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Abstract—We introduce a privacy metric called statistic
maximal leakage that quantifies how much a privacy mech-
anism leaks about a specific secret, relative to the adversary’s
prior information about that secret. Statistic maximal leakage
is an extension of the well-known maximal leakage. Unlike
maximal leakage, it protects a single, known secret. We show
that statistic maximal leakage satisfies composition and post-
processing properties. Additionally, we show how to efficiently
compute it in the special case of deterministic data release
mechanisms. We analyze two important mechanisms under
statistic maximal leakage: the quantization mechanism and
randomized response. We show theoretically and empirically
that the quantization mechanism achieves better privacy-utility
tradeoffs in the settings we study.

I. INTRODUCTION

A common barrier to data sharing is the risk of leaking
private information contained in, or correlated with, the
released data [1]. Since the seminal work of Yamamoto
[2], many papers have studied how to release a random
variable without leaking correlated secret information [3]–
[9]. In this work, we consider a data holder that possesses
data drawn from a distribution parameterized by a random
variable Θ, and knows a secret, which is represented as a
discrete random variable G computed as a function g of Θ.
The data holder’s goal is to release Θ′, a perturbed version
of Θ, while optimizing the tradeoff between the leakage
about G and the utility of Θ′.

We study privacy metrics that satisfy three properties:
(1) Prior-independence: The metric should not depend on
any party’s prior over the input data, up to determining the
support of the distribution. This arises because priors may
be difficult to obtain in practice; metrics that require such
knowledge may admit mechanisms that are fragile to prior
mis-specification [10].
(2) Secret-specific: The metric should use knowledge of the
secret (distribution). In other words, we assume the secret
function g is known, which describes how to obtain the
secret G from the input data. We want a metric that depends
explicitly on g. This is primarily for efficiency reasons; by
utilizing known information, we may be able to add less
noise or perturbation to our data.
(3) Composition and Post-processing: Informally, compo-
sition describes what happens to our privacy metric when
one or more mechanisms are applied sequentially, i.e., a
bound on how the privacy metric degrades. For examples,
in differential privacy (DP), the privacy parameter ϵ degrades
additively when a mechanism is applied multiple times to
the same dataset. Post-processing states that if one applies
an arbitrary (possibly random) function to the output of a
privacy mechanism, as long as the function does not depend

on the original data, the privacy metric in question does
not degrade. Composition and post-processing are two very
useful properties exhibited by DP, which have contributed
to its widespread usage in practical settings such as machine
learning pipelines [11].

Today there exist metrics that satisfy all three of these
properties. To the best of our knowledge, these metrics
are all inspired by differential privacy. Examples include
attribute privacy [12], distribution privacy [13], and distri-
bution inference [14]. Due to their conservative assumptions
and formulation, they require large amounts of noise in
practice [10], [15].1

In this work, we study an information-theoretic privacy
metric that satisfies the above three properties. For a special
class of data with distributions drawn from a parametric
family, and parameter vectors drawn from a finite set, we
propose a privacy metric inspired by maximal leakage [8],
[9], which we call statistic maximal leakage. It trivially satis-
fies the first two properties, and we show that it also satisfies
composition and post-processing. Note that although compo-
sition and post-processing have been previously proved for
an extension of maximal leakage called pointwise maximal
leakage [16], their result and proofs do not apply to statistic
maximal leakage.

Given a definition and properties for statistic maximal
leakage, we next study how to compute it. In general,
computing statistic maximal leakage is intractable. However,
we show that for the class of deterministic mechanisms,
statistic maximal leakage can be computed in polynomial
time by solving a maximum flow problem.

We next analyze two natural mechanisms that have
been studied widely in the privacy literature: the quanti-
zation mechanism [10], [17] and randomized response [18],
[19]. Quantization-based mechanisms have been shown to
achieve (near)-optimal privacy-utility tradeoffs in several
privacy frameworks, including summary statistic privacy
[10] and non-randomized privacy [17]. Randomized re-
sponse is a widely-adopted mechanism [18] that achieves
optimal privacy-utility tradeoffs for differentially-private
data collection [20]. We show that both mechanisms satisfy
non-trivial statistic maximal leakage guarantees. Further,
under general tabular datasets, we analyze their privacy-
utility tradeoffs. Our results show that under most cases,
the quantization mechanism achieves better tradeoffs.

1Note that for vanilla differential privacy, the secret it considers is
sample-level, and thus does not represent general secret functions of the
underlying distribution of the input data without modification. Further
discussion of the limitations of differential privacy in our setting can be
found in [10].
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Finally, we apply the quantization mechanism to a real
tabular dataset. We show that when instantiated with an
appropriate statistic maximal leakage parameter, the quanti-
zation mechanism effectively protects the secret while still
ensuring high utility of the released data.

II. RELATED WORK

While there are many ways of categorizing existing pri-
vacy metrics, we consider our three desired properties:
(1) Prior-independence: Many existing information-
theoretic metrics for quantifying privacy leakage require
knowledge of a prior distribution of the data and possibly the
secret G. These include metrics based on mutual information
[6], min entropy [3], [10], [15], [21], maximal leakage [9]
and other f -divergences [22]. This is a strong assumption
in practice, and hence several metrics have instead aimed
to remove dependence on the data prior, up to determining
the support of the distribution. Perhaps the most well-known
example of a prior-independent metric is differential privacy
[23] and its variants (e.g., attribute privacy [12], distribution
privacy [13], distribution inference [24]). Another example
is maximal (α, β)-leakage [25]. In this work, we are in-
terested in a practically-motivated class of prior-invariant
metrics.
(2) Secret-specific: Not all privacy metrics assume prior
knowledge of the secret that needs to be hidden. For
example, maximal leakage and its current variants [9], [16],
[25]–[27] assume the secret is unknown a priori, and hence
is a worst-case metric over all secrets. In contrast, many
other metrics assume prior knowledge of the secret [10],
[12], [15], [28]; this can allow for better utility, as it does
not require protecting against arbitrary secrets. We assume
the secret, represented as a function mapping the input
data distribution to the secret quantity, is known. Using
this information, we aim to achieve better privacy-utility
tradeoffs than secret-agnostic metrics.
(3) Composition and Post-processing: Several privacy met-
rics satisfy post-processing, including differential privacy
and its variants [12], [14], [23], [28], [29], as well as maxi-
mal leakage and its variants [9], [16], [25]–[27]. An adaptive
composition property with an additive form is known to
hold for differential privacy and its variants [12], [14],
[23], [28], [29], as well as pointwise maximal leakage [16].
Additive composition holds for maximal leakage [9] and
(α, β)-leakage [25] only when successive outputs from the
mechanism(s) are conditionally independent, conditioned on
the input data.

III. NOTATION AND PROBLEM FORMULATION

A data holder has data drawn from a distribution param-
eterized by a parameter vector θ. The parameter θ is itself a
realization of a random variable Θ ∈ Θ belonging to a finite
set Θ.2 PΘ represents the prior distribution of the parameter
random variable Θ, and can equivalently be viewed as the

2In practice, the value of the distribution parameter is bounded, and
we can only estimate it to within finite precision. Therefore, we model
the parameter set as finite, which also allows us to easily apply our
techniques to a finite, tabular dataset (§V). We leave the extension to
infinite, continuous parameter sets to future work.

prior over the input data. We use ν to denote distribution
measures.

The data holder aims to protect a secret g = g(θ) where
g is a function that is fixed and known. g is a realization
of random variable G ∈ G ≜ {g1, g2, · · · , gs} (i.e., the
secret can take s values). We use Θg to represent the
set of original parameters whose secret values are g, i.e.,
Θg = {θ ∈ Θ|g (θ) = g}. In §V, we use Θi to represent
Θgi , ∀i ∈ [s], for convenience.

The data holder releases data via a data release mech-
anism M = PΘ′|Θ, which maps input parameter θ to a
(possibly random) output parameter Θ′ ∈ Θ′ (in general,
Θ ̸= Θ′). We use M (θ) to denote the random distribution
parameter Θ′ output by mechanism M with input θ. Given
θ′, the realization of Θ′, the attacker outputs a (possibly
random) estimate of the secret, Ĝ. We assume the attacker
knows the prior distribution of the data and the data release
mechanism M, and has infinite computational power. The
overall data sharing and attacker guessing process can be
formulated as a Markov chain G−Θ−Θ′ − Ĝ.
Utility Metric: To analyze the privacy-utility tradeoff for
a mechanism M, we define the distortion of M as the
expected total variation (TV) distance between the original
and released data, represented by XΘ and YΘ′ respectively,
under the worst-case prior:

∆M = sup
PΘ

EΘ,Θ′=M(Θ)[DTV
(
νXΘ

∥νYΘ′

)
],

where DTV is the total variation distance. Since our utility
metric considers a worst-case prior distribution, the dis-
tortion of mechanisms proposed for attribute privacy [12],
distribution privacy [13], or distribution inference [14] can
reach the upper bound on distortion. Our goal is to achieve
non-vacuous distortion bounds while satisfying the desired
properties from §I.

IV. STATISTIC MAXIMAL LEAKAGE

Statistic maximal leakage (SML) measures the largest
increase an adversary can gain in their guess of g; it is
a property of a data release mechanism M and a secret
mapping g. We define it as follows:

ΠM,g = sup
PΘ,PĜ|Θ′

log
P
(
Ĝ = G

)
supg∈G PG (g)

, (1)

where the supremum is over all prior distributions PΘ over
the distribution parameter θ and attack strategies PĜ|Θ′ .
The probability in the numerator is over the attacker’s
randomized estimator, the mechanism, and the secret. Note
that the secret function g and the data release mechanism
M are fixed in this optimization.

SML bears some similarities with maximal leakage [9]
and worst-case min-entropy leakage [8], though they do
not simultaneously satisfy all three desirable properties we
propose. Maximal leakage LML is defined as follows:

LML = sup
PG|Θ,PĜ|Θ′

log
P
(
Ĝ = G

)
supg∈G PG (g)

.

It requires the prior distribution over input data and as-
sumes the secret function g (θ) is unknown. Worst-case
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Fig. 1: Given a mechanism M = PΘ′|Θ, the left subfigure
shows a policy matrix. For each column j, the red outlined
region indicates rows of parameters with secret g maxi-
mizing PΘ′|Θ

(
θ′j |θg

)
. The blue cell lies in the row of θg .

When the mechanism M is deterministic, SML calculation
can be converted to a min-cost flow problem (right). The
constructed directed graph contains three columns of nodes
(representing G,Θ,Θ′ respectively) between the source and
sink nodes. The capacity of all edges are 1, and only the
edges between nodes in Θ and Θ′ columns have non-
zero cost (−PΘ′|Θ (θ′k|θj) between θj and θ′k). Edges are
annotated as: Capacity (Cost).

min-entropy leakage LMEL treats the entire input data
distribution as the secret to protect; for the Markov chain
Θ−Θ′ − Θ̂, it is defined as

LMEL = sup
PΘ,PΘ̂|Θ′

log
P
(
Θ̂ = Θ

)
supθ∈Θ PΘ (θ)

.

Under a fixed prior, maximal leakage can have a smaller
value than SML since SML considers the worst-case prior.
However, one can construct M and g for which maximal
leakage, with a worst-case prior, achieves its largest possible
value (i.e., min {log |Θ′|, log |Θ|}) while SML is 0. The
following property shows that SML is upper- and lower-
bounded by both maximal leakage with a worst-case prior
and worst-case min-entropy leakage, by up to an additive
factor that depends on the secret and the parametric family.

Property 1 (Relation to Maximal Leakage and Min-Entropy
Leakage). Statistic maximal leakage ΠM,g satifies

LMEL − sup
g∈G

log |Θg| ≤ ΠM,g ≤ LMEL,

sup
PΘ

LML − sup
g∈G

log |Θg| ≤ ΠM,g ≤ sup
PΘ

LML.

A. Computation

Computing SML is more convenient under an alternative
form, which shows that we only need to search over a
restricted class of priors that assign nonzero probability mass
to at most one parameter θ ∈ Θg , for each secret g ∈ G.
Under such a prior, for a fixed g ∈ G, there is at most one
θ ∈ Θ such that PΘ|G (θ|g) > 0; we use θg to denote this
value.

Proposition 1. Statistic maximal leakage satisfies

ΠM,g = sup
PΘ|G∈{0,1}

log
∑

θ′∈Θ′

sup
g∈G

PΘ′|Θ (θ′|θg) .

Based on Prop. 1, we explain how to compute SML. For
concreteness, Fig. 1 (left) illustrates an example with Θ =

{θ1, θ2, θ3} ,Θ′ = {θ′1, θ′2}, and Θg1 = {θ1, θ2} ,Θg2 =
{θ3}. Given a mechanism M = PΘ′|Θ, we can construct
a policy matrix where the value in the i-th row and j-
th column is PΘ′|Θ

(
θ′j |θi

)
. First, fix a prior PΘ such that

PΘ|G ∈ {0, 1}. Fig. 1 illustrates a case where the prior
satisfies θg1 = θ1, θg2 = θ3 (θg is defined above Prop. 1).
Next, fix a column θ′j in the policy matrix. We can now
find a secret value g̃ ∈ G that maximizes PΘ′|Θ

(
θ′j |θg̃

)
—

i.e., g̃ is the maximum likelihood secret for an observed
output θ′j . For each column, the red outline denotes the
input parameters in Θg̃ . Our example mechanism satisfies
arg supg̃ PΘ′|Θ (θ′1|θg̃) = g1, arg supg̃ PΘ′|Θ (θ′2|θg̃) = g2.
For each column, the blue square is the intersection of
the red region with the row of θg̃ . We finally sum the
likelihoods of all the blue squares. Our goal is to find
the worst-case prior and calculate the maximum value of
log

∑
θ′∈Θ′ supg̃∈G PΘ′|Θ (θ′|θg̃). Worst-case, this can be

done in time exponential in the number of input parameters
|Θ| by enumerating all feasible PΘ|G.
Computation via Min-Cost Flow: When the mechanism
M is deterministic, i.e., PΘ′|Θ ∈ {0, 1}, SML calculation
process can be converted to a min-cost flow problem [30].
Given a directed graph where each edge is assigned a
capacity and a cost, the min-cost flow problem aims to
design a network flow satisfying the capacity constraint of
each edge, while achieving the minimum cost. The final cost
of the min-cost flow has a one-to-one correspondence to the
SML of the underlying problem.

To construct the network, we start with a source and a sink
node, and create three columns of nodes between them. The
first G-column contains all potential secret values (g1, g2 in
Fig. 1). The capacity of the edge between the source and
each node in the G-column is 1 and the cost is 0. The second
Θ-column contains all possible input parameter values (θ1,
θ2, θ3 in Fig. 1). There is an edge between node gi and θj iff
θj ∈ Θgi . The capacity of each edge is 1 and the cost is 0.
The third Θ′-column contains all possible released parameter
values (θ′1, θ′2 in Fig. 1). This column is fully connected with
the second column. The capacity of the edge between θj and
θ′k is 1 and the cost is −PΘ′|Θ (θ′k|θj).

From Prop. 1, we know that among all the distributions
we are optimizing over, there is only one θg satisfying
PΘ|G (θg|g) = 1 > 0, ∀g ∈ G. For any deterministic mech-
anism, there is only one θ′ ∈ Θ′ satisfying PΘ′|Θ (θ′|θ) =
1 > 0, ∀θ ∈ Θ. Finally, for each θ′ ∈ Θ′, we can only
select one g̃ ∈ G to calculate PΘ′|Θ (θ′|θg̃) for the SML
calculation, based on Prop. 1. Hence, we set the capacity
of all edges as 1. It is known that there exists a min-cost
network flow such that the flow of each edge is either 1 or 0
[30]. In that case, for all nodes θ ∈ Θg in Θ column, only
one can accept one unit of flow from g, and this node is
θg . For each node in the Θ′ column, it can also only accept
one unit of flow from θg, ∀g ∈ G. Therefore, the min-cost
flow problem under our constructed network shares the same
objective as Prop. 1. Importantly, the min-cost flow problem
can be solved efficiently in polynomial time in |Θ|·|Θ′| [30].

In our example, we allocate 1 unit of flow from the source
to each of g1 and g2. For g1, the full flow goes either to θ1
or θ2; the selected node is dubbed θg1 under PΘ′|Θ. The
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flows from θg1 and θ3 then go to θ′1 and θ′2, respectively.
This is because θ′1 has g1 as its ML secret, and θ′2 has g2
as its ML secret under PΘ′|Θ. Finally, the flows merge to
the sink. The log of the negative total cost of the flow is the
SML.

B. Properties of Statistic Maximal Leakage

We show that SML satisfies two natural desired prop-
erties: adaptive composition and post-processing. Adaptive
composition bounds the total leakage of releasing multiple
results from one or more possibly adaptive mechanisms
applied sequentially over the same data.

Theorem 1 (Adaptive Composition). Suppose a data holder
sequentially applies m mechanisms M1, . . . ,Mm, where
∀i ∈ [m], the ith mechanism is a function of the input
data θ and all of the previous outputs, which we denote
as θ′(1), . . . θ′(i). That is, Mi(θ, θ

′(1), . . . , θ′(i−1)) = θ′(i).
Suppose ∀i ∈ [m], mechanism Mi satisfies a statistic
maximal leakage guarantee with respect to g of ΠMi,g.
Let M = M1 ◦ M2 ◦ . . . ◦ Mm denote the compo-
sition of these adaptively chosen mechanisms. The SML
with respect to an adversary that can see all intermediate
outputs θ′(1), θ′(2), . . . , θ′(m) can be bounded as ΠM,g ≤∑

i∈[m] ΠMi,g.

Thm. 1 shows that statistic maximal leakage degrades
additively when one or more possibly adaptive mecha-
nisms are applied multiple times sequentially to the original
dataset. This additive result is similar in form to analogous
composition results for other privacy metrics, including
pointwise maximal leakage [16, Thm. 13] and differential
privacy [31, Thm. III.1]. In particular, we note that the result
for pointwise maximal leakage does not imply ours, nor vice
versa. Pointwise maximal leakage requires knowledge of the
prior distribution of the input data and assumes the secret
function is unknown; the composition property for the worst-
case secret function or prior does not imply the composition
property for an arbitrary secret or prior.

Theorem 2 (Post-Processing). Let M be a data release
mechanism whose SML is ΠM,g. Let M̃ be an arbitrary
(possibly randomized) mechanism defined by PΘ′′|Θ′ . Then
the SML of M̃ ◦M is ΠM̃◦M,g

≤ ΠM,g.

Thm. 2 shows that applying an arbitrary (possibly ran-
domized) mechanism to the output of a mechanism that
satisfies statistic maximal leakage will not degrade statistic
maximal leakage.

V. MECHANISM DESIGN FOR TABULAR DATA

We next study two natural mechanisms for releasing tabu-
lar data under SML: randomized response and quantization
mechanism. Our goal is to understand (a) if each of these
satisfies a SML guarantee, and (b) if so, which one has a
better privacy-utility tradeoff?

The data holder holds a tabular dataset D with n rows and
c columns, i.e., n samples with c attributes for each sample.
Let Γ be the set of combinations of attributes for samples
existing in the original dataset D, where d ≜ |Γ|. For
example, suppose our dataset has binary columns “Above
age 18?" and “Registered to vote in the U.S."? and only

includes samples with attributes “(Yes, Yes)" and “(Yes,
No)"; then d = 2.

We assume there is some unknown true feasible set of
attribute combinations Γ∗, where d∗ ≜ |Γ∗| and Γ ⊆ Γ∗. In
our example, d∗ = 3 because in the U.S., voters must be at
least 21 years of age. We use Γ̂∗ to denote the data holder’s
estimate of the true support Γ∗ (e.g., from public data),
where Γ̂∗ ⊆ Γ∗3 and d̂∗ ≜

∣∣∣Γ̂∗
∣∣∣. In our voting example,

Γ∗ can be accurately estimated based on public information,
i.e., Γ̂∗ = Γ∗ The data release mechanism is designed such
that samples with attribute combinations in Γ∪Γ̂∗ may exist
in the released dataset D′. We illustrate the relation between
Γ, Γ∗, and Γ0 via a venn diagram in Fig. 2. Suppose the
released dataset D′ has the same size as the original dataset
D. D and D′ can be represented by categorical distribution
parameters θ and θ′ respectively.

Γ∗: all feasible attribute combinations

#Γ∗ Γ: attribute 
combinations
in dataset

: estimated  
attribute 
combinations

Fig. 2: Relation between Γ, Γ∗, and Γ0.

Suppose the set of secret values admits a total ordering
without loss of generality that g1 < g2 < · · · < gs. For
convenience, we use Θi to represent Θgi , the parameter set
with secret value gi, ∀i ∈ [s].
Randomized Response (RR): RR is a widely-used mecha-
nism in the DP literature for discrete distributions [19]. We
first consider a RR mechanism MRR that outputs the original
distribution parameter with some probability, and otherwise
releases a different distribution’s parameters uniformly at
random over the parameter set. Specifically, MRR can be
written as follows, ∀θ ∈ Θ:

P (MRR (θ) = θ′) =

{
eϵ

|Θ′|+eϵ−1 , θ′ = θ,
1

|Θ′|+eϵ−1 , θ′ ∈ Θ′ \ {θ} .

Quantization Mechanism (QM): QM has also been
adopted in privacy-preserving mechanism design [9], [10],
[17]. This mechanism partitions the secret values into
subsets of size I and uniformly releases a distribution
parameter with the secret as the median index of the
corresponding bin. Specifically, MQM can be written as
∀k ∈

{
0, 1, · · · ,

⌈
s
I

⌉
− 1

}
, j ∈ [I] , θ ∈ ΘkI+j :

MQM (θ) ∼ Unif
(
Θ′

R(k)
)
,

where R (k) =
⌊(
k + 1

2

)
I
⌋
+ 1, and Θ′

R(k) represents the
released parameter set with secret value gR(k).

When Γ̂∗ = Γ∗, i.e., the data holder knows the whole
feasible attribute combination set, we analyze and compare
the privacy-distortion tradeoffs between RR and QM as
follows. Note that in our analysis of QM, we constrain the
secret function g to be the PMF value for a specific category
(e.g., “the fraction of white males of age 32") to simplify
the analysis.

3We leave the extension to Γ̂∗ ̸⊂ Γ∗ to future work.
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Theorem 3. (Privacy and Distortion of Randomized Re-
sponse) For any secret function g, the SML and distortion
of RR are:

ΠMRR,g = log
1 + sr

1 + r
, ∆MRR =

2
(
d̂∗ − 1

)
d̂∗ (1 + r)

.

where r ≜ eϵ−1
|Θ′| = eϵ−1

(n+d̂∗−1

d̂∗−1 )
.

(Privacy and Distortion of Quantization Mechanism) The
privacy of QM is ΠMQM,g = log

⌈
s
I

⌉
. When secret is the

fraction of a category, the distortion of QM is

∆MQM = 1 +
d̂∗

⌊
I
2

⌋
− n

n
(
d̂∗ − 1

) .
(Mechanism Comparison) When secret is the fraction of a
category, for any non-trivial privacy budget T < log s, if
ΠMQM,g = ΠMRR,g ≤ T , we have limn→∞

∆MRR
∆MQM

≥ 1.

From Thm. 3, we know that when the number of samples
is large enough, QM performs at least as well as RR as long
as SML does not achieve its upper bound log s. Intuitively,
this is because the output space of RR covers the full support
of Θ′, while the output space of QM is significantly reduced.

When Γ̂∗ ̸= Γ∗, i.e., the data holder only partially
knows the feasible attribute combination set, we provide the
robustness result for the privacy of the mechanisms.

Definition 1 (Robustness to support mismatch). Consider a
tabular dataset D with attribute combination set Γ. For any
mechanism M, let ΠM,g be the SML of M if its released
dataset only contains samples with attribute combinations
in Γ̂∗ ∪ Γ, and Π∗

M,g be the SML of M if its released
dataset contains samples with attribute combinations in Γ∗.
The mechanism M is r-robust if for any Γ, ΠM − Π∗

M ≤
r
(
d∗ − d̂∗

)
.

Proposition 2. Consider a dataset D with n samples. RR
is log 3-robust if its hyperparameter ϵ satisfies eϵ − 1 ≤(n+d̂∗−1

d̂∗−1

)
/s. QM with any interval length I is 1-robust when

the secret is the fraction of a category.

Prop. 2 indicates that RR is robust to support mismatch
when it satisfies certain privacy constraints, and QM is
robust under certain secret types.

VI. EMPIRICAL EVALUATION

We conduct an empirical evaluation on the Census In-
come dataset [32], which collects information from 48842
individuals about their income, education level, age, gender,
and more. The dataset contains 22,381 unique attribute
combinations, which we assume to be the whole feasible
attribute combination set Γ∗.

We first consider the secret as the fraction of an arbitrary
category, e.g., the fraction of white males of age 32, and
compare the privacy-utility tradeoffs between RR and QM
in Fig. 3, where each point for QM represents a realization of
the mechanism with an integer-valued quantization interval,
whereas ϵ in RR can be real-valued. The SML for this
problem takes values in [0, 16], where the upper bound arises
from the limited size of the parameter sets. From Fig. 3, we
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Fig. 3: Privacy-utility trade-offs of RR and QM when the
secret is the fraction of an arbitrary category.

observe that for the same privacy guarantee, the distortion
of RR is almost twice as large as that of QM under most
SML levels, indicating better performance of QM, which is
in line with the theoretical insight in Thm. 3.

We next set our secret as the difference between the
proportion of white and non-white high-income people
(>$50k/yr) within their own race groups, and evaluate the
quantization mechanism. We analyze downstream utility by
training a random forest classifier on the released data to
predict whether an individual has high income. We varied
the quantization set size I to achieve different levels of
SML from 0 to 2. For each SML level, we conduct the
experiment 20 times with independent mechanism outputs,
show the averaged ROC curve of the random forests trained
on corresponding released datasets. We then compare this
with the performance of the random forest trained on the
original dataset in Fig. 4. We observe that as SML in-
creases (weaker privacy), AUC (area under the ROC curve)
increases, indicating the improvement of the downstream
task utility. When SML is as little as 2, the AUC is close
to its upper bound (0.89 in raw dataset). When SML is 0
(perfect privacy), the utility drops to 0.75 AUC. Note that a
perfect privacy-preserving mechanism can still achieve high
utility on this task since we only aim to protect a secret of
the dataset, rather than the whole data. These results suggest
the promise of QM as a practical data release tool.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Original dataset (area = 0.89)
SML=2 (area = 0.87)
SML=1 (area = 0.82)
SML=0 (area = 0.75)

Fig. 4: Comparison of ROC curves of random forests under
QM with different SML.
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