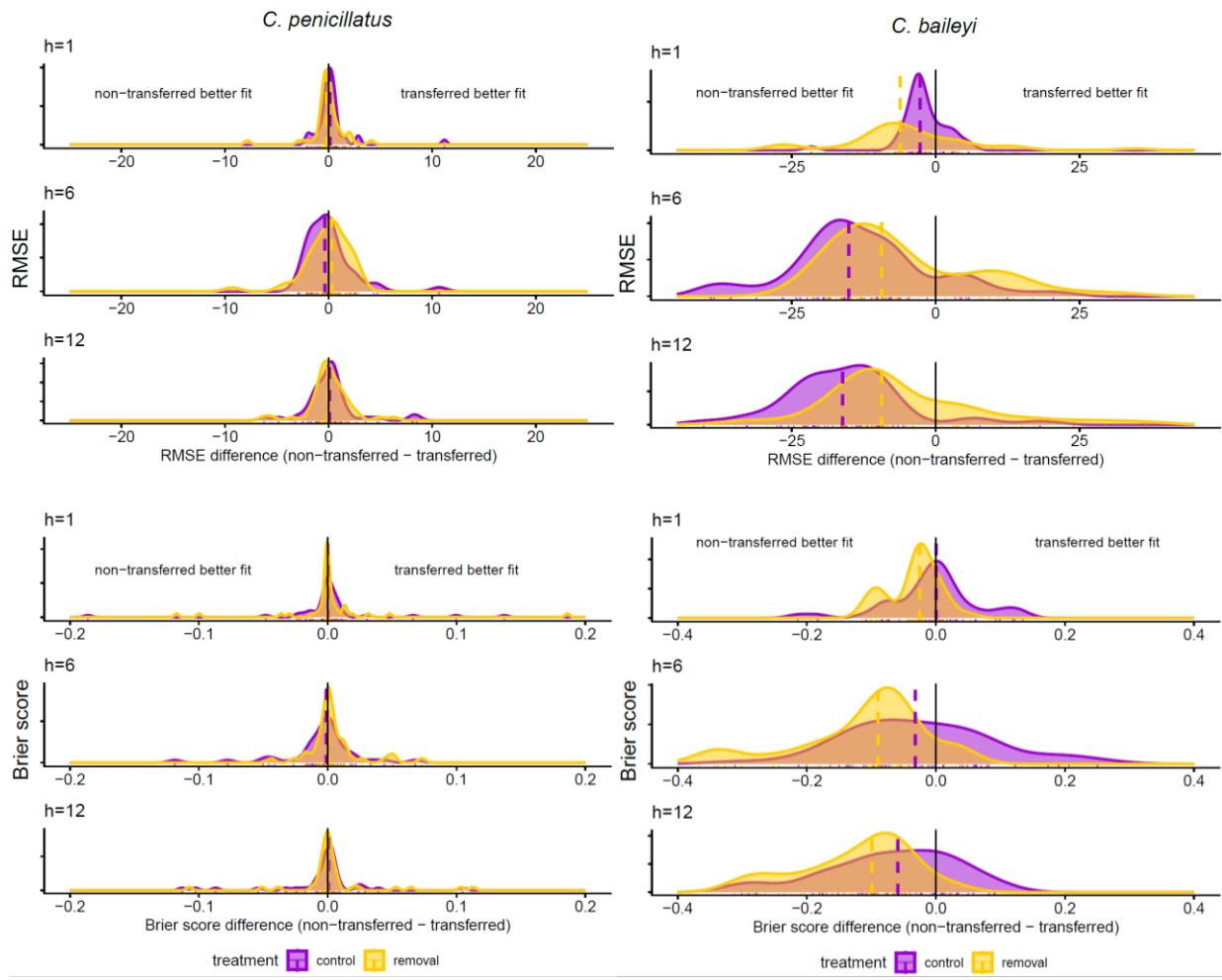
574



configuration non-transferred transferred

575

576 **Figure 3.**



579 **Figure 4.**

580

APPENDIX S1

581 **METHODS**582 **Collinearity among predictors and estimated parameters**

583 We performed pairwise correlation tests on all possible pairs of the environmental
584 covariates used in our models (i.e., mean temperature (lag=1), warm and cool precipitation)
585 using Pearson's correlation test. Then, we assessed the collinearity of the estimated parameters
586 from each treatment-specific model by conducting covariance and correlation assessments on the
587 estimated parameters generated from sequential model fitting. For each model fit at each origin,
588 we computed a covariance matrix from a given Fisher information matrix by inversion using the
589 `invertinfo()` function in the 'tscount' package. Collinearity was low for the covariates and their
590 estimated parameters (Appendix S1 Figs.1-5).

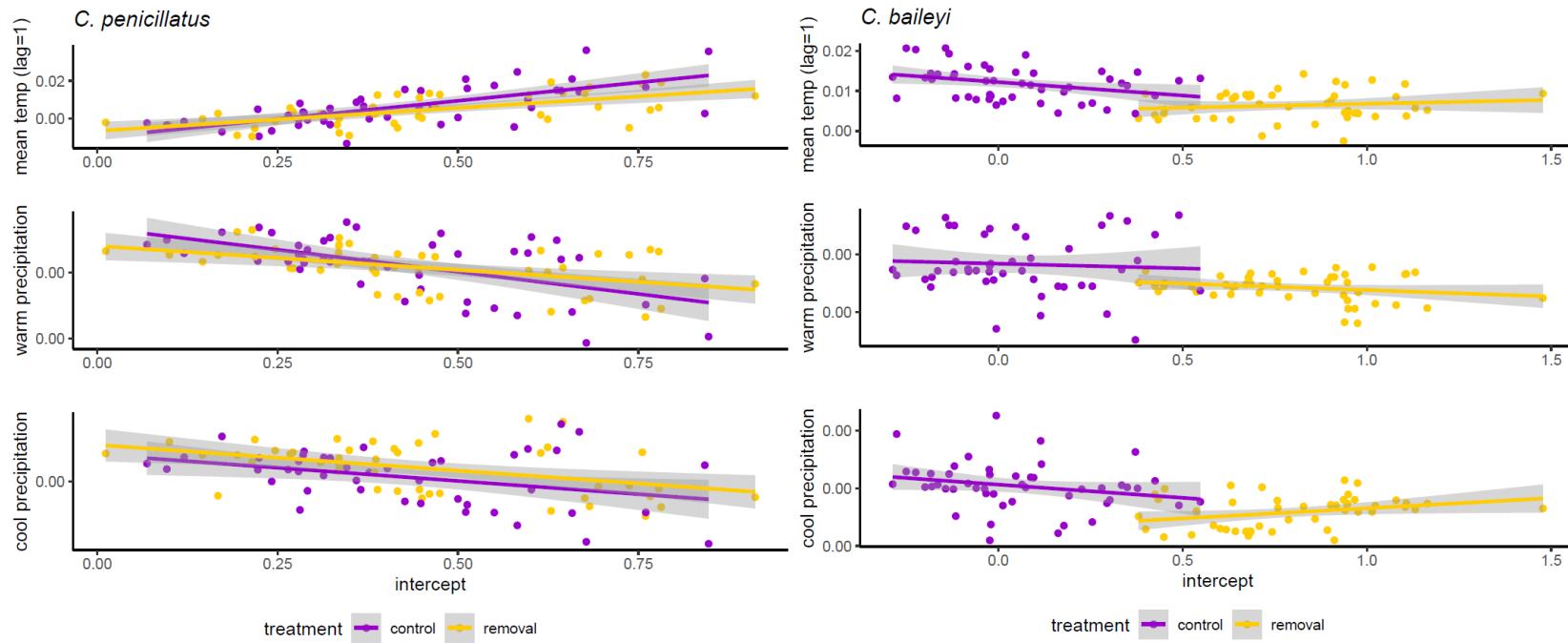
591 **TABLE LEGENDS**592 **Table 1.** Proportion of positive shift in parameter values in response to the experiment.593 Proportions close to 0 or 1 indicate that the parameters shifted consistently between
594 treatments across origins. Cases where greater than 80% of the parameter shifts were in one
595 direction are highlighted in bold. Difference in parameter values obtained from models fit to
596 data on *Chaetodipus penicillatus* and *C. baileyi* on control and removal plots.597 **TABLES**598 **Table 1.**

parameter	<i>C. penicillatus</i>	<i>C. baileyi</i>
	$\beta_{\text{control}} - \beta_{\text{removal}} > 0$	$\beta_{\text{control}} - \beta_{\text{removal}} > 0$
intercept	0.48	0.00
AR (1)	0.60	0.42
AR(12)	0.44	0.23
mean temperature (lag=1)	0.69	0.96
cool precipitation	0.18	0.88
warm precipitation	0.62	0.81

599

APPENDIX S1 FIGURES

600

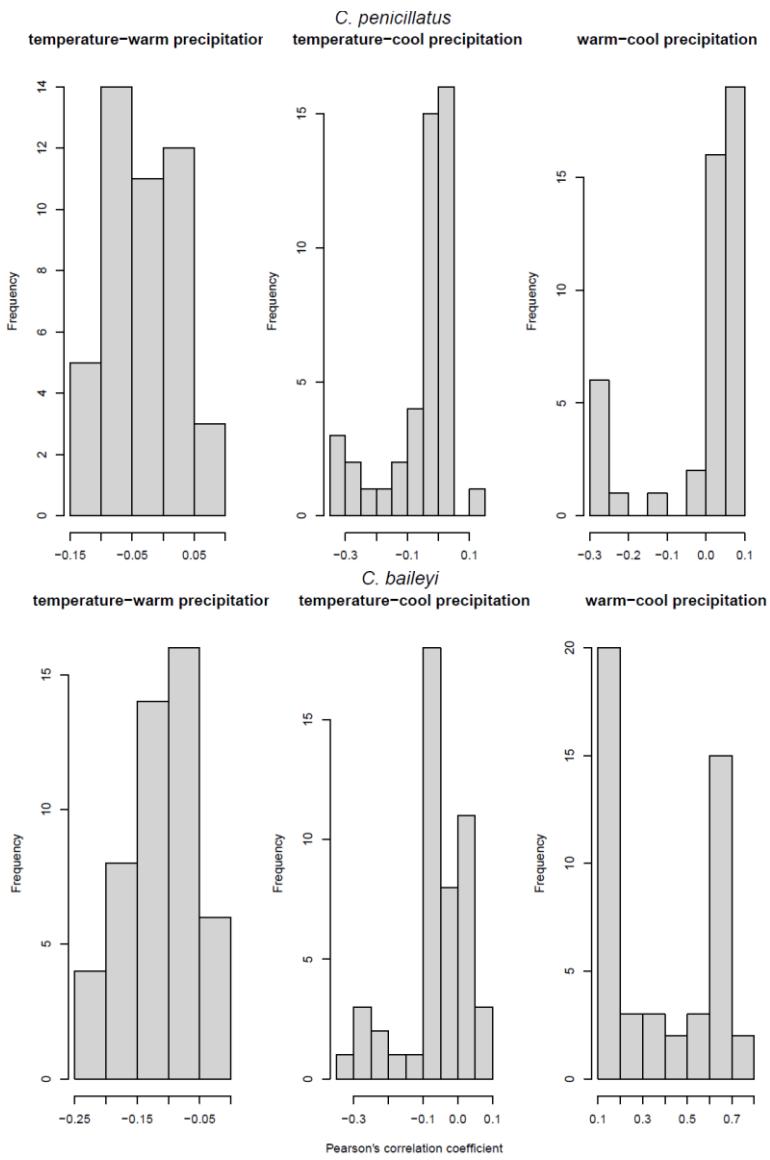


601

602 **Appendix S1 Fig. 1.** Covariances of the intercept and the slopes at different origins of time-series models fit to data on *Chaetodipus penicillatus* (left panel) and *C. baileyi* in control and removal plots.

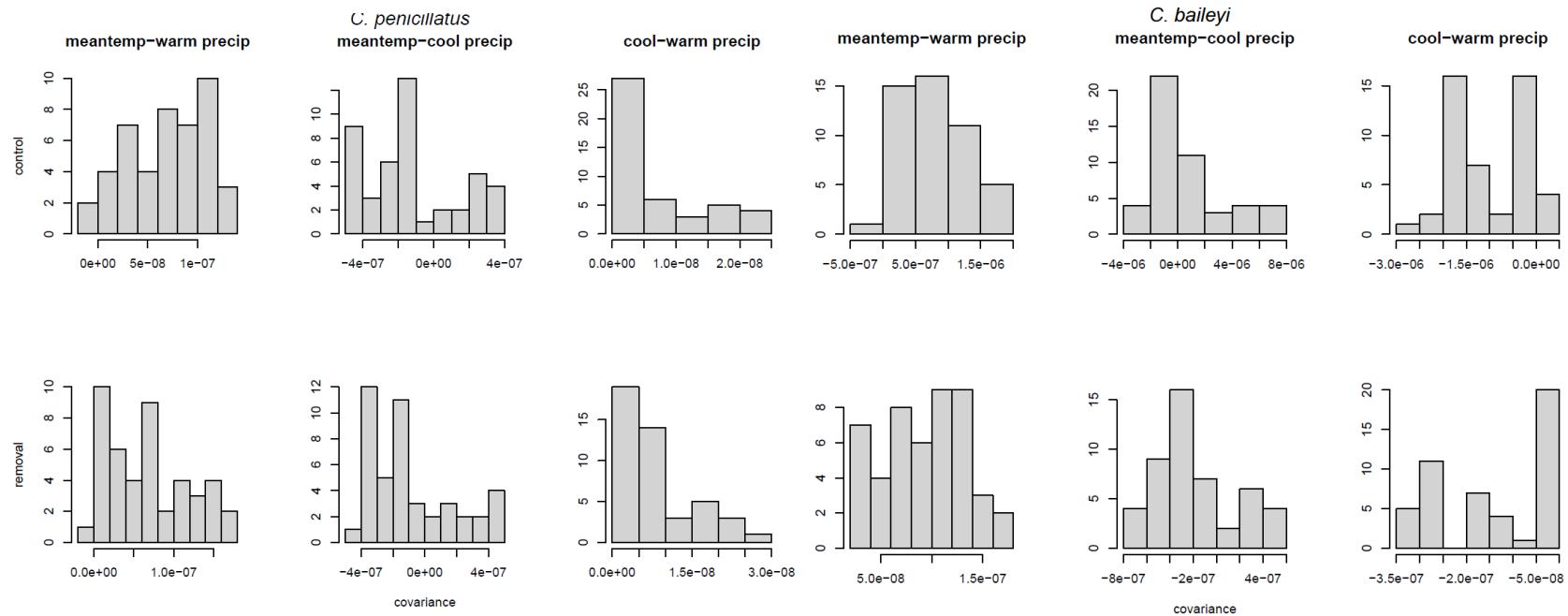
603

604



605

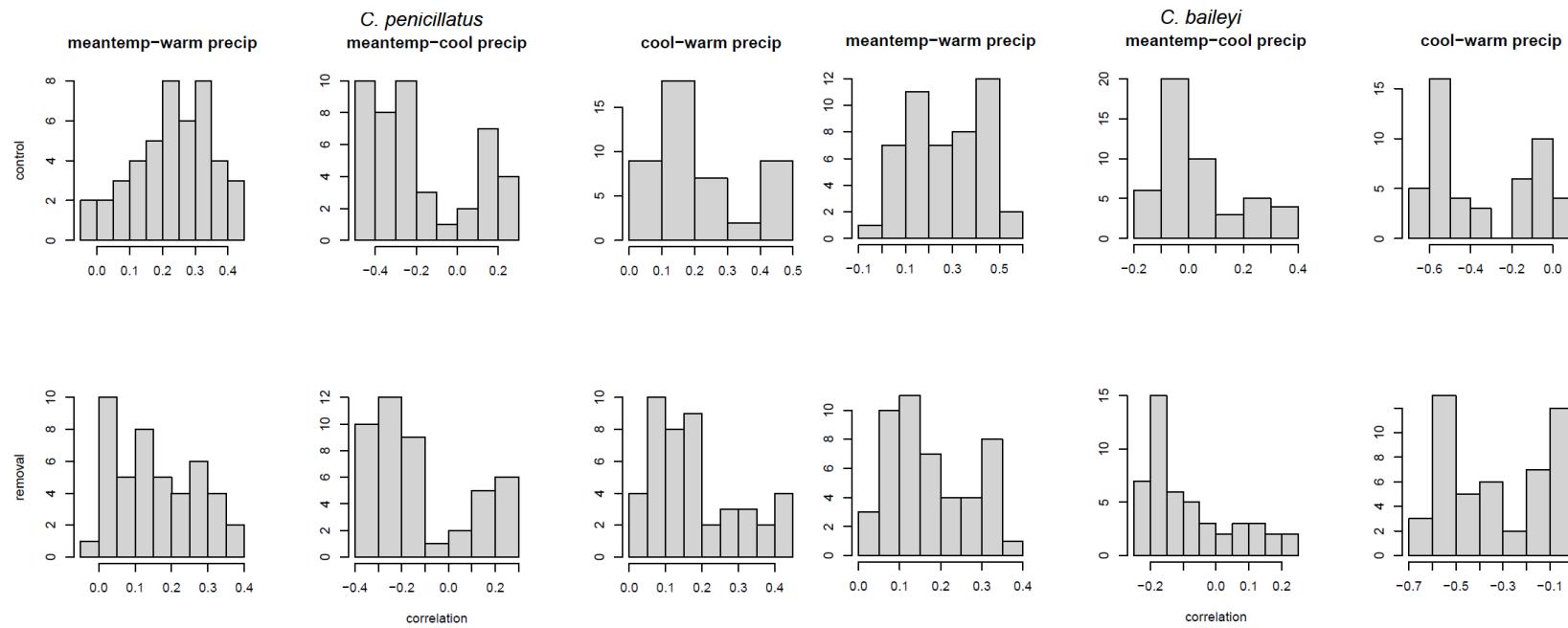
606 **Appendix S1 Fig. 2.** Frequency of the correlation coefficients on the raw values of the
 607 environmental covariates used in models fit to data on *Chaetodipus penicillatus* (left panel) and
 608 *C. baileyi* (right panel) in a long-term experiment in Portal, AZ.



609

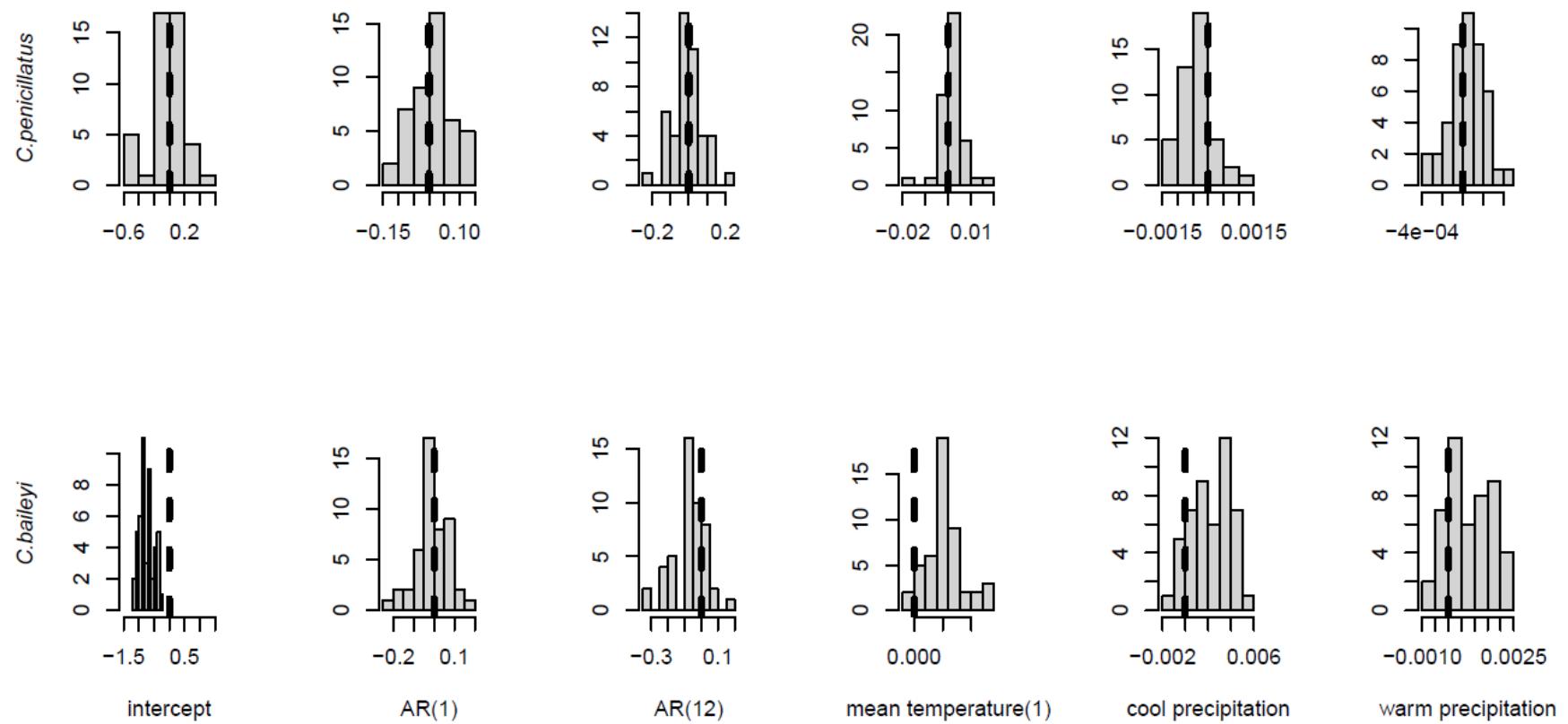
610 **Appendix S1 Fig. 3.** Pairwise covariance of the environmental parameter estimates obtained from time-series models on *C.*

611 *penicillatus* (left panel) and *C. baileyi* (right panel) on control (top panel) and removal (bottom panel) plots.



612

613 **Appendix S1 Fig. 4.** Pairwise correlation of the environmental parameter estimates obtained from time-series models on *C.*
 614 *penicillatus* (top panel; plots 1-3) and *C. baileyi* (bottom panel; plots 4-6) in control (left panel; plots 7-9) and removal (right panel;
 615 plots 10-12).



620 **METHODS**621 **Refitting models to different model input configurations**

622 To assess the sensitivity of our results to variations in the configuration of model input,
 623 we re-fit the models with adjustments in the autoregressive terms and covariate specification
 624 (i.e., transformation). Specifically, we performed sequential model fitting with a similar model
 625 structure described in the main text but modified the AR terms. Since the annual periodicity of
 626 sampling is not fixed- some years there may be 13 new moons and therefore 13 sampling events-
 627 we fit a model with a 13 period lag with the structure:

628 $Z_t \sim NegBin (\lambda_t, \phi)$ (Eqn. 3)

629 $\lambda_t = \beta_0 + \beta_1 \log(Z_{t-1} + I) + \beta_2 \log (Z_{t-13} + I) + \eta_1 T_{t-1} + \eta_2 \sum_{i=t-12}^t P_{w,i} +$
 630 $\eta_3 \sum_{i=t-12}^t P_{c,i}$ (Eqn. 4)

631 We also assessed the sensitivity of our results to the specification of the environmental
 632 covariates we assumed would be important drivers of rodent abundances by refitting the similar
 633 models described in the main text but modified the environmental data by scaling and centering
 634 them using the scale function in R. We retained the default settings of the function, which means
 635 the centered and scaled values were obtained by subtracting the mean and dividing it by the
 636 standard deviation.

637 **RESULTS**

638 **Parameter comparison**

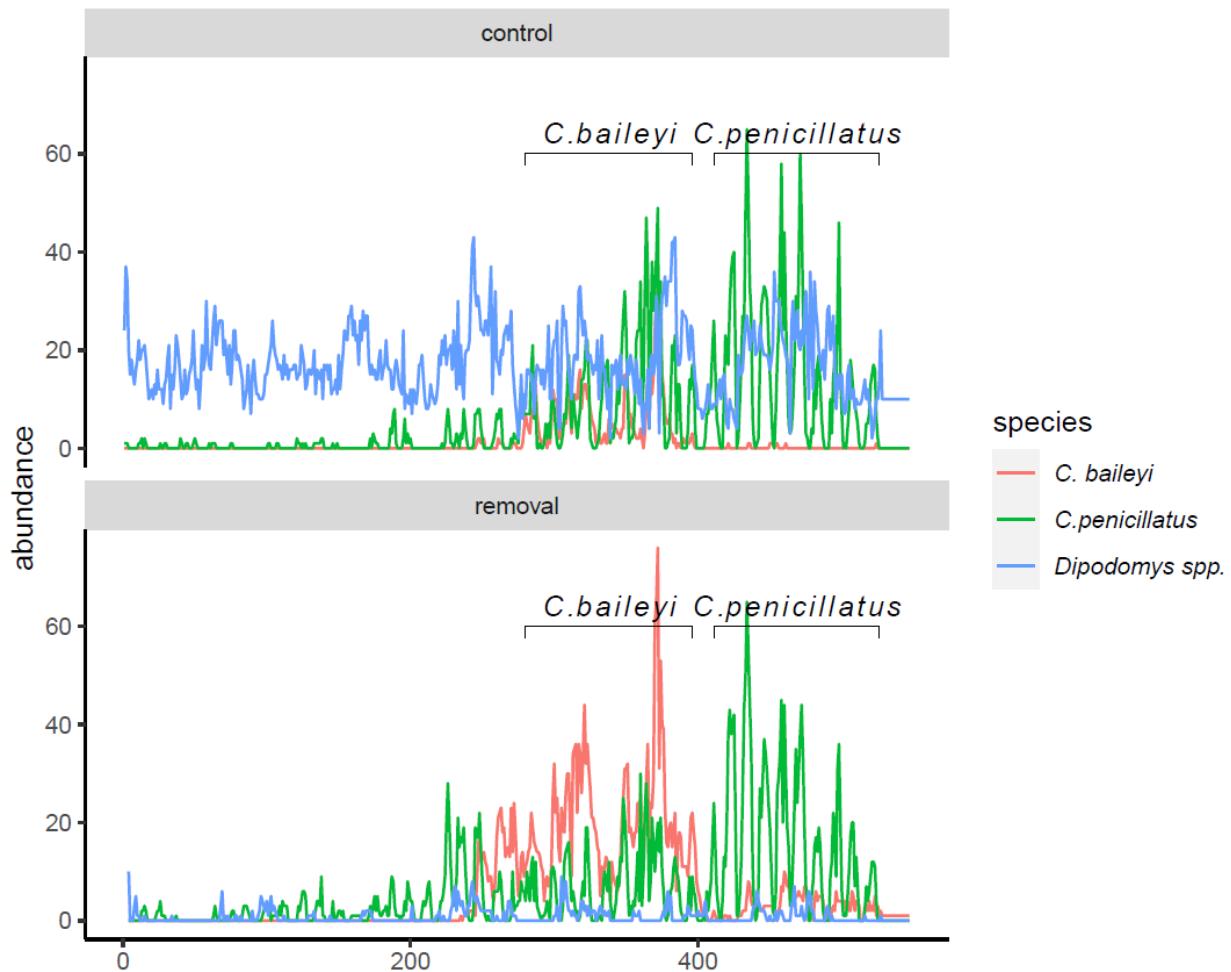
639 For *C. penicillatus*, the degree of overlap in the parameters generated from models with
640 AR (1,13) terms and models with covariates were scaled and centered were qualitatively similar
641 as the ones presented in the main text. Degree of overlap was marginally higher for parameters
642 from the models with scaled covariates (overlap range: 0.87-0.95; Appendix S2 Fig. 6) than
643 those with the AR (1, 13) terms(overlap range: 0.55-0.80; Appendix S2 Fig. 2) but these values
644 were closely similar to the values obtained from the main models (described in the main text).
645 Similarly, shifts in the parameters in response to the experiment were not consistent across both
646 model configurations, with the positive shift ranging from 0.18-0.95 from the models fit with AR
647 (1,13) terms and 0.28-0.69 from the models fit with the scaled covariates. In both instances,
648 directional shift was highest in response to mean temperature (lag=1). Similar to the results
649 presented in the main text, *C. baileyi* parameters showed relatively low overlap when models
650 included an AR (13 term) (overlap range: 0.33-0.79; Appendix S2 Fig. 2) and when covariates
651 were scaled and centered (overlap range: 0.29-0.69; Appendix S2 Fig. 6), with the highest
652 overlap in cool precipitation, and lowest for mean temperature (lag=1). Moreover, environmental
653 parameters and the intercept with the AR(13), and scaled covariates models also exhibited
654 largely similar directional shifts.

655 **Model transferability under novel biotic conditions**

656 We observed similar patterns in the performance of transferred and non-transferred
657 models and their forecasts (Appendix S2 Figs. 3 and 6) for *C. penicillatus* in both model
658 configurations based on point forecast accuracy metrics (Appendix Figs. 4 and 8) and metrics

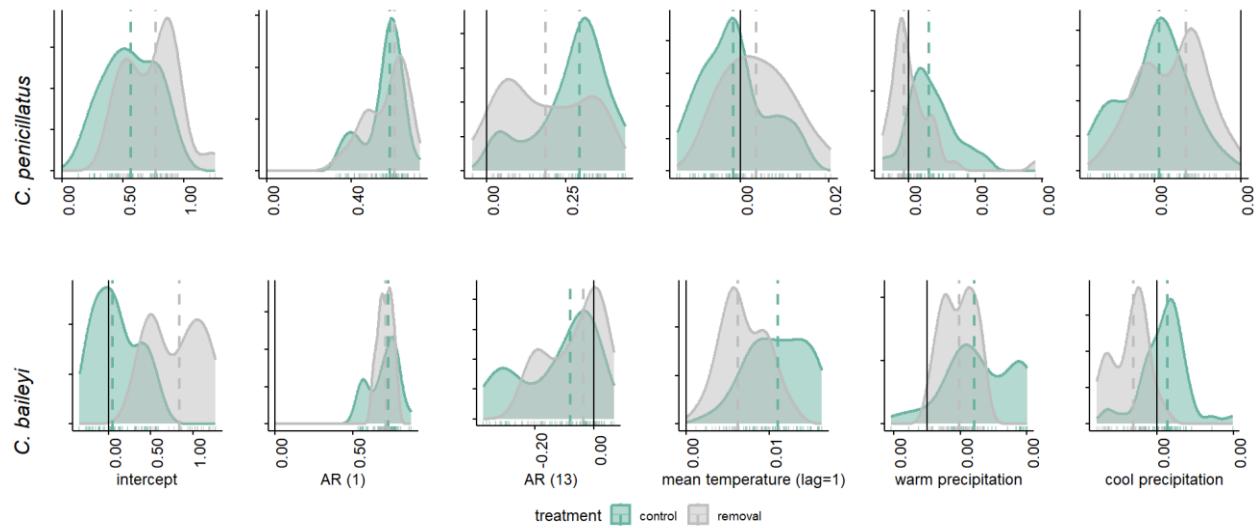
659 that include uncertainty (Appendix S2 Figs. 5 and 9), with prediction error increasing at
660 increasing forecast horizon lengths. Transferred models had a poorer performance than non-
661 transferred models based on both RMSE and Brier scores for *C. baileyi*. Similar to the results
662 presented in the main text, Brier scores were better for non-transferred models fit to removal data
663 under both model configurations (Appendix S2 Figs. 5 and 9).

APPENDIX S2 Figures



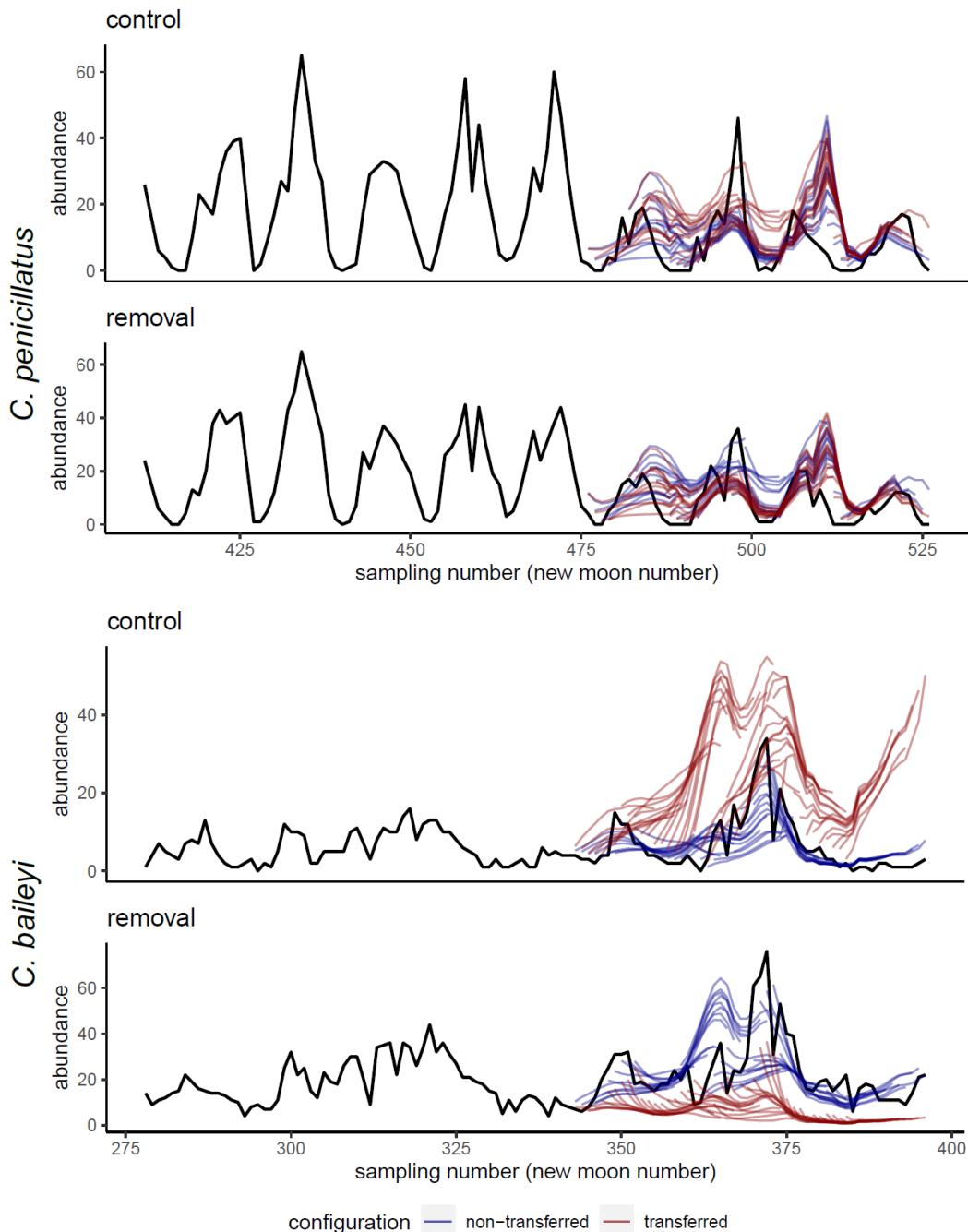
666 **Appendix S2 Fig. 1.** Full time-series data on *Dipodomys* spp., *Chaetodipus penicillatus*, and *C.*
 667 *baileyi* on control and removal plots in a long-term experiment near Portal, AZ from 1977-2019.

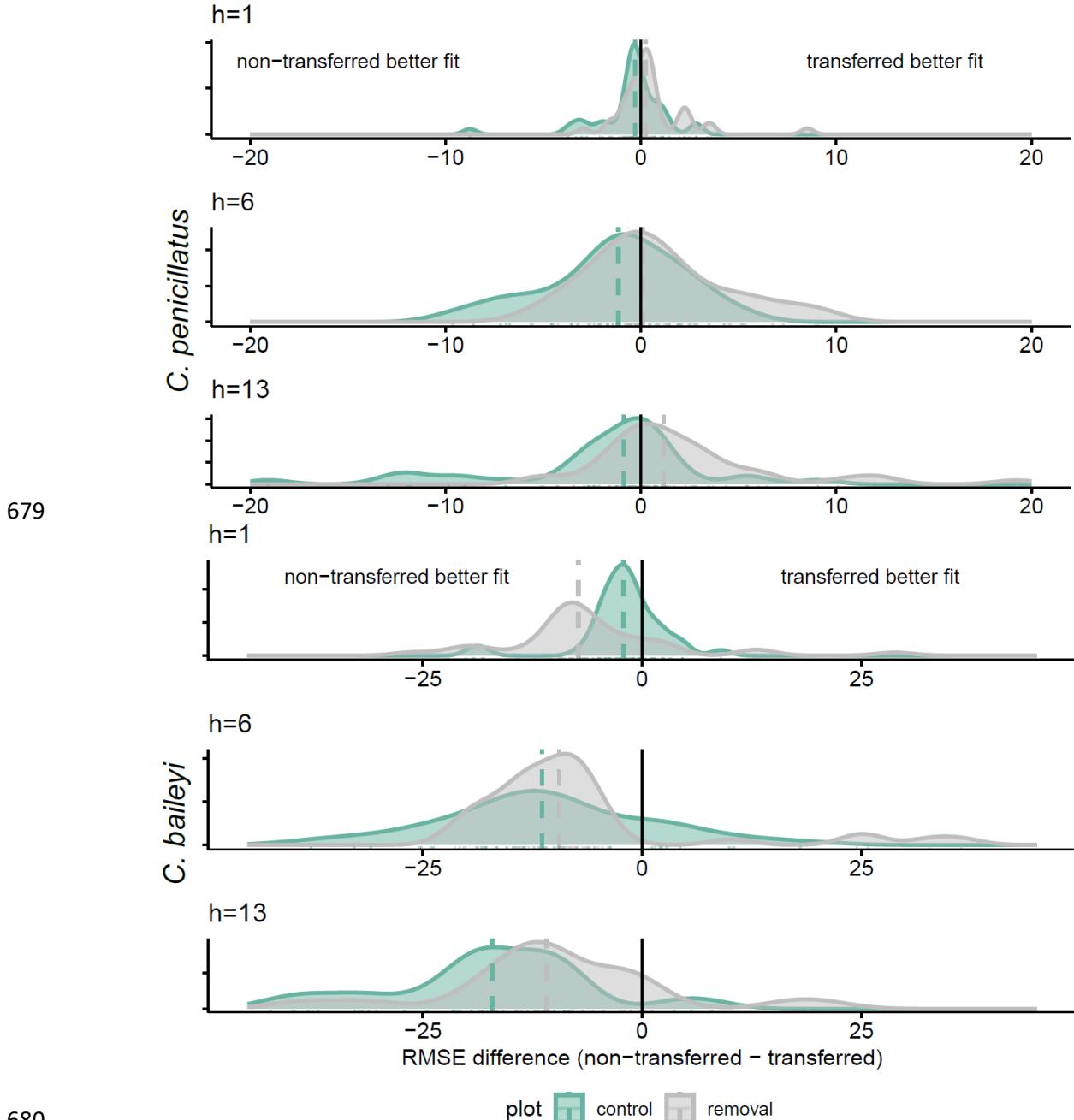
669



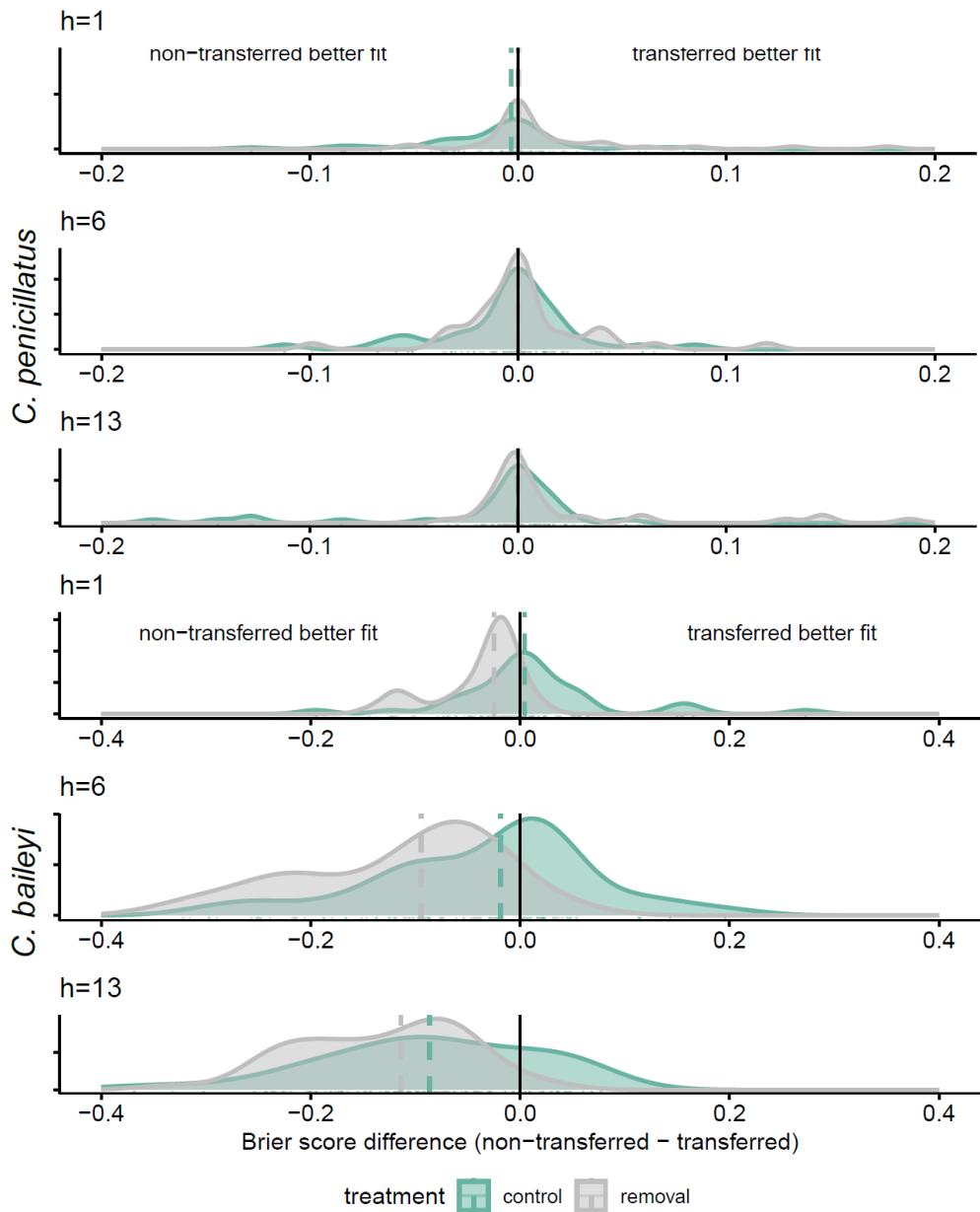
670

671 **Appendix S2 Fig. 2.** Comparison of overlap in parameter values obtained from models with AR
 672 (1, 13) terms fit to data on *C. penicillatus* (top panel) and *C. baileyi* (bottom panel) on control
 673 (green densities) and removal (grey densities) plots.





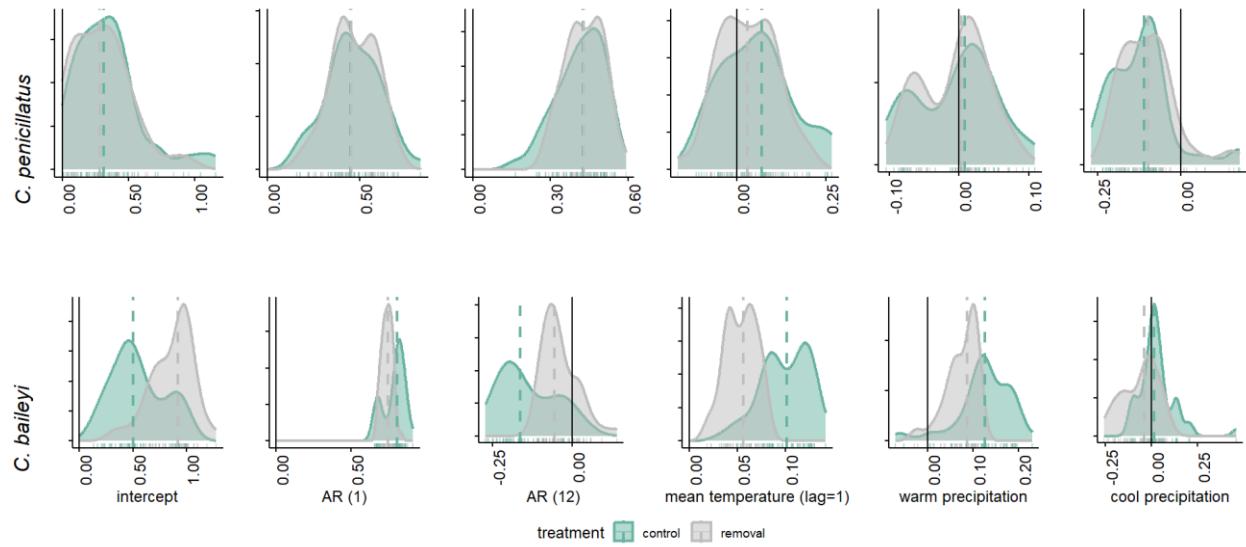
684



685

686 **Appendix S2 Fig. 5.** Performance (Brier score) of non-transferred and transferred models with
 687 AR (1,13) terms fit to data on *C. penicillatus* (top panel) and *C. baileyi* (bottom panel) on control
 688 (green) and removal plots (grey) at different forecast horizons.

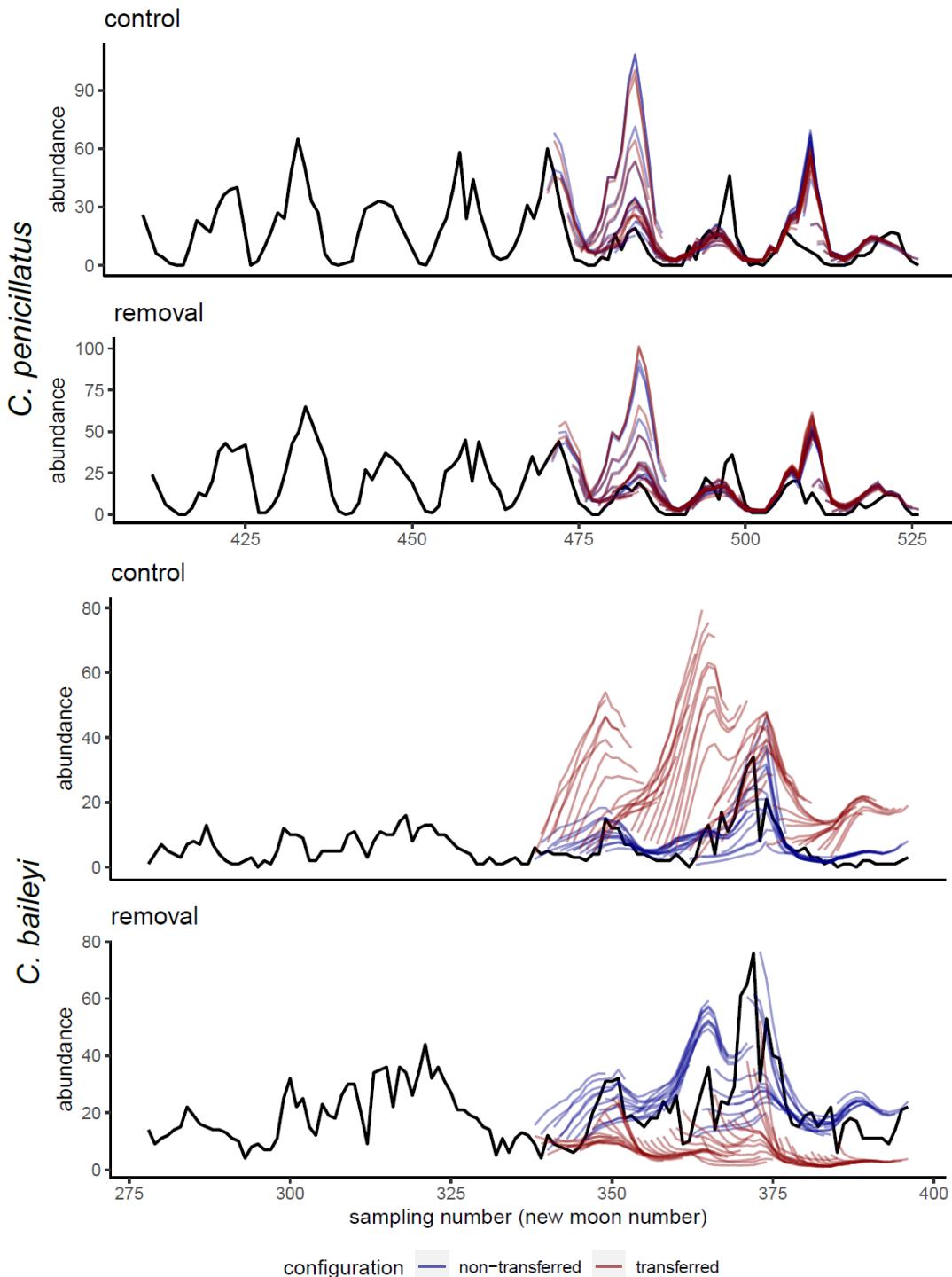
689



690

691 **Appendix S2 Fig. 6.** Comparison of overlap in parameter values obtained from models fit to
 692 data on *C. penicillatus* (top panel) and *C. baileyi* (bottom panel) on control (green densities) and
 693 removal (grey densities) plots. Models included environmental covariates that were scaled.

694

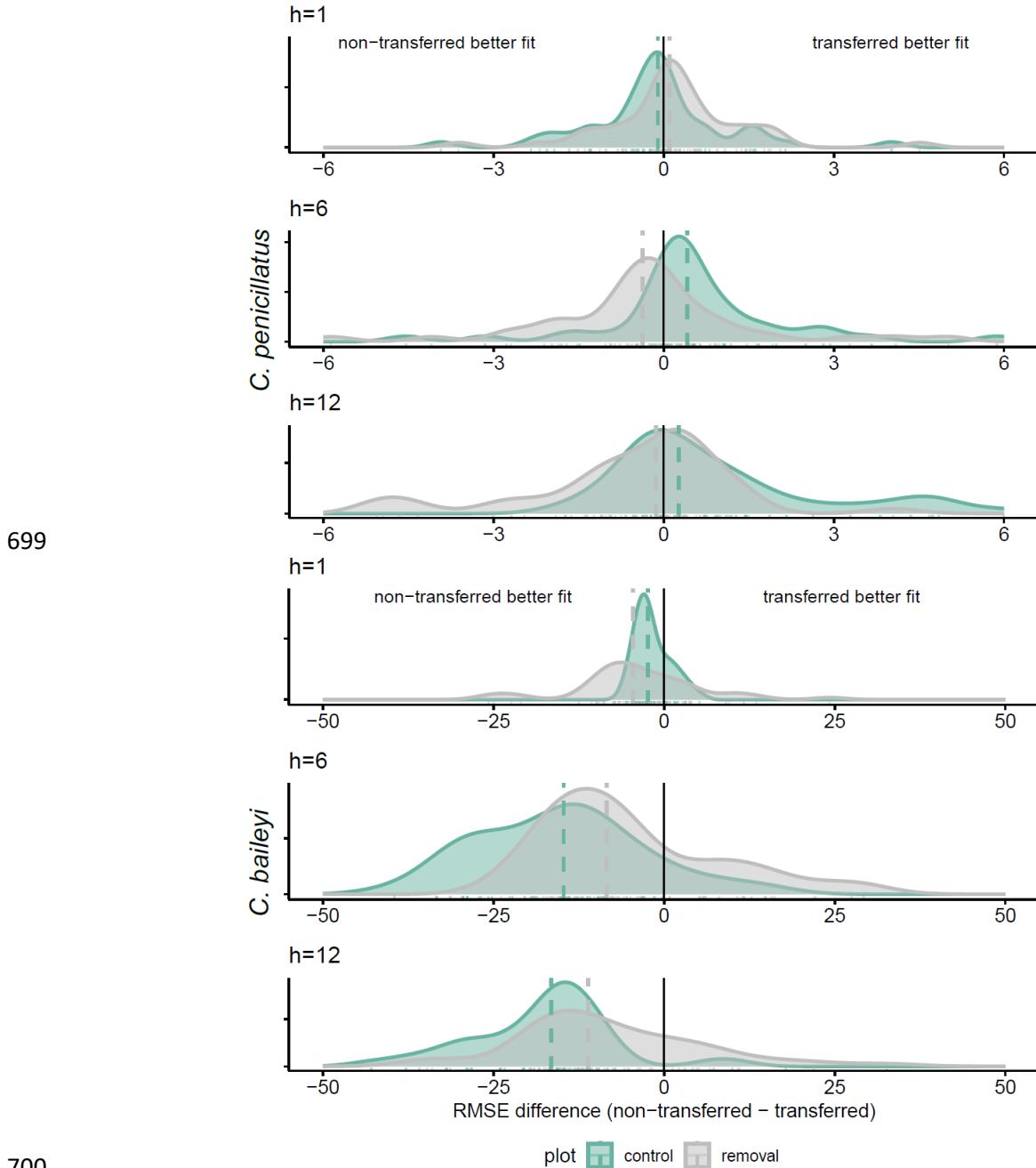


695

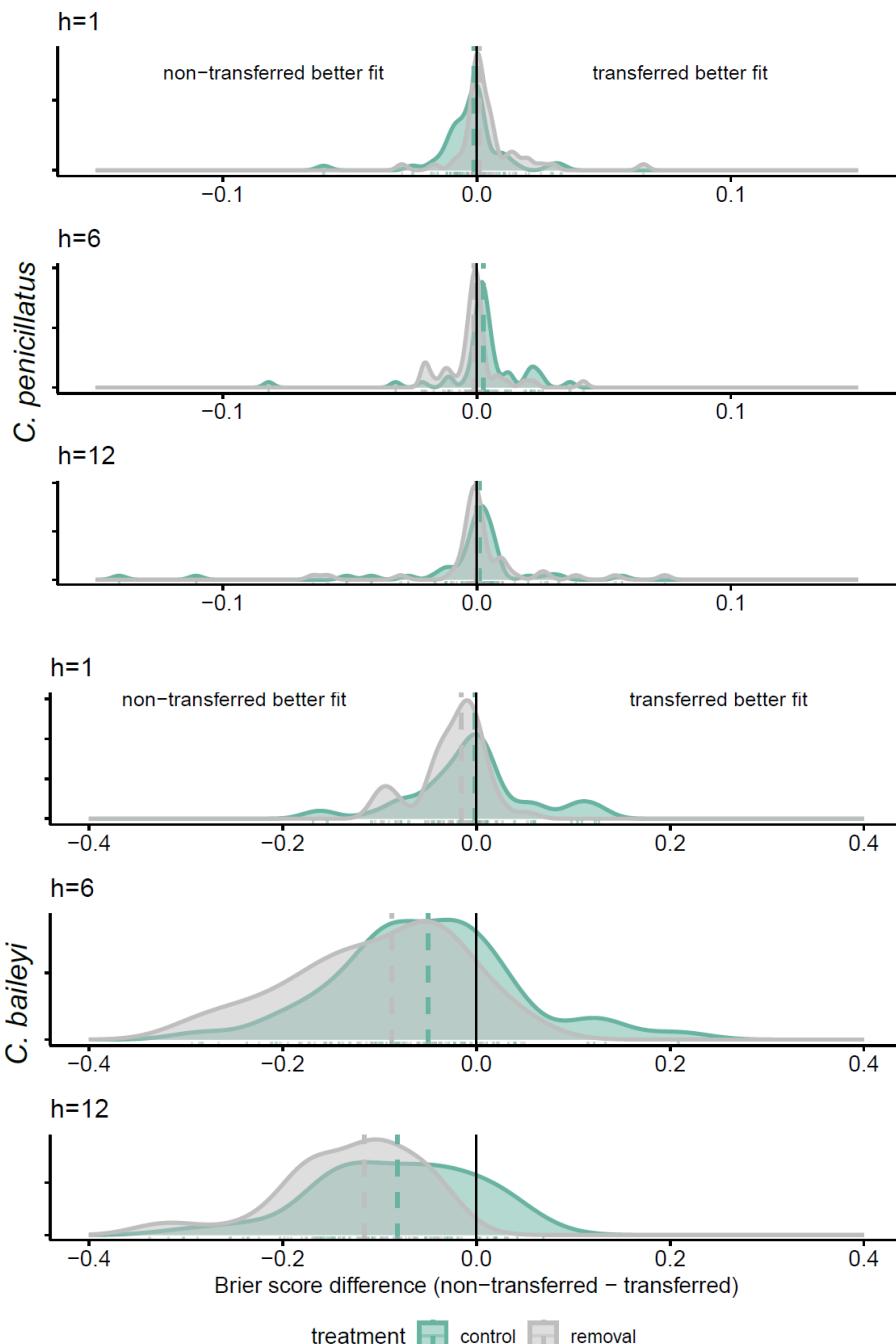
696 **Appendix S2 Fig. 7.** Predictions for *C. penicillatus* (top two plots) and *C. baileyi* (bottom two plots) abundances from models fit to non-transferred (blue lines) and transferred (red lines) data.

697

698 Models included environmental covariates that were scaled.



705



706

707 **Appendix S2 Fig. 9.** Performance (Brier score) of non-transferred and transferred models fit to
 708 data on *C. penicillatus* (top panel) and *C. baileyi* (bottom panel) on control (green) and removal
 709 plots (grey) at different forecast horizons. Models included environmental covariates that were
 710 scaled.