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optimizing the rank of each block to maximize information density.
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I. INTRODUCTION

Complete active space (CAS) configuration interaction (CI) and its self-consistent field

counterpart (CASSCF) remain the quantum chemist’s workhorse method for describing

multi-reference systems.1 The most frequent targets for multi-reference calculations include

strongly correlated systems, dissociated molecules, transition states, conical intersections

involving the electronic ground state, and excited electronic states with multiple excited

characters. CAS methods are viable when the multi-reference effects in question can be

described in an active orbital space of fewer than ∼20 electrons. Unfortunately, the factorial

scaling of the CAS wave function with active space size renders it impractical for anything

larger.

As such, strategies for using compressed representations of the CASCI wave function

have been widely explored in recent years, exploiting the large number of zero or near-

zero elements of the CI coefficient vector (“configurational deadwood”2) to reduce compute

time and storage. For example, restricted, generalized, and other active space methods use

different truncations of the CAS expansion to reduce storage and cost.3–9 Similarly, selected

CI approaches use various physical criteria to develop a sparse representation of the CI vector

on-the-fly.10–30 Seniority CI achieves an efficient sparse representation of strongly correlated

systems via a truncation of the CI space based on seniority number.31 Full configuration

interaction quantum Monte Carlo (FCI-QMC) methods can describe very large active spaces

without explicit representation of the entire CI vector, allowing a fixed number of walkers

to explore the most important regions of the CI vector stochastically.32–34 An algorithm

for choosing orbitals to maximize CI vector sparsity in exchange-coupled systems has also

recently been reported.35

Other methods take advantage of data sparsity rather than sparsity. Whereas a sparse

matrix has many zero elements, a data-sparse matrix may contain few zero elements but

is compressible because it is low-rank or has other redundancies that may be exploited.

For example, a highly efficient representation of the strongly correlated wave function of

one-dimensional and quasi-one-dimensional systems can be achieved via the density ma-

trix renormalization group (DMRG) approach.36–38 The DMRG method can be thought of

as leveraging the data sparsity of the CI vector. Rank-reduced configuration interaction

methods also leverage data sparsity through a low-rank approximation of the CI vector,39–43
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and in a similar spirit, ideas from compressive sensing have been adapted to wave function

compression.44 Going one step further, it has been argued that the wave function itself is not

an essential descriptor of electronic structure and can be replaced by the electron density45 or

reduced density matrices.46–48 The search for an efficient and broadly applicable compressed

wave function representation remains an active and important research direction, and re-

cently there have been efforts to systematize the benchmarking of methods for compression

of strongly correlated wave functions.49,50

In this paper, we present a proof-of-concept demonstration of a novel wave function

compression strategy based on corner hierarchical matrices (CH-matrices), a new variant

of hierarchical matrices. CH-matrices are motivated by H-matrices and H2-matrices,51–53

which use a block-wise low-rank approximation to a non-sparse matrix, leveraging data

sparsity to minimize both storage and the computational cost of matrix operations. For

N ×N matrices, the H-matrix representation allows storage and matrix multiplication with

quasi-linear scaling (O(N logN) and O(N log2N), respectively). Open-source software is

available to manipulate various flavors of hierarchical matrices, and given their block-wise

nature, hierarchical matrices are well-suited for massively parallel implementation.

The effectiveness of H- and H2-matrices relies on some degree of diagonal dominance of

the matrices. This is because the matrix is subdivided into blocks, with smaller blocks on

the diagonal and increasing block size as you move away from the diagonal, as illustrated

in Figure 1. The blocks closest to the diagonal, which are shaded gray, are represented as

dense matrices with no loss of accuracy. The off-diagonal blocks (shown in white) are ap-

proximated as low-rank. Typically, the rank is held constant despite the fact that the blocks

are of different sizes, resulting in greater compression of the data farthest from the diago-

nal. These hierarchical-matrix techniques are beginning to see use in quantum chemistry.

Chow and coworkers have leveraged hierarchical matrices to compress the electron repul-

sion integrals (ERI).54–56 In this context, the hierarchical-matrix approach can be thought

of as an algebraic generalization of the fast multipole method.57–59 Using the proxy point

method, the hierarchically compressed ERI tensor may be computed for an arbitrary con-

tracted Gaussian basis, in a similar spirit. Unfortunately, the CASCI wave function is not

diagonally dominant, so these hierarchical-matrix approaches are not very effective in our

experience. Instead, we observe that the CASCI wave function is dominated by the upper-

left corner of the CI vector. Based on this observation, we have developed a new variant of
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hierarchical matrices as illustrated in Figure 2, which we call Corner Hierarchical matrices

(CH-matrices), to compress matrices with such patterns.

Figure 1. Block representation of an H-matrix.

White blocks are stored as low-rank approxi-

mations, while gray blocks are stored as dense

matrices.

Figure 2. Schematic of the corner-hierarchical

matrix structure. The upper-left corner is com-

pressed hierarchically and the other blocks are

compressed adaptively.

Herein, we introduce our CH-matrix approach to compress the CASCI vectors of strongly

correlated systems. In section II, we define the corner hierarchically approximated CI

(CHACI) representation of the wave function, along with several other candidate compres-

sion strategies. In section III, we compare the performance of CHACI to several other

approaches, including a truncated singular value decomposition approach that represents an

optimal global low-rank approximation, akin to rank-reduced full CI (RRFCI). Finally, in

section IV, we present conclusions and discuss the prospects for the direct optimization of

CHACI wave functions. Some details and analysis of the CHACI algorithm are presented

in the appendix.

II. THEORY AND METHODS

Ultimately we seek to directly optimize the electronic wave function in a compressed

format. However, in the present paper, we do not solve for the wave function in a compressed
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format. The purpose of this paper is to demonstrate that hierarchical matrices provide a

viable strategy for wave function compression. To this end, we will solve for the full CASCI

wave function via traditional approaches, and then compress the resulting wave function

into one of several forms. We can then decompress, and apply several metrics to quantify

the accuracy of the compressed wave function.

Throughout this work, we will define the set of Slater determinants, {|αβ⟩}, in the CASCI

wave function in terms of their composite α and β strings. The α (β) strings index the

possible ways that Nα (Nβ) spin-up (spin-down) electrons may occupy NMO active spatial

molecular orbitals. Therefore, the CASCI wave function may be represented by

|C⟩ =
∑
αβ

Cαβ |αβ⟩ . (1)

The set of expansion coefficients, {Cαβ}, are typically known as the “CI vector.” As such, it

is typically thought of as an MαMβ vector, but in this work, we will treat it as an Mα×Mβ

matrix, C. Here Mα and Mβ represent the number of α and β strings, respectively,

Mα =
NMO!

Nα!(NMO −Nα)!
(2)

and

Mβ =
NMO!

Nβ!(NMO −Nβ)!
. (3)

Where not otherwise noted, the strings will be ordered according to the scheme of Duch.60

Below, we define several strategies for wave function compression. CHACI compression,

described in subsection II.1, is the most efficient strategy we discovered in this work. Several

other compression schemes, which we present in order to analyze the necessity of the various

features of the CHACI algorithm, are also defined in subsection II.1. In subsections II.2 we

describe the model problems that we choose to test our algorithm and present computational

details. In subsection II.3, the performance metrics that we use to quantify the accuracy of

the compressed wave function are defined.

II.1. CHACI Wave Function Compression

The CHACI wave function compression scheme is based on what we call a corner hi-

erarchical (CH) compression. In contrast to the H-matrix scheme illustrated in Figure 1,

which was conceived to compress diagonally-dominant matrices, the CH scheme (Figure 2)
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is designed to compress matrices that are dominated by the upper-left corner of the matrix.

Given the CI vector stored as an M ×M matrix, the CH compression algorithm proceeds as

follows. The total matrix (blue) is subdivided into four approximately equal-sized subblocks.

The upper-right, lower-left, and lower-right subblocks (red in Figure 2) are compressed adap-

tively using either a low-rank or dense approximation. The upper left subblock is further

subdivided, yielding four smaller subblocks. In a similar fashion, three (green) subblocks are

again compressed. The number of levels is approximately logarithmic in M and determined

a priori. Given the number of levels, we then determine whether to store each block as sparse

or dense, as we describe in Algorithm 1 and analyze its near optimality in Appendix A.

Throughout this work, we will employ truncated singular value decomposition (TSVD)

to compress individual blocks. The SVD of an m× n block, B, is

B = UΣV†, (4)

where U and V are, respectively, m × m and n × n unitary matrices comprising the left

and right singular vectors, and Σ is a diagonal matrix, with diagonal elements equal to the

singular values. In the context of this work, m and n are typically equal, but they may

differ in general for rectangular matrices. The SVD itself is an exact representation of the

matrix B, and does not provide any compression. However, truncation by elimination of the

smallest singular values and corresponding singular vectors provides an efficient low-rank

approximation to B,

B ≈ B̃ = aB̃′ = aUTΣTV
†
T , (5)

where a is a scalar normalization factor, defined below. Upon compression UT and V†
T are

now m×k and k×n, where k is the compression rank. Efficient compression can be achieved

when an accurate representation of B is achieved for k ≪ min(n,m). TSVD compression

decreases the Frobenius norm of the block, and therefore the overall wave function. To

compensate for this, we rescale each block to maintain its original norm after compression,

according to

a =
∥B∥F

∥UTΣTV
†
T∥F

. (6)

This block-wise renormalization prevents the shifting of population from sparser to denser

blocks, which would be an artifact of global renormalization. Note that truncated SVD,

without subsequent renormalization, is an optimal low-rank approximation to the block, in
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that the Frobenius norm of the difference between B̃′ and B,

∥B̃′ −B∥F =
∑
i,j

(B̃′
ij −Bij)

2, (7)

is minimized, for a given rank. However, this condition does not guarantee variational

optimality (minimal energy).

In CHACI, CH compression of C is supplemented by two additional strategies aimed at

allowing more efficient compression. First, prior to compression, the rows (columns) of C

are sorted such that the rows (columns) are arranged in descending order according to their

L2 norms. In this way, the large elements are concentrated in the upper left corner of C, to

the extent possible.

Secondly, in the CHACI scheme, we do not employ the same value of the compression

rank for all blocks. Instead, the SVD of each block is truncated to a different rank, such

that the overall Frobenius norm of the compressed wave function, ∥C̃∥F , is optimized. A

detailed derivation and algorithm are presented in the appendix, but here we summarize the

primary features. The information density, ρi, associated with each singular vector pair is

computed according to

ρi =
σ2
i

nrow + ncol + 1
, (8)

where σi is the singular value, and nrow and ncol are the lengths of the left and right singular

vectors, respectively. Typically, nrow and ncol are equal in our algorithms, but they may

differ in general for rectangular blocks. The information density can be thought of as the

total contribution to ∥C̃∥F per unit of storage.

Only the singular vector pair whose information density is above a user-defined threshold

will be stored. At a given storage value, this algorithm approximately maximizes the Frobe-

nius norm of the wave function, ∥C̃∥F . Equivalently, this can be thought of as discarding

the least amount of information. However, this algorithm does not necessarily optimize the

energy. However, when higher accuracy is required and the threshold for the Frobenius norm

error is set very low, several of the upper-left corner blocks may become so dense that the

storage cost of TSVD exceeds that of the dense format. To address this, we add another

test after the TSVD: If the memory cost of TSVD is no less than the dense format, we

directly store the block in dense format. For completeness, we present the pseudocode and

its detailed analysis in the Appendix.
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Table I. Summary of the features of the wave function compression schemes compared in this work.

Scheme Blocking Sorting? Optimal Rank?

CHACI Corner Hierarchical Y Y

SR-CHACI Corner Hierarchical Y N

U-CHACI Corner Hierarchical N Y

H-Matrix Diagonally Dominant N N

Truncated SVD None N N

Taken together, we refer to CH compression of the reordered C matrix with optimal

rank as CHACI compression, without any additional modifier. To analyze the necessity of

different features of the CHACI algorithm, we will present results for several other compres-

sion schemes, summarized in Table I. The static rank (SR-) CHACI scheme is identical to

CHACI, except that the rank of the compressed blocks is held constant rather than opti-

mized per block. We introduce SR-CHACI in order to quantify the utility of dynamically

increasing the rank. The unsorted (U-) CHACI scheme is identical to CHACI, except that

the rows/columns remain ordered according to the original Duch scheme, rather than sorted

by norm. This scheme is introduced to quantify the impact of sorting.

In addition, we will test H-matrix compression61 of the wave function. The H-matrix

representation is an existing hierarchical representation that is not based on CH blocking.

Instead, the blocking structure of the matrix is optimized to represent diagonally dominant

matrices, as pictured in Figure 1. In our implementation, the sparse blocks are compressed

by the same TSVD approach that we used for CHACI. The rows/columns are not sorted,

and the rank is held constant for all blocks.

Finally, as an important point of comparison, we include a non-hierarchical compression

scheme: TSVD of the entire C matrix. This form of the wave function is akin to that in

RRFCI.39–43 To maintain normalization, we rescale as in Eq. (6). Given that implementa-

tion of a CI solver based on a hierarchically compressed wave function will be challenging,

CHACI must provide a significant improvement in performance over TSVD to warrant fur-

ther consideration.
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II.2. Model Problems and Computational Details

Figure 3. Molecular structure of dodecacene (12-acene).

Table II. Total number of double precision floating point values stored in a dense (uncompressed)

representation of the singlet wave function CI vector as a function of active space. Data is given

in kdoubles (thousands of doubles).

Active Space Dense CI Vector Storage (kdoubles)

10-10 63

12-12 854

14-14 11,779

16-16 165,637

As a test case, we have chosen to compute the electronic structure of dodecacene (12-

acene; Figure 3). Naively, one might think that longer acenes like 12-acene would have a

simple closed-shell, aromatic electronic structure, but they are actually strongly correlated.

These systems have significant poly-radical character, so much so that dodecacene is unstable

under ambient conditions and has only recently been synthesized under ultrahigh vacuum.62

The singlet ground state geometry of 12-acene was optimized at the CAM-B3LYP63 level of

theory. Floating occupation molecular orbital64,65 (FOMO) CASCI calculations were then

performed with active spaces of 10-10, 12-12, 14-14, and 16-16, where active spaces are

abbreviated ⟨number of active electrons⟩-⟨number of active orbitals⟩. Table II presents the

total storage required for the CI vector of the exact singlet wave function for each active

space, measured in thousands of double-precision floating point values (kdoubles). The

storage requirement for triplet wave functions is less by a factor of 0.7-0.8. The STO-3G

minimal basis was used for all calculations. In all cases, both the singlet and triplet ground
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state wave functions are computed at the singlet ground state geometry. All calculations

were performed in the TeraChem electronic structure software package.66–69

II.3. Performance Metrics

We use several metrics to evaluate the performance of our various compression schemes.

All are derived by comparing the properties of the compressed wave function,
∣∣∣C̃〉

, with

those of the uncompressed wave function, |C⟩. Hereafter we will refer to the latter as

the “exact” wave function, understanding that it is only exact within the FOMO-CASCI

approximation, with a given active space and basis. In all cases, the properties of the

compressed wave function are generated by a) outputting the CI vector of the uncompressed

wave function from TeraChem, b) applying one of the lossy compression schemes described

above, implemented in an external code, c) decompressing the wave function back to its full

dimensionality, and d) feeding the resulting CI vector back into TeraChem to compute the

relevant property.

To evaluate how well our compressed wave function reproduces relative energies, we com-

pute the vertical singlet-triplet gaps of the exact and compressed wave functions, respectively

∆ES−T = ⟨CT |Ĥ|CT ⟩ − ⟨CS|Ĥ|CS⟩ (9)

and

∆ẼS−T = ⟨C̃T |Ĥ|C̃T ⟩ − ⟨C̃S|Ĥ|C̃S⟩. (10)

Here the subscripted T and S denote the triplet and singlet wave functions, respectively.

We report the absolute difference between these values as the error in the gap,

∆∆ES−T = |∆ẼS−T −∆ES−T |. (11)

To quantify the accuracy of the absolute energies, we also report signed errors in the

singlet and triplet energies, respectively

∆ES = ⟨C̃S|Ĥ|C̃S⟩ − ⟨CS|Ĥ|CS⟩ (12)

and

∆ET = ⟨C̃T |Ĥ|C̃T ⟩ − ⟨CT |Ĥ|CT ⟩. (13)
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Per the variational principle, these errors are non-negative. Note that throughout this work,

we compare the energies of the compressed wave functions to the energies of the exact

wave functions using the same active space. Thus, our computed errors only include those

associated with the compression algorithm, not with the size of the active space.

Lastly, as a separate measure of the accuracy of the wave function, we compute the

absolute error in the total spin angular momentum squared (spin contamination) of the

compressed singlet and triplet wave functions, respectively

∆⟨S2⟩ = ⟨C̃S|Ŝ2|C̃S⟩ (14)

and

∆⟨S2⟩ = |⟨C̃T |Ŝ2|C̃T ⟩ − 2|. (15)

The total spin expectation value is computed using the direct algorithm described in Ref.

70.

In many of the graphs below, the data is plotted as a function of the total number of

double-precision variables stored in the compressed representation. The total storage is

varied indirectly through the user-chosen parameters of the compression, as described in

subsection II.1 and in the Appendix. This provides an apples-to-apples comparison of the

accuracy of the wave function at a given level of compression across different compression

schemes.

III. RESULTS AND DISCUSSION

Below, we analyze the performance of CHACI. In subsection III.1, we compare the accu-

racy of CHACI compression to that of TSVD compression, as a function of the total storage.

In subsection III.2, we analyze the prospects for extending CHACI to larger active spaces. In

subsections III.3 and III.4, we analyze the necessity of optimal rank and sorting, respectively.

Finally, in subsection III.5, we compare H-matrix compression to TSVD compression.

III.1. Accuracy of CHACI Compression Versus TSVD

We start by comparing the performance of CHACI compression to TSVD compression for

the 14-14 active space. Figure 4 presents the error in the singlet-triplet gap as a function of

11



Figure 4. The error in the singlet-triplet gap of 12-acene as a function of total storage, computed

with a 14-14 active space. The gray and green lines represent the error corresponding to the

compression of the wave function using TSVD and CHACI, respectively.

total storage. Clearly, CHACI outperforms TSVD in this case. The CHACI error is always

less than 0.07 eV, even when only 28 kdoubles are stored (compared to 11,778 kdoubles for

dense storage). Truncated SVD also achieves substantial compression, but errors of 0.2 eV

remain even with 220 kdoubles stored.

Figures 5a and b present errors in the singlet and triplet absolute energies, respectively.

Again, the performance of CHACI is far superior to TSVD, especially in the small-storage

regime, where the TSVD errors are a substantial fraction of an eV. Figure 5c and d present

spin error. Here CHACI again outperforms TSVD. Even with very modest (28 kdoubles)

storage, the error in ⟨S2⟩ is 0.02, and the error drops rapidly toward zero with additional

storage. In contrast, TSVD spin errors for the singlet case do not drop below 0.02 until

nearly 400 kdoubles are stored.

Figures 6 and 7 demonstrate that the difference in performance between CHACI and
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Figure 5. Absolute energy (a and b) and spin (c and d) errors as a function of the storage for

12-acene with a 14-14 active space. Panel (a) and (c) correspond to the singlet wave function,

while (b) and (d) correspond to the triplet wave function. The gray and green lines correspond to

TSVD and CHACI compression, respectively.

TSVD increases when the active space size is increased from 14-14 to 16-16. In Figure 6,

it can be seen that errors in the singlet-triplet gap are at or below 0.1 eV for all cases,

when CHACI is employed, even when only 59 kdoubles are stored (compared to 165,637

kdoubles for dense storage). Errors decrease rapidly with additional storage. In contrast,

TSVD errors are above 0.2 eV for all cases. Similarly large differences in performance are

observed for errors in absolute energy and spin in Figure 7. As in the 14-14 case, CHACI

does a much better job of maintaining the spin symmetry of the wave function than TSVD.
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Figure 6. The error in the singlet-triplet gap of 12-acene as a function of total storage, computed

with a 16-16 active space. The gray and green lines represent the error incurred by compression of

the wave function using TSVD and CHACI, respectively.

III.2. Extrapolation of Performance to Larger Active Spaces

Ultimately, our goal is not to compute dense wave functions for subsequent compression.

Our goal is to solve for large CI wave functions using a hierarchically compressed basis.

Thus, in this section, we consider the behavior of CHACI compression as a function of

active space size. In Figure 8, we consider several active spaces, comparing the convergence

of several measures of the accuracy as a function of the percentage of dense storage used

(the compression ratio). We find that as the size of the active space increases, the accuracies

of both absolute energy and spin converge faster with increasing compression ratio.

To quantify this convergence behavior, we plot the compression ratio at which absolute en-

ergies of 0.2 eV accuracy are achieved as a function of the number of active orbitals/electrons
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Figure 7. Absolute energy (a and b) and spin (c and d) errors as a function of the storage for

12-acene with a 16-16 active space. Panel (a) and (c) correspond to the singlet wave function,

while (b) and (d) correspond to the triplet wave function. The gray and green lines correspond to

TSVD and CHACI compression, respectively.

in Figure 9. Both the singlet and triplet compression ratios converge quickly with increas-

ing active space. Of the two, the triplet energy converges more slowly, thus we fit it to

an exponential in order to extrapolate to larger active spaces. We find that the required
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Figure 8. The absolute energy (a and b) and spin errors (c and d) as a function of the percentage

of dense storage for 12-acene with 10-10, 12-12, 14-14, and 16-16 active spaces. Panels (a) and (c)

correspond to the singlet wave function, while panels (b) and (d) correspond to the triplet spin

wave function.

compression ratio decays proportional to

f(NMO) ∝ e−0.561NMO . (16)

Extrapolating to larger active spaces, we estimate that a 24-24 active space could converge

to 0.2 eV accuracy at a storage cost of 77,370 kdoubles, which is less than the cost of the

dense storage of a 16-16 active space (165,637 kdoubles). Though the convergence behavior
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Figure 9. The storage ratio required to achieve < 0.2 eV accuracy in absolute energies as a function

of the active space size. Blue and black lines correspond to the singlet and triplet wave functions,

respectively.

is likely to be system-dependent, this result certainly encourages further study.

III.3. Effect of Using Optimal Rank on Compression

In order to assess the necessity of the optimal rank procedure, we compare SR-CHACI

(which uses a static rank) to CHACI and TSVD. Figure 10 presents the error in the singlet-

triplet gap as a function of the total storage for the 14-14 active space. Excepting one

fortunate point at 160 kdoubles, the accuracy of SR-CHACI is significantly worse than

that of CHACI, but still better than TSVD. However, considering the error in the absolute

energies of the singlet and triplet states separately (Figure 11a and b, respectively), it is

clear that this is due to error cancelation. Errors in the absolute energy of the singlet state

derived from the SR-CHACI wave function are similar to those of TSVD, and much greater
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Figure 10. The SR-CHACI error (blue) in the singlet-triplet gap of 12-acene as a function of total

storage, computed with a 14-14 active space. The TSVD and CHACI errors (gray and green,

respectively) are shown for comparison.

than those of CHACI. Further, errors in the SR-CHACI triplet state are slightly larger than

TSVD.

Analysis of spin errors tells a similar story. CHACI is much superior to SR-CHACI

at reproducing the spin of the original wave function, and SR-CHACI has similar (and

sometimes larger) spin errors compared to TSVD. Taken together, we conclude that optimal

rank is an essential component of the CHACI algorithm.

III.4. Effect of Sorting on Compression

Here we assess the necessity of another feature of the CHACI compression algorithm: the

sorting of rows/columns of the C matrix prior to compression. To this end, we compare

U-CHACI, in which the rows/columns remain unsorted, to CHACI and TSVD. Figure 12
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Figure 11. The SR-CHACI errors (blue) in the absolute energy (a and b) and spin (c and d) as

a function of the storage for 12-acene (14-14 active space). Panels (a) and (c) correspond to the

singlet wave function, while (b) and (d) correspond to the triplet wave function. The TSVD (gray)

and CHACI (green) errors are shown for comparison.

presents a heat-map of the uncompressed C matrix of the singlet (panels a and c) and triplet

(b and d) wave functions before (a and b) and after (c and d) sorting. Note that sorting

concentrates larger elements into the upper-left corner of the matrix.

Figure 13 compares the U-CHACI singlet-triplet errors to those of CHACI and TSVD.
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Figure 12. A heat map representation of the CI vector of 12-acene, computed with a 10-10 active

space. To form the heat map, we take the logarithm (base 10) of the absolute value of the singlet

and triplet CI vector coefficients. The color scale (white to black) ranges from 10−6 to 1. Panels

(a) and (b) correspond to the unsorted CI vector (with strings indexed according to Duch60), while

panels (c) and (d) are reordered according to the CHACI algorithm. Panels (a) and (c) show the

singlet wave function, while panels (b) and (d) show the triplet wave function.

Though U-CHACI appears to be more accurate for predicting the relative energy than

TSVD, it remains inferior to CHACI. Considering the errors in the absolute singlet and

triplet energies (Figure 11a and b), we see that U-CHACI errors are on the order of the

same size as those of TSVD, and considerably larger than those of CHACI. That being said,

U-CHACI is solidly between CHACI and TSVD in its ability to accurately describe the total

spin angular momentum (Figure 11c and d).

Taking this data together, we conclude that sorting is an essential component of the

CHACI algorithm. However, our ultimate goal is not to compute the full wave function and
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Figure 13. The U-CHACI error (blue) in the singlet-triplet gap of 12-acene as a function of total

storage, computed with a 14-14 active space. The TSVD and CHACI errors (gray and green,

respectively) are shown for comparison.

subsequently compress it, and the type of a posteriori sorting that we use in CHACI would

not be possible if we were to directly solve for the wave function in compressed form. But

given that the Duch ordering of spin strings does not allow for efficient compression, the

determination of an a priori scheme by which strings may be ordered for efficient compression

remains an important open question.

III.5. Effect of Upper Quadrant vs H-matrix Compression

Lastly, we consider compression of C into the H-matrix format,61 which is designed to

leverage the diagonally dominant nature of the matrix, in contrast to the CH blocking scheme

used in CHACI. Figure 15 shows the error in the singlet-triplet gap, singlet absolute energy,

and triplet absolute energy of the 14-14 wave function compressed into H-matrix format.

H-matrix compression is inferior to TSVD, thus we conclude that the CH blocking scheme

is an essential component of the CHACI scheme.
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Figure 14. The U-CHACI errors (blue) in the absolute energy (a and b) and spin (c and d) errors

as a function of the storage for 12-acene (14-14 active space). Panels (a) and (c) correspond to

the singlet wave function, while (b) and (d) correspond to the triplet wave function. The TSVD

(gray) and CHACI (green) errors are shown for comparison.

IV. CONCLUSIONS

Here we have presented an exploratory study in which we employ hierarchical matrices

to perform lossy compression of CASCI wave functions of a strongly correlated system. We

have demonstrated superior compression compared to a global low-rank approximation of the

wave function, and we have demonstrated that CH blocking, optimal rank, and row/column

sorting are essential features of the algorithm.

These promising results suggest several avenues for future study. The development of

an algorithm to directly solve for the wave function in the CHACI representation would

allow the accurate solution of strongly correlated wave functions with active spaces well

beyond those that are accessible via brute-force CASCI implementations. That hierarchical

matrices are well suited for implementation on large-scale distributed computing systems is
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Figure 15. Panels (a), (b), and (c) show the errors in the singlet-triplet gap, singlet, and triplet

energies, respectively, of 12-acene (14-14 active space) as a function of the required storage for

H-matrix and TSVD compression (black and gray).

a noteworthy advantage of this approach. Yet a direct solution will only be possible after an

effective a priori row/column sorting algorithm is developed, and the development of such

an algorithm will require further analysis of the uncompressed wave function.
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Appendix A: Near-Optimal CHACI Compression

As described above, the CHACI algorithm introduces a strategy for performing recur-

sive partitioning. Its key idea is to approximate the CI vector via truncated SVD (TSVD)

of a collection of small block matrices constructed hierarchically. The algorithm leverages

the fact that many CI vectors, even of relatively strongly correlated systems, have data

that predominantly reside in the matrix’s upper-left corner. Here we investigate this tech-

nique and propose an algorithm that can achieve near-optimal storage efficiency within this

framework. For quantifying approximation accuracy, in this section, we employ the squared

Frobenius norm. Specifically, if A represents the original CI vector and A′ symbolizes its

CHACI approximation, then the error is quantified by ∥A − A′∥2F . Above, the numerical

results consider the energy and spin errors as additional metrics for error evaluation.

A.1. Information Density

To derive the algorithm, we first introduce the concept of information density, which

quantifies the amount of information contained in a singular value relative to the storage

cost. Consider a matrix A ∈ Rm×n with its singular value decomposition (SVD) given by

A = UΣV† = [u1, . . . ,um]Σ[v1, . . . ,vn]
T ,

where ui ∈ Rm, vi ∈ Rn, and Σ is an m × n diagonal matrix composed of σi along its

diagonal. Without loss of generality, let us assumem ≥ n. Here, ∥A∥2F =
∑n

i=1 σ
2
i represents

the total information contained inA. Storing the first k singular-value triplets would capture∑k
i=1 σ

2
i information and lose the remaining

∑n
i=k+1 σ

2
i . This is the best approximation of

A in Frobenius norm, as given by the TSVD. To quantify the efficiency of storing each

singular-value triplet (ui, σi,vi), we define the information density ρi as follows:

Definition 1. The information density ρi of the singular-value triplet (ui, σi,vi) is the ratio

of the information content σ2
i to the storage cost m+ n+ 1, i.e.,

ρi =
σ2
i

m+ n+ 1
.

This measure is particularly useful when comparing matrices of different sizes. For in-

stance, a 4 × 4 matrix with a singular value of 5 has a higher information density of 25/9
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compared to a 8× 8 matrix with a singular value of 6, which has an information density of

36/17, less than the 4× 4 matrix. This indicates why smaller matrices with higher informa-

tion density are often preferred for storage when aiming to minimize memory usage while

maximizing retained information.

Algorithm 1 Near-Optimal CHACI
Input: The sorted CI vector, number of partitioning levels p, and information density threshold ρ

Output: The CHACI format and storage information for each block

1: Split the CI vector into a corner hierarchical structure with 3p+ 1 blocks

2: Store the upper-left block in dense format

3: for each of the remaining 3p blocks do

4: Let nrow and ncol be the numbers of rows and columns of the block

5: k ← 0, kmax ← 1, and perform rank-1 TSVD of the block

6: while k < min{nrow, ncol}/2 do

7: if k + 1 > kmax then

8: kmax ← min{2kmax, nrow/2, ncol/2}

9: Update the TSVD of this block to rank kmax

10: end if

11: if σ2
k+1 ≤ ρ(nrow + ncol + 1) then

12: break

13: end if

14: k ← k + 1

15: end while

16: if k = 0 then

17: Do not store the block

18: else if k = min{nrow, ncol}/2 then

19: Store the block in dense format

20: else

21: Store the block in TSVD format with rank k

22: end if

23: end for
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A.2. Near-Optimal CHACI Algorithm

Based on the concept of information density, we propose our CHACI algorithm, which

strategically chooses between dense and sparse formats for each block. The “near-optimal”

descriptor emphasizes that among all CHACI configurations, this algorithm seeks to mini-

mize memory usage within a small margin of the optimal solution that achieves the same

accuracy. Algorithm 1 outlines this near-optimal CHACI algorithm. This algorithm takes

the number of levels p as an input, which should be approximately logarithmic in M . Based

on our experiments, we choose p to be the smallest integer that satisfies k02
p ≥ M , where

k0 = 6, which can be computed recursively. The algorithm includes a mechanism to switch

to dense storage for small blocks. It also takes a threshold for the information density as

input, and varying this threshold would result in different storage requirement, as we did in

our numerical tests in Section III. It is possible to change the input to be a memory budget

instead, and in this setting CHACI possesses some optimality properties, as we analyze next.

A.3. Analysis of Near Optimality

In Section III, we showed numerically that CHACI uses less memory than TSVD. To help

understand why this is the case, we present a theoretical analysis of the CHACI algorithm.

For simplicity and clarity, we make some simplifying assumptions in our analysis. First, we

assume that each block is square, which is the case if the input matrix is a square matrix

and its number of rows (and of columns) is a power of two. Second, we change the for and

while loops in the algorithm to be in descending order of the information density among all

the blocks. This modification requires maintaining a priority queue of the singular triplets

of all the blocks, but it does not significantly affect the accuracy and performance compared

to using the for-while loops in Algorithm 1.

Consider a CHACI-partitioned matrix with p levels, resulting in 3p + 1 blocks, each

represented by an SVD. Denote these blocks as B1 to B3p+1, with each block Bi having a

size mi. Each singular value σi,j from block Bi contributes to the overall matrix’s Frobenius

norm squared, and hence

∥A∥2F =

3p+1∑
i=1

mi∑
j=1

σ2
i,j.

Storing all singular-value triplets provides complete information, but practical constraints
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often require storage optimization. Therefore, we compute the information density for each

block and prioritize those with the highest values to minimize storage while maintaining

accuracy. Let si represent the storage of the singular-value triplets and ρi the information

density. The following lemma motivates us to minimize storage by sorting the singular-value

triplets based on ρi:

Lemma 1. Given a collection of positive-number pairs {(si, ρi) | 1 ≤ i ≤ n}, where ρi is

sorted in descending order, for an arbitrary selection of k pairs (sj1 , ρj1), . . . , (sjk , ρjk), let r

be a number between 1 and n such that
r−1∑
i=1

si <
k∑

i=1

sji ≤
r∑

i=1

si,

it then follows that
r∑

i=1

siρi ≥
k∑

i=1

sjiρji .

Proof. Let S =
∑r

i=1(si). Define a piecewise function f(x) over 0 < x ≤ S as

f(x) =



ρ1 if 0 < x ≤ s1,

ρ2 if s1 < x ≤ s1 + s2,

...

ρr if
∑r−1

i=1 si < x ≤
∑r

i=1 si,

0 otherwise.

Then,
r∑

i=1

siρi =

∫ S

0

f(x) dx.

Sorting the ρji in descending order, or equivalently sorting ji in ascending order, we redefine

the pairs as (sJi , ρJi), where Ji is the ith smallest element in the set {ji}. Define f̂(x)

similarly as f(x) but with ρJi in place of ρi, i.e.,

f̂(x) =

ρJq if
∑q−1

i=1 sJi < x ≤
∑q

i=1 sJi for 1 ≤ q ≤ m,

0 otherwise.

Since ρi is sorted in descending order, we have f(x) ≥ f̂(x) for all x ≥ 0. Therefore,

r∑
i=1

siρi −
m∑
i=1

sjiρji =

∫ S

0

(f(x)− f̂(x)) dx ≥ 0.
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Lemma 1 implies that by sorting the singular-value triplets based on their information

densities, we can maximize the information retained for a given storage cost. This result

suggests a greedy algorithm that selects the singular values with the highest information

densities first, thereby minimizing storage while maintaining the desired accuracy. However,

such a greedy strategy may not always yield the optimal solution for a given accuracy

requirement. The following theorem provides a bound on the storage difference between the

greedy algorithm and the optimal solution.

Theorem 1. Given a collection of positive-number pairs {(si, ρi) | 1 ≤ i ≤ n} as in Lemma 1

and t ∈ (0,
∑n

i si], for an arbitrary selection of k ≤ n pairs (sj1 , ρj1), . . . , (sjk , ρjk) such that∑k
i=1 sjiρji ≥ t, let r be the number of triplets such that

r−1∑
i=1

siρi < t ≤
r∑

i=1

siρi,

it then follows that
r∑

i=1

si −
k∑

i=1

sji < N + 2,

where N is the number of rows in the matrix. In other words, the storage difference between

the greedy algorithm and the optimal CHACI solution is bounded by a number no more than

N + 2.

Proof. Assume that the selected pairs (sji , ρji) satisfy that the storage∑
i

sji ≤
r−1∑
i=1

si.

Then by Lemma 1, ∑
i

sjiρji ≤
r−1∑
i=1

siρi < t,

which conflicts with the fact that this selection satisfies the requirement∑
i

sji · ρji ≥ t.

Thus we have ∑
i

sji >

r−1∑
i=1

si,

so
r∑

i=1

si −
∑
i

sji <
r∑

i=1

si −
r−1∑
i=1

si = sr ≤
r

max
i=1
{si}.

Since the largest block is of size ⌈N/2⌉ × ⌈N/2⌉, we have max si ≤ N + 2.
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In practice, the last block sr is even much smaller than N + 2. Hence, the storage

difference between the greedy algorithm and the optimal solution is bounded by a number

typically far smaller than N . Therefore, CHACI is nearly optimal in its storage requirement.

In the following, we further show that CHACI typically requires less memory and is more

efficient than applying the TSVD to the global matrix.

A.4. Analysis of Complexity

The CHACI algorithms assume that the input CI vector is fully represented, requiring N2

storage. The extra intermediate storage of the algorithm is about the same as the input size.

Hence, we focus on the output’s storage requirement, a common approach for compression

techniques.

For each block i of size mi × mi, if stored in TSVD format with rank ki, the storage

requirement includes 2kimi for the vectors (each vector hasmi entries) and ki for the singular

values, totaling 2kimi + ki. If a block is stored in a dense format, its requirement is m2
i .

Thus, the total storage for the output is

Total output size =
∑

TSVD block i

(2kimi + ki) +
∑

dense block i

m2
i .

It is worth noting that the dense blocks are typically for the smaller blocks, and the total

storage is dominated by the TSVD blocks. Note that

3p+1∑
i=1

mi ≤
p∑

j=1

3N

2j
+

⌈
N

2p

⌉
≤ 3N + 1,

and
3p+1∑
i=1

(2mi + 1) ≤ 6N + 6p+ 3 = 6N + o(N).

For simplicity, assume all the blocks are stored in TSVD format. The output can be bounded

by

Total output size ≲ 6N max{ki}

for sufficiently large N . This bound is tight if the ranks {ki} are uniform, but it is pessimistic

if the ranks are highly non-uniform, as they are in practice for CI vectors.

Now we compare the storage requirement to that of global TSVD. A global TSVD for the

CI vector traditionally stores K singular values and vectors, resulting in an output storage
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of 2KN + K. Hence, if the input matrix were a uniform low-rank matrix, CHACI would

require more storage than the global TSVD.71 However, CHACI is designed to exploit the

structure of CI vectors, which are not uniformly low-rank. In our numerical experimentation,

the output size of near-optimal CHACI is typically about 2% of that of a global TSVD of

equal accuracy.

The time complexity of the near-optimal CHACI algorithm involves computing TSVDs

for various blocks. For each block i of size mi ×mi, a rank-ki TSVD can be approximately

computed in O(kim2
i ) using iterative methods. An important detail worth emphasizing

is Line 8 of Algorithm 1. In this step, we would double the TSVD rank if the desired

accuracy is not met. Such a doubling process results in a geometric progression of the

TSVD computation cost, calculated as follows:

⌈log2 ki⌉∑
j=1

2jm2
i ≤ 4kim

2
i .

Consequently, the total time complexity for all blocks in the CHACI algorithm is

Total time complexity =

3p+1∑
i=1

O(kim2
i ),

where max{mi} = N/2. If the rank increases were linear when recomputing the TSVD,

the worst-case time complexity could potentially reach O(k2
im

2
i ) for each block, potentially

increasing the overall time complexity.

Now we compare the time complexity to that of global TSVD. Performing a global TSVD

of an N ×N matrix with a truncation rank K incurs a time complexity of O(KN2). Since

3p+1∑
i=1

m2
i ≤

⌈logN⌉∑
j=1

3
N2

22j
≤ N2.

As long as ki < K, the near-optimal CHACI algorithm has a lower computational cost

than a global TSVD. In practice, ki ≪ K in the near-optimal CHACI algorithm, as we

will demonstrate in our numerical experimentation. Hence, we can expect the near-optimal

CHACI algorithm to be significantly faster than a global TSVD for moderately large N .
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71H-matrices would also require more storage than the global TSVD if the input matrix is

a uniform low-rank matrix.
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