
Almost Instance-optimal Clipping for Summation Problems in the
Shuffle Model of Differential Privacy

Wei Dong

Nanyang Technological University

Singapore, Singapore

wei_dong@ntu.edu.sg

Qiyao Luo

OceanBase, Ant Group

Shanghai, China

luoqiyao.lqy@antgroup.com

Giulia Fanti

Carnegie Mellon University

Pittsburgh, United States

gfanti@andrew.cmu.edu

Elaine Shi

Carnegie Mellon University

Pittsburgh, United States

runting@gmail.com

Ke Yi

Hong Kong University of Science and

Technology

Hong Kong, Hong Kong

yike@cse.ust.hk

Abstract
Differentially private mechanisms achieving worst-case optimal

error bounds (e.g., the classical Laplacemechanism) are well-studied

in the literature. However, when typical data are far from the worst

case, instance-specific error bounds—which depend on the largest

value in the dataset—are more meaningful. For example, consider

the sum estimation problem, where each user has an integer 𝑥𝑖
from the domain {0, 1, . . . ,𝑈 } and we wish to estimate

∑
𝑖 𝑥𝑖 . This

has a worst-case optimal error of 𝑂 (𝑈 /𝜀), while recent work has

shown that the clippingmechanism can achieve an instance-optimal

error of 𝑂 (max𝑖 𝑥𝑖 · log log𝑈 /𝜀). Under the shuffle model, known

instance-optimal protocols are less communication-efficient. The

clipping mechanism also works in the shuffle model, but requires

two rounds: Round one finds the clipping threshold, and round

two does the clipping and computes the noisy sum of the clipped

data. In this paper, we show how these two seemingly sequential

steps can be done simultaneously in one round using just 1 + 𝑜 (1)
messages per user, while maintaining the instance-optimal error

bound. We also extend our technique to the high-dimensional sum

estimation problem and sparse vector aggregation (a.k.a. frequency

estimation under user-level differential privacy).

CCS Concepts
• Security and privacy→ Privacy-preserving protocols.

Keywords
Differential privacy; sum estimation

ACM Reference Format:
Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi. 2024. Almost

Instance-optimal Clipping for Summation Problems in the Shuffle Model of

Differential Privacy. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.

1145/3658644.3690225

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690225

1 Introduction
The shuffle model [10, 12, 20] of differential privacy (DP) is widely-

studied in the context of DP computation over distributed data.

The model has 3 steps: (1) Each client uses a randomizer R(·) to
privatize their data. (2) A trusted shuffler randomly permutes the

inputs from each client and passes them to an untrusted analyzer,

which (3) conducts further analysis. Unlike the central model of DP,
where a trusted curator has access to all the data, the shuffle model

provides stronger privacy protection by removing the dependency

on a trusted curator. Unlike the local model, where clients send

noisy results to the analyzer directly, the addition of the trusted

shuffler allows for a significantly improved privacy-accuracy trade-

off. For problems like bit counting, shuffle-DP achieves an error of

𝑂 (1/𝜀) with constant probability
1
[23], matching the best error of

central-DP, while the smallest error achievable under local-DP is

𝑂 (
√
𝑛/𝜀) [11, 13].

The summation problem, a fundamental problem with applica-

tions in statistics [9, 27, 33], data analytics [15, 44], and machine

learning such as the training of deep learning models [1, 2, 8, 41]

and clustering algorithms [42, 43], has been studied in many works

under the shuffle model [6, 7, 12, 24–26]. In this problem, each

user 𝑖 ∈ [𝑛] := {1, . . . , 𝑛} holds an integer 𝑥𝑖 ∈ {0, 1, . . . ,𝑈 } and
the goal is to estimate Sum(𝐷) := ∑

𝑖 𝑥𝑖 , where 𝐷 = (𝑥1, . . . , 𝑥𝑛).
All of these works for sum estimation under shuffle-DP focus on

achieving an error of 𝑂 (𝑈 /𝜀). Such an error can be easily achieved

under central-DP, where the curator releases the true sum after

masking it with a Laplace noise of scale 𝑈 /𝜀. In the shuffle-DP

model, besides error, another criterion that should be considered

is the communication cost. The recent shuffle-DP summation pro-

tocol of [24] both matches the error of central-DP and achieves

optimal communication. More precisely, it achieves an error that is

just 1 + 𝑜 (1) times that of the Laplace mechanism, while each user

just sends in expectation 1 + 𝑜 (1) messages, each of a logarithmic

number of bits.

However, in real applications (as well as in [24]), 𝑈 must be set

independently of the dataset; to account for all possible datasets,

it should be conservatively large. For instance, if we only know

that the 𝑥𝑖 ’s are 32-bit integers, then 𝑈 = 2
32 − 1. Then the error

1
In Section 1, all stated error guarantees hold with constant probability. We will make

the dependency on the failure probability 𝛽 more explicit in later sections.

1939

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

Mechanism Error Average messages sent by each user

1-D

Sum

Prior

work

[24] 𝑂
(
𝑈 /𝜀

)
1 + 𝑜 (1)

[7] 𝑂
(
𝑈 /𝜀

)
𝑂 (1)

[27] + [24] + [22]

𝑂̃
(
Max(𝐷) · log3.5𝑈√︁

log(1/𝛿)/𝜀
) Round 1: 𝑂̃

(
log

6𝑈 · log
(
1/𝛿

)
/𝜀
)

Round 2: 1 + 𝑜 (1)

Our

result

Theorem

𝑂
(
Max(𝐷) · log log𝑈 /𝜀

)
1 + 𝑜 (1)

5.1

Best result under

𝑂
(
Max(𝐷) · log log𝑈 /𝜀

)
central model [18]

𝑑-D

Sum

Prior

work

[27] 𝑂̃
(
𝑈ℓ2

√︁
𝑑 log(𝑛) log(1/𝛿)/𝜀

)
𝑑 + 𝑂̃ (𝑑1.5 log1.5 (1/𝛿)/(𝜀

√
𝑛)
)

[27] + [24] +[22]

𝑂̃
(
Maxℓ2 (𝐷) ·

(√︁
𝑑 log(𝑛𝑑) log(1/𝛿)

+ log3.5𝑈ℓ2 ·
√︁
log(1/𝛿)

)
/𝜀
) Round 1: 𝑂̃

(
log

6𝑈ℓ2 · log(1/𝛿)/𝜀
)

Round 2: 𝑑 + 𝑂̃ (𝑑1.5 log1.5 (1/𝛿)/(𝜀
√
𝑛)
)

Our

result

Theorem

6.2

𝑂
(
Maxℓ2 (𝐷) · log(𝑑 log𝑈ℓ2)
·
√︁
𝑑 log(𝑛𝑑) log(1/𝛿)/𝜀

) 𝑑 + 𝑂̃ (𝑑1.5 log1.5 (1/𝛿)/(𝜀
√
𝑛)
)

Best result under

central model [17]

𝑂
(
Maxℓ2 (𝐷) ·

(√︁
𝑑 log(1/𝛿)

+ log log𝑈ℓ2

)
/𝜀
)

Sparse

Vector

Aggregation

Our

result

Theorem

𝑂̃ (Maxℓ2 (𝐷) · log𝑑
√︁
log(1/𝛿)/𝜀) ∥𝑥𝑖 ∥1 + 1 +𝑂 (𝑑1.5 log𝑑 log1.5 (1/𝛿)/(𝜀𝑛))

7.1

Best result under

central model [17]

𝑂
(
Maxℓ2 (𝐷) ·

(√︁
log(1/𝛿)

+ log log𝑈ℓ2

)
/𝜀
)

Table 1: Comparison between our results and prior works on sum estimation, high-dimensional sum estimation, and sparse
vector aggregation under shuffle model, where we use the absolute error, ℓ2 error, and ℓ∞ error as the error metrics. Each
message contains 𝑂 (log𝑈 + log𝑑 + log𝑛) bits. The mechanism without an indicator for the round runs in a single round. Our
communication cost for 1-D Sum requires the condition 𝑛 = 𝜔 (log2𝑈).

of 𝑂 (𝑈 /𝜀) could dwarf the true sum for most datasets. Notice that

sometimes some prior knowledge is available, and then a smaller

𝑈 could be used. For example, if we know that the 𝑥𝑖 ’s are people’s

incomes, then we may set 𝑈 as that of the richest person in the

world. Such a 𝑈 is still too large for most datasets as such a rich

person seldom appears in most datasets.

Instance-Awareness. The earlier error bound of 𝑂 (𝑈 /𝜀) can
be shown to be optimal, but only in the worst case. When typical

input data are much smaller than𝑈 , an instance-specific mechanism

(and error bound) can be obtained—i.e., a mechanism whose error

depends on the largest element of the dataset. In the example of

incomes above, an instance-aware mechanism would achieve an

error proportional to the actual maximum income in the dataset.

This insight has recently been explored under the central model of

DP [4, 15, 21, 27, 36, 39].

A widely used technique for achieving instance-specific error

bounds under central-DP is the clipping mechanism [4, 27, 36, 39].

For some 𝜏 , each 𝑥𝑖 is clipped to Clip(𝑥𝑖 , 𝜏) := min(𝑥𝑖 , 𝜏). Then we

compute the sum ofClip(𝐷, 𝜏) :=
(
Clip(𝑥𝑖 , 𝜏) | 𝑖 = 1, . . . , 𝑛

)
and add

a Laplace noise of scale 𝑂 (𝜏/𝜀). Note that the clipping introduces
a (negative) bias of magnitude up toMax(𝐷) · |{𝑖 ∈ [𝑛] | 𝑥𝑖 > 𝜏}|,
whereMax(𝐷) := max𝑖 𝑥𝑖 . Thus, one should choose a good clipping

threshold 𝜏 that balances the DP noise and bias. Importantly, this

must be done in a DP fashion, and this is where all past investiga-

tions on the clipping mechanism have been devoted. In the central

model, the best error bound achievable is 𝑂
(
Max(𝐷) · log log𝑈 /𝜀

)
[18].

2
For the real summation problem, such an error bound is con-

sidered (nearly) instance-optimal, since any DP mechanism has to

incur an error of Ω(Max(𝐷)) on either 𝐷 or 𝐷 − {Max(𝐷)} [45].
The factor of log log𝑈 /𝜀 is known as the “optimality ratio”. It has

been shown that the optimality ratio𝑂 (log log𝑈 /𝜀) is the best pos-
sible in the case of 𝛿 = 0 (𝛿 is a privacy parameter, see Section 3.1

2
[18] achieves an error of 𝑂 (Max(𝐷) log log(Max(𝐷))) rather than the cited

𝑂 (Max(𝐷) log log𝑈)) . The log log(Max(𝐷)) result is more meaningful for the

unbounded domain setting where𝑈 = ∞, but in the shuffle-DP model, there is cur-

rently no known method can handle the unbounded domain case for any problem,

including sum estimation. Our proposed mechanism also only supports the bounded

domain case. Therefore, for simplicity, we ignored this minor difference and just cited

the log log𝑈 result.

1940

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

for more details) [18]. Under the case of 𝛿 > 0, it is still an open

question whether that ratio is optimal or not. Notably, in the lit-

erature [5, 15, 27], a polylog optimality ratio is often considered

satisfactory enough and is named as “instance-optimal” and so far

no known DP mechanism has a better optimality ratio.

As suggested in [27], the clipping mechanism can be easily im-

plemented in the shuffle model as well, but requiring two rounds.

The first round finds 𝜏 . Then we broadcast 𝜏 to all users. In the

second round, we invoke a summation protocol, e.g., the one in

[24], on Clip(𝐷, 𝜏). Two-round protocols are generally undesirable,

not only because of the extra latency and coordination overhead,

but also because they leak some information to the users (𝜏 in this

case, which is an approximation of Max(𝐷)). Note that the shuffle

model, in its strict definition, only allows one-way messages from

users to the analyzer (through the shuffler), so the users should

learn nothing from each other. Moreover, the central-DP mecha-

nism for finding the optimal 𝜏 [18] does not work in the shuffle

model. Instead, [27] uses the complicated range-counting protocol

of [22]. This results in a sum estimation protocol that runs in two

rounds, having an error of 𝑂̃ (Max(𝐷) · log3.5𝑈
√︁
log(1/𝛿))3, and

sends 𝑂̃
(
log

6𝑈 log(1/𝛿)/𝜀
)
messages per user. Thus, this protocol

is of only theoretical interest; indeed, no experimental results are

provided in [27].

Problem Statement. Does there exist a practical, single-round
protocol for sum estimation under shuffle-DP that simultaneously:

(1) matches the optimal central-DP error of𝑂 (Max(𝐷) ·log log𝑈 /𝜀),
and (2) requires 1 + 𝑜 (1) messages per user?

1.1 Our results
We answer this question in the affirmative, by presenting a new

single-round shuffle-DP clipping protocol for the sum estimation

problem. At the core of our protocol is a technique that finds the

optimal 𝜏 and computes the noisy clipped sum using 𝜏 at the same

time. This appears impossible, as the second step relies on the in-

formation obtained from the first. Our idea is to divide the data

into a set of disjoint parts and do the estimations for each part

independently. This ensures we only pay the privacy and commu-

nication cost of one since each element will only be involved in

one estimation. Based on these estimations, we can compute the

noisy clipped sums for all the clipping thresholds 𝜏 = 1, 2, 4, . . . ,𝑈 .

Meanwhile, we show that these noisy estimations already contain

enough information to allow us to decide which 𝜏 is the best. Be-

sides solving sum aggregation, we show that using this protocol

as a building block or deriving a variant of this idea can achieve

state-of-the-art privacy-utility-communication tradeoffs for two

other important summation problems.

1.1.1 Contributions. Our contributions are threefold, summarized

in Table 1 and below:

(1) Sum estimation. For the vanilla sum estimation problem
4
,

we present a single-round protocol (Section 4 and 5) that achieves

3
For any function 𝑓 , 𝑂̃ (𝑓) := 𝑓 · polylog(𝑓) .

4
Note that although we focus on the integer domain {0, . . . ,𝑈 }, our protocol easily
extends to the real summation problem, where each value 𝑥𝑖 is a real number from

[0, 1], by discretizing [0, 1] into𝑈 buckets of width 1/𝑈 . This incurs an extra additive

error of𝑂 (𝑛/𝑈) . Thanks to the double logarithmic dependency on𝑈 , we could set𝑈

sufficiently large (e.g.,𝑈 = 𝑛log𝑛
) to make this additive error negligible while keeping

the𝑂 (Max(𝐷) · log log𝑛/𝜀) error bound.

the optimal error of 𝑂 (Max(𝐷) · log log𝑈 /𝜀), which improves the

error rate of 𝑂 (𝑈 /𝜀) from [24] exponentially in 𝑈 . More impor-

tantly, we have 1 + 𝑜 (1) messages per client when 𝑛 = 𝜔 (log2𝑈)
(see Theorem 5.1 for more details), a criterion typically met in most

common regimes.

(2) High-dimensional sum estimation. Next, we consider

the sum estimation problem in high dimensions, which has been

extensively studied in the machine learning literature under central

DP [9, 27, 33]. Here, each 𝑥𝑖 is a vector with integer coordinates

taken from the 𝑑-dimensional ball of radius 𝑈ℓ2 centered at the

origin, and we wish to estimate Sum(𝐷) with small ℓ2 error.

The literature for this problem exhibits similar patterns to the 1D

summation problem. Under central-DP, the state-of-the-art mech-

anism achieves an error proportional to

√
𝑑 · Maxℓ2 (𝐷), where

Maxℓ2 (𝐷) := max𝑖 ∥𝑥𝑖 ∥2 [17]. Generalizing the argument in the 1D

case,Maxℓ2 (𝐷) is an instance-specific lower bound for𝑑-dimensional

sum estimation, and the factor

√
𝑑 is also optimal [27]. For shuffle-

DP, [27] presented a one-round protocol achieving an error propor-

tional to

√
𝑑 ·𝑈ℓ2 (i.e., not instance-specific) with𝑑+𝑂̃ (𝑑1.5 log1.5 (1/𝛿)

/(𝜀
√
𝑛)
)
message complexity. [27] observed that a two-round clip-

ping mechanism can be used to achieve an instance-specific error,

but as in the 1D case, this incurs high polylogarithmic factors in

both the optimality ratio and the message complexity.

In Section 6, we propose our single-round protocol for high-

dimensional summation by treating our 1D summation protocol as

a black box: we first do a rotation over the space, and invoke our 1D

protocol in each dimension. This approach has the same instance-

optimal error as the central-DP up to polylogarithmic factors, and

achieves the same message complexity as the existing worst-case

error protocol.

(3) Sparse vector aggregation. As the third application of

our technique, we study the sparse vector aggregation problem.

This problem is the same as the high-dimensional sum estimation

problem, except that (1) each 𝑥𝑖 is now a binary vector in {0, 1}𝑑 ,
(2) the 𝑥𝑖 ’s are sparse, i.e., ∥𝑥𝑖 ∥1 = ∥𝑥𝑖 ∥2

2
≪ 𝑑 , and (3) we aim at an

ℓ∞ error. This problem is also known as the frequency estimation
problem under user-level DP, where each user contributes a set of

elements from [𝑑], and we wish to estimate the frequency of each

element. For this problem, people are more interested in the ℓ∞
error since we would like each frequency estimate to be accurate.

Under central-DP, the state-of-the-art algorithm already achieves

ℓ∞ error with Maxℓ2 (𝐷) [17]. Under shuffle-DP, there is no known

prior work on this problem. Our high-dimensional sum estimation

protocol can solve the problem, but it does not yield a good ℓ∞ error

and incurs a message complexity of at least 𝑑 per user, even if the

user has only a few elements.

In Section 7, we present our one-round sparse vector aggregation

protocol. This protocol can be regarded as a variant of our 1D sum

protocol, where we divide the data per its sparsity. This has error

of Maxℓ2 (𝐷), and sends ∥𝑥𝑖 ∥1 + 1 +𝑂 (𝑑1.5 log𝑑 log1.5 (1/𝛿)/(𝜀𝑛))
messages for user 𝑖 . Note that this ℓ∞ error implies an ℓ2 error

that is

√
𝑑 times larger (but not vice versa), so it also matches

the high-dimensional sum estimation protocol in terms of ℓ2 error.

Furthermore, it exploits the sparsity of each 𝑥𝑖 in the message

complexity. It remains an interesting open problem if the extra

𝑂 (𝑑1.5 log𝑑 log1.5 (1/𝛿)/(𝜀𝑛)) term can be reduced.

1941

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

2 Related Work
For sum estimation under central-DP, the worst-case optimal error

𝑂 (𝑈 /𝜀) can be easily achieved by the Laplace mechanism. Many

papers have studied how to obtain instance-specific error, i.e., an

error depending onMax(𝐷) [4, 5, 14, 15, 18, 21, 27, 36, 39]. Most of

these works rely on the clipping mechanism [4, 5, 14, 15, 18, 27, 36,

39]. Similarly, for the high-dimensional sum aggregation problem,

existing approaches have achieved instance-specific error by using

the clipping mechanism [9, 17, 27, 33, 34]; such mechanisms also

yield an ℓ∞ error of Maxℓ2 (𝐷) for sparse vector aggregation.
In the shuffle-DP setting, for sum estimation, two settings are

used. In the single-message setting, each user sends one message.

Here, [6] achieve an error of𝑂 (𝑈𝑛1/6) and further show that this is

worst-case optimal. In themulti-message setting, where each user is

allowed to send multiple messages, most prior works try to achieve

the worst-case optimal error while minimizing communication

costs. Cheu et al. [12] first achieved an error of 𝑂 (𝑈
√︁
log(1/𝛿)/𝜀)

with 𝑂 (
√
𝑛) messages sent per user. Then, [26] achieved the same

error but reduced the number of messages per user to 𝑂 (log(𝑛)).
[25] and [7] further improved the error to 𝑂 (𝑈 /𝜀) with constant

messages. Recently, [24] reduced that communication to 1 + 𝑜 (1)
messages per user. We aim to obtain instance-optimal error, while

keeping the 1 + 𝑜 (1) per-client message complexity of [24].

3 Preliminaries
We use the following notation: Z is the domain of all integers, Z≥0
non-negative integers, andZ+ positive integers. Let𝐷 = (𝑥1, 𝑥2, . . . ,
𝑥𝑛), where user 𝑖 holds an integer 𝑥𝑖 from {0} ∪ [𝑈]. For simplic-

ity, we assume that 𝑈 is a power of 2. We would like to estimate

Sum(𝐷) = ∑
𝑖 𝑥𝑖 . For brevity, we often interpret𝐷 as a multiset, and

𝐷 ∩ [𝑎, 𝑏] denotes the multiset of elements of 𝐷 that fall into [𝑎, 𝑏].
We introduce two auxiliary functions: Count(𝐷) is the cardinality
of 𝐷 (duplicates are counted); Max(𝐷,𝑘) is the 𝑘th largest value of

𝐷 , or more precisely,

Max(𝐷,𝑘) := max

{
𝑡 : Count(𝐷 ∩ [𝑡,𝑈]) ≥ 𝑘

}
.

3.1 Differential Privacy
Definition 1 (Differential privacy). For 𝜀, 𝛿 > 0, an algorithmM :

X𝑛 → Y is (𝜀, 𝛿)-differentially private (DP) if for any neighboring
instances 𝐷 ∼ 𝐷′ (i.e., 𝐷 and 𝐷′ differ by a single element),M(𝐷)
andM(𝐷′) are (𝜀, 𝛿)-indistinguishable, i.e., for any subset of outputs
𝑌 ⊆ Y,

Pr[M(𝐷) ∈ 𝑌] ≤ 𝑒𝜀 · Pr[M(𝐷′) ∈ 𝑌] + 𝛿.

The privacy parameter 𝜀 is typically between 0.1 and 10, while 𝛿

should be much smaller than 1/𝑛.
All DP models can be captured by the definition above by ap-

propriately definingM(𝐷). In central-DP,M(𝐷) is just the out-
put of data curator; in local-DP, the local randomizer R : X →
Z outputs a message in Z, and M(𝐷) is defined as the vector(
R(𝑥1),R(𝑥2), . . . ,R(𝑥𝑛)

)
; in shuffle-DP, R : X → NZ outputs

a multiset of messages andM(𝐷) is the (multiset) union of the

R(𝑥𝑖)’s.
DP enjoys the following properties regardless of the specific

model:

Lemma 3.1 (Post Processing [19]). IfM satisfies (𝜀, 𝛿)-DP andM′
is any randomized mechanism, thenM′ (M(𝐷)) satisfies (𝜀, 𝛿)-DP.

Lemma 3.2 (Sequential Composition [19]). IfM is a (possibly adap-
tive) composition of differentially private mechanismsM1, . . . ,M𝑘 ,
where eachM𝑖 satisfies (𝜀, 𝛿)-DP, thenM satisfies (𝜀′, 𝛿 ′)-DP, where

(1) 𝜀′ = 𝑘𝜀 and 𝛿 ′ = 𝑘𝛿 ; [Basic Composition]

(2) 𝜀′ = 𝜀

√︃
2𝑘 log 1

𝛿 ′′ + 𝑘𝜀 (𝑒
𝜀 − 1) and 𝛿 ′ = 𝑘𝛿 + 𝛿 ′′ for any

𝛿 ′′ > 0. [Advanced Composition]

Lemma 3.3 (Parallel Composition [37]). Let X1, . . . ,X𝑘 each be
a subdomain of X that are pairwise disjoint, and let each M𝑖 :

X𝑛
𝑖
→ Y be an (𝜀, 𝛿)-DP mechanism. ThenM(𝐷) := (M1 (𝐷 ∩

X1), . . . ,M𝑘 (𝐷 ∩ X𝑘)) also satisfies (𝜀, 𝛿)-DP.

3.2 Sum Estimation in Central-DP
In central-DP, one of the most widely used DP mechanisms is the

Laplace mechanism:

Lemma3.4 (LaplaceMechanism). Given any query𝑄 : {0, 1, . . . ,𝑈 }𝑛
→ R, the global sensitivity is defined as GS𝑄 = max𝐷∼𝐷 ′

��𝑄 (𝐷) −
𝑄 (𝐷′)

��. The mechanismM(𝐷) = 𝑄 (𝐷) + GS𝑄/𝜀 · Lap(1) preserves
(𝜀, 0)-DP, where Lap(1) denotes a random variable drawn from the
unit Laplace distribution.

For the sum estimation problem, GS𝑄 = 𝑈 , which means that

the Laplace mechanism yields an error of 𝑂 (𝑈 /𝜀). As mentioned

in Section 1, although such an error bound is already worst-case

optimal, it is not very meaningful when typical data are much

smaller than GS𝑄 = 𝑈 .

Clippingmechanism The clipping mechanism has been widely

used to achieve an instance-specific error bound depending on

Max(𝐷). It first finds a clipping threshold 𝜏 , and then applies the

Laplace mechanism on Clip(𝐷, 𝜏) with GS𝑄 = 𝜏 . The clipping in-

troduces a bias ofMax(𝐷) · |{𝑖 ∈ [𝑛] | 𝑥𝑖 > 𝜏}|, so it is important to

choose a 𝜏 that balances the DP noise and bias. In the central model,

the best result is [18], which finds a 𝜏 betweenMax(𝐷, log log𝑈 /𝜀)
and 2 ·Max(𝐷). Plugging this 𝜏 into the clipping mechanism yields

an error of 𝑂
(
Max(𝐷) · log log𝑈 /𝜀

)
.

3.3 Sum Estimation in Shuffle-DP
In shuffle-DP, the state-of-the-art protocol for sum estimation is

proposed by Ghazi et al. [24] and achieves an error that is 1 + 𝑜 (1)
times that of the Laplace mechanism and each user sends 1 + 𝑜 (1)
messages in expectation. Both are optimal (in the worst-case sense)

up to lower-order terms. We briefly describe their protocol below

as it will also be used in our protocols.

Each user 𝑖 first sends 𝑥𝑖 if it is non-zero. To ensure privacy,

users additionally send noises drawn from {−𝑈 , . . . ,𝑈 } − {0} based
on an ingeniously designed distribution P, such that most noises

cancel out while the remaining noises add up to a random variable

drawn from the discrete Laplace distribution
5
with scale (1 − 𝜆)𝜀

for some parameter 𝜆. The cancelled out noises are meant to flood

the messages containing the true data 𝑥𝑖 so as to ensure (𝜆𝜀, 𝛿)-DP.
Thus, the entire protocol satisfies (𝜀, 𝛿)-DP.
5
The Discrete Laplace distribution with scale 𝑠 has a probability mass function

1−𝑒−1/𝑠
1+𝑒−1/𝑠

· 𝑒−|𝑘 |/𝑠 for each 𝑘 ∈ Z.

1942

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 1: Randomizer of BaseSumDP [24].

Input: 𝑥𝑖 , 𝜀, 𝛿 , 𝑛,𝑈 , 𝜆, 𝜁

1 𝑈 ′, 𝑥 ′
𝑖
← 𝑈 , 𝑥,;

2 if 𝑈 >
√︁
𝑛/𝜁 then

/* Randomized rounding of 𝑥𝑖 */

3 𝐵 ←
⌈
𝑈 /(

√︁
𝑛/𝜁)

⌉
;

4 𝑈 ′ ←
√
𝑛;

5 𝑝 ←
⌈
𝑥𝑖/𝐵

⌉
− 𝑥𝑖/𝐵;

6 𝑥 ′
𝑖
←

{⌈
𝑥𝑖/𝐵

⌉
with probability 𝑝⌈

𝑥𝑖/𝐵
⌉
− 1 with probability 1 − 𝑝

;

7 𝑆𝑖 ← {};
8 if 𝑥 ′

𝑖
≠ 0 then

9 Add 𝑥 ′
𝑖
into 𝑆𝑖 ;

10 end
/* Sample a vector from P */

11 (𝑧−𝑈 ′ , . . . , 𝑧−1, 𝑧1, . . . , 𝑧𝑈 ′) ∼ P(𝜀, 𝛿, 𝑛, 𝜆,𝑈 ′);
12 for 𝑗 ← −𝑈 ′,−𝑈 ′ + 1, . . . ,−1, 1, . . . ,𝑈 ′ − 1,𝑈 ′ do
13 Add 𝑧 𝑗 copies of 𝑗 into 𝑆𝑖 ;

14 end
15 Send 𝑆𝑖 ;

Algorithm 2: Analyzer of BaseSumDP [24].

Input: 𝑅 = ∪𝑖𝑆𝑖 with 𝑆𝑖 from user 𝑖 , 𝜀, 𝛿 , 𝑛,𝑈 , 𝜆, 𝜁

1 S̃um(𝐷) ← ∑
𝑦∈𝑅 𝑦;

2 if 𝑈 >
√
𝑛 then

3 𝐵 ←
⌈
𝑈 /(

√︁
𝑛/𝜁)

⌉
;

4 S̃um(𝐷) ← S̃um(𝐷) · 𝐵;
5 return S̃um(𝐷);

For a large 𝑈 , their protocol should be applied after reducing

the domain size to

√︁
𝑛/𝜁 for some 𝜁 = 𝑜 (1). More precisely, we

first randomly round each 𝑥𝑖 to a multiple of
𝑈√
𝑛/𝜁

. This intro-

duces an additional error of 𝑂
(√︁

𝜁𝑈
)
, which is a lower-order term

in the error bound. Meanwhile, it reduces the noise messages to

𝑂
(
log

2 𝑛 log(1/𝛿)/(𝜀𝜆
√︁
𝜁𝑛)

)
= 𝑜 (1). The detailed randomizer and

analyzer are given in Algorithm 1 and 2. The analyzer obviously

runs in𝑂 (𝑛) time, and they show how to implement the randomizer

in time 𝑂
(
min(𝑈 ,

√
𝑛)
)
. The following lemma summarizes their

protocol:

Lemma 3.5. Given any 𝜀 > 0, 𝛿 > 0, 𝑛, 𝑈 , any 𝜆 and any 𝜁 ,
BaseSumDP solves the sum estimation problem under shuffle-DP
with the following guarantees:

(1) The messages received by the analyzer satisfy (𝜀, 𝛿)-DP;
(2) With probability at least 1 − 𝛽 , the error is bounded by (𝜁 +

1

𝜀 (1−𝜆)) ·𝑈 ln(2/𝛽);
(3) In expectation, each user sends

I(𝑥𝑖 ≠ 0) +𝑂
(
log

2 𝑛 log(1/𝛿)
𝜀𝜆
√︁
𝜁𝑛

)
messages with each containing 𝑂

(
min

(
log𝑛, log𝑈

))
bits.

Remark: Setting 𝜆, 𝜁 = 𝑜 (1) yields an error of 1 + 𝑜 (1) error and
1 + 𝑜 (1) messages. In this paper, we will invoke BaseSumDP with

𝜆 = 0.1 and 𝜁 = min(0.1, 0.1𝜀). With this setting, the error bound is

1.3 ·𝑈 ln(2/𝛽)/𝜀 and the message complexity is still 1 + 𝑜 (1).
Combining the clipping techniquewithBaseSumDP immediately

leads to a two-round protocol in shuffle-DP: In round one, we find 𝜏 ;

in round two, we invoke BaseSumDP on Clip(𝐷, 𝜏). This approach
was suggested in [27]. However, since the optimal central-model

𝜏-finding algorithm [18] cannot be used in the shuffle model, [27]

instead used the complicated range-counting protocol of [22] to

find a 𝜏 such that

Max(𝐷,𝑘) ≤ 𝜏 ≤ Max(𝐷) (1)

for some 𝑘 = 𝑂̃
(
log

3.5𝑈
√︁
log(1/𝛿)/𝜀

)
. Plugging this 𝜏 into the

clipping mechanism yields an error of𝑂 (Max(𝐷) ·𝑘). The message

complexity of their protocol is 𝑂̃
(
log

6𝑈 log(1/𝛿)/𝜀
)
, dominated

by the range-counting protocol [22].

4 A Straw-man One-Round Protocol
We first present a simple one-round shuffle-DP protocol for the

sum estimation problem. Although it does not achieve either the

desired error or communication rates from Section 1, it provides a

foundation for our final solution.

4.1 Domain Compression
Our first observation is it is not necessary to consider all possible 𝜏 ∈
{0} ∪ [𝑈]. Instead, we only need to consider 𝜏 ∈ {0, 1, 2, 4, . . . ,𝑈 }.
Specifically, we map the dataset 𝐷 to

6

𝐷 =

{⌈
log(𝑥1)

⌉
,
⌈
log(𝑥2)

⌉
, . . . ,

⌈
log(𝑥𝑛)

⌉}
.

Note that this compresses the domain from {0} ∪ [𝑈] to {−1, 0} ∪
[log𝑈]. After compressing the domain size from𝑈 + 1 to log𝑈 + 2,
running the round-one protocol of [27] on 𝐷 can now find a 𝜏 such

that

Max(𝐷,𝑘) ≤ 𝜏 ≤ Max(𝐷), (2)

for some 𝑘 = 𝑂̃
(
(log log𝑈)3.5

√︁
log(1/𝛿)/𝜀

)
.

In the second round, we use 𝜏 = 2
𝜏
as the clipping threshold and

invoke BaseSumDP on𝐷 . Note that we always have 𝜏 ≤ 2 ·Max(𝐷).
Furthermore, 𝐷 contains at most 𝑘 elements that are strictly larger

than 𝜏 , so the clipping mechanism yields an error of𝑂 (Max(𝐷) ·𝑘).
In addition to reducing the error, domain compression also re-

duces the message complexity of the first round from 𝑂̃ ((log𝑈)6
log(1/𝛿)/𝜖) to 𝑂̃ ((log log𝑈)6 log(1/𝛿)/𝜀). The message complex-

ity of the second round is the same as that of BaseSumDP, i.e.,

1 + 𝑜 (1).

4.2 Try All Possible 𝜏
The domain compression technique narrows down the possible

values for 𝜏 to just log𝑈 + 2. This allows us to try all possible

𝜏 simultaneously. We can run log𝑈 + 2 instances of BaseSumDP,

each with a different 𝜏 = 0, 1, 2, 4, . . . ,𝑈 . That is, each client 𝑥𝑖
runs BaseSumDP log𝑈 + 2 times, each time clipping its data 𝑥𝑖
with a different threshold before the randomizer protocol, and the

analyzer computes log𝑈 + 2 different sums, one for each threshold.

6
All log have base 2. Specially, define log(0) := −1 and 2−1 := 0.

1943

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

1 ×30 2 ×30 3 ×30 5 ×20 7 ×20 17 ×10 32 ×10 64 ×1

[1,1] [2,2]

1 ×30 2 ×30 3 ×30

[3,4] [5,8]

5 7 ×20

[9,16] [17,32] [33,64]

17 32 ×10 64 ×1

[65,128]

∅ ∅
…

𝐷:

Domain Partitioning:

Sum(D ∩ [2&'(+ 1,2&]): 30 60 90 240 0 490 64 0

2Sum(D ∩ [2&'(+ 1,2&]): 28 64 80 220 16 522 −32 200

1.3 ⋅ 2& ln(2 log𝑈 + 1)/𝛽)/𝜀 : 7 14 28 56 112 224 449 897𝜏 = 32

2Sum D = 28 + 64 + 80 + 220 + 16 + 522 = 930Sum D = 30 + 60 + 90 + 240 + 490 + 64 = 974

Figure 1: An illustration of our protocol for sum estimation. 𝑈 = 2
10, 𝜀 = 1, and 𝛽 = 0.1.

All these are done concurrently to the protocol for finding 𝜏 . Finally,

the analyzer will return the output of the BaseSumDP instance

that has been executed with the correct 𝜏 = 2
𝜏
. However, the

log𝑈 + 2 instances of BaseSumDP must split the privacy budget

using sequential composition
7
. More precisely, we run each instance

with privacy budget 𝜀/(2(log𝑈 + 2)), while reserving the other 𝜀/2
privacy budget for finding 𝜏 . Thus, the BaseSumDP instance with

clipping threshold 𝜏 must inject a DP noise of scale 𝑂 (𝜏 log𝑈 /𝜀).
The clipping still introduces a bias of 𝑂 (Max(𝐷) · 𝑘), so the total

error becomes 𝑂̃ (Max(𝐷) · (log𝑈 +
√︁
log(1/𝛿))/𝜀).

In terms of the message complexity, these𝑂 (log𝑈) BaseSumDP

instances together send 𝑂 (log𝑈) messages per user, in addition

of the 𝑂 ((log log𝑈)6 log(1/𝛿)/𝜀) messages for finding 𝜏 . So the

message complexity is now 𝑂 (log𝑈 + log(1/𝛿)/𝜀).
Simple tweaks to this straw-man solution do not give the de-

sired properties. For instance, one may compress the domain to

{0, 1, 𝑐, 𝑐2, . . . } for some 𝑐 ≥ 2. This lowers the message complexity

to𝑂 (log𝑐 𝑈 + log(1/𝛿)/𝜀) and each BaseSumDP instance has a pri-

vacy budget of 𝜀/log𝑐 𝑈 . But now 𝜏 may be as large as 𝑐 ·Max(𝐷),
so the error increases to 𝑂 (Max(𝐷) · 𝑐 log𝑐 𝑈 /𝜀). Thus, new ideas

are needed to achieve our desiderata in a one-round protocol.

5 Our Protocol
In this section, we present our single-round protocol that achieves

both optimal error and message complexity.

5.1 Domain Partitioning
We see that the 𝑂 (log𝑈) factor blowup in the error of the straw-

man solution is due to the log𝑈 + 2 BaseSumDP instances splitting

the privacy budget using sequential composition. In order to avoid

the splitting, our idea is to partition the domain and then use parallel

composition. More precisely, we partition the domain into log𝑈 + 1
disjoint sub-domains: [1, 1], [2, 2], [3, 4], [5, 8], . . . , [𝑈 /2 + 1,𝑈]. It
is clear that, for any 𝐷 , we have

Sum(𝐷) =
log𝑈∑︁
𝑗=0

Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
.

7
“Sequential composition” refers to privacy; all these instances are still executed in

parallel in one round.

Furthermore, for any 𝜏 = 1, 2, 4, . . . ,𝑈 , the clipped sum is precisely

the sum in the first log𝜏 + 1 sub-domains:

Sum

(
Clip(𝐷, 𝜏)

)
=

log𝜏∑︁
𝑗=0

Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
.

Therefore, it suffices to estimate Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
for

each 𝑗 ∈ 0, 1, . . . , log𝑈 . Importantly, since these sub-domains are

disjoint, parallel composition can be applied and we can afford a

privacy budget of 𝜀 on each sub-domain. We thus run a BaseSumDP

instance on each 𝐷 ∩ [2𝑗−1 + 1, 2𝑗], which returns an estimate

S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
:=

Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
+ Lap(2𝑗/𝜀) .

Then for any 𝜏 = 1, 2, 4, . . . ,𝑈 , we estimate Sum(Clip(𝐷, 𝜏)) as

S̃um

(
𝐷 ∩ [1, 𝜏]

)
=

log𝜏∑︁
𝑗=0

S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
.

Importantly, the total noise level in S̃um

(
𝐷 ∩ [1, 𝜏]

)
is still bounded

by𝑂 (𝜏/𝜀), as the noise levels from the sub-domains form a geomet-

ric series. This ensures that theDP noise is bounded by𝑂 (Max(𝐷)/𝜀),
as long as we choose a 𝜏 ≤ 2 ·Max(𝐷).

Meanwhile, this domain partitioning lowers the total message

complexity of all the log𝑈 + 1 BaseSumDP instances to 1 + 𝑜 (1).
This is because after domain partitioning, each user has a nonzero

input only in one sub-domain, and the BaseSumDP protocol sends

out 𝑜 (1) message when 𝑥𝑖 = 0.

5.2 Finding 𝜏 with No Extra Cost
It remains to deal with the impractical 𝜏-selection protocol used in

[27], which has amessage complexity of𝑂 ((log log𝑈)6 log(1/𝛿)/𝜀)
and finds a 𝜏 such that

Max(𝐷,𝑘) ≤ 𝜏 ≤ 2 ·Max(𝐷), (3)

for some 𝑘 = 𝑂̃
(
(log log𝑈)3.5

√︁
log(1/𝛿)/𝜀

)
. Recall that the bias

introduced by the clipping is 𝑂 (Max(𝐷) · 𝑘).
It turns out that we can find a 𝜏 that achieves the optimal 𝑘 =

𝑂 (log log𝑈 /𝜀) with no extra cost at all! To illustrate the idea, first

consider the non-private setting where we have access to the exact

values of Sum

(
𝐷∩[2𝑗−1+1, 2𝑗]

)
for each 𝑗 = 0, 1, 2, . . . , log𝑈 . Then

it is easy to see that the last 𝑗 on which Sum

(
𝐷 ∩ [2𝑗−1 +1, 2𝑗]

)
> 0

1944

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 3: Randomizer of SumDP.

Input: 𝑥𝑖 , 𝜀, 𝛿 , 𝛽 , 𝑛,𝑈
1 for 𝑗 ← 0, 1, 2, . . . , log𝑈 do

/* The messages for estimating Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
*/

2 𝑆
[2𝑗−1+1,2𝑗]
𝑖

← Randomizer

(
𝑥𝑖 · I

(
𝑥𝑖 ∈ [2𝑗−1 + 1, 2𝑗]

)
, 𝜀, 𝛿, 𝑛, 2𝑗

)
of BaseSumDP

3 end

4 Send

{
𝑆
[2𝑗−1+1,2𝑗]
𝑖

} 𝑗∈{0,1,2,...,log𝑈 } ;

Algorithm 4: Analyzer of SumDP.

Input:
{
𝑅 [2

𝑗−1+1,2𝑗] = ∪𝑖𝑆 [2
𝑗−1+1,2𝑗]

𝑖

}
𝑗∈{0,1,2,...,log𝑈 }

with 𝑆
[2𝑗−1+1,2𝑗]
𝑖

from user 𝑖 , 𝜀, 𝛿 , 𝛽 , 𝑛,𝑈

1 𝜏 ← 0;

2 for 𝑗 ← 0, 1, 2, . . . , log𝑈 do
3 S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
← ∑

𝑦∈𝑅 [2𝑗−1+1,2𝑗] 𝑦;

/* Set 𝜏 = 2
𝑗 for last 𝑗 passing the condition of (4) */

4 if S̃um
(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
> 1.3 · 2𝑗 · ln

(
2(log𝑈 + 1)/𝛽

)
/𝜀 then

5 𝜏 ← 2
𝑗
;

6 end
7 end
8 S̃um(𝐷) ← ∑

𝑗∈{0,1,2,...,log𝜏 } S̃um
(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
;

9 return S̃um(𝐷)

yields a 𝜏 = 2
𝑗
such that Max(𝐷) ≤ 𝜏 ≤ 2 · Max(𝐷), i.e., we can

achieve (3) with 𝑘 = 1. In the private setting, however, due to having

access only to the noisy estimates S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
, we may

easily overshoot: With probability at least 1/2, the last sub-domain

has S̃um

(
𝐷 ∩ [𝜏/2 − 1, 𝜏]

)
> 0 (even if it is empty), which would

set 𝜏 = 𝑈 .

To prevent this overshooting, our idea is to use a higher bar.

Instead of finding the last 𝑗 on which Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
> 0,

we change the condition to

S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
> 1.3 · 2𝑗 · ln

(
2(log𝑈 + 1)/𝛽

)
/𝜀. (4)

The RHS of (4) follows from the error bound of BaseSumDP (see

the remark after Lemma 3.5), where we replace 𝑈 with 2
𝑗
(since

the largest value in this sub-domain is 2
𝑗
) and replace 𝛽 with

𝛽/(log𝑈 + 1), so that when this sub-domain is empty, (4) happens

with probability at most 𝛽/(log𝑈 + 1). Then by a union bound,

with probability at least 1 − 𝛽 , none of the empty sub-domains

passes the condition (4). In this case, we are guaranteed to find a

𝜏 = 2
𝑗 ≤ 2 ·Max(𝐷), namely, we will not overshoot. Meanwhile,

we can also show that we will not undershoot too much, either.

More precisely, with probability at least 1 − 𝛽 , there are at most

𝑂 (log(log𝑈 /𝛽)/𝜀) elements greater than 2
𝑗
. Therefore, plugging

𝜏 = 2
𝑗
into the clipping mechanism yields the optimal central-DP

error of 𝑂 (Max(𝐷) · log(log𝑈 /𝛽)/𝜀).
To summarize, our final protocol works as follows. After do-

main partitioning, each user 𝑖 executes an instance of BaseSumDP

for every sub-domain [2𝑗−1 + 1, 2𝑗] with the input 𝑥𝑖 · I
(
𝑥𝑖 ∈

[2𝑗−1 + 1, 2𝑗]
)
and the whole privacy budget 𝜀, 𝛿 . As all the mes-

sages are shuffled together, they need to identify themselves with

which BaseSumDP instance they belong to. This just requires extra

𝑂 (log log𝑈) bits. From the perspective of the analyzer, based on

the received messages, we compute S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
for

each 𝑗 ∈ {0, 1, . . . , log𝑈 }. Then, 𝜏 is set to 2
𝑗
for the last 𝑗 passing

condition (4). Finally, we sum up all Ŝum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
for

𝑗 ≤ log𝜏 . The detailed algorithms for the randomizer and analyzer

are presented in Algorithm 3 and Algorithm 4. Besides, we give an

example to demonstrate the protocol in Figure 1.

Theorem 5.1. Given any 𝜀 > 0, 𝛿 > 0, 𝑛 ∈ Z+, and𝑈 ∈ Z+, for any
𝐷 ∈ [𝑈]𝑛 , SumDP achieves the following:

(1) The messages received by the analyzer preserves (𝜀, 𝛿)-DP;
(2) With probability at least 1 − 𝛽 , the error is bounded by

𝑂

(
Max(𝐷) · log(log𝑈 /𝛽)/𝜀

)
;

(3) In expectation, each user sends

1 +𝑂
(
log𝑈 · log2 𝑛 · log(1/𝛿)/(𝜀

√
𝑛)
)

messages with each containing 𝑂
(
min

(
log𝑛, log𝑈

))
bits.

Proof. For privacy, invoking Lemma 3.5, we have that for every

𝑗 ∈ {0, 1, 2, . . . , log𝑈 }, 𝑅 [2𝑗−1+1,2𝑗] preserves (𝜀, 𝛿)-DP. Given that

each 𝑥𝑖 only has an impact on a single 𝑅 [2
𝑗−1+1,2𝑗]

, it follows that

the collection

{
𝑅 [2

𝑗−1+1,2𝑗]}
𝑗∈0,1,2,...,log𝑈 preserves (𝜀, 𝛿)-DP.

For utility, Lemma 3.5 ensures that for any 𝑗 ∈ {0, 1, 2, . . . , log𝑈 },
with probability at least 1 − 𝛽

log𝑈 +2 , we have���S̃um(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
− Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

) ���
≤1.3 · 2𝑗 · ln

(
2(log𝑈 + 2)/𝛽

)
/𝜀. (5)

1945

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

Aggregating probabilities across all 𝑗 yields that, with probability

at least 1 − 𝛽 , (5) holds across all 𝑗 .
First, (5) implies 𝜏 will not surpass

⌈
log

(
Max(𝐷)

)⌉
:

𝜏 ≤
⌈
log

(
Max(𝐷)

)⌉
.

Combining this with (5), we have��� log(𝜏)∑︁
𝑗=0

(
S̃um

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
− Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)) ���
=𝑂

(
Max(𝐷) · log(log𝑈 /𝛽)/𝜀

)
. (6)

Meanwhile, with (5), we also have that all sub-domains over 𝜏

will not contain too many elements: for any 𝑗 > log(𝜏),

Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
≤ 2.6 · 2𝑗 · ln

(
2(log𝑈 + 2)/𝛽

)
/𝜀,

which sequentially deduces

log𝑈∑︁
𝑗=log𝜏+1

Sum

(
𝐷 ∩ [2𝑗−1 + 1, 2𝑗]

)
=𝑂

(
Max(𝐷) · log(log𝑈 /𝛽)/𝜀

)
. (7)

Finally, (6), and (7) lead to our desired statement for the utility.

The statement for communication directly follows fromLemma 3.5

and the observation that each 𝑥𝑖 uniquely corresponds to a single

interval [2𝑗−1 + 1, 2𝑗]. □

Additionally, each randomizer incurs a computational cost of

𝑂
(
log𝑈 ·min(𝑈 ,

√
𝑛)
)
and each analyzer operates with a running

time of 𝑂 (𝑛).

6 High-Dimensional Sum Estimation
In this section, we consider the high-dimensional scenario, i.e., each

𝑥𝑖 is a 𝑑-dimensional vector in Z𝑑 with ℓ2 norm bounded by some

given (potentially large) 𝑈ℓ2 . Thus, 𝐷 can also be thought of as an

𝑛 × 𝑑 matrix. LetMaxℓ2 (𝐷) := max𝑥𝑖 ∈𝐷 ∥𝑥𝑖 ∥2 be the maximum ℓ2
norm among the elements (columns) of 𝐷 . The goal is to estimate

Sum(𝐷) = ∑
𝑖 𝑥𝑖 with small ℓ2 error. For each 𝑥𝑖 ∈ Z𝑑 and any

𝑘 ∈ [𝑑], we use 𝑥𝑘
𝑖
to denote its 𝑘-th coordinate.

In the central model, the standard Gaussian mechanism achieves

an error of 𝑂
(
𝑈ℓ2

√︁
𝑑 log(1/𝛿)/𝜀

)
, which is worst-case optimal up

to logarithmic factors [35]. The best clipping mechanism for this

problem [17] achieves an error of

𝑂

(
Maxℓ2 (𝐷) ·

(√︁
𝑑 log(1/𝛿) + log log(𝑈ℓ2)

)
/𝜀
)
.

In the shuffle model, [27] presented a two-round protocol achiev-

ing a (theoretically) similar bound:

𝑂̃

(
Maxℓ2 (𝐷) ·

(√︁
𝑑 log(𝑛𝑑) log(1/𝛿)

+ log3.5𝑈ℓ2 ·
√︁
log(1/𝛿)

)
/𝜀
)
.

But similar to their 1D protocol, this algorithm is not practical

due to the log
3.5𝑈ℓ2 factor and the use of the complicated range-

counting shuffle-DP protocol of [22].

In this section, we present a simple and practical one-round

shuffle-DP protocol that achieves an error of

𝑂

(
Maxℓ2 (𝐷) ·

√︁
𝑑 log(𝑛𝑑) log(1/𝛿) · log log(𝑈ℓ2)/𝜀

)
.

6.1 Random Rotation
As in [27], we first perform a random rotation of the dataset 𝐷 , re-

sulting in 𝐷 =𝑊𝐷 . Here,𝑊 denotes a rotation matrix, constructed

as per the following lemma:

Lemma 6.1 ([3]). Let𝑊 = 𝐻𝑃 , where 𝐻 is the Hadamard matrix
and 𝑃 is a diagonal matrix whose diagonal entry is independently
and randomly sampled from {−1, +1}. Then, for any 𝑥 ∈ Z𝑑≥0, and
any 𝛽 > 0, we have

(1) 𝑊𝑥 ∈ Z𝑑 and ∥𝑊𝑥 ∥2 =
√
𝑑 ∥𝑥 ∥2

(2)

Pr
[

𝑊𝑥

∞ ≥ ∥𝑥 ∥2 ·

√︁
2 log(4𝑑/𝛽)

]
≤ 𝛽.

The first property means, matrix𝑊 performs a rotation while

preserving the integer domain, aside from scaling the vector by

a factor of

√
𝑑 . The second property ensures that the random ro-

tation spreads out the norm evenly across all dimensions. After

the rotation, [27] clips each coordinate to 𝑂 (𝑈ℓ2 log(𝑛𝑑)) and in-

vokes BaseSumDP with bounded domain size 𝑂 (𝑈ℓ2 log(𝑛𝑑)) in
each dimension. To guarantee DP, they use advanced composi-

tion to allocate each dimension with the privacy budget 𝜀′ =

𝜀/
(
2

√︁
𝑑 log(2/𝛿)

)
, 𝛿 ′ = 𝛿/(2𝑑). This approach results in an error

of 𝑂̃

(
𝑈ℓ2𝑑

√︁
log𝑛 log(1/𝛿)/𝜀

)
for the estimation of Sum

(
𝐷
)
. Upon

reorienting to the original domain with𝑊 −1, the estimation of

Sum(𝐷) has error 𝑂̃
(
𝑈ℓ2

√︁
𝑑 log𝑛 log(1/𝛿)/𝜀

)
. Note that the ran-

domness in𝑊 is only needed for the utility analysis, and does not

affect privacy, so it can be derived from public randomness.

6.2 Extending SumDP to High Dimensions
To adapt SumDP to high dimensions, one naïve approach is to use

the advanced composition to divide the privacy budget and apply

SumDP to each dimension. This will lead to an error of

𝑂̃
©­«
√√√
𝑑 log(1/𝛿) · log log𝑈ℓ2 ·

𝑑∑︁
𝑘=1

Max(𝐷 (𝑘))ª®¬ , (8)

whereMax(𝐷 (𝑘)) is the maximum value in the 𝑘 dimension of 𝐷 .

Since

√︃∑𝑑
𝑘=1

Max(𝐷 (𝑘)) can be as large as

√
𝑑 ·Maxℓ2 (𝐷), (8) has

a

√
𝑑 degradation compared with the optimal error.

To achieve our error with a dependency on

√
𝑑 , we apply a

rotation as in Lemma 6.1, and then clip each coordinate to the range

[−𝑐 · 𝑈ℓ2 log(𝑛𝑑), 𝑐 · 𝑈ℓ2 log(𝑛𝑑)] for some constant 𝑐 . One would

then apply SumDP in each dimension. However, after the rotation,

the resulting domain of 𝐷 = 𝐻𝐷 spans both positive and negative

integers. Note that SumDP only works on the non-negative integer

domain, because its utility guarantee is based on the property that,

clipping elements should only make the sum smaller, which is not

true if negative numbers are present.

1946

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 −1 −1 1 1 −1 1 1

1 1 −1 −1 1 1 1 −1

1 −1 1 −1 1 −1 −1 −1

1 1 1 1 1 1 −1 1

1 −1 −1 1 −1 1 −1 −1

1 1 −1 −1 −1 −1 −1 1

1 −1 1 −1 −1 1 1 1

1 1 1 1 −1 −1 1 −1

256

100

0

0

0

0

0

0

𝑊 𝑥!

× =

156

356

156

356

156

356

156

356

%𝑥!
𝑥̅!,#$ = 156

𝑥̅!,#% = 356

…

𝑥̅!,#& = 356

𝑥̅',#$ = 0

𝑥̅',#% = 0

…

𝑥̅',#& = 0

→

→

→

SumDP

SumDP

…

SumDP

→

→

,Sum'
$ (1𝐷)

,Sum'
% (1𝐷)

…

,Sum'
& (1𝐷)

,Sum!
$ 1𝐷 −,Sum'

$ 1𝐷

,Sum!
% 1𝐷 −,Sum'

$ 1𝐷

,Sum!
((1𝐷) −,Sum'

$ 1𝐷

,Sum!
) (1𝐷) −,Sum'

$ 1𝐷

,Sum!
* (1𝐷) −,Sum'

$ 1𝐷

,Sum!
+ (1𝐷) −,Sum'

$ 1𝐷

,Sum!
, (1𝐷) −,Sum'

$ 1𝐷

,Sum!
& (1𝐷) −,Sum'

$ 1𝐷

SumDP

SumDP

…

SumDP

→

→

→

→

→

→

→

→

→

,Sum'
$ (1𝐷)

,Sum'
% (1𝐷)

…

,Sum'
& (1𝐷)

→

→

×

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

-1/8 1/8 -1/8 1/8 -1/8 1/8 -1/8 1/8

-1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8 1/8

1/8 -1/8 -1/8 1/8 1/8 -1/8 -1/8 1/8

1/8 1/8 1/8 1/8 -1/8 -1/8 -1/8 -1/8

-1/8 1/8 -1/8 1/8 1/8 -1/8 1/8 -1/8

1/8 1/8 -1/8 -1/8 -1/8 -1/8 1/8 1/8

1/8 -1/8 -1/8 1/8 -1/8 1/8 1/8 -1/8

𝑊"#

= 'Sum(𝐷)

Randomizer Analyzer

Random Rotation Rotation Back

Figure 2: An illustration of our protocol for high-dimensional sum estimation. 𝑑 = 8.

Algorithm 5: Randomizer of HighDimSumDP.

Input: 𝑥𝑖 ∈ Z𝑑≥0, 𝜀, 𝛿 , 𝛽 , 𝑛,𝑈ℓ2 ,𝑊

1 𝑥𝑖 ←𝑊𝑥𝑖 ;

2 𝑥+,𝑖 ←
(
𝑥1+,𝑖 , 𝑥

2

+,𝑖 , . . . , 𝑥
𝑑
+,𝑖
)
with 𝑥𝑘+,𝑖 ← min

(
𝑥1
𝑖
· I(𝑥1

𝑖
> 0),𝑈ℓ2

√︁
2 log(8𝑛𝑑/𝛽)

)
for any 𝑘 ∈ [𝑑];

3 𝑥−,𝑖 ←
(
𝑥1−,𝑖 , 𝑥

2

−,𝑖 , . . . , 𝑥
𝑑
−,𝑖

)
with 𝑥𝑘−,𝑖 ← min

(
− 𝑥1

𝑖
· I(𝑥1

𝑖
< 0),𝑈ℓ2

√︁
2 log(8𝑛𝑑/𝛽)

)
for any 𝑘 ∈ [𝑑];

4 𝜀′, 𝛿 ′ ← 𝜀/
(
4

√︁
𝑑 log(2/𝛿)

)
, 𝛿/(4𝑑);

5 for 𝑘 ← 1, 2, . . . , 𝑑 do
6 𝑆𝑘+,𝑖 ← Randomizer

(
𝑥𝑘+,𝑖 , 𝜀

′, 𝛿 ′, 𝑛, 𝛽/(2𝑑),𝑈ℓ2

√︁
2 log(8𝑛𝑑/𝛽)

)
of SumDP;

7 𝑆𝑘−,𝑖 ← Randomizer

(
𝑥𝑘−,𝑖 , 𝜀

′, 𝛿 ′, 𝑛, 𝛽/(2𝑑),𝑈ℓ2

√︁
2 log(8𝑛𝑑/𝛽)

)
of SumDP;

8 end
9 Send {𝑆𝑘−,𝑖 }𝑘∈[𝑑] , {𝑆

𝑘
+,𝑖 }𝑘∈[𝑑] ;

Algorithm 6: Analyzer of HighDimSumDP.

Input: {𝑅𝑘+ = ∪𝑖𝑆𝑘+,𝑖 }𝑘∈[𝑑] and {𝑅
𝑘
− = ∪𝑖𝑆𝑘−,𝑖 }𝑘∈[𝑑] with {𝑆

𝑘
+,𝑖 }𝑘∈[𝑑] and {𝑆

𝑘
−,𝑖 }𝑘∈[𝑑] from user 𝑖 , 𝜀, 𝛿 , 𝛽 , 𝑛,𝑈ℓ2 ,𝑊

1 𝜀′, 𝛿 ′ ← 𝜀/
(
4

√︁
𝑑 log(2/𝛿)

)
, 𝛿/(4𝑑);

2 for 𝑘 ← 1, 2, . . . , 𝑑 do
3 S̃um

𝑘
+ (𝐷) ← Analyzer

(
𝑅𝑘+, 𝜀

′, 𝛿 ′, 𝛽/(2𝑑),𝑈ℓ2

√︁
2 log(8𝑛𝑑/𝛽)

)
of SumDP;

4 S̃um

𝑘
− (𝐷) ← Analyzer

(
𝑅𝑘−, 𝜀

′, 𝛿 ′, 𝛽/(2𝑑),𝑈ℓ2

√︁
2 log(8𝑛𝑑/𝛽)

)
of SumDP;

5 end

6 S̃um(𝐷) ←
(
S̃um

1

+ (𝐷) − S̃um
1

− (𝐷), S̃um
2

+ (𝐷) − S̃um
2

− (𝐷), . . . , S̃um
𝑑
+ (𝐷) − S̃um

𝑑
− (𝐷)

)
;

7 S̃um(𝐷) ←𝑊 −1S̃um(𝐷);
8 return S̃um(𝐷)

A simplistic strategy is to shift the domain from [−𝑐 ·𝑈ℓ2 log(𝑛𝑑), 𝑐 ·
𝑈ℓ2 log(𝑛𝑑)] to [0, 2𝑐 ·𝑈ℓ2 log(𝑛𝑑)], and then apply SumDP. How-

ever, this shift escalates the maximum value for each coordinate

to ≥ 𝑐 ·𝑈ℓ2 log(𝑛𝑑), potentially inducing an error proportional to

𝑈ℓ2 in the estimation of Sum(𝐷). To fix this issue, we process the
positive and negative domains separately, and then take their dif-

ference as the final estimate for Sum(𝐷). We call this algorithm

HighDimSumDP. The detailed algorithms for the randomizer and

analyzer are shown in Algorithm 5 and Algorithm 6. We also show

an example in Figure 2.

Theorem 6.2. Given any 𝜀 > 0, 𝛿 > 0, 𝑛 ∈ Z+, and𝑈 ∈ Z+, for any
𝐷 ∈ Z𝑛×𝑑 with Maxℓ2 (𝐷) ≤ 𝑈 , we have

(1) The messages received by the analyzer preserves (𝜀, 𝛿)-DP;
(2) With probability at least 1 − 𝛽 , the ℓ2 error is bounded by

𝑂

(
Maxℓ2 (𝐷) ·

√︁
𝑑 log(𝑛𝑑/𝛽) log(1/𝛿)

· log(𝑑 log(𝑈ℓ2)/𝛽)/𝜀
)
;

1947

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

(3) In expectation, each user sends

𝑑 +𝑂
(
𝑑1.5 · log(𝑈ℓ2 log(𝑛𝑑/𝛽))

· log1.5 (𝑑/𝛿) · log2 𝑛/(𝜀
√
𝑛)
)

messages with each message containing𝑂
(
log𝑑 +min

(
log𝑛,

log(𝑈ℓ2)
)
bits.

Proof. For privacy, invoking Theorem 5.1, we deduce that each

of 𝑅𝑘+ and 𝑅
𝑘
− adheres to

(
𝜀

4

√
𝑑 log(2/𝛿)

, 𝛿
4𝑑

)
-DP. By advanced com-

position, the collections of {𝑅𝑘+}𝑘 ∈ [𝑑] and {𝑅−𝑘 }𝑘∈[𝑑] maintain

(𝜀, 𝛿)-DP.
Regarding utility, Lemma 6.1 guarantees, with probability at least

1 − 2

𝛽
, for every 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑑], we have

|𝑥𝑘𝑖 | ≤ Maxℓ2 (𝐷) ·
√︁
2 log(8𝑛𝑑/𝛽), (9)

which further implies∑︁
𝑖

𝑥𝑖 =
∑︁
𝑖

𝑥+,𝑖 −
∑︁
𝑖

𝑥−,𝑖 . (10)

Subsequently, Theorem 5.1 coupled with Equation 9 implies that

for each 𝑘 ∈ [𝑑], with probability at least 1 − 𝛽

2𝑑
,���S̃um𝑘

+ (𝐷) −
∑︁
𝑖

𝑥𝑘+,𝑖

��� = 𝑂

(
Maxℓ2 (𝐷) ·

√︁
𝑑 log(1/𝛿)

·
√︁
log(𝑛𝑑/𝛽) · log(𝑑 log(𝑈ℓ2)/𝛽)/𝜀

)
(11)

and ���S̃um𝑘
− (𝐷) −

∑︁
𝑖

𝑥𝑘−,𝑖

��� = 𝑂

(
Maxℓ2 (𝐷) ·

√︁
𝑑 log(1/𝛿)

·
√︁
log(𝑛𝑑/𝛽) · log(𝑑 log(𝑈ℓ2)/𝛽)/𝜀

)
(12)

Combining the probabilities across all 𝑘 ∈ [𝑑], we have with prob-

ability at least 1 − 𝛽
2
, (11) and (12) hold for all dimensions.

By synthesizing (10), (11), and (12), we

S̃um(𝐷) − Sum(𝐷)

2

=
1

√
𝑑
·

S̃um(𝐷) − Sum(𝐷)

2

=𝑂

(
Maxℓ2 (𝐷) ·

√︁
𝑑 log(𝑛𝑑/𝛽) log(1/𝛿)

· log(𝑑 log(𝑈ℓ2)/𝛽)/𝜀
)

Finally, our assertion on communication cost derives from (9),

Theorem 5.1, along with the observation that for any 𝑖 ∈ [𝑛] and
𝑘 ∈ [𝑑], either 𝑥𝑘+,𝑖 or 𝑥

𝑘
−,𝑖 is necessarily zero. □

7 Sparse Vector Aggregation
As the last application of our technique, we study the sparse vector

aggregation problem. In this problem, each 𝑥𝑖 is a binary vector in

{0, 1}𝑑 . We use (Maxℓ2 (𝐷))2 = max𝑖 ∥𝑥𝑖 ∥1 to quantify the data’s

sparsity and are interested in the sparse case where (Maxℓ2 (𝐷))2 ≪
𝑑 . We want to estimate Sum(𝐷) with an ℓ∞ error Maxℓ2 (𝐷)/𝜀 ·
poly log(𝑑/𝛿). Meanwhile, we would like the message complexity

of each user 𝑖 to depend on ∥𝑥𝑖 ∥1, i.e., the number of 1’s in 𝑥𝑖 . Note

that the ℓ2 error in Theorem 6.2 can only imply the same ℓ∞ error,

namely, it is

√
𝑑 times larger than desired. Moreover, it requires 𝑑

messages per user.

7.1 Clipping on Sparsity
If an upper bound of sparsity 𝑆 ≥

(
Maxℓ2 (𝐷)

)
2

is given, we can

estimate the count for each coordinate independently with the

privacy budget 𝜀′ = 𝜀/
(√︁

𝑆 log(2/𝛿)
)
, 𝛿 ′ = 𝛿/(2𝑆). Given that each

𝑥𝑖 at most affects the counting for 𝑆 dimensions, with advanced

composition, this whole process preserves (𝜀, 𝛿)-DP. The state-

of-the-art protocol for counting under the shuffle-DP model is

BaseSumDP without random rounding, where the communication

is improved to 1 + (log(1/𝛿)/(𝜀𝑛)) messages per user. Feeding this

into the above protocol for sparse vector aggregation yields an error

proportional to

√
𝑆 and ∥𝑥𝑖 ∥1 + 𝑂 (𝑑1.5 log1.5/(𝜀𝑛)) messages per

user.

In the absence of a good upper bound 𝑆 , one could apply the

clipping mechanism on sparsity. Specifically, for some 𝜏 , we only

retain the first 𝜏 non-zero coordinates of each 𝑥𝑖 and set the rest

to 0. Then we apply the mechanism above with 𝑆 = 𝜏 . However, as

in the sum estimation problem, the key is to choose a good 𝜏 that

balances the DP noise and bias, and the optimal 𝜏 should achieve

an error proportional to Maxℓ2 (𝐷). More importantly, we would

like to choose 𝜏 and compute the noisy counts of all dimensions

clipped by 𝜏 simultaneously in one round.

7.2 Sparsity Partitioning
We use the idea of domain partitioning from our sum estimation

protocol. But for the sparse vector aggregation problem, we parti-

tion the domain of possible sparsity levels [𝑑] into log𝑑 + 1 disjoint
sub-domains: [1, 1], [2, 2], [3, 4], . . . , [𝑑/2 + 1, 𝑑]. Then, we divide
the vectors according to their sparsity. More precisely, for each

𝑗 ∈ {0, 1, 2, . . . , log𝑑}, let

𝐷 [2𝑗−1 + 1, 2𝑗] =
{
𝑥𝑖 ∈ 𝐷 : ∥𝑥𝑖 ∥1 ∈ [2𝑗−1 + 1, 2𝑗]

}
.

Since each vector in 𝐷 [2𝑗−1 + 1, 2𝑗] has the sparsity bounded by

2
𝑗
, we can use the idea discussed in the last section. For the error,

the estimation of Sum

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
has an ℓ∞ error bounded by

𝑂̃ (
√
2
𝑗). In terms of the communication, since each 𝑥𝑖 will only be

involved in𝐷 [2𝑗−1+1, 2𝑗], each user sends ∥𝑥𝑖 ∥1+𝑂̃ (𝑑1.5 log1.5 (1/𝛿)
/(𝜀𝑛)) messages in expectation.

Next, let us discuss how to use the estimations of Sum(𝐷 [2𝑗−1 +
1, 2𝑗]) to reconstruct Sum(𝐷). Recall that, in sum estimation, we

have the estimations for each value domain, i.e., Sum(𝐷 ∩ [2𝑗−1 +
1, 2𝑗]) find the last [2𝑗−1 + 1, 2𝑗] with a large noisy sum result.

This is to guarantee enough elements are located in the domain

[2𝑗−1+1, 2𝑗]. Unfortunately, such an idea cannot be extended to the
high-dimensional case directly. The problem is that, even though,

there are a large number of vectors with the sparsity in the range of

[2𝑗−1 + 1, 2𝑗], i.e.,
��𝐷 [2𝑗−1 + 1, 2𝑗]�� is large enough, each coordinate

of Sum

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
can still be very small since those vectors

can contribute totally different coordinates.

The solution here is that we build an extra counter for the number

of vectors with sparsity within each [2𝑗−1 +1, 2𝑗] as a judgment for

whether to include Sum

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
in the final result. More

precisely, each user first executes log𝑑 + 1 number of instances

1948

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 7: Randomizer of SparVecSumDP.

Input: 𝑥𝑖 ∈ {0, 1}𝑑 , 𝜀, 𝛿 , 𝛽 , 𝑛
1 for 𝑗 ← 0, 1, 2, . . . , log𝑑 do

/* The messages for counting vectors with sparsity between 2
𝑗−1 + 1 and 2

𝑗 */

2 𝑆
[2𝑗−1+1,2𝑗]
cnt,𝑖

← Randomizer

(
I
(
|𝑥𝑖 |1 ∈ [2𝑗−1 + 1, 2𝑗]

)
, 𝜀/2, 𝛿/2, 𝑛, 1

)
of BaseSumDP;

/* The messages for sum for vectors with sparsity between 2
𝑗−1 + 1 and 2

𝑗 */

3 𝜀′, 𝛿 ′ ← 𝜀/
(
2

√︁
2
𝑗+1

log(2/𝛿)
)
, 𝛿/(2𝑗+1);

4 for 𝑘 ← 1, 2, . . . , 𝑑 do
5 𝑆

[2𝑗−1+1,2𝑗],𝑘
sum,𝑖

← Randomizer

(
𝑥𝑘
𝑖
· I(|𝑥𝑖 |1 ∈ [2𝑗−1 + 1, 2𝑗]), 𝜀′, 𝛿 ′, 𝑛, 1

)
of BaseSumDP;

6 end
7 end

8 Send

{
𝑆
[2𝑗−1+1,2𝑗],𝑘
sum,𝑖

} 𝑗∈{0,1,2,...,log𝑑 },𝑘∈[𝑑] and
{
𝑆
[2𝑗−1+1,2𝑗]
cnt,𝑖

} 𝑗∈{0,1,2,...,log𝑑 } ;

Algorithm 8: Analyzer of SparVecSumDP.

Input:
{
𝑅
[2𝑗−1+1,2𝑗],𝑘
sum

} 𝑗∈{0,1,2,...,log𝑑 },𝑘∈[𝑑] = ∪𝑖𝑆
[2𝑗−1+1,2𝑗],𝑘
sum,𝑖

} 𝑗∈{0,1,2,...,log𝑑 },𝑘∈[𝑑] and{
𝑅
[2𝑗−1+1,2𝑗]
cnt

= ∪𝑖𝑆 [2
𝑗−1+1,2𝑗]

cnt,𝑖
} 𝑗∈{0,1,2,...,log𝑑 } , 𝜀, 𝛿 , 𝛽 , 𝑛

1 𝜏 ← 0;

2 for 𝑗 ← 0, 1, 2, . . . , log𝑑 do
3 �Count(𝐷 [2𝑗−1 + 1, 2𝑗]) ← Analyzer

(
𝑅
[2𝑗−1+1,2𝑗]
cnt

, 𝜀/2, 𝛿/2, 𝑛, 1
)
of BaseSumDP;

4 𝜀′, 𝛿 ′ ← 𝜀/
(
2

√︁
2
𝑗+1

log(2/𝛿)
)
, 𝛿/(2𝑗+1);

5 for 𝑘 ← 1, 2, . . . , 𝑑 do
6 S̃um

𝑘 (
𝐷 [2𝑗−1 + 1, 2𝑗]

)
← Analyzer

(
𝑅
[2𝑗−1+1,2𝑗],𝑘
sum

, 𝜀′, 𝛿 ′, 𝑛, 1
)
of BaseSumDP;

7 end

8 S̃um

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
←

(
S̃um

1 (
𝐷 [2𝑗−1 + 1, 2𝑗]

)
, S̃um

2 (
𝐷 [2𝑗−1 + 1, 2𝑗]

)
, . . . , S̃um

𝑑 (
𝐷 [2𝑗−1 + 1, 2𝑗]

))
;

9 if �Count(𝐷 [2𝑗−1 + 1, 2𝑗]) > 1.3 · 2𝜀 · log(2(log𝑑 + 1)/𝛽) then
10 𝜏 ← 2

𝑗
;

11 end
12 end
13 S̃um(𝐷) ← ∑

𝑗∈{0,1,2,...,log𝜏 } S̃um
(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
;

of BaseSumDP, each of which is to estimate the number of vec-

tors with sparsity within [2𝑗−1 + 1, 2𝑗] and uses privacy budget

𝜀/2 and 𝛿/2. Then, for each 𝑗 ∈ {0, 1, 2, . . . , log𝑑}, we estimate

Sum

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
, where we use one CounDP with the privacy

budget 𝜀/
(
2

√︁
2
𝑗+1

log(2/𝛿)
)
and 𝛿/(2𝑗+1) to do the sum estimation

in 𝑘th coordinate. In the view of the analyzer, with the received mes-

sages, we can easily get the estimation for Count

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
and Sum

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
for each 𝑗 ∈ {0, 1, 2, . . . , log𝑑}. We set

𝜏 = 2
𝑗
with the last 𝑗 such that Count

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
is large

enough. Finally, we sum all estimations for Sum

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
for 𝑗 ≤ log(𝜏). The detailed algorithms for the randomizer and

analyzer are shown in Algorithms 7 and 8.

Theorem 7.1. Given any 𝜀 > 0, 𝛿 > 0, 𝑛 ∈ Z+, and for any
𝐷 ∈ {0, 1}𝑛×𝑑 , the SparsVecSumDP achieves the following:

(1) The messages received by the analyzer preserves (𝜀, 𝛿)-DP;

(2) With probability at least 1 − 𝛽 , for every 𝑘 ∈ [𝑑], the ℓ∞ error
is bounded by

𝑂

((
Maxℓ2 (𝐷) ·

√︁
log(1/𝛿) + log log𝑑

)
· log(𝑑/𝛽)/𝜀

)
;

(3) In expectation, each user sends ∥𝑥𝑖 ∥1 + 1 + 𝑂
(
𝑑1.5 · log𝑑 ·

log
1.5 (1/𝛿)/(𝜀𝑛)

)
messages with each containing 𝑂 (log𝑑)

bits.

Proof. For privacy, invoking Lemma 3.5 ensures that for each

𝑗 ∈ {0, 1, 2, . . . , log(𝑑)}, 𝑅 [2
𝑗−1+2𝑗]

cnt
preserves (𝜀/2, 𝛿/2)-DP. Addi-

tionally, for each 𝑗 ∈ {0, 1, 2, . . . , log(𝑑)}, by combining Lemma 3.5

with advanced composition and the fact that each 𝑥𝑖 ∈ 𝐷 [2𝑗−1 +
1, 2𝑗] affects at most 2

𝑗
number of 𝑅

[2𝑗−1+2𝑗],𝑘
sum

, we have that,{
𝑅
[2𝑗−1+2𝑗],𝑘
sum

}
𝑘∈[𝑑] preserves (𝜀/2, 𝛿/2)-DP. Given that each 𝑥𝑖

impacts exactly one 𝑅
[2𝑗−1+2𝑗]
cnt

and one

{
𝑅
[2𝑗−1+2𝑗],𝑘
sum

}
𝑘∈[𝑑] , the

overall privacy guarantee is achieved.

1949

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

Concerning utility, Theorem 3.5 implies that for each 𝑗 ∈ {0, 1, 2,
. . . , log𝑑}, with probability at least 1 − 𝛽

2(log𝑑+1) , we have���Count([2𝑗−1 + 1, 2𝑗]) −�Count([2𝑗−1 + 1, 2𝑗]) ���
≤ 2
𝜀
· log

(
2(log𝑑 + 1)/𝛽

)
, (13)

and the difference in sums, alsowith probability at least 1− 𝛽

2(log𝑑+1) ,
is well bounded:���Sum(

[2𝑗−1 + 1, 2𝑗]
)
− S̃um

(
[2𝑗−1 + 1, 2𝑗]

) ���
∞

=𝑂

(√︃
2
𝑗
log(1/𝛿) · log(𝑑/𝛽)/𝜀

)
. (14)

Aggregating these probabilities, we ensure both (13) and (14) hold

for all 𝑗 with probability at least 1 − 𝛽 .
(13) implies that

𝑗 ≤
⌈
log

(
Maxℓ2 (𝐷)

)⌉
. (15)

and

log(𝑑)∑︁
𝑗=log𝜏+1

Count

(
𝐷 [2𝑗−1 + 1, 2𝑗]

)
=𝑂

(
log𝑑 log(log𝑑/𝛽)/𝜀

)
,

which sequentially deduces��� log(𝑑)∑︁
𝑗=log𝜏+1

Sum

(
[2𝑗−1 + 1, 2𝑗]

) ���
∞

=𝑂

(
log𝑑 log(log𝑑/𝛽)/𝜀

)
. (16)

Combining (14) and (15), we have��� log𝜏∑︁
𝑗=0

(
Sum

(
[2𝑗−1 + 1, 2𝑗]

)
− S̃um

(
[2𝑗−1 + 1, 2𝑗]

))���
∞

=𝑂

(
Maxℓ2 (𝐷) ·

√︁
log(1/𝛿) · log(𝑑/𝛽)/𝜀

)
. (17)

Finally, combining (16) and (17) leads to our statement for utility.

For communication, recall that each Baseline without random

rounding yields 1 +𝑂 (log(1/𝛿)/(𝜀𝑛)) messages per user in expec-

tation. Combing this with facts that each 𝑥𝑖 has |𝑥𝑖 |1 number of

non-zero coordinates, and there is only one [2𝑗−1 + 1, 2𝑗] such
that |𝑥𝑖 | ∈ [2𝑗−1 + 1, 2𝑗], we derive the desired statement. One

special note is that each message requires 𝑂 (log𝑑) bits to specify

the dimension. □

8 Practical Optimizations
In this section, we briefly discuss some practical optimizations for

our protocols, although they do not affect the asymptotic results.

As mentioned, for sum estimation protocol of [7] attains an

error very closely to that of [24]. Meanwhile, [7] send 𝑂 (1) mes-

sages per user while [24] sends 1 + 𝑜 (1) messages. Although the

former is asymptotically smaller, the 𝑜 (1) term, or 𝑂
(
log

2 (𝑛) ·
log(1/𝛿)/(𝜀

√
𝑛)
)
to be more precise, is actually not negligible for 𝑛

not too large. Since our mechanism uses sum estimation as a black

box, in our implementation we choose either [24] or [7] based on

the concrete values of 𝑛, 𝜀, 𝛿 .

Furthermore, recall that in SumDP, we invoke log(𝑈) + 1 in-

stances of BaselineSumDP, corresponding to different domain sizes

1, 2, 4, . . . ,𝑈 . We note that using the protocol of [24] without ran-

dom rounding yields amessage number of 1+𝑂 (𝑈 log
2 (𝑈) log(𝑈 /𝛿)

/(𝑛𝜀)), which may be better than doing a random rounding when

the domain size is small. Therefore, for different domain sizes, we

adopt different baselines: [24] with or without random rounding or

[7]. We again choose the best one based on the concrete values of

𝑛, 𝜀, 𝛿 , and domain size.

9 Experiments
In addition to the improved asymptotic results, we have also con-

ducted experiments comparing our protocols with the previous

algorithms.

Sum estimation: Our SumDP mechanism was evaluated along-

side two baselines: GKMPS [24] and BBGN [7]. The two-round

protocol from [27] is solely a theoretical result. It not only has a

large message number and errors but also has an impractical run-

ning time (detailed in Appendix A). We also compared its error to

the state-of-the-art central-DP mechanism [18] as a gold standard.

High dimensional sum: For high-dimensional sum estimation,

ourHighDimSumDPwas compared against the one-round protocol

HLY proposed in [27]. Similar to sum estimation, the two-round

protocol from [27] faced efficiency challenges, as outlined in Ap-

pendix A. For this problem, we use the central-DP mechanism in

[17] as the gold standard.

Sparse vector aggregation: For sparse vector aggregation, we
assessed SparVecSumDP against NaiveVecSumDP, which uses the

dimension 𝑑 as the upper bound for sparsity. Here, we also use the

central-DP mechanism in [17] as the gold standard.

Dataset 𝑛 𝑈 Max(𝐷)

SF-Sal 1.49 × 105 2.5 × 105 568

Ont-Sal 5.75 × 105 2.5 × 105 1750

BR-Sal 1.09 × 106 2.5 × 105 343

JP-Trad 1.81 × 105 2 × 105 2810

Table 2: Real-world datasets used in sum aggregation

9.1 Setup
Datasets. We used both synthetic and real-world datasets in the

experiments. For sum estimation, the synthetic data was generated

from two families of distributions over [𝑈] with 𝑛 = 𝑈 = 10
5
:

Zipf distribution 𝑓 (𝑥) ∝ (𝑥 + 𝑎)−𝑏 with 𝑎 = 1, 𝑏 = 3 and 𝑎 = 1,

𝑏 = 5; Gauss distribution with 𝜇 = 5, 𝜎 = 5 and 𝜇 = 50, 𝜎 = 50.

Here, we utilize the Gaussian distribution for its symmetry and the

Zipf distribution for its asymmetry and both distributions allow

for easy generation of datasets with varying skewness through

parameter adjustments. The real-world datasets were collected

from Kaggle, including San-Francisco-Salary (SF-Sal) [28], Ontario-

Salary (Ont-Sal) [32], Brazil-Salary (BR-Sal) [31], and Japan-trade

1950

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Dataset

Simulated Data Real-world Data

Zipf Gauss

SF-Sa Ont-Sa BR-Sa JP-Trad𝑎 = 1 𝑎 = 1 𝜇 = 5 𝜇 = 50

𝑏 = 3 𝑏 = 5 𝜎 = 5 𝜎 = 50

1-D

Sum

SOTA under

central-DP RE(%)

0.53 0.0247 0.00921 0.00737 0.00936 0.0028 0.0452 0.168

SumDP (Ours)

RE(%) 1.13 0.0661 0.00351 0.00452 0.00989 0.0075 0.0249 0.101
#Messages/user 140 140 139 139 143 126 119 140

GKMPS

RE(%) 54.5 96.3 22.5 3.11 2.44 0.372 9.26 9.02

#Messages/user 14200 14300 14300 14300 12200 7770 5950 11200

BBGN

RE(%) 53 76.6 17.6 1.43 1.96 0.294 3.53 4.46

#Messages/user 9 9 9 9 9 8 8 9
Table 3: Comparison among sum estimation mechanisms under shuffle-DP (𝜀 = 1). RE denotes the relative error.

103 104 105 106 107 108 109

102

104

106

108

Er
ro

r l
ev

el

Actual Result
GKMPS
SumDP

CentralDP
BBGN

103 104 105 106 107 108 109

102

104

106

108

103 104 105 106 107 108 109

101

103

105

107

109

103 104 105 106 107 108 109

n

101

102

103

104

105

#M
es

sa
ge

s /
 U

se
r

103 104 105 106 107 108 109

n

101

102

103

104

105

103 104 105 106 107 108 109

n

101

102

103

104

Figure 3: Error levels and average messages per user for the sum estimation mechanisms under shuffle-DP with different data
size 𝑛. CentralDP represents the state-of-the-art algorithm for sum estimation under central-DP.

(JP-Trad) [29]. Here, we use them to perform summing salaries and

trading amounts, which are two common data analytical tasks in

real life. Given the significant variance in salaries among different

groups, achieving instance-specific error in these tasks is crucial.

SF-Sal, BR-Sal, and Ont-Sal are salary data from San Francisco,

Brazil, and Ontario for the years 2014, 2020, and 2020, respectively,

with amounts presented in thousands of US dollars (K USD). For

the salary data, we set the domain limit𝑈 to 2.5× 105, which is the

world’s highest recorded salary [40]. The JP-Trad dataset, capturing

Japan’s trade statistics from 1988 to 2019, includes 100 million en-

tries. We selected a subset of approximately 200,000 tuples, covering

Japan’s trade activities with a designated country. We set 𝑈 as the

maximum value across the entire dataset. This dataset also has the

amounts expressed in K USD. The details of these real-world data

can be found in Table 2.

For high-dimensional sum estimation, we utilized the MNIST

dataset [30], comprising 70,000 digit images, with each represented

by a vector of dimension 𝑑 = 28 × 28 = 784. The𝑈ℓ2 parameter was

set to 2
20
.

The sparse vector aggregation experiments were conducted us-

ing the AOL-user-ct-collection (AOL) [38], documenting 500,000

users’ clicks on 1,600,000 URLs. we consolidated every 100 web-

pages into a single dimension, resulting in a dimensionality of

1.6 × 104, and selected the first 50,000 users as our testing dataset.

Experimental parameters. All experiments are conducted on a

Linux server equipped with a 24-core 48-thread 2.2GHz Intel Xeon

CPU and 256GB memory. We used absolute error, ℓ2 error, and

ℓ∞ error metrics for sum estimation, high-dimensional sum, and

sparse vector aggregation respectively. We repeated each experi-

ment 50 times, discarding the 10 largest and smallest errors for an

averaged result from the remaining 30. The message complexity

was quantified by the average number of messages per user, with

each message containing 𝑂 (log(𝑑) + log(𝑈) + log(𝑛)) bits. For the
privacy budget, we used 𝜀 = 0.2, 1, 5, and the default value was set

to 1. To protect data privacy, 𝛿 should be set to a value significantly

1951

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Wei Dong, Qiyao Luo, Giulia Fanti, Elaine Shi, and Ke Yi

smaller than the inverse of the data size. Therefore, 𝛿 was fixed at

10
−12

in our experiments.
8
The failure probability 𝛽 was set at 0.1.

9.2 Experimental Results
In this section, we discuss our experimental results for sum aggrega-

tion, where we include the experiments to investigate the influence

of different data size. The experiments to assess the impacts of do-

main size and data skewness and the results for high-dimensional

sum and sparse vector aggregation are deferred to our full-version

paper [16].

Utility and communication. Table 3 shows the errors and the

average number of messages per user across various mechanisms

for sum estimation under shuffle-DP over both simulated and real-

world data. The results indicate a clear superiority of SumDP in

terms of utility. SumDP consistently maintains an error below 2%

across all eight tests, further reducing it to below 0.2% in seven

cases. In contrast, GKMPS and BBGN exhibit significantly higher

error levels. Our improvement over GKMPS and BBGN can be up

to 3000×. This superiority is particularly evident in the JP-Trad

dataset, where SumDP surpasses GKMPS and BBGN by more than

40× even with a pre-established𝑈 based on strong prior knowledge.

This validates our theoretical analysis: SumDP achieves an instance-

specific error, unlike GKMPS and BBGN, which target worst-case

errors. Furthermore, we observe that SumDP attains error levels

similar to the gold standard, and produces even smaller errors in

about half of the cases. This is because while the two methods have

the same asymptotic error bounds, they are both upper bounds that

may not be tight (in constant factors) on all instances. Therefore,

the actual error of either mechanism could be smaller than the

other.

In terms of communication, neither SumDP norGKMPS achieves

the theoretical ideal of single-message communication per user in

all tests. In contrast, BBGN requires fewer messages. This is because

even though SumDP and GKMPS theoretically reach 1 + 𝑜 (1) mes-

sages per user, the term 𝑜 (1) masks substantial logarithmic factors,

leading to significantly higher actual message counts, especially

when 𝑛 is small. In contrast, BBGN maintains constant messages

per user. Later, we will show that as 𝑛 increases, both GKMPS and

SumDP exhibit a trend towards achieving a single-message com-

munication per user. Additionally, SumDP requires much fewer

messages than GKMPS. This is attributed to the optimization de-

scribed in Section 8, where our mechanism intelligently chooses

the more communication-efficient method between GKMPS and

BBGN.

Data size. To assess the impact of varying data sizes, we con-

ducted experiments using simulated data generated from aGaussian

distribution with 𝜇 = 1, 𝜎 = 1, and domain size𝑈 = 10
3
. The data

size varied from 10
3
to 10

9
, and we tested with different privacy

budgets 𝜀 = 0.2, 1, 5. The error levels and average messages per user

are depicted in Figure 3. Note that in all our figures, both axes are

in log-scale and the actual query results are plotted alongside the

error levels to provide a benchmark for assessing the utility of the

mechanisms. In terms of utility, SumDP consistently has a high util-

ity even with small 𝑛 and 𝜀, akin to the state-of-the-art central-DP

8
Notably, for our mechanism, a larger 𝛿 will not affect error but will benefit the

communication, albeit minimally as it affects only the logarithmic term.

mechanism. Notably, the error levels for all mechanisms did not

exhibit significant changes with varying 𝑛, matching our analytical

analyses that the errors in BBGN and GKMPS are dependent on 𝑈 ,

while the errors in SumDP and the central-DP mechanism depend

onMax(𝐷), all of which are not directly influenced by the data size.

Regarding communication, GKMPS showed a decrease in the

average messages per user with larger 𝑛 values, while BBGN main-

tained a constant message complexity. SumDP displayed a unique

trend: it maintained its message complexity for smaller 𝑛 values,

then gradually decreased it as 𝑛 increased. This pattern is attrib-

uted to SumDP initially leveraging BBGN for smaller datasets and

then transitioning to GKMPS for larger datasets. Moreover, as 𝑛

increases, both GKMPS and SumDP demonstrate a progression to-

wards single-message communication per user, aligning with our

theoretical analysis that both mechanisms achieve 1+𝑜 (1) messages

per user.

10 Conclusion
In this paper, we study answering sum estimation under the shuffle-

DP model, where prior works either only achieve worst-case op-

timal error or have very a heavy communication cost. We intro-

duce the first protocol that not only has instance-optimal error but

also achieves optimal communication efficiency, i.e., requiring only

1 + 𝑜 (1) messages per user. Furthermore, we successfully extend

our technique to address high-dimensional sum estimation and

sparse vector aggregation. Finally, we would like to mention two

interesting directions for future research. The first is how to extend

our domain division technique to private sum estimation in various

models, such as the multi-party secure computation model. Besides,

since the private summation is the foundation to private protocols

for various machine learning models, investigating its potential to

enhance utility in these advanced tasks would also be valuable.

Acknowledgements
This work has been in part supported by a grant from ONR, a

grant from the DARPA SIEVE program under a subcontract from

SRI, a Packard Fellowship, NTU-NAP start up grant, and contri-

butions from Intel, Bosch, and Cisco. Additionally, this work has

been funded by NSF awards under grant numbers 2128519, 2044679,

2338772, and 2148359. Qiyao Luo and Ke Yi have been supported

by HKRGC under grants 16205420, 16205422, and 16204223.

References
[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar,

K., and Zhang, L. Deep learning with differential privacy. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security (2016),

pp. 308–318.

[2] Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S., and McMahan, B. cpsgd:

Communication-efficient and differentially-private distributed sgd. Advances in
Neural Information Processing Systems 31 (2018).

[3] Ailon, N., and Chazelle, B. The fast johnson–lindenstrauss transform and

approximate nearest neighbors. SIAM Journal on computing 39, 1 (2009), 302–322.
[4] Andrew, G., Thakkar, O., McMahan, B., and Ramaswamy, S. Differentially

private learningwith adaptive clipping. Advances in Neural Information Processing
Systems 34 (2021), 17455–17466.

[5] Asi, H., and Duchi, J. C. Instance-optimality in differential privacy via approxi-

mate inverse sensitivity mechanisms. Advances in neural information processing
systems 33 (2020).

[6] Balle, B., Bell, J., Gascón, A., and Nissim, K. The privacy blanket of the shuffle

model. In Advances in Cryptology–CRYPTO 2019: 39th Annual International

1952

Almost Instance-optimal Clipping for Summation Problems in the Shuffle Model of Differential Privacy CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part II 39 (2019), Springer, pp. 638–667.

[7] Balle, B., Bell, J., Gascón, A., and Nissim, K. Private summation in the multi-

message shuffle model. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (2020), pp. 657–676.

[8] Bassily, R., Smith, A., and Thakurta, A. Private empirical risk minimization:

Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium
on foundations of computer science (2014), IEEE, pp. 464–473.

[9] Biswas, S., Dong, Y., Kamath, G., and Ullman, J. Coinpress: Practical private

mean and covariance estimation. Advances in Neural Information Processing
Systems 33 (2020).

[10] Bittau, A., Erlingsson, Ú., Maniatis, P., Mironov, I., Raghunathan, A., Lie,

D., Rudominer, M., Kode, U., Tinnes, J., and Seefeld, B. Prochlo: Strong privacy

for analytics in the crowd. In Proceedings of the 26th symposium on operating
systems principles (2017), pp. 441–459.

[11] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel,

S., Ramage, D., Segal, A., and Seth, K. Practical secure aggregation for privacy-

preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017), pp. 1175–1191.

[12] Cheu, A., Smith, A., Ullman, J., Zeber, D., and Zhilyaev, M. Distributed differ-

ential privacy via shuffling. In Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38 (2019),
Springer, pp. 375–403.

[13] Damgård, I., Nielsen, J. B., Ostrovsky, R., and Rosén, A. Unconditionally secure

computation with reduced interaction. In Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35
(2016), Springer, pp. 420–447.

[14] Dick, T., Kulesza, A., Sun, Z., and Suresh, A. T. Subset-based instance optimality

in private estimation. arXiv preprint arXiv:2303.01262 (2023).
[15] Dong, W., Fang, J., Yi, K., Tao, Y., and Machanavajjhala, A. R2t: Instance-

optimal truncation for differentially private query evaluation with foreign keys.

In Proceedings of the 2022 International Conference on Management of Data (2022),
pp. 759–772.

[16] Dong, W., Luo, Q., Fanti, G., Shi, E., and Yi, K. Almost instance-optimal clipping

for summation problems in the shufflemodel of differential privacy. arXiv preprint
arXiv:2403.10116 (2024).

[17] Dong, W., Sun, D., and Yi, K. Better than composition: How to answer mul-

tiple relational queries under differential privacy. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–26.

[18] Dong, W., and Yi, K. Universal private estimators. In Proceedings of the 42nd
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (2023),
pp. 195–206.

[19] Dwork, C., and Roth, A. The algorithmic foundations of differential privacy.

Foundations and Trends® in Theoretical Computer Science 9, 3–4 (2014), 211–407.
[20] Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., and

Thakurta, A. Amplification by shuffling: From local to central differential pri-

vacy via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms (2019), SIAM, pp. 2468–2479.

[21] Fang, J., Dong, W., and Yi, K. Shifted inverse: A general mechanism for mono-

tonic functions under user differential privacy. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (2022), pp. 1009–

1022.

[22] Ghazi, B., Golowich, N., Kumar, R., Pagh, R., and Velingker, A. On the power

of multiple anonymous messages: Frequency estimation and selection in the

shuffle model of differential privacy. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (2021), Springer, pp. 463–488.

[23] Ghazi, B., Kumar, R., Manurangsi, P., and Pagh, R. Private counting from

anonymous messages: Near-optimal accuracy with vanishing communication

overhead. In International Conference onMachine Learning (2020), PMLR, pp. 3505–

3514.

[24] Ghazi, B., Kumar, R., Manurangsi, P., Pagh, R., and Sinha, A. Differentially

private aggregation in the shuffle model: Almost central accuracy in almost a

single message. In International Conference on Machine Learning (2021), PMLR,

pp. 3692–3701.

[25] Ghazi, B., Manurangsi, P., Pagh, R., and Velingker, A. Private aggregation

from fewer anonymous messages. In Advances in Cryptology–EUROCRYPT 2020:
39th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30 (2020),
Springer, pp. 798–827.

[26] Ghazi, B., Pagh, R., and Velingker, A. Scalable and differentially private

distributed aggregation in the shuffled model. arXiv preprint arXiv:1906.08320
(2019).

[27] Huang, Z., Liang, Y., and Yi, K. Instance-optimal mean estimation under differ-

ential privacy. Advances in Neural Information Processing Systems (2021).
[28] Kaggle. San francisco city employee salary data. https://www.kaggle.com/

datasets/kaggle/sf-salaries/data, 2014.

[29] Kaggle. Japan’s 100 million customs trade statistics since 1988. https://www.

kaggle.com/datasets/zanjibar/100-million-data-csv, 2020.

[30] Kaggle. Mnist - digit recognizer dataset. https://www.kaggle.com/c/digit-

recognizer/data, 2020.

[31] Kaggle. Monthly salary of public worker in brazil. https://www.kaggle.com/

datasets/gustavomodelli/monthly-salary-of-public-worker-in-brazil, 2020.

[32] Kaggle. Ontario public sector salary 2019. https://www.kaggle.com/datasets/

rajacsp/ontario, 2020.

[33] Kamath, G., Li, J., Singhal, V., and Ullman, J. Privately learning high-

dimensional distributions. In Conference on Learning Theory (2019), PMLR,

pp. 1853–1902.

[34] Kamath, G., Singhal, V., and Ullman, J. Private mean estimation of heavy-tailed

distributions. In Conference on Learning Theory (2020), PMLR, pp. 2204–2235.

[35] Kamath, G., and Ullman, J. A primer on private statistics. arXiv preprint
arXiv:2005.00010 (2020).

[36] McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. Learning differentially

private recurrent language models. arXiv preprint arXiv:1710.06963 (2017).
[37] McSherry, F. D. Privacy integrated queries: an extensible platform for privacy-

preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data (2009), pp. 19–30.

[38] Pass, G., Chowdhury, A., and Torgeson, C. A picture of search. In Proceedings
of the 1st international conference on Scalable information systems (2006).

[39] Pichapati, V., Suresh, A. T., Yu, F. X., Reddi, S. J., and Kumar, S. Adaclip:

Adaptive clipping for private sgd. arXiv preprint arXiv:1908.07643 (2019).
[40] Schaal, D. Expedia ceo’s total compensation pegged at $296 million for

2021. https://skift.com/blog/expedia-ceos-total-compensation-pegged-at-296-

million-for-2021, 2022.

[41] Song, S., Chaudhuri, K., and Sarwate, A. D. Stochastic gradient descent

with differentially private updates. In 2013 IEEE global conference on signal and
information processing (2013), IEEE, pp. 245–248.

[42] Stemmer, U. Locally private k-means clustering. The Journal of Machine Learning
Research 22, 1 (2021), 7964–7993.

[43] Stemmer, U., and Kaplan, H. Differentially private k-means with constant

multiplicative error. Advances in Neural Information Processing Systems 31 (2018).
[44] Tao, Y., He, X., Machanavajjhala, A., and Roy, S. Computing local sensitiv-

ities of counting queries with joins. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (2020), pp. 479–494.

[45] Vadhan, S. The complexity of differential privacy. In Tutorials on the Foundations
of Cryptography. Springer, 2017, pp. 347–450.

A Computational Issue of the Two-round
Protocal in [27]

To obtain a good clipping threshold 𝜏 under the shuffle-DP model,

[27] applies the method from [22] to approximate Max(𝐷). In [22],

each randomizer has a computation of 𝑂 (𝑛 log2𝑈). Additionally,
both [27] and [22] only present their theoretical results without

any concrete implementation. Our implementation with domain

compression still resulted in a long running time, failing to give the

results within a couple of days in our experimental settings.

1953

