Almost Instance-optimal Clipping for Summation Problems in the
Shuffle Model of Differential Privacy

Wei Dong
Nanyang Technological University
Singapore, Singapore
wei_dong@ntu.edu.sg

Elaine Shi
Carnegie Mellon University
Pittsburgh, United States
runting@gmail.com

Abstract

Differentially private mechanisms achieving worst-case optimal
error bounds (e.g., the classical Laplace mechanism) are well-studied
in the literature. However, when typical data are far from the worst
case, instance-specific error bounds—which depend on the largest
value in the dataset—are more meaningful. For example, consider
the sum estimation problem, where each user has an integer x;
from the domain {0, 1,..., U} and we wish to estimate }; x;. This
has a worst-case optimal error of O(U/¢), while recent work has
shown that the clipping mechanism can achieve an instance-optimal
error of O(max; x; - loglogU/¢). Under the shuffle model, known
instance-optimal protocols are less communication-efficient. The
clipping mechanism also works in the shuffle model, but requires
two rounds: Round one finds the clipping threshold, and round
two does the clipping and computes the noisy sum of the clipped
data. In this paper, we show how these two seemingly sequential
steps can be done simultaneously in one round using just 1+ o(1)
messages per user, while maintaining the instance-optimal error
bound. We also extend our technique to the high-dimensional sum
estimation problem and sparse vector aggregation (a.k.a. frequency
estimation under user-level differential privacy).

CCS Concepts

« Security and privacy — Privacy-preserving protocols.

Keywords
Differential privacy; sum estimation

ACM Reference Format:

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi. 2024. Almost
Instance-optimal Clipping for Summation Problems in the Shuffle Model of
Differential Privacy. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS "24), October 14-18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3690225

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690225

Qiyao Luo
OceanBase, Ant Group
Shanghai, China
luoqiyao.lqy@antgroup.com

Giulia Fanti
Carnegie Mellon University
Pittsburgh, United States
gfanti@andrew.cmu.edu

Ke Yi

Hong Kong University of Science and

Technology
Hong Kong, Hong Kong
yike@cse.ust.hk

1 Introduction

The shuffle model [10, 12, 20] of differential privacy (DP) is widely-
studied in the context of DP computation over distributed data.
The model has 3 steps: (1) Each client uses a randomizer R(-) to
privatize their data. (2) A trusted shuffler randomly permutes the
inputs from each client and passes them to an untrusted analyzer,
which (3) conducts further analysis. Unlike the central model of DP,
where a trusted curator has access to all the data, the shuffle model
provides stronger privacy protection by removing the dependency
on a trusted curator. Unlike the local model, where clients send
noisy results to the analyzer directly, the addition of the trusted
shuffler allows for a significantly improved privacy-accuracy trade-
off. For problems like bit counting, shuffle-DP achieves an error of
O(1/¢) with constant probability! [23], matching the best error of
central-DP, while the smallest error achievable under local-DP is
O(+/n/e) [11, 13].

The summation problem, a fundamental problem with applica-
tions in statistics [9, 27, 33], data analytics [15, 44], and machine
learning such as the training of deep learning models [1, 2, 8, 41]
and clustering algorithms [42, 43], has been studied in many works
under the shuffle model [6, 7, 12, 24-26]. In this problem, each
user i € [n] := {1,...,n} holds an integer x; € {0,1,...,U} and
the goal is to estimate Sum(D) := }}; x;, where D = (x1,...,xp).
All of these works for sum estimation under shuffle-DP focus on
achieving an error of O(U/¢). Such an error can be easily achieved
under central-DP, where the curator releases the true sum after
masking it with a Laplace noise of scale U/e¢. In the shuffle-DP
model, besides error, another criterion that should be considered
is the communication cost. The recent shuffle-DP summation pro-
tocol of [24] both matches the error of central-DP and achieves
optimal communication. More precisely, it achieves an error that is
just 1+ 0(1) times that of the Laplace mechanism, while each user
just sends in expectation 1 + o(1) messages, each of a logarithmic
number of bits.

However, in real applications (as well as in [24]), U must be set
independently of the dataset; to account for all possible datasets,
it should be conservatively large. For instance, if we only know
that the x;’s are 32-bit integers, then U = 232 — 1. Then the error

!In Section 1, all stated error guarantees hold with constant probability. We will make
the dependency on the failure probability more explicit in later sections.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

Mechanism ‘ Error Average messages sent by each user
[24] o(U/e) 1+0(1)
) [7] O(U/e) 0(1)
Prior
work O(Max(D) - log*>> U Round 1: O(log® U - log (1/5) /e)
1-D (27] + [24] + [22] Vlog(1/68)/¢) Round 2: 1+ 0(1)
Sum -
Our Theorem
result 51 O(Max(D) - loglog U/e) 1+0(1)
Best result under O(Max(D) - loglog U/e)
central model [18]
[27] O(Ug,/dlog(n) log(1/5)/e) d+0(d" 1og!>(1/8)/ (ey/n))
Prior
work [27] + [24] +[22] O(Maxq, (D) - (v/dlog(nd) log(1/5) Round 1: O(log® Uy, - log(1/6)/¢)
+1log®3 Uy, - +/log(1/9))/e) Round 2: d + O(d' log!®(1/8)/ (ey/n))
d-D
Sum Our Theorem O(Maxzz (D) - log(dlogUy,) 50 1.571.1.5
result 6.2 ~dlog(nd) Tog(1/3) /) d+0(d"log!*(1/8)/(evn))
Best result under O(Maxg, (D) - (y/dlog(1/6)
central model [17] +loglog Up,) /¢)
Our Theorem ~ 15 5
I O(Maxyg, (D) - log d+/log(1/8)/¢) [Ixill1 + 1+ O(d'> log dlog > (1/8)/(en))
Sparse result 7.1
Vector
Aggregation Best result under O(Maxg, (D) - (ylog(1/5)
central model [17] +loglog Uy,) /¢)

Table 1: Comparison between our results and prior works on sum estimation, high-dimensional sum estimation, and sparse
vector aggregation under shuffle model, where we use the absolute error, ¢, error, and ¢« error as the error metrics. Each
message contains O(log U +logd + log n) bits. The mechanism without an indicator for the round runs in a single round. Our
communication cost for 1-D Sum requires the condition n = w(log? U).

of O(U/¢) could dwarf the true sum for most datasets. Notice that
sometimes some prior knowledge is available, and then a smaller
U could be used. For example, if we know that the x;’s are people’s
incomes, then we may set U as that of the richest person in the
world. Such a U is still too large for most datasets as such a rich
person seldom appears in most datasets.

Instance-Awareness. The earlier error bound of O(U/¢) can
be shown to be optimal, but only in the worst case. When typical
input data are much smaller than U, an instance-specific mechanism
(and error bound) can be obtained—i.e., a mechanism whose error
depends on the largest element of the dataset. In the example of
incomes above, an instance-aware mechanism would achieve an
error proportional to the actual maximum income in the dataset.
This insight has recently been explored under the central model of
DP [4, 15, 21, 27, 36, 39].

A widely used technique for achieving instance-specific error
bounds under central-DP is the clipping mechanism [4, 27, 36, 39].
For some 7, each x; is clipped to Clip(x;, 7) := min(x;, 7). Then we
compute the sum of Clip(D, r) := (Clip(x;,7) | i = 1,...,n) andadd

1940

a Laplace noise of scale O(z/¢). Note that the clipping introduces
a (negative) bias of magnitude up to Max(D) - [{i € [n] | x; > }|,
where Max(D) := max; x;. Thus, one should choose a good clipping
threshold 7 that balances the DP noise and bias. Importantly, this
must be done in a DP fashion, and this is where all past investiga-
tions on the clipping mechanism have been devoted. In the central
model, the best error bound achievable is O(Max(D) - loglog U /¢)
[18].2 For the real summation problem, such an error bound is con-
sidered (nearly) instance-optimal, since any DP mechanism has to
incur an error of Q(Max(D)) on either D or D — {Max(D)} [45].
The factor of loglog U/¢ is known as the “optimality ratio”. It has
been shown that the optimality ratio O(loglog U/¢) is the best pos-
sible in the case of § = 0 (§ is a privacy parameter, see Section 3.1

2[18] achieves an error of O(Max(D) loglog(Max(D))) rather than the cited
O(Max(D) loglogU)). The loglog(Max(D)) result is more meaningful for the
unbounded domain setting where U = oo, but in the shuffle-DP model, there is cur-
rently no known method can handle the unbounded domain case for any problem,
including sum estimation. Our proposed mechanism also only supports the bounded
domain case. Therefore, for simplicity, we ignored this minor difference and just cited
the log log U result.

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy

for more details) [18]. Under the case of § > 0, it is still an open
question whether that ratio is optimal or not. Notably, in the lit-
erature [5, 15, 27], a polylog optimality ratio is often considered
satisfactory enough and is named as “instance-optimal” and so far
no known DP mechanism has a better optimality ratio.

As suggested in [27], the clipping mechanism can be easily im-
plemented in the shuffle model as well, but requiring two rounds.
The first round finds 7. Then we broadcast 7 to all users. In the
second round, we invoke a summation protocol, e.g., the one in
[24], on Clip(D, 7). Two-round protocols are generally undesirable,
not only because of the extra latency and coordination overhead,
but also because they leak some information to the users (z in this
case, which is an approximation of Max(D)). Note that the shuffle
model, in its strict definition, only allows one-way messages from
users to the analyzer (through the shuffler), so the users should
learn nothing from each other. Moreover, the central-DP mecha-
nism for finding the optimal 7 [18] does not work in the shuffle
model. Instead, [27] uses the complicated range-counting protocol
of [22]. This results in a sum estimation protocol that runs in two
rounds, having an error of O(Max(D) - 10g3'5 U+/log(1/6))3, and
sends (~)(log® U log(1/8)/¢) messages per user. Thus, this protocol
is of only theoretical interest; indeed, no experimental results are
provided in [27].

Problem Statement. Does there exist a practical, single-round
protocol for sum estimation under shuffle-DP that simultaneously:
(1) matches the optimal central-DP error of O(Max(D)-loglog U/¢),
and (2) requires 1 + o(1) messages per user?

1.1 Our results

We answer this question in the affirmative, by presenting a new
single-round shuffle-DP clipping protocol for the sum estimation
problem. At the core of our protocol is a technique that finds the
optimal 7 and computes the noisy clipped sum using 7 at the same
time. This appears impossible, as the second step relies on the in-
formation obtained from the first. Our idea is to divide the data
into a set of disjoint parts and do the estimations for each part
independently. This ensures we only pay the privacy and commu-
nication cost of one since each element will only be involved in
one estimation. Based on these estimations, we can compute the
noisy clipped sums for all the clipping thresholds 7 = 1,2,4,...,U.
Meanwhile, we show that these noisy estimations already contain
enough information to allow us to decide which 7 is the best. Be-
sides solving sum aggregation, we show that using this protocol
as a building block or deriving a variant of this idea can achieve
state-of-the-art privacy-utility-communication tradeoffs for two
other important summation problems.

1.1.1 Contributions. Our contributions are threefold, summarized
in Table 1 and below:

(1) Sum estimation. For the vanilla sum estimation problem?,
we present a single-round protocol (Section 4 and 5) that achieves

3For any function f (j(f) := f - polylog(f).

4Note that although we focus on the integer domain {0, ..., U}, our protocol easily
extends to the real summation problem, where each value x; is a real number from
[0, 1], by discretizing [0, 1] into U buckets of width 1/U. This incurs an extra additive
error of O(n/U). Thanks to the double logarithmic dependency on U, we could set U
sufficiently large (e.g., U = n'°¢™) to make this additive error negligible while keeping
the O(Max (D) - loglog n/¢) error bound.

1941

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

the optimal error of O(Max(D) - loglog U/¢), which improves the
error rate of O(U/¢) from [24] exponentially in U. More impor-
tantly, we have 1 + o(1) messages per client when n = (log? U)
(see Theorem 5.1 for more details), a criterion typically met in most
common regimes.

(2) High-dimensional sum estimation. Next, we consider
the sum estimation problem in high dimensions, which has been
extensively studied in the machine learning literature under central
DP [9, 27, 33]. Here, each x; is a vector with integer coordinates
taken from the d-dimensional ball of radius Uy, centered at the
origin, and we wish to estimate Sum(D) with small & error.

The literature for this problem exhibits similar patterns to the 1D
summation problem. Under central-DP, the state-of-the-art mech-
anism achieves an error proportional to Vd - Maxy, (D), where
Mazxy, (D) := max; ||x;||2 [17]. Generalizing the argument in the 1D
case, Maxy, (D) is an instance-specific lower bound for d-dimensional
sum estimation, and the factor Vd is also optimal [27]. For shuffle-
DP, [27] presented a one-round protocol achieving an error propor-
tional to \/E-U(Z (i.e., not instance-specific) with d+0(d*? log!(1/6)
/(ey/n)) message complexity. [27] observed that a two-round clip-
ping mechanism can be used to achieve an instance-specific error,
but as in the 1D case, this incurs high polylogarithmic factors in
both the optimality ratio and the message complexity.

In Section 6, we propose our single-round protocol for high-
dimensional summation by treating our 1D summation protocol as
a black box: we first do a rotation over the space, and invoke our 1D
protocol in each dimension. This approach has the same instance-
optimal error as the central-DP up to polylogarithmic factors, and
achieves the same message complexity as the existing worst-case
error protocol.

(3) Sparse vector aggregation. As the third application of
our technique, we study the sparse vector aggregation problem.
This problem is the same as the high-dimensional sum estimation
problem, except that (1) each x; is now a binary vector in {0,1}¢,
(2) the x;’s are sparse, ie., [|x;||1 = ||x,||§ < d, and (3) we aim at an
oo error. This problem is also known as the frequency estimation
problem under user-level DP, where each user contributes a set of
elements from [d], and we wish to estimate the frequency of each
element. For this problem, people are more interested in the fo
error since we would like each frequency estimate to be accurate.

Under central-DP, the state-of-the-art algorithm already achieves
foo error with Maxg, (D) [17]. Under shuffle-DP, there is no known
prior work on this problem. Our high-dimensional sum estimation
protocol can solve the problem, but it does not yield a good ¢ error
and incurs a message complexity of at least d per user, even if the
user has only a few elements.

In Section 7, we present our one-round sparse vector aggregation
protocol. This protocol can be regarded as a variant of our 1D sum
protocol, where we divide the data per its sparsity. This has error
of Maxg, (D), and sends ||x;[[1 + 1 + O(d" log dlog!®(1/6)/(¢n))
messages for user i. Note that this f. error implies an £, error
that is Vd times larger (but not vice versa), so it also matches
the high-dimensional sum estimation protocol in terms of ¢, error.
Furthermore, it exploits the sparsity of each x; in the message
complexity. It remains an interesting open problem if the extra
0(d'® log dlog!>(1/5)/(en)) term can be reduced.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

2 Related Work

For sum estimation under central-DP, the worst-case optimal error
O(U/¢) can be easily achieved by the Laplace mechanism. Many
papers have studied how to obtain instance-specific error, i.e., an
error depending on Max(D) [4, 5, 14, 15, 18, 21, 27, 36, 39]. Most of
these works rely on the clipping mechanism [4, 5, 14, 15, 18, 27, 36,
39]. Similarly, for the high-dimensional sum aggregation problem,
existing approaches have achieved instance-specific error by using
the clipping mechanism [9, 17, 27, 33, 34]; such mechanisms also
yield an # error of Maxg, (D) for sparse vector aggregation.

In the shuffle-DP setting, for sum estimation, two settings are
used. In the single-message setting, each user sends one message.
Here, [6] achieve an error of O(Unl/ %) and further show that this is
worst-case optimal. In the multi-message setting, where each user is
allowed to send multiple messages, most prior works try to achieve
the worst-case optimal error while minimizing communication
costs. Cheu et al. [12] first achieved an error of O(U+/log(1/6)/¢)
with O(4/n) messages sent per user. Then, [26] achieved the same
error but reduced the number of messages per user to O(log(n)).
[25] and [7] further improved the error to O(U/¢) with constant
messages. Recently, [24] reduced that communication to 1+ 0(1)
messages per user. We aim to obtain instance-optimal error, while
keeping the 1+ 0(1) per-client message complexity of [24].

3 Preliminaries

We use the following notation: Z is the domain of all integers, Z>¢
non-negative integers, and Z positive integers. Let D = (x1, x2, . . .,
Xn), where user i holds an integer x; from {0} U [U]. For simplic-
ity, we assume that U is a power of 2. We would like to estimate
Sum(D) = }; x;. For brevity, we often interpret D as a multiset, and
D N [a, b] denotes the multiset of elements of D that fall into [a, b].
We introduce two auxiliary functions: Count(D) is the cardinality
of D (duplicates are counted); Max(D, k) is the kth largest value of
D, or more precisely,

Max(D, k) := max {t : Count(D N [t,U]) > k}.

3.1 Differential Privacy

Definition 1 (Differential privacy). Fore, § > 0, an algorithm M :
X" = Y is (¢, 6)-differentially private (DP) if for any neighboring
instances D ~ D’ (i.e, D and D’ differ by a single element), M(D)
and M(D’) are (&, 6)-indistinguishable, i.e., for any subset of outputs
YcU,

PriM(D) € Y] <€ - Pr[M(D’) € Y] +6.

The privacy parameter ¢ is typically between 0.1 and 10, while &
should be much smaller than 1/n.

All DP models can be captured by the definition above by ap-
propriately defining M(D). In central-DP, M(D) is just the out-
put of data curator; in local-DP, the local randomizer R : X —
Z outputs a message in Z, and M(D) is defined as the vector
(R(x1), R(x2),...,R(xn)); in shuffle-DP, R : X — N< outputs
a multiset of messages and M (D) is the (multiset) union of the
R(xi)’s.

DP enjoys the following properties regardless of the specific
model:

1942

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

Lemma 3.1 (Post Processing [19]). If M satisfies (¢, §)-DP and M’
is any randomized mechanism, then M’ (M(D)) satisfies (&, §)-DP.

Lemma 3.2 (Sequential Composition [19]). If M is a (possibly adap-
tive) composition of differentially private mechanisms My, ..., Mg,
where each M; satisfies (¢, §)-DP, then M satisfies (¢’, 8")-DP, where

(1) & =ke and &' = k6; [Basic Composition]
(2) & = eyJ2klog < + ke(ef — 1) and & = kS + 8" for any

57
8" > 0. [Advanced Composition]

Lemma 3.3 (Parallel Composition [37]). Let Xj,..., Xy each be
a subdomain of X that are pairwise disjoint, and let each M; :
X! — Y be an (¢, 6)-DP mechanism. Then M(D) := (My(D N
X1), ..., M (D N X)) also satisfies (¢, §)-DP.

3.2 Sum Estimation in Central-DP

In central-DP, one of the most widely used DP mechanisms is the
Laplace mechanism:

n

Lemma 3.4 (Laplace Mechanism). Given any queryQ :{0,1,...,U}
— R, the global sensitivity is defined as GSg = maxp.p/ |Q(D) —
Q(D')|. The mechanism M(D) = Q(D) + GSg/¢ - Lap(1) preserves
(&,0)-DP, where Lap(1) denotes a random variable drawn from the
unit Laplace distribution.

For the sum estimation problem, GSp = U, which means that
the Laplace mechanism yields an error of O(U/¢). As mentioned
in Section 1, although such an error bound is already worst-case
optimal, it is not very meaningful when typical data are much
smaller than GSp = U.

Clipping mechanism The clipping mechanism has been widely
used to achieve an instance-specific error bound depending on
Max(D). It first finds a clipping threshold z, and then applies the
Laplace mechanism on Clip(D,) with GSg = 7. The clipping in-
troduces a bias of Max(D) - |[{i € [n] | x; > 7}|, so it is important to
choose a 7 that balances the DP noise and bias. In the central model,
the best result is [18], which finds a 7 between Max(D, loglog U/¢)
and 2 - Max(D). Plugging this 7 into the clipping mechanism yields
an error of O(Max(D) - loglog U /).

3.3 Sum Estimation in Shuffle-DP

In shuffle-DP, the state-of-the-art protocol for sum estimation is
proposed by Ghazi et al. [24] and achieves an error that is 1 + 0(1)
times that of the Laplace mechanism and each user sends 1+ 0(1)
messages in expectation. Both are optimal (in the worst-case sense)
up to lower-order terms. We briefly describe their protocol below
as it will also be used in our protocols.

Each user i first sends x; if it is non-zero. To ensure privacy,
users additionally send noises drawn from {-U, ..., U} — {0} based
on an ingeniously designed distribution #, such that most noises
cancel out while the remaining noises add up to a random variable
drawn from the discrete Laplace distribution® with scale (1 — A)e
for some parameter A. The cancelled out noises are meant to flood
the messages containing the true data x; so as to ensure (Ae, §)-DP.
Thus, the entire protocol satisfies (&, §)-DP.

5The Discrete Laplace distribution with scale s has a probability mass function
1/s
el e~ kI/s for each k € Z.

1-e
1+e~1/s

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy

Algorithm 1: Randomizer of BaseSumDP [24].
Input: x;,¢,6,n,U, A, {
1 U’,xlf — U, x,;

2 if U > /n/{ then

/* Randomized rounding of x; */

s | Be[U/GD]:

4 U — n;

5 p— |-xi/B-|—xi/B;

' {{xi/ B] with probability p
i [xi/B] -1 with probability 1—p’

7 Si —A{}
if x{ # 0 then

‘ Add xlf into Sj;
end

o ®

10

/* Sample a vector from P x/

(z_U',...,z_l,zl,...,zU,) ~P(e6,mAU");

for j — -U’,-U +1,...,-1,1,...,U’' = 1,U’ do
‘ Add zj copies of j into S;;

11
12
13
end

Send S;;

14

15

Algorithm 2: Analyzer of BaseSumDP [24].
Input: R = U;S; with S; from user i, ¢, 6, n, U, A, {

1 Sum(D) & Zyery:

2 if U > +/n then

s | B[U/(G/D]:

4 Sum(D) « Sum(D) - B;

5 return Sum(D);

For a large U, their protocol should be applied after reducing

the domain size to y/n/{ for some { = o(1). More precisely, we
U

Vn/¢

duces an additional error of O(\/Z U), which is a lower-order term
in the error bound. Meanwhile, it reduces the noise messages to
o(log? n log(1/5)/(£/1\/5)) = 0(1). The detailed randomizer and
analyzer are given in Algorithm 1 and 2. The analyzer obviously
runs in O(n) time, and they show how to implement the randomizer
in time O(min(U, vn)). The following lemma summarizes their
protocol:

first randomly round each x; to a multiple of

Lemma 3.5. Given anye > 0,8 > 0, n, U, any A and any {,
BaseSumDP solves the sum estimation problem under shuffle-DP
with the following guarantees:

(1) The messages received by the analyzer satisfy (e, §)-DP;
(2) With probability at least 1 — f3, the error is bounded by ({ +

5(1_1—/1)) -Uln(2/B);
(3) In expectation, each user sends
log? nlog(1/6))

eAJin

messages with each containing O(min (logn, log U)) bits.

I(x; ¢o)+o(

. This intro-

1943

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Remark: Setting A, { = 0(1) yields an error of 1+ 0(1) error and
1+ 0(1) messages. In this paper, we will invoke BaseSumDP with
A=0.1and { = min(0.1, %), With this setting, the error bound is
1.3 - UIn(2/p)/e and the message complexity is still 1+ o(1).

Combining the clipping technique with BaseSumDP immediately
leads to a two-round protocol in shuffle-DP: In round one, we find 7;
in round two, we invoke BaseSumDP on Clip(D,). This approach
was suggested in [27]. However, since the optimal central-model
7-finding algorithm [18] cannot be used in the shuffle model, [27]
instead used the complicated range-counting protocol of [22] to
find a 7 such that

Max(D, k) < 7 < Max(D) (1)

for some k = (3(10g3'5 U+/log(1/5)/¢). Plugging this 7 into the
clipping mechanism yields an error of O(Max (D) - k). The message
complexity of their protocol is O(log® U log(1/8)/¢), dominated
by the range-counting protocol [22].

4 A Straw-man One-Round Protocol

We first present a simple one-round shuffle-DP protocol for the
sum estimation problem. Although it does not achieve either the
desired error or communication rates from Section 1, it provides a
foundation for our final solution.

4.1 Domain Compression

Our first observation is it is not necessary to consider all possible 7 €
{0} U [U]. Instead, we only need to consider 7 € {0,1,2,4,...,U}.
Specifically, we map the dataset D to®

D = {[log(xn)].[log(x2)]. ... [log(xa)]}

Note that this compresses the domain from {0} U [U] to {-1,0} U
[log U]. After compressing the domain size from U + 1 to log U + 2,
running the round-one protocol of [27] on D can now find a 7 such
that
Max(D, k) < 7 < Max(D),

for some k = O((loglog U)*°/log(1/8)/e).

In the second round, we use 7 = 27 as the clipping threshold and
invoke BaseSumDP on D. Note that we always have 7 < 2-Max(D).
Furthermore, D contains at most k elements that are strictly larger
than 7, so the clipping mechanism yields an error of O(Max(D) - k).

In addition to reducing the error, domain compression also re-
duces the message complexity of the first round from O((log U)¢
log(1/8)/e) to é((log log U)®log(1/8)/e). The message complex-
ity of the second round is the same as that of BaseSumDP, i.e.,
1+0(1).

@)

4.2 Try All Possible 7

The domain compression technique narrows down the possible
values for 7 to just logU + 2. This allows us to try all possible
7 simultaneously. We can run log U + 2 instances of BaseSumDP,
each with a different 7 = 0,1,2,4,...,U. That is, each client x;
runs BaseSumDP log U + 2 times, each time clipping its data x;
with a different threshold before the randomizer protocol, and the
analyzer computes log U + 2 different sums, one for each threshold.

®All log have base 2. Specially, define log(0) := —1and 27! := 0.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

s D D O O O @w @

2 x30 3

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

><1

P PN
Domain Partitioning: \\ f)xso . *30 > U e ‘\177/‘ \\372,/ x10 §4 1 4
L) I) I oL I I J o
[1,1] [2,2] [3.4] [5.8] [9,16] [17,32] [33,64] [65,128]
Sum(D N [2/71 +1,27]): 30 60 90 240 0 490 64 0
Sum(D n [2/71 4+ 1,27]): 28 64 80 220 16 522 -32 200
1.3-2/InQ2logU + 1)/B)/e: 7 14 28 56 112 224 | ;-32 449 897
Sum(D) =30 + 60 + 90 + 240 4+ 490 + 64 = 974 Sum (D) = 28 + 64 + 80 + 220 + 16 + 522 = 930
Figure 1: An illustration of our protocol for sum estimation. U = 2!°, ¢ = 1, and § = 0.1.
All these are done concurrently to the protocol for finding 7. Finally, Furthermore, for any 7 = 1,2,4,..., U, the clipped sum is precisely
the analyzer will return the output of the BaseSumDP instance the sum in the first log 7 + 1 sub-domains:
that has been executed with the correct 7 = 27. However, the log
log U+2 1nst.ances of B'a.seS;lmDP must. split the privacy budget Sum(Clip(D, T)) _ Z Sum(D N (27141, Zj]).
using sequential composition’. More precisely, we run each instance =

with privacy budget ¢/(2(log U + 2)), while reserving the other ¢/2
privacy budget for finding 7. Thus, the BaseSumDP instance with
clipping threshold 7 must inject a DP noise of scale O(rlogU/¢).
The clipping still introduces a bias of O(Max(D) - k), so the total
error becomes O(Max(D) - (log U + /log(1/9))/e).

In terms of the message complexity, these O(log U) BaseSumDP
instances together send O(log U) messages per user, in addition
of the O((loglogU)®log(1/5)/e) messages for finding 7. So the
message complexity is now O(log U + log(1/6)/e¢).

Simple tweaks to this straw-man solution do not give the de-
sired properties. For instance, one may compress the domain to
{0,1,¢,¢?,...} for some ¢ > 2. This lowers the message complexity
to O(log, U +1og(1/6)/¢) and each BaseSumDP instance has a pri-
vacy budget of ¢/log, U. But now 7 may be as large as ¢ - Max(D),
so the error increases to O(Max(D) - clog, U/¢). Thus, new ideas
are needed to achieve our desiderata in a one-round protocol.

5 Our Protocol

In this section, we present our single-round protocol that achieves
both optimal error and message complexity.

5.1 Domain Partitioning

We see that the O(log U) factor blowup in the error of the straw-
man solution is due to the log U + 2 BaseSumDP instances splitting
the privacy budget using sequential composition. In order to avoid
the splitting, our idea is to partition the domain and then use parallel
composition. More precisely, we partition the domain into log U +1
disjoint sub-domains: [1,1], [2,2], [3,4], [5,.8],..., [U/2+ L U]. It
is clear that, for any D, we have

logU
Sum(D) = Z Sum(D N [2/71+1, 2j]).
=0

7“Sequential composition” refers to privacy; all these instances are still executed in
parallel in one round.

1944

Therefore, it suffices to estimate Sum(D N [2/7! + 1,2/]) for
each j € 0,1,...,log U. Importantly, since these sub-domains are
disjoint, parallel composition can be applied and we can afford a
privacy budget of ¢ on each sub-domain. We thus run a BaseSumDP
instance on each D N [Zj “141,2/], which returns an estimate

Sum(D N [2/71+1,27]) :=
Sum(D N [2771 +1,27]) + Lap(2/ /e).
Then for any 7 = 1,2,4,...,U, we estimate Sum(Clip(D, 7)) as
log7

Sum(Dn [1,7]) = " Sum(D 0 [27" +1,27]).
=0

Importantly, the total noise level in Sfaﬁl(D N [1,7]) is still bounded
by O(z/e¢), as the noise levels from the sub-domains form a geomet-
ric series. This ensures that the DP noise is bounded by O(Max(D)/¢),
as long as we choose a 7 < 2 - Max(D).

Meanwhile, this domain partitioning lowers the total message
complexity of all the log U + 1 BaseSumDP instances to 1 + o(1).
This is because after domain partitioning, each user has a nonzero
input only in one sub-domain, and the BaseSumDP protocol sends
out 0(1) message when x; = 0.

5.2 Finding 7 with No Extra Cost

It remains to deal with the impractical 7-selection protocol used in
[27], which has a message complexity of O((log log U)° log(1/5)/e)
and finds a 7 such that

Max(D, k) <t < 2-Max(D), (3)

for some k = O((log log U)3'5\/log(l/5)/£). Recall that the bias
introduced by the clipping is O(Max (D) - k).

It turns out that we can find a 7 that achieves the optimal k =
O(loglog U/¢) with no extra cost at all! To illustrate the idea, first
consider the non-private setting where we have access to the exact
values ofSum(Dﬂ [2j_1 +1, 2j]) foreach j =0,1,2,...,logU. Then
it is easy to see that the last j on which Sum(D N [2/71+1,2/]) > 0

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 3: Randomizer of SumDP.

Input: x;, ¢, 6, f,n, U
1 for j < 0,1,2,...,logU do

/% The messages for estimating Sum(D N [2/71 +1,27]) %/
— Randomizer(x,— I(x; € [2/71 +1, 2j]), £ 0,n, Zj) of BaseSumDP

2/7141,27
) Si[,27]

3 end

4 Send {Si[

27714127 ‘
}ieto12,...logU}s

Algorithm 4: Analyzer of SumDP.

Input: {R[zj—l+1’zj] _ Uis[zj—1+1,2j]

} with S
! je{0,1,2,...log U}

i
17 0;

for j < 0,1,2,...,logU do

5 | Sum(Dn[2/71+1,27]) « 3 yeri-taz) U

[N}

[2/7141,27]

from user i, ¢, 8, B, n, U

/* Set r=2/ for last j passing the condition of (4) */

| ifSum(D N [2/71+1,27]) > 1.3- 2/ - In (2(log U + 1)/) /¢ then

«

‘ T 2/,

6 end

7 end

Sum(D) « Xjef0,1,2...log 7} Sum(D N [2/71+1,27]);

s return Sum(D)

®

yields a 7 = 2/ such that Max(D) < r < 2 - Max(D), i.e., we can
achieve (3) with k = 1. In the private setting, however, due to having
access only to the noisy estimates SIFn(D Nn[2/=1+1, 2j]), we may
easily overshoot: With probability at least 1/2, the last sub-domain
has Sfaﬁq(D N [r/2 - 1,7]) > 0 (even if it is empty), which would
sett="U.

To prevent this overshooting, our idea is to use a higher bar.
Instead of finding the last j on which Sum(D N [2/-1+1, Zj]) > 0,
we change the condition to

Sum(D N [271 +1,2]) > 1.3-2/ - In (2(logU + 1) /) Je. (4)

The RHS of (4) follows from the error bound of BaseSumDP (see
the remark after Lemma 3.5), where we replace U with 2/ (since
the largest value in this sub-domain is 2/) and replace § with
pB/(logU + 1), so that when this sub-domain is empty, (4) happens
with probability at most §/(logU + 1). Then by a union bound,
with probability at least 1 — f, none of the empty sub-domains
passes the condition (4). In this case, we are guaranteed to find a
r=2/<2. Max(D), namely, we will not overshoot. Meanwhile,
we can also show that we will not undershoot too much, either.
More precisely, with probability at least 1 — f3, there are at most
O(log(log U/B)/e) elements greater than 2/. Therefore, plugging
7 = 2J into the clipping mechanism yields the optimal central-DP
error of O(Max(D) - log(logU/p)/e).

To summarize, our final protocol works as follows. After do-
main partitioning, each user i executes an instance of BaseSumDP
for every sub-domain [2/7! + 1,2/] with the input x; - I(x; €
[2/71 +1,2/]) and the whole privacy budget ¢, §. As all the mes-
sages are shuffled together, they need to identify themselves with
which BaseSumDP instance they belong to. This just requires extra

1945

O(loglog U) bits. From the perspective of the analyzer, based on
the received messages, we compute Sum(D N [2/71 + 1,2/]) for
each j € {0,1,...,logU}. Then, 7 is set to 2J for the last J passing
condition (4). Finally, we sum up all STlHJ(D N [2/71 +1,27]) for
Jj < log 7. The detailed algorithms for the randomizer and analyzer
are presented in Algorithm 3 and Algorithm 4. Besides, we give an
example to demonstrate the protocol in Figure 1.

Theorem 5.1. Givenanye > 0,8 > 0,n € Zy, andU € Z,, for any
D € [U]", SumDP achieves the following:

(1) The messages received by the analyzer preserves (¢, §)-DP;
(2) With probability at least 1 — f3, the error is bounded by

O(Max(D) log(logU/f) /g) ;
(3) In expectation, each user sends
1+0(logU -log® n - log(1/8)/(eVn))
messages with each containing O(min (logn,log U)) bits.
Proor. For privacy, invoking Lemma 3.5, we have that for every
je{0,1,2,...,logU}, R[zjilﬂ’zj] preserves (e, 5)—DP. Given that
each x; only has an impact on a single RIZ7H127] it follows that

the collection {R[zj_1+l’2j] }jeo L2

For utility, Lemma 3.5 ensures that forany j € {0,1,2,...,logU},

Jlogu Preserves (¢,6)-DP.

_B
ogU+2 We have

with probability at least 1 —
|§1I;n(D N2/ +1,27]) =Sum(D N [2/71 + 1, 21']))

<1.3-27 -In (2(log U +2)/p) /e. (5)

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Aggregating probabilities across all j yields that, with probability
at least 1 — S, (5) holds across all j.

First, (5) implies 7 will not surpass [log (Max(D))-‘:

T< [log (Max(D))w.

Combining this with (5), we have
log(z))) . .
‘ Z (Sum(D N [2/71 +1,27]) - Sum(D n [2/7! + 1,21])))
7=0

:O(Max(D) log(log U/ﬁ)/s).)

Meanwhile, with (5), we also have that all sub-domains over ¢
will not contain too many elements: for any j > log(7),

Sum(D N [2/71+1,27]) <2.6-27 - In (2(log U +2)/B) /e,
which sequentially deduces

logU
> sum(Dn (271 +1,27])
j=log r+1

:O(Max(D) “log(log U/p) /g).)

Finally, (6), and (7) lead to our desired statement for the utility.

The statement for communication directly follows from Lemma 3.5
and the observation that each x; uniquely corresponds to a single
interval [2/71 + 1, 27]. O

Additionally, each randomizer incurs a computational cost of
O(logU - min(U, v/n)) and each analyzer operates with a running
time of O(n).

6 High-Dimensional Sum Estimation

In this section, we consider the high-dimensional scenario, i.e., each
x; is a d-dimensional vector in 79 with £, norm bounded by some
given (potentially large) Uy,. Thus, D can also be thought of as an
n X d matrix. Let Maxg, (D) := maxy,ep ||xi||l2 be the maximum ¢,
norm among the elements (columns) of D. The goal is to estimate
Sum(D) = }}; x; with small #, error. For each x; € 74 and any
k € [d], we use xlk to denote its k-th coordinate.

In the central model, the standard Gaussian mechanism achieves
an error of O(Up,+/dlog(1/8)/¢), which is worst-case optimal up
to logarithmic factors [35]. The best clipping mechanism for this
problem [17] achieves an error of

O(Max[Z (D) - (Ydlog(1/) +log log(Uez))/€)~

In the shuffle model, [27] presented a two-round protocol achiev-
ing a (theoretically) similar bound:

O~(Maxlz2 (D) - (\/d log(nd) log(1/0)
+1log>S U, - Jlog(l/&))/e).

But similar to their 1D protocol, this algorithm is not practical
due to the log> Uy, factor and the use of the complicated range-
counting shuffle-DP protocol of [22].

1946

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

In this section, we present a simple and practical one-round
shuffle-DP protocol that achieves an error of

o(Ma)qZ (D) - vJdlog(nd) log(1/9) - log log(Us,) /g).

6.1 Random Rotation

As in [27], we first perform a random rotation of the dataset D, re-
sulting in D = WD. Here, W denotes a rotation matrix, constructed
as per the following lemma:

Lemma 6.1 ([3]). Let W = HP, where H is the Hadamard matrix
and P is a diagonal matrix whose diagonal entry is independently
and randomly sampled from {—1,+1}. Then, for any x € Z‘io,
any f > 0, we have

(1) Wx € 2% and |Wx|)2 = Vd||x||2

)
pe[[wall, 2 lixlle - v2Iog(a/) | < .

The first property means, matrix W performs a rotation while
preserving the integer domain, aside from scaling the vector by
a factor of Vd. The second property ensures that the random ro-
tation spreads out the norm evenly across all dimensions. After
the rotation, [27] clips each coordinate to O(Uy, log(nd)) and in-
vokes BaseSumDP with bounded domain size O(Ug, log(nd)) in
each dimension. To guarantee DP, they use advanced composi-
tion to allocate each dimension with the privacy budget ¢/ =

¢/(2+/dlog(2/68)), 8’ = 5/(2d). This approach results in an error
of (B(ngdwllog nlog(1/6) /g) for the estimation of Sum(B). Upon
reorienting to the original domain with W~1, the estimation of

Sum(D) has error é(UgZ\/dlognlog(l/é)/e). Note that the ran-

domness in W is only needed for the utility analysis, and does not
affect privacy, so it can be derived from public randomness.

and

6.2 Extending SumDP to High Dimensions

To adapt SumDP to high dimensions, one naive approach is to use
the advanced composition to divide the privacy budget and apply
SumDP to each dimension. This will lead to an error of

0

where MaX(D(k)) is the maximum value in the k dimension of D.

Since ,/2221 Max (D)) can be as large as Vd - Mazxy, (D), (8) has

avd degradation compared with the optimal error.

To achieve our error with a dependency on Vd, we apply a
rotation as in Lemma 6.1, and then clip each coordinate to the range
[—c - U, log(nd), ¢ - Ug, log(nd)] for some constant c. One would
then apply SumDP in each dimension. However, after the rotation,
the resulting domain of D = HD spans both positive and negative
integers. Note that SumDP only works on the non-negative integer
domain, because its utility guarantee is based on the property that,
clipping elements should only make the sum smaller, which is not
true if negative numbers are present.

d
dlog(1/6) - loglog Uy, - Z Max(D®)) |,
k=1

®)

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Random Rotation Rotation Back
P \
[TTTT T T T T ittt | %};=156 > SumDP = Sum(D) [(TT T T T T T T T T T T T T T oo T T T T e e |
. o — — -1

~ w N E %3, =356 - SumDP — SumZ(D) Sum (D) — Suml. (D) ~ w ~
1 -1-11 1 -11 1 256 156 | - | sz) — s (D) 18 1/8 1/8 1/8 1/8 1/8 1/8 1/8

1 1 -1-11 1 1 -1 100 356 N e -1/8 1/8 -1/8 1/8 -1/8 1/8 -1/8 1/8

1 -11-11 -1-1-1 0 156 #44= 356 - SumoP — Sui (D) Sumi () ~Suri: (D) 1;8 1//8 1//8 1;8 1;8 1//8 1//8 1;8

P

111111 -1 | o | _ 356 Sumi(D) -Sumi®@)| |1/ -1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8 | = Sum(D)
1 -1-11-11 -1-1 0 156 Sum$ (D) —SumZ(D) 1/8 1/8 1/8 1/8 -1/8 -1/8 -1/8 -1/8
11 -1-1-1-1-11 0 356 %1, =0 — SumDP — Sum? (D) Sam$ (D) —Sum™ (D) -1/8 1/8 -1/8 1/8 1/8 -1/8 1/8 -1/8

1 -1 1 -1-11 1 1 0 156 |, z2,-0 > sumbP - Sam2(D) — | Sul.(B) —SumL (D) 1/8 1/8 -1/8 -1/8 -1/8 -1/8 1/8 1/8
11 1 1 -1-11 -1 0 356 T 1/8 -1/8 -1/8 1/8 -1/8 1/8 1/8 -1/8
- - -~ - - |_Sum$ (D) —Sum’ (D) - -

6 _ P
Randomizer #2;=0 — SumDP — Sum®(D) Analyzer

Figure 2: An illustration of our protocol for high-dimensional sum estimation. d = 8.

Algorithm 5: Randomizer of HighDimSumDP.
Input: x; € 74 &6, p,n, Uy, W

>0’

1 Xj «— Wxj;

2 Fop e (71,52, %) with % — min (;zl.l (%! > 0), Uy 2 log(Snd/ﬂ)) for any k € [d];

3 X_j (3?1 i,)?% PN x4 i) with f’fi «— min (- 9?1.1 -I()‘ci1 <0), U{zwlzlog(Snd/ﬁ)) for any k € [d];
s ¢85 — ¢/ (4dTog(2]0)). 5/ (4d):;

5 fork < 1,2,...,d do

6 Sk« Randomizer

ko (% &7, B/ (24), Uy, 2 0g (3nd]B)) of SumDP;
7 sk ;e Randomizer(f’f €0, n, B/(2d), U{fz\/210g(8nd//3)) of SumDP;

s end
o Send {S¥ }rerap ASF Yrefars

Algorithm 6: Analyzer of HighDimSumDP.

Input: {R]_i = Uisij}k({[d] and {RIE = Uisli’i}ke[d] with {S].:,j}kE[d] and {S,i,,'}ke[d] from user i, ¢, 6, B, n, Up,, W
1,8 « 8/(4 dlog(2/5)),5/(4d);
2 fork < 1,2,...,d do
s | Sam (D) — Analyzer (R, ¢/,8', f/(2d), Up, 2 log(Snd/ﬁ)) of SumDP;

« | Sum" (D) — Analyzer(R’j L€,8", B/ (2d), U2 log(Snd/ﬁ)) of SumDP;
5 end

— = — 1, = —1 = —2,= —2, = —d,~ —d =
6 Sum(D) « (Sum+(D) — Sum_ (D), Sum, (D) — Sum_(D),...,Sum, (D) — Sum_ (D));
7 Sum(D) — W~ !Sum(D);
s return §1Iﬁ1(D)

A simplistic strategy is to shift the domain from [—c-Up, log(nd), c- Theorem 6.2. Givenanye > 0,8 > 0,n € Zy, andU € Zy, for any
Uy, log(nd)] to [0, 2c - U, log(nd)], and then apply SumDP. How- D e Zm%d yith Maxy, (D) < U, we have
ever, this shift escalates the maximum value for each coordinate
to = ¢ - Uy, log(nd), potentially inducing an error proportional to (1) The messages received by the analyzer preserves (g, §)-DP;
Uy, in the estimation of Sum(D). To fix this issue, we process the (2) With probability at least 1 — f3, the ¢, error is bounded by

positive and negative domains separately, and then take their dif-
ference as the final estimate for Sum(D). We call this algorithm
HighDimSumDP. The detailed algorithms for the randomizer and
analyzer are shown in Algorithm 5 and Algorithm 6. We also show O(Manz (D) - Vdlog(nd/f) log(1/9)

an example in Figure 2. log(d log(ng)/ﬂ)/s);

1947

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

(3) In expectation, each user sends
d+0(d" - log(Up, log(nd/p))
-log"°(d/8) - log? n/(eVn))

messages with each message containing O(log d+min (logn,

log(Uy,)) bits.

Proor. For privacy, invoking Theorem 5.1, we deduce that each
of RK and R¥ adheres to (

7} d)-DP. By advanced com-

£
44/d1og(2/5)’
position, the collections of {R’j}k € [d] and {R-* }ke[q] maintain
(¢,6)-DP.
Regarding utility, Lemma 6.1 guarantees, with probability at least
1- % for every i € [n] and j € [d], we have

|%K| < Maxg, (D) - v2log(8nd/B),

which further implies
i i i

Subsequently, Theorem 5.1 coupled with Equation 9 implies that
for each k € [d], with probability at least 1 —

—k — ~
|Sum+(D) - fo,i
i

©

(10)

2d’

= 0(Masxg, (D) - y/d1og(1/3)

Vlog(nd/p) - log(dlog(Up)/P)/e) (1)
and
‘sﬁfn’i BEDY x’j’i| = 0(Max;, (D) - dlog(1/5)
Vlog(nd/p) - log(dlog(Us)/B)/e) (12)

Combining the probabilities across all k € [d], we have with prob-

ability at least 1 — g (11) and (12) hold for all dimensions.
By synthesizing (10), (11), and (12), we

Sam(D) — Sum(B)”2

=% : HsEfn(B) - sum(B)“2

=O(MaX[Z (D) - dlog(nd/P) log(1/5)
log(dlog(Uz,)/B) e

Finally, our assertion on communication cost derives from (9),
Theorem 5.1, along with the observation that for any i € [n] and

k € [d], either X’:’i or x’j’ O

; is necessarily zero.

7 Sparse Vector Aggregation

As the last application of our technique, we study the sparse vector
aggregation problem. In this problem, each x; is a binary vector in
{0, l}dA We use (Maxg, (D))? = max; ||x;||; to quantify the data’s
sparsity and are interested in the sparse case where (Maxy, (D))? <
d. We want to estimate Sum(D) with an ¢ error Maxy, (D)/e¢ -
poly log(d/8). Meanwhile, we would like the message complexity
of each user i to depend on ||x;||1, i.e., the number of 1’s in x;. Note
that the #, error in Theorem 6.2 can only imply the same f« error,

1948

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

namely, it is Vd times larger than desired. Moreover, it requires d
messages per user.

7.1 Clipping on Sparsity

If an upper bound of sparsity S > (Maxy, (D))’ is given, we can
estimate the count for each coordinate independently with the
privacy budget ¢ = ¢/(+/Slog(2/5)), 8’ = §/(2S). Given that each
x; at most affects the counting for S dimensions, with advanced
composition, this whole process preserves (&, §)-DP. The state-
of-the-art protocol for counting under the shuffle-DP model is
BaseSumDP without random rounding, where the communication
is improved to 1 + (log(1/8)/(en)) messages per user. Feeding this
into the above protocol for sparse vector aggregation yields an error
proportional to VS and ||x;||1 + O(d*? log!®/(en)) messages per
user.

In the absence of a good upper bound S, one could apply the
clipping mechanism on sparsity. Specifically, for some 7, we only
retain the first r non-zero coordinates of each x; and set the rest
to 0. Then we apply the mechanism above with S = 7. However, as
in the sum estimation problem, the key is to choose a good 7 that
balances the DP noise and bias, and the optimal 7 should achieve
an error proportional to Maxg, (D). More importantly, we would
like to choose 7 and compute the noisy counts of all dimensions
clipped by 7 simultaneously in one round.

7.2 Sparsity Partitioning

We use the idea of domain partitioning from our sum estimation
protocol. But for the sparse vector aggregation problem, we parti-
tion the domain of possible sparsity levels [d] into log d + 1 disjoint
sub-domains: [1,1], [2,2], [3,4], ..., [d/2 + 1,d]. Then, we divide
the vectors according to their sparsity. More precisely, for each
j€{0,1,2,...,logd}, let

D[22 '+ 1,2/ = {xi e D+ ||xilly € [27 1 + 1,271},

Since each vector in D[2/~! + 1, 2/] has the sparsity bounded by
2/, we can use the idea discussed in the last section. For the error,
the estimation of Sum(D[2/7! +1,2/]) has an £« error bounded by

(3(\/2_1) In terms of the communication, since each x; will only be
involved in D[2/ 7141, 2/], each user sends ||x; || +O(d"-* log" (1/6)
/(en)) messages in expectation.

Next, let us discuss how to use the estimations of Sum(D[2/ ™! +
1,2/]) to reconstruct Sum(D). Recall that, in sum estimation, we
have the estimations for each value domain, i.e., Sum(D N [2/~1 +
1,27]) find the last [2/71 + 1,2/] with a large noisy sum result.
This is to guarantee enough elements are located in the domain
[27=1+1, 2/]. Unfortunately, such an idea cannot be extended to the
high-dimensional case directly. The problem is that, even though,
there are a large number of vectors with the sparsity in the range of
[2/71+1,27], ie, |D [2/- 141, 2j]| is large enough, each coordinate
of Sum(D[Zj 141,27]) can still be very small since those vectors
can contribute totally different coordinates.

The solution here is that we build an extra counter for the number
of vectors with sparsity within each [2/~1 +1, 2/] as a judgment for
whether to include Sum(D[Zj 14,2/]) in the final result. More
precisely, each user first executes logd + 1 number of instances

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 7: Randomizer of SparVecSumDP.

Input: x; € {0, l}d, &0, B, n
1 for j «0,1,2,...,logd do

[2/7141,27]
cnt,i

3 €,8 — ef (242741 10g(2/5)),5/(2j+1);
4 fork «— 1,2,...,d do

J=141.0J
s ‘ 5[2 +1,27],k

sum,i
6 end
7 end

[2/71+1,27),k [277141,27]
s Send {3, ; }je (0.2, Jogdykeld] and {Sey;

/* The messages for counting vectors with sparsity between 2/71+1 and 2/ %/
— Randomizer(l(|x,~|1 e[2/ 1 +1, 2j]),g/2, §/2,n, l) of BaseSumDP;

/* The messages for sum for vectors with sparsity between 2/71+1 and 2/ %/

— Randomizer(xl].C A(|xil1 € [2/71 +1,27]), ¢, 8", n,1) of BaseSumDP;

}j€{0,1,2,...,logd}§

Algorithm 8: Analyzer of SparVecSumDP.

pl2 4127k SN &
Input: {Rsum T jet012.logdykeld] = YiSqum,
[2/7141,27] _ [277141,27]
{cht - Uiscnt,i }je{O,l,Z,.A.,log d}s & 6, B n
1 7« 0;

2 for j < 0,1,2,...,logd do

cnt
s | €8 ¢/ (2427t log(2/9)), 8/ (27*1);

5 fork < 1,2,...,ddo _ _

6 ‘ SRJTnk (D[ZJ‘_1 +1, Zj]) — Analyzer(Rs[iglﬂ’zj]’k

7 end

o | if Count(D[2/71+1,2/]) > 1.3+ £ -log(2(log d + 1)/p) then

‘ T« 2J;
end

end
Sum(D) « Zje{o,l,z,...,logr} Sum(D[zj_l +1, Zj]);

1k
}e{o1,2,...log d}.ke[d] and

3 Count(D[zJ'—1 +1, 2j]) — Analyzer(R[Zrlﬂ’zj], e/2,8/2,n, 1) of BaseSumDP;

,e/,8'n, 1) of BaseSumDP;

s | Sum(D[2/71+1,2/]) « (s'uTnl(D[zf—1 +1,2/]),Sum’ (D[2/~1 +1,27]), ..., Sum” (D[2/ "1 + 1, zf]));

of BaseSumDP, each of which is to estimate the number of vec-
tors with sparsity within [2/~1 + 1,2/] and uses privacy budget
¢/2 and §/2. Then, for each j € {0,1,2,...,logd}, we estimate
Sum(D[2/71 +1,27]), where we use one CounDP with the privacy
budget £/ (2y/2/+1 log(2/8)) and §/(2/*!) to do the sum estimation
in kth coordinate. In the view of the analyzer, with the received mes-
sages, we can easily get the estimation for Count(D[Zj_1 +1,27])
and Sum(D[Zj_1 +1, 2j]) for each j € {0,1,2,...,logd}. We set
7 = 2/ with the last j such that Count(D[Zj_1 +1, 2j]) is large
enough. Finally, we sum all estimations for Sum(D[2/7! +1,2/])
for j < log(z). The detailed algorithms for the randomizer and
analyzer are shown in Algorithms 7 and 8.

Theorem 7.1. Given any e > 0,8 > 0, n € Z, and for any
D € {0,1}™*9, the SparsVecSumDP achieves the following:

(1) The messages received by the analyzer preserves (¢, §)-DP;

1949

(2) With probability at least 1 — 3, for every k € [d], the £ error
is bounded by

O((Manz (D) - ylog(1/8) +loglogd) - log(d/ﬂ)/e);

(3) In expectation, each user sends ||x;j||1 + 1 + O(all'5 -logd -
logl's(l/é)/(en)) messages with each containing O(logd)
bits.

Proor. For privacy, invoking Lemma 3.5 ensures that for each
j€{0,1,2,...,log(d)}, RIZ -1+ preserves (¢/2,5/2)-DP. Addi-

tionally, for each j € {0, 1m21,t ..,log(d)}, by combining Lemma 3.5
with advanced composition and the fact that each x; € D[2/71 +
1,2/] affects at most 2/ number of RS[S;;HZJ 1k
{Rs[ﬁjm_1+2j]’k}ke[d] preserves (&/2,8/2)-DP. Given that each x;
C[rzli—1+2f] Rs[lzlin—uzf],k the
overall privacy guarantee is achieved.

, we have that,

impacts exactly one R and one {

}ke[d]’

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Concerning utility, Theorem 3.5 implies that for each j € {0, 1,2,

...,log d}, with probability at least 1 — we have

__B
2(logd+1)°

‘Count([zf'*1 +1,27]) = Count([2/ 7! +1, 21'])|

2
<= -log (2(logd + 1)/B), (13)
€
and the difference in sums, also with probability at least 1— 2(1(>g++1)’
is well bounded:
’Sum([zj_l +1,27]) - Sum([2/71 + 1, zf]))
=o(, |2 10g(1/6) - log(d/B) /g). (14)

Aggregating these probabilities, we ensure both (13) and (14) hold
for all j with probability at least 1 — S.
(13) implies that

j< [mg (Maxy, (D))-‘. (15)
and
log(d)
Count(D[2/7! +1,27])
Jj=log T+1
=o(log dlog(log d/f) /g),
which sequentially deduces
log(d) ‘ ‘
Sum([2/71 +1, 21])‘
j=log r+1 «
=o(log dlog(log d/f) /g). (16)
Combining (14) and (15), we have
logt
‘ Z (Sum([zf'*1 +1,2/]) - Sum([2/7! + 1,21']))‘
=0 .
=O(Maxzz (D) - y/Iog(1/5) - log(d/B) /e). 17)

Finally, combining (16) and (17) leads to our statement for utility.

For communication, recall that each Baseline without random
rounding yields 1 + O(log(1/8)/(en)) messages per user in expec-
tation. Combing this with facts that each x; has |x;|; number of
non-zero coordinates, and there is only one [2j -1y 1,27] such
that |x;| € [2/71 + 1,2/], we derive the desired statement. One
special note is that each message requires O(logd) bits to specify
the dimension. O

8 Practical Optimizations

In this section, we briefly discuss some practical optimizations for
our protocols, although they do not affect the asymptotic results.
As mentioned, for sum estimation protocol of [7] attains an
error very closely to that of [24]. Meanwhile, [7] send O(1) mes-
sages per user while [24] sends 1 + 0(1) messages. Although the
former is asymptotically smaller, the o(1) term, or O(logz(n) .
log(1/8)/(ey/n)) to be more precise, is actually not negligible for n
not too large. Since our mechanism uses sum estimation as a black

1950

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

box, in our implementation we choose either [24] or [7] based on
the concrete values of n, ¢, 5.

Furthermore, recall that in SumDP, we invoke log(U) + 1 in-
stances of BaselineSumDP, corresponding to different domain sizes
1,2,4,...,U. We note that using the protocol of [24] without ran-
dom rounding yields a message number of 1+O(U log2 (U)log(U/6)
/(ne)), which may be better than doing a random rounding when
the domain size is small. Therefore, for different domain sizes, we
adopt different baselines: [24] with or without random rounding or
[7]. We again choose the best one based on the concrete values of
n, €, 8, and domain size.

9 Experiments

In addition to the improved asymptotic results, we have also con-
ducted experiments comparing our protocols with the previous
algorithms.

Sum estimation: Our SumDP mechanism was evaluated along-
side two baselines: GKMPS [24] and BBGN [7]. The two-round
protocol from [27] is solely a theoretical result. It not only has a
large message number and errors but also has an impractical run-
ning time (detailed in Appendix A). We also compared its error to
the state-of-the-art central-DP mechanism [18] as a gold standard.

High dimensional sum: For high-dimensional sum estimation,
our HighDimSumDP was compared against the one-round protocol
HLY proposed in [27]. Similar to sum estimation, the two-round
protocol from [27] faced efficiency challenges, as outlined in Ap-
pendix A. For this problem, we use the central-DP mechanism in
[17] as the gold standard.

Sparse vector aggregation: For sparse vector aggregation, we
assessed SparVecSumDP against NaiveVecSumDP, which uses the
dimension d as the upper bound for sparsity. Here, we also use the
central-DP mechanism in [17] as the gold standard.

Dataset n U ‘ Max(D)
SF-Sal | 1.49x 10° | 2.5 % 10° 568
Ont-Sal | 5.75x10° | 25X 10° | 1750
BR-Sal | 1.09 x 10° | 2.5 x 10° 343
JP-Trad | 1.81x10° | 2x10° 2810

Table 2: Real-world datasets used in sum aggregation

9.1 Setup

Datasets. We used both synthetic and real-world datasets in the
experiments. For sum estimation, the synthetic data was generated
from two families of distributions over [U] with n = U = 10%:
Zipf distribution f(x) o (x + a) b witha=1,b=3anda =1,
b = 5; Gauss distribution with y = 5, ¢ = 5 and g = 50, 0 = 50.
Here, we utilize the Gaussian distribution for its symmetry and the
Zipf distribution for its asymmetry and both distributions allow
for easy generation of datasets with varying skewness through
parameter adjustments. The real-world datasets were collected
from Kaggle, including San-Francisco-Salary (SF-Sal) [28], Ontario-
Salary (Ont-Sal) [32], Brazil-Salary (BR-Sal) [31], and Japan-trade

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Simulated Data Real-world Data
Zipf G
Dataset P auss
a=1| a=1 pu=>5 1 =50 SF-Sa | Ont-Sa | BR-Sa | JP-Trad
b=31] b=5 oc=5 o =50
SOTA under
.53 .024 .00921 0. 0.009 0.0028 .0452 0.168
central-DP RE(%) 0.5 0 7 | 0.00 00737 00936 00 0.045 6
RE(%) 1.13 | 0.0661 | 0.00351 | 0.00452 || 0.00989 | 0.0075 | 0.0249 | 0.101
SumDP (Ours)
1-D #Messages/user 140 140 139 139 143 126 119 140
Sum GKMPS RE(%) 54.5 96.3 22.5 3.11 2.44 0.372 9.26 9.02
#Messages/user || 14200 | 14300 14300 14300 12200 7770 5950 11200
RE(% 53 76.6 17.6 1.43 1.96 0.294 3.53 4.46
BBGN (%)
#Messages/user 9 9 9 9 9 8 8 9

Table 3: Comparison among sum estimation mechanisms under shuffle-DP (¢ = 1). RE denotes the relative error.

-4- Actual Result CentralDP /r‘/‘ ’_‘r’“ 10°4 _r_,k""
108 { —=- GKMPS BBGN ¥ 108 ot . T
3 —*~ SumDP A e 1071 e
3 106 & 10° - A
= L& At 10 o
= o kT k"7
2 104 at 10 a7 103 4 el
5 :‘7":;._ - g [T S et ot M Jorea o N o Tt S RS T T A
102 . 102 - 1014
et S, S . P PO SRR S < i e e
o S e o R - e e g =R =R - = L SOt W
Y e .
103 104 10° 10° 107 108 10° 103 104 10° 108 107 108 10° 103 104 10° 108 107 108 10°
10°
. i S s S 100 T
g 10° i — . - g
~m 10 ~
-] < N =
~ 104 LN LN 103 A > -
n -
14 AN 10° = u
glos " Su 1024 MR >
& Ly 102 ***A*,ﬁ__**_ N ‘*‘***\,
1024 FR—e LN ot S i §
1} K Y
s R LN s N 10! 4 Sk
g Ty 10! > Sk
10 g S
- #
106 10* 10° 108 107 108 10° 106 10* 10° 108 107 108 10° 100 10* 10° 10° 107 108 10°
n n n

Figure 3: Error levels and average messages per user for the sum estimation mechanisms under shuffle-DP with different data
size n. CentralDP represents the state-of-the-art algorithm for sum estimation under central-DP.

(JP-Trad) [29]. Here, we use them to perform summing salaries and
trading amounts, which are two common data analytical tasks in
real life. Given the significant variance in salaries among different
groups, achieving instance-specific error in these tasks is crucial.
SF-Sal, BR-Sal, and Ont-Sal are salary data from San Francisco,
Brazil, and Ontario for the years 2014, 2020, and 2020, respectively,
with amounts presented in thousands of US dollars (K USD). For
the salary data, we set the domain limit U to 2.5 X 10°, which is the
world’s highest recorded salary [40]. The JP-Trad dataset, capturing
Japan’s trade statistics from 1988 to 2019, includes 100 million en-
tries. We selected a subset of approximately 200,000 tuples, covering
Japan’s trade activities with a designated country. We set U as the
maximum value across the entire dataset. This dataset also has the
amounts expressed in K USD. The details of these real-world data
can be found in Table 2.

For high-dimensional sum estimation, we utilized the MNIST
dataset [30], comprising 70,000 digit images, with each represented

by a vector of dimension d = 28 x 28 = 784. The Uy, parameter was
set to 220,

The sparse vector aggregation experiments were conducted us-
ing the AOL-user-ct-collection (AOL) [38], documenting 500,000
users’ clicks on 1,600,000 URLs. we consolidated every 100 web-
pages into a single dimension, resulting in a dimensionality of
1.6 X 104, and selected the first 50,000 users as our testing dataset.

Experimental parameters. All experiments are conducted on a
Linux server equipped with a 24-core 48-thread 2.2GHz Intel Xeon
CPU and 256GB memory. We used absolute error, £, error, and
feo error metrics for sum estimation, high-dimensional sum, and
sparse vector aggregation respectively. We repeated each experi-
ment 50 times, discarding the 10 largest and smallest errors for an
averaged result from the remaining 30. The message complexity
was quantified by the average number of messages per user, with
each message containing O(log(d) + log(U) + log(n)) bits. For the
privacy budget, we used ¢ = 0.2, 1, 5, and the default value was set
to 1. To protect data privacy, should be set to a value significantly

1951

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

smaller than the inverse of the data size. Therefore, § was fixed at
10712 in our experiments. & The failure probability was set at 0.1.

9.2 Experimental Results

In this section, we discuss our experimental results for sum aggrega-
tion, where we include the experiments to investigate the influence
of different data size. The experiments to assess the impacts of do-
main size and data skewness and the results for high-dimensional
sum and sparse vector aggregation are deferred to our full-version
paper [16].

Utility and communication. Table 3 shows the errors and the
average number of messages per user across various mechanisms
for sum estimation under shuffle-DP over both simulated and real-
world data. The results indicate a clear superiority of SumDP in
terms of utility. SumDP consistently maintains an error below 2%
across all eight tests, further reducing it to below 0.2% in seven
cases. In contrast, GKMPS and BBGN exhibit significantly higher
error levels. Our improvement over GKMPS and BBGN can be up
to 3000%. This superiority is particularly evident in the JP-Trad
dataset, where SumDP surpasses GKMPS and BBGN by more than
40x even with a pre-established U based on strong prior knowledge.
This validates our theoretical analysis: SumDP achieves an instance-
specific error, unlike GKMPS and BBGN, which target worst-case
errors. Furthermore, we observe that SumDP attains error levels
similar to the gold standard, and produces even smaller errors in
about half of the cases. This is because while the two methods have
the same asymptotic error bounds, they are both upper bounds that
may not be tight (in constant factors) on all instances. Therefore,
the actual error of either mechanism could be smaller than the
other.

In terms of communication, neither SumDP nor GKMPS achieves
the theoretical ideal of single-message communication per user in
all tests. In contrast, BBGN requires fewer messages. This is because
even though SumDP and GKMPS theoretically reach 1 + 0(1) mes-
sages per user, the term o(1) masks substantial logarithmic factors,
leading to significantly higher actual message counts, especially
when n is small. In contrast, BBGN maintains constant messages
per user. Later, we will show that as n increases, both GKMPS and
SumDP exhibit a trend towards achieving a single-message com-
munication per user. Additionally, SumDP requires much fewer
messages than GKMPS. This is attributed to the optimization de-
scribed in Section 8, where our mechanism intelligently chooses
the more communication-efficient method between GKMPS and
BBGN.

Data size. To assess the impact of varying data sizes, we con-
ducted experiments using simulated data generated from a Gaussian
distribution with y = 1, 0 = 1, and domain size U = 103. The data
size varied from 103 to 10°, and we tested with different privacy
budgets € = 0.2, 1, 5. The error levels and average messages per user
are depicted in Figure 3. Note that in all our figures, both axes are
in log-scale and the actual query results are plotted alongside the
error levels to provide a benchmark for assessing the utility of the
mechanisms. In terms of utility, SumDP consistently has a high util-
ity even with small n and ¢, akin to the state-of-the-art central-DP

8Notably, for our mechanism, a larger § will not affect error but will benefit the
communication, albeit minimally as it affects only the logarithmic term.

1952

Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

mechanism. Notably, the error levels for all mechanisms did not
exhibit significant changes with varying n, matching our analytical
analyses that the errors in BBGN and GKMPS are dependent on U,
while the errors in SumDP and the central-DP mechanism depend
on Max(D), all of which are not directly influenced by the data size.

Regarding communication, GKMPS showed a decrease in the
average messages per user with larger n values, while BBGN main-
tained a constant message complexity. SumDP displayed a unique
trend: it maintained its message complexity for smaller n values,
then gradually decreased it as n increased. This pattern is attrib-
uted to SumDP initially leveraging BBGN for smaller datasets and
then transitioning to GKMPS for larger datasets. Moreover, as n
increases, both GKMPS and SumDP demonstrate a progression to-
wards single-message communication per user, aligning with our
theoretical analysis that both mechanisms achieve 1+0(1) messages
per user.

10 Conclusion

In this paper, we study answering sum estimation under the shuffle-
DP model, where prior works either only achieve worst-case op-
timal error or have very a heavy communication cost. We intro-
duce the first protocol that not only has instance-optimal error but
also achieves optimal communication efficiency, i.e., requiring only
1+ 0(1) messages per user. Furthermore, we successfully extend
our technique to address high-dimensional sum estimation and
sparse vector aggregation. Finally, we would like to mention two
interesting directions for future research. The first is how to extend
our domain division technique to private sum estimation in various
models, such as the multi-party secure computation model. Besides,
since the private summation is the foundation to private protocols
for various machine learning models, investigating its potential to
enhance utility in these advanced tasks would also be valuable.

Acknowledgements

This work has been in part supported by a grant from ONR, a
grant from the DARPA SIEVE program under a subcontract from
SRI, a Packard Fellowship, NTU-NAP start up grant, and contri-
butions from Intel, Bosch, and Cisco. Additionally, this work has
been funded by NSF awards under grant numbers 2128519, 2044679,
2338772, and 2148359. Qiyao Luo and Ke Yi have been supported
by HKRGC under grants 16205420, 16205422, and 16204223.

References

[1] ABapi, M., CHuy, A., GooDFELLOW, I, McMAHAN, H. B., MiroNoOV, 1., TALWAR,
K., AND ZHANG, L. Deep learning with differential privacy. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security (2016),
Pp. 308-318.

AGARWAL, N., SURESH, A. T., Yu, F. X. X, KUMAR, S., AND McMAHAN, B. cpsgd:
Communication-efficient and differentially-private distributed sgd. Advances in
Neural Information Processing Systems 31 (2018).

AI1LON, N., AND CHAZELLE, B. The fast johnson-lindenstrauss transform and
approximate nearest neighbors. SIAM Journal on computing 39, 1 (2009), 302-322.
ANDREW, G., THAKKAR, O., MCMAHAN, B., AND RaMAswAaMY, S. Differentially
private learning with adaptive clipping. Advances in Neural Information Processing
Systems 34 (2021), 17455-17466.

Ast, H., AND DucH, J. C. Instance-optimality in differential privacy via approxi-
mate inverse sensitivity mechanisms. Advances in neural information processing
systems 33 (2020).

BALLE, B., BELL, J., GAscON, A., AND Nissim, K. The privacy blanket of the shuffle
model. In Advances in Cryptology—-CRYPTO 2019: 39th Annual International

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy

[7

[

8

=

[10

[11]

[12]

[13]

[14]

[15]

[17]

(18]

[19]

[20]

[21]

[22]

[23

[24

[25]

[26]

[27]

[28

Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part II 39 (2019), Springer, pp. 638-667.

BALLE, B, BELL, J., GASCON, A., AND NissiM, K. Private summation in the multi-
message shuffle model. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (2020), pp. 657-676.

BassiLy, R., SMITH, A., AND THAKURTA, A. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium
on foundations of computer science (2014), IEEE, pp. 464-473.

Biswas, S., DoNG, Y., KAMATH, G., AND ULLMAN,]. Coinpress: Practical private
mean and covariance estimation. Advances in Neural Information Processing
Systems 33 (2020).

BITTAU, A., ERLINGSSON, U., MANIATIS, P., MIRONOV, I, RAGHUNATHAN, A., LIE,
D., RUDOMINER, M., KoDE, U., TINNES, J., AND SEEFELD, B. Prochlo: Strong privacy
for analytics in the crowd. In Proceedings of the 26th symposium on operating
systems principles (2017), pp. 441-459.

BonawiTz, K., IvaNOV, V., KREUTER, B., MARCEDONE, A., MCMAHAN, H. B., PATEL,
S., RAMAGE, D, SEGAL, A., AND SETH, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017), pp. 1175-1191.

CHEU, A., SMITH, A., ULLMAN,]J., ZEBER, D., AND ZHILYAEV, M. Distributed differ-
ential privacy via shuffling. In Advances in Cryptology-EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I 38 (2019),
Springer, pp. 375-403.

DAMGARD, L, NIELSEN, J. B., OSTROVSKY, R., AND ROSEN, A. Unconditionally secure
computation with reduced interaction. In Advances in Cryptology-EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35
(2016), Springer, pp. 420-447.

Dick, T., KULEsZA, A., SUN, Z., AND SURESH, A. T. Subset-based instance optimality
in private estimation. arXiv preprint arXiv:2303.01262 (2023).

Dong, W, FANG, J., Y1, K., Tao, Y., AND MACHANAVAJJHALA, A. R2t: Instance-
optimal truncation for differentially private query evaluation with foreign keys.
In Proceedings of the 2022 International Conference on Management of Data (2022),
pp. 759-772.

Dong, W., Luo, Q., FANTI, G., SHI, E., AND Y1, K. Almost instance-optimal clipping
for summation problems in the shuffle model of differential privacy. arXiv preprint
arXiv:2403.10116 (2024).

Dong, W., Sun, D., AND Y1, K. Better than composition: How to answer mul-
tiple relational queries under differential privacy. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1-26.

Dong, W., AND Y1, K. Universal private estimators. In Proceedings of the 42nd
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (2023),
pp. 195-206.

DWwOoRK, C., AND RoTH, A. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science 9, 3-4 (2014), 211-407.
ERLINGsSON, U, FELDMAN, V., MIRONOV, I, RAGHUNATHAN, A., TALWAR, K., AND
THAKURTA, A. Amplification by shuffling: From local to central differential pri-
vacy via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms (2019), SIAM, pp. 2468-2479.

FANG, J., DoNG, W., AND Y1, K. Shifted inverse: A general mechanism for mono-
tonic functions under user differential privacy. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (2022), pp. 1009—
1022.

GHAzL, B., GoLowIcH, N., KUMAR, R., PAGH, R., AND VELINGKER, A. On the power
of multiple anonymous messages: Frequency estimation and selection in the
shuffle model of differential privacy. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (2021), Springer, pp. 463-488.
GHAz1, B., KUMAR, R., MANURANGSI, P., AND PAGH, R. Private counting from
anonymous messages: Near-optimal accuracy with vanishing communication
overhead. In International Conference on Machine Learning (2020), PMLR, pp. 3505-
3514.

GHAzI, B., KUMAR, R., MANURANGsI, P., PAGH, R., AND SINHA, A. Differentially
private aggregation in the shuffle model: Almost central accuracy in almost a
single message. In International Conference on Machine Learning (2021), PMLR,
pp. 3692-3701.

GHAz1, B., MANURANGSTI, P., PAGH, R., AND VELINGKER, A. Private aggregation
from fewer anonymous messages. In Advances in Cryptology—-EUROCRYPT 2020:
39th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II 30 (2020),
Springer, pp. 798-827.

GHAz1, B., PaGH, R, AND VELINGKER, A. Scalable and differentially private
distributed aggregation in the shuffled model. arXiv preprint arXiv:1906.08320
(2019).

HuANG, Z., LIANG, Y., AND Y1, K. Instance-optimal mean estimation under differ-
ential privacy. Advances in Neural Information Processing Systems (2021).
KAGGLE. San francisco city employee salary data. https://www.kaggle.com/

1953

[29]
[30]
(31]
(32]

(33]

[34

(35]
[36]

(37]

(38]
(39]

[40]

[41]

[42

(43]

[44]

[45

A

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

datasets/kaggle/sf-salaries/data, 2014.

KAGGLE. Japan’s 100 million customs trade statistics since 1988. https://www.
kaggle.com/datasets/zanjibar/100-million-data-csv, 2020.

KAGGLE. Mnist - digit recognizer dataset. https://www.kaggle.com/c/digit-
recognizer/data, 2020.

KAGGLE. Monthly salary of public worker in brazil. https://www.kaggle.com/
datasets/gustavomodelli/monthly-salary- of-public-worker-in-brazil, 2020.
KAGGLE. Ontario public sector salary 2019. https://www.kaggle.com/datasets/
rajacsp/ontario, 2020.

KamaTH, G, L1, J., SINGHAL, V., AND ULLMAN, J. Privately learning high-
dimensional distributions. In Conference on Learning Theory (2019), PMLR,
pp. 1853-1902.

KaMATH, G., SINGHAL, V., AND ULLMAN, J. Private mean estimation of heavy-tailed
distributions. In Conference on Learning Theory (2020), PMLR, pp. 2204-2235.
KamATH, G., AND ULLMAN, J. A primer on private statistics. arXiv preprint
arXiv:2005.00010 (2020).

McMaAHAN, H. B, RAMAGE, D., TALWAR, K., AND ZHANG, L. Learning differentially
private recurrent language models. arXiv preprint arXiv:1710.06963 (2017).
MCcSHERRY, F. D. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data (2009), pp. 19-30.

Pass, G., CHOWDHURY, A., AND TORGESON, C. A picture of search. In Proceedings
of the 1st international conference on Scalable information systems (2006).
PicHAPATI, V., SURESH, A. T, Yu, F. X, REDDL, S. J., AND KUMAR, S. Adaclip:
Adaptive clipping for private sgd. arXiv preprint arXiv:1908.07643 (2019).
ScHAAL, D. Expedia ceo’s total compensation pegged at $296 million for
2021. https://skift.com/blog/expedia-ceos-total-compensation-pegged-at-296-
million-for-2021, 2022.

SONG, S., CHAUDHURI, K., AND SARWATE, A. D. Stochastic gradient descent
with differentially private updates. In 2013 IEEE global conference on signal and
information processing (2013), IEEE, pp. 245-248.

STEMMER, U. Locally private k-means clustering. The Journal of Machine Learning
Research 22,1 (2021), 7964-7993.

STEMMER, U., AND KarraN, H. Differentially private k-means with constant
multiplicative error. Advances in Neural Information Processing Systems 31 (2018).
Tao, Y., HE, X., MACHANAVAJJHALA, A., AND Roy, S. Computing local sensitiv-
ities of counting queries with joins. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (2020), pp. 479-494.

VADHAN, S. The complexity of differential privacy. In Tutorials on the Foundations
of Cryptography. Springer, 2017, pp. 347-450.

Computational Issue of the Two-round
Protocal in [27]

To obtain a good clipping threshold 7 under the shuffle-DP model,
[27] applies the method from [22] to approximate Max(D). In [22],
each randomizer has a computation of O(nlog? U). Additionally,
both [27] and [22] only present their theoretical results without
any concrete implementation. Our implementation with domain
compression still resulted in a long running time, failing to give the
results within a couple of days in our experimental settings.

