
 1 

Nonergodicity and Simpson’s paradox in neurocognitive dynamics of 
cognitive control  

 
 

 
Percy K. Mistry1*, Nicholas K. Branigan1*, Zhiyao Gao1, Weidong Cai1,2, Vinod Menon1,2,3 

 
 

1 Department of Psychiatry & Behavioral Sciences 
2 Wu Tsai Neurosciences Institute 

3 Department of Neurology & Neurological Sciences 
 
 

Stanford University, Stanford, CA, United States. 
 
 
 
* These authors contributed equally to this work. 
 
 
Corresponding authors: 
Percy K. Mistry, Ph.D. & Nicholas K. Branigan & Vinod Menon, Ph.D. 
email: percym@stanford.edu; branigan@stanford.edu; menon@stanford.edu  
 
  

mailto:percym@stanford.edu
mailto:branigan@stanford.edu
mailto:menon@stanford.edu


 2 

Abstract  

Nonergodicity and Simpson’s paradox pose significant and underappreciated challenges for 
neuroscience. Using stop signal task data from over 4,000 children and a Bayesian computational 
model of cognitive dynamics, we investigated brain-behavior relationships underlying inhibitory 
control at both between-subjects and within-subjects levels. Strikingly, between-subjects 
associations of inhibitory control activations with stop signal reaction times, probabilities of 
proactivity, and proactive delays were reversed within subjects, revealing the nonergodic nature 
of these processes. Nonergodicity was observed throughout the brain but was most pronounced 
in the salience network. Furthermore, within-subjects analysis revealed dissociated brain 
representations of reactive and proactive processing, and distinct brain-behavior associations for 
subjects who adaptively and who maladaptively regulated inhibitory control. This work advances 
our knowledge of the dynamic neural mechanisms of inhibitory control during a critical 
developmental period and has implications for personalized interventions in cognitive disorders. 
Embracing nonergodicity is crucial for understanding brain-behavior relationships and 
developing effective interventions.  
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Introduction 
 
Since the nineteenth century, notions of ergodicity have had an important role in statistical 
physics1-3, but only recently have other disciplines such as economics4 and psychology5-7 begun 
to examine how their own theories and findings rest upon assumptions of ergodicity. In the 
behavioral sciences, a clear example of nonergodicity is Simpson’s paradox: an association 
between variables in a population may disappear or even reverse when the population is divided 
into subpopulations8-11. One form of the paradox occurs when associations are different in a 
population and in the individuals that make up the population. A classic case of nonergodicity 
and Simpson’s paradox of this sort is the speed-accuracy tradeoff: in some tasks, speed and 
accuracy are positively correlated between individuals (faster people are more accurate)12, but 
are negatively correlated within individuals (when an individual tries to respond faster, their 
accuracy decreases)13. This highlights how between-subjects and within-subjects inferences can 
diverge. There is growing evidence that many psychological phenomena may be nonergodic, 
meaning that inferences about them would differ when data are analyzed across time within an 
individual versus across individuals at a single point in time5,7,14-17 
 
Nonergodicity thus implies that associations at the group level (Figure 1a) may fail to generalize 
to associations at the individual level (Figure 1b), and thus may fail to capture the dynamic 
processes occurring within each subject5,6,16. This view suggests that the relationship between 
behavior and the underlying brain activity may differ substantially when examined within 
subjects over time compared to between subjects at a single time point7,18, leading to Simpson’s 
paradox when comparing inferences from these two perspectives (Figure 1c). However, 
applications of this principle to human cognitive neuroscience have been limited, and nonergodic 
dynamics in brain and cognitive functions remain poorly understood. Nonergodic principles have 
yet to be fully integrated into the study of human cognition and brain function. 

While there has been notable progress in understanding nonergodicity within behavioral 
contexts5,6,18-20, its application to human brain function remains largely unexplored. This gap in 
research is significant because insights into nonergodicity in neural dynamics could profoundly 
enhance our understanding of brain-behavior relationships. Exploring this concept at the level of 
neural dynamics is crucial for identifying how an individual’s differences in brain activity 
contribute to variability in their cognitive processes over time. By treating between- and within-
subjects dynamics as dissociable, researchers can potentially develop more personalized and 
effective neuroscientific models and interventions, which consider the unique neural pathways 
and cognitive strategies employed by individuals. This approach not only promises to advance 
theoretical neuroscience but also holds practical implications for tailoring therapeutic strategies 
to better address individual neurological and cognitive differences. 

To address these limitations and investigate the potential nonergodicity in neurocognitive 
processes and mechanisms, we leveraged data from the Adolescent Brain Cognitive 
Development (ABCD) study, a large-scale, longitudinal study of brain development and behavior 
in children and adolescents21. We used behavioral and brain imaging data from over 4,000 9- to 
10-year-old participants to examine the neural mechanisms of inhibitory control at both the 
between-subjects and within-subjects levels. 
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Inhibitory control is the ability to withhold or cancel maladaptive actions, thoughts, and 
emotions, and is a fundamental component of goal-directed behavior22,23. This critical cognitive 
function allows individuals to navigate complex environments, adapt to changing circumstances, 
and maintain focus on long-term goals in the face of immediate temptations or distractions24. 
Given its central role in cognitive control, understanding the neural mechanisms underlying 
inhibitory control has been a primary focus of cognitive neuroscience research25. Inhibitory 
control engages a distributed network of cortical and subcortical regions. Previous studies have 
consistently implicated the involvement of the salience network, particularly the anterior insula 
and dorsal anterior cingulate cortex, in detecting and processing relevant stimuli and 
coordinating neural resources for inhibitory control26-30. Additionally, the inferior frontal gyrus, 
presupplementary motor area, and basal ganglia have been shown to play crucial roles in 
implementing response inhibition25. The dynamic activation of these cortical and subcortical 
regions underlies the successful execution of inhibitory control processes. 
 
Conventionally, studies investigating the neural basis of inhibitory control have relied on 
between-subjects analyses, which compare brain activity across individuals who differ in their 
ability to inhibit responses. For example, researchers examine how between-individual 
differences in a measure of inhibitory control, such as the stop signal reaction time (SSRT) 
derived from the stop signal task (SST), relate to between-individual differences in brain 
activation from the task27,31-37. These analyses involve aggregating data at the individual-level 
and making inferences about the neural mechanisms of inhibitory control based on between-
subjects comparisons38.  
 
However, this approach rests on the assumption of ergodicity, which posits that the statistical 
properties of a system are the same whether measured across time within an individual or across 
individuals at a point in time18. In other words, ergodicity assumes that the average behavior of a 
group reflects the behavior of each individual within that group6,39. If this assumption holds, then 
inferences made from group-level associations can be generalized to explain the cognitive 
processes occurring within each individual7,18. 
 
To enable within-subjects analyses and capture the dynamic nature of inhibitory control, we 
developed the Proactive Reactive and Attentional Dynamics (PRAD) model of SST behavior. 
This computational model extends beyond conventional approaches to the SST by incorporating 
both top-down and bottom-up processes, integrating mechanisms of proactive and reactive 
control40. The PRAD model allows us to infer dynamic, trial-level parameters for each subject, 
including SSRTs and measures of proactive delaying based on stop signal anticipation. These 
parameters characterize the latent cognitive constructs governing action execution and inhibition 
in the SST, providing a more comprehensive view of inhibitory control processes than traditional 
models.   
 
We combined task fMRI data with the PRAD model to investigate the relationship between task-
evoked brain responses and dynamic inhibitory control processes at both between-subjects and 
within-subjects levels. This approach allows us to directly compare inferences made from 
traditional group-level analyses (group-level associations) with those derived from a fine-grained 
examination of within-individual variation in neurocognitive dynamics. We leveraged the 
dynamic representations of subjects’ behaviors from the PRAD cognitive model alongside 
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simultaneous task fMRI data to probe how moment-to-moment variations in brain activity relate 
to fluctuations in inhibitory control processes. This analysis strategy promotes a richer 
understanding of the neural basis of inhibitory control, potentially revealing insights that would 
be obscured in conventional group-level analyses. 
 
We had five interconnected aims (Figure 1d). First, we examined how key parameters of 
reactive and proactive control41 from the PRAD model related to brain activity at both between-
subjects and within-subjects levels, identifying networks showing significant associations. By 
comparing these levels, we show the limitations of assuming ergodicity in the study of inhibitory 
control and underscore the importance of considering within-subjects variability. Second, 
motivated by the replicability crisis in neuroscience research, we assessed the stability and 
robustness of our findings. We examined the stability of our within-subjects findings as a 
function of the sample and sample size through bootstrap resampling. Then, we tested whether 
our finding of nonergodicity was robust to alternative between-subjects analyses using different 
measures of brain activation and robust to the use of a directly observed behavioral measure in 
place of latent cognitive model parameters. Third, we probed the brain’s implementation of 
proactive and reactive control processes underlying inhibitory control. Proactive control involves 
the anticipation and preparation for stopping, while reactive control involves the actual 
implementation of response inhibition41. By comparing the brain representations of these 
processes, we improve understanding of how their neural underpinnings relate. Fourth, we 
identified subgroups of within-subjects results associated with individual differences in adaptive 
regulation of inhibitory control. Finally, we quantified and compared nonergodicity levels across 
different brain networks, defining nonergodicity as the fraction of subjects whose within-subjects 
brain-behavior association showed an opposite sign to the between-subjects association. This 
approach allowed us to map the distribution of nonergodicity across the brain and explore its 
hierarchical organization. 
 
By comparing traditional between-subjects analyses with within-subjects analyses that account 
for dynamic cognitive processes, we highlight the limitations of assuming ergodicity in the study 
of cognitive control and provide a more precise understanding of the neural mechanisms 
supporting this critical function. Our findings have important implications for both basic research 
and clinical applications, emphasizing the need to consider within-subjects variability and the 
dynamic nature of cognitive processes in the study of brain-behavior relationships. Ultimately, 
this work contributes to a more complete understanding of the neural basis of inhibitory control. 
 
 
Results 
 
Dynamic cognitive process model of behavior 
 
We used data from the SST (Figure 2a) to investigate dynamic cognitive processes underlying 
inhibitory control in a large sample (𝑁~4000) from the baseline visit of the ABCD study. We 
developed PRAD, a dynamic cognitive process model40 that provides a multidimensional 
perspective of the elemental cognitive processes governing the reactive and proactive dynamics 
involved in inhibitory control. This model incorporates latent dynamics that respond to internal 
cognitive states (endogenous variables) and external environmental contingencies (exogenous 
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variables), with interaction between these dynamics governed by latent trait measures. The latent 
dynamic (trial-level) and trait (individual-level) measures are simultaneously inferred within a 
hierarchical Bayesian framework. The model conceptualizes behavior during the task as arising 
from competing drift diffusion processes (Figure 2b). It infers a measure of reactive inhibitory 
control, stop signal reaction time (SSRT), and 2 measures of proactive control, probability of 
proactivity and proactive delaying (Figure 2c-d). SSRT measures how long it takes for a subject 
to inhibit a response, probability of proactivity determines whether they use a strategy of 
proactive delaying, and proactive delaying measures the length of proactive delays when a 
proactive strategy is utilized. Importantly, all 3 of these parameters are inferred for each trial 
(Figure 2e). Figure 2e shows how these 3 parameters vary over time within an individual. 
Figure 3 provides a detailed illustration of the model. 
 
Between-subjects and within-subjects analysis of brain-behavior associations 
 
We examined how 3 key parameters of the PRAD model—SSRT, probability of proactivity, and 
proactive delaying—related to brain activity at both between-subjects and within-subjects levels 
(Figure 4). To investigate brain-behavior relationships in inhibitory control, we conducted both 
between-subjects and within-subjects analyses using fMRI data from the stop signal task (SSRT 
and probability of proactivity 𝑁 = 4469; proactive delaying 𝑁 = 4176). For the between-
subjects analyses, we Pearson correlated subject-average brain activation during successful 
stopping (correct stop versus correct go activation) with subject-average SSRT, probability of 
proactivity, and proactive delaying across participants27,33-37. For the within-subjects analyses, we 
regressed the fMRI signal on the parameters using fMRI general linear models with SSRT, 
probability of proactivity, and proactive delaying included as regressors. We thus modeled the 
fMRI signal as a combination of static trial-type effects and dynamic effects proportional to trial-
by-trial variations in the cognitive model parameters. This allowed us to examine how 
fluctuations in cognitive processes covaried with brain activity within each individual, while 
adjusting for stimulus types. These complementary approaches enabled us to compare group-
level and individual-level trends in brain-behavior relationships. 
 
SSRT: Between subjects, SSRT showed widespread negative correlations with brain activity, 
including in frontal, parietal, and temporal areas, and in regions implicated in cognitive control. 
This suggests that individuals with faster inhibitory responses (lower SSRT) show greater 
activation in these regions during successful stopping, replicating previous findings37. In 
contrast, within subjects, SSRT showed positive associations with brain activity, particularly in 
frontal and parietal regions. This suggests that on trials where individuals have slower inhibitory 
responses, they show increased activation in these areas. 
 
Probability of proactivity: Between subjects, probability of proactivity showed minimal 
correlations with brain activity. In contrast, within subjects, probability of proactivity showed 
negative associations in parietal, temporal, and lateral frontal regions, and positive associations 
in default mode network regions. 
 
Proactive delaying: Between subjects, proactive delaying showed widespread positive 
correlations with brain activity, particularly in frontal and parietal regions. This indicates that 
individuals who engage in more proactive delaying exhibit higher activation in these areas 
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during successful stopping. In contrast, within-subjects, proactive delaying showed negative 
associations in frontal and parietal cortex. 
 
These findings reveal a striking divergence of between-subjects and within-subjects brain-
behavior relationships in inhibitory control. The reversal of association directions, particularly 
for SSRT and proactive delaying, suggests that inferences about the neural mechanisms 
underlying inhibitory control do not generalize between group and individual levels. This 
nonergodic pattern highlights the importance of considering both levels of analysis to more fully 
understand the neurocognitive dynamics of inhibitory control. 
 
Network-level visualization of between- and within-subjects brain-behavior associations 
 
To elucidate the patterns of brain-behavior relationships across different functional brain 
networks, we visualized the between-subjects and within-subjects associations for SSRT, 
probability of proactivity, and proactive delaying (Figure 5). We used the Shirer network 
atlas42,43 for our primary analysis as it includes the basal ganglia, a subcortical system important 
for the implementation of inhibitory control27,44. 
 
SSRT: Between-subjects analysis showed consistent negative correlations in most networks, with 
effects in the posterior salience, frontoparietal, and default mode networks (all 𝑃FDR < 0.01). In 
contrast, within-subjects analysis revealed mixed negative and positive associations, with 
opposite associations in the posterior salience, precuneus, visuospatial, auditory, and 
sensorimotor networks (all 𝑃FDR < 0.01). The reversal of association directions underscores the 
nonergodic nature of SSRT-related brain activity. 
 
Probability of proactivity: Between-subjects analysis demonstrated no significantly nonzero 
correlations in the networks (all 𝑃FDR ≥ 0.05). However, within-subjects analysis unveiled a 
more complex pattern. Negative associations were observed in the salience and frontoparietal 
networks, while positive associations were seen in the dorsal and ventral default mode networks 
(all 𝑃FDR < 0.01). This disparity highlights the importance of examining within-subjects 
dynamics for proactivity. 
 
Proactive delaying: Between-subjects analysis revealed positive correlations in all the networks 
(all 𝑃FDR < 0.01). Yet, within-subjects analysis showed predominantly negative associations, 
notably in the salience and frontoparietal networks (all 𝑃FDR < 0.01). The ventral default mode 
network showed a positive within-subjects associations (𝑃FDR < 0.01). 
 
These network-level visualizations emphasize the divergent patterns between group-level and 
individual-level associations across different functional brain networks. The consistent reversals 
observed, for both reactive and proactive control measures, reinforce that brain-behavior 
relationships in inhibitory control are nonergodic. These findings indicate that both between-
subjects and within-subjects perspectives are needed to comprehensively understand the neural 
dynamics underlying inhibitory control. 
 
Stability of within-subjects brain-behavior associations 
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To assess the stability of our within-subjects findings, we performed bootstrap resampling at 
varying sample sizes (Figure 6). Our results demonstrate that within-subjects associations 
between brain activity and the model parameters (SSRT, probability of proactivity, and proactive 
delaying) are stable, even in modest sample sizes. Key findings were consistently observed in 
samples as small as 25 subjects, with some effects requiring larger samples to emerge reliably. 
This stability suggests the validity and potential generalizability of our within-subjects approach 
to understanding neurocognitive mechanisms of inhibitory control. A detailed description of 
these results is in the Supplementary Materials. 
 
Robustness of nonergodicity to analytical choices 
 
To test the robustness of our findings of nonergodicity, we conducted several control analyses 
comparing between- and within-subjects brain-behavior relationships. We tested alternative 
between-subjects analyses using different measures of brain activation and explored whether the 
observed nonergodicity was specific to the latent model parameters or could also be seen using 
reaction time on go trials, a directly observed behavioral measure. Nonergodicity persisted for all 
approaches to between-subjects analysis and both model-derived parameters and the observed 
behavioral measure. Across all analytical choices, we observed divergent patterns of between-
subjects and within-subjects associations. A detailed description of these control analyses and 
their results is in the Supplementary Materials. Our results strongly suggest that the 
neurocognitive dynamics of inhibitory control in children are fundamentally nonergodic, with 
implications for how we interpret findings from traditional group-level associations. 
 
Representational similarity analysis reveals dissociated reactive and proactive representations 
 
Building on our findings of nonergodic brain-behavior relationships, we sought to deepen 
understanding of how the brain implements proactive and reactive control at the individual level. 
While the preceding results demonstrate the importance of within-subjects analyses, they leave 
unresolved how representations of reactive and proactive processes relate to each other within 
brain networks. To investigate this, we used representational similarity analysis to examine the 
overlap between brain representations of reactivity (SSRT) and proactivity (probability of 
proactivity and proactive delaying) within individuals. For each subject and each brain network, 
we computed Pearson correlations between the subject’s brain maps of SSRT and probability of 
proactivity, SSRT and proactive delaying, and probability of proactivity and proactive delaying, 
over the voxels in each network (Figure 7a). 
 
SSRT showed low similarity with both proactive measures (probability of proactivity and 
proactive delaying) in all networks, with median correlations ranging from -0.07 to 0.06. In 
contrast, the 2 proactive measures (probability of proactivity and proactive delaying) exhibited 
high similarity in all networks, with median correlations ranging from 0.61 to 0.67. In each 
network, the 3 similarity measures (SSRT and probability of proactivity, SSRT and proactive 
delaying, and probability of proactivity and proactive delaying) were significantly different from 
each other in their median values (Figure 7b). These findings suggest that representations of 
reactivity and proactivity are largely dissociated. This dissociation persists across multiple brain 
networks, indicating a fundamental separation in how the brain encodes reactive and proactive 
control processes. 
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Adaptive regulation of inhibitory control associated with distinct within-subjects results over 
subgroups 
 
To understand how our within-subjects associations related to between-subjects variation in 
cognitive and task strategies, we examined the within-subjects results between subgroups 
showing adaptive and maladaptive regulation of reactive and proactive behaviors. These 
subgroups were identified using PRAD model parameters 𝛾$ and 𝜃$.  
 
First, the cognitive model infers for each subject 𝛾$, which determines whether subjects 
adaptively (𝛾$ > 0) or maladaptively (𝛾$ < 0) regulate reactivity. Adaptive (maladaptive) 
regulation of reactivity involves increasing (decreasing) expectancy of a stop trial as the number 
of successive go trials increases. Since expectancy of a stop trial is one of several determinants 
of SSRT, 𝛾$ influences SSRT variation through time. Thus, we examined within-subjects 
associations between SSRT and brain activity separately among subjects with 𝛾$ < 0 (𝑁 =
2513) and  𝛾$ > 0 (𝑁 = 1956) (Figure 8a). We found differences in the distributions of within-
subjects SSRT associations between the 𝛾$ subgroups in all networks examined (all 𝑃FDR <
0.01). The maladaptive regulation group had a larger (more positive) effect size in every 
network. In fact, across most networks, SSRT exhibited opposite associations with brain activity 
in the two subgroups. For example, in the frontoparietal and default mode networks, SSRT 
displayed a positive association among subjects with 𝛾$ < 0 and a negative association among 
subjects with 𝛾$ > 0. Moreover, this analysis revealed that some of the effects in the full sample 
were driven by subjects belonging to one of the subgroups. For example, in the anterior salience 
network, brain activity’s positive association with SSRT in the full sample was driven by 𝛾$ < 0 
subjects; among 𝛾$ < 0, the effect in the anterior salience had a Cohen’s 𝑑 of ~0.3, twice that of 
the effect in the full sample, while among 𝛾$ > 0, there was no significant effect at all. 
 
Second, the cognitive model infers for each subject 𝜃$, which determines whether subjects 
adaptively (𝜃$ < 0) or maladaptively (𝜃$ > 0) regulate proactivity. Adaptive (maladaptive) 
regulation of proactivity involves increasing (decreasing) the probability of proactivity following 
a failed stop trial and decreasing (increasing) the probability of proactivity following a no-
response go-trial. Therefore, 𝜃$ influences the probability of proactivity’s variation through time. 
Thus, we examined the probability of proactivity’s within-subjects associations with brain 
activity separately among subjects with 𝜃$ < 0 (𝑁 = 3054) and 𝜃$ > 0 (𝑁 = 1415) (Figure 
8b). We found consistent differences in the probability of proactivity’s within-subjects 
associations between these subgroups. Generally, subjects with 𝜃$ < 0 had more negative 
associations between probability of proactivity and brain activity. This negative coupling 
between proactivity and brain activity was pronounced among 𝜃$ < 0 in the anterior salience 
network (Cohen’s 𝑑 of ~0.4). This analysis also clarified how adaptive and maladaptive 
regulation of proactivity contributed to the effects observed in the full sample. The within-
subjects positive association between probability of proactivity and ventral default mode 
activation was observed in both 𝜃$ subgroups, but it was twice as large among subjects who 
maladaptively regulated proactivity. 
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These results demonstrate that population subgroups related to adaptative and maladaptive 
regulation of inhibitory control demonstrate different, and even opposite, within-subjects brain-
behavior associations.  
 
Brain networks exhibit varying degrees of nonergodicity and a hierarchical organization by 
nonergodicity 
 
To further understand the distribution of nonergodicity across the brain, we quantified and 
compared nonergodicity levels in different brain networks. We defined a nonergodicity measure 
as the fraction of subjects whose within-subjects brain-behavior association showed an opposite 
sign to the between-subjects association. Values above 0.5 indicate higher nonergodicity, while 
values below 0.5 suggest more ergodic behavior. 
 
Our analysis revealed substantial variation in nonergodicity across brain networks (Figure 9a). 
Notably, the anterior salience network consistently demonstrated the highest level of 
nonergodicity for all three cognitive model parameters (SSRT, probability of proactivity, and 
proactive delaying). The measures of network nonergodicity for associations with the probability 
of proactivity showed wide confidence intervals, reflecting the weak between-subjects 
associations between this parameter and brain activation. 
 
To understand how networks related to each other in terms of nonergodicity, we performed 
hierarchical clustering on the joint nonergodicity measures of the networks with respect to all 
three cognitive model parameters (Figure 9b-d). This analysis revealed a hierarchical 
organization of brain networks based on their nonergodicity profiles. The anterior salience 
network emerged as the most dissimilar, forming its own cluster separate from all other 
networks. Additionally, the dorsal and ventral default mode networks clustered together, 
suggesting similarities in their nonergodic behavior. 
 
These findings demonstrate that brain networks exhibit varying levels of nonergodicity and 
reveal a hierarchical organization of brain networks based on their nonergodic properties. This 
organization suggest a new perspective on the functional architecture of the brain and how it 
relates to cognitive control processes. 
 
 
Discussion 
 
A fundamental question we examined in this study is whether between- and within-subjects 
brain-behavior associations yield convergent findings in understanding neurocognitive processes 
underlying inhibitory control. Divergence between these levels of analysis would provide 
evidence for nonergodicity, a phenomenon where inferences drawn from population-level data 
do not accurately represent individual-level processes. To investigate this, we leveraged a large 
community sample of children from the ABCD study and employed a dynamic computational 
model to elucidate the potentially nonergodic nature of neurocognitive dynamics underlying 
inhibitory control. We combined task fMRI data with a Bayesian model of cognitive dynamics to 
examine brain-behavior relationships at both between-subjects and within-subjects levels. Our 
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findings revealed striking differences between these two levels of analysis, providing robust 
evidence of nonergodicity in inhibitory control processes. 
 
At the between-subjects level, inhibitory control activations in key cognitive control networks 
were negatively correlated with subject-average SSRTs, aligning with previous studies27,31-33. 
This suggests that individuals with better inhibitory control exhibit greater activation in regions 
associated with cognitive control. However, within-subjects analysis revealed a markedly 
different pattern: brain activity in some of these same networks was positively associated with 
trial-level SSRTs and negatively associated with trial-level proactive control. Thus, within-
subjects associations were largely dissonant with the between-subjects findings, revealing the 
nonergodic nature of inhibitory control processes. Specifically, the opposing patterns 
demonstrated Simpson’s paradox, a type of nonergodicity frequently observed in behavioral 
studies, where relationships at the group level are absent or reversed at the individual 
level5,10,15,17. This divergence underscores the importance of considering both group-level and 
individual-level associations in cognitive neuroscience research and highlights the complex, 
dynamic nature of inhibitory control processes. 
 
Furthermore, representational similarity analysis uncovered distinct neural representations for 
reactive and proactive cognitive processes. Across all examined brain networks, representations 
of reactive control (SSRT) showed low similarity with both measures of proactive control, while 
the two proactive measures showed high similarity with each other. This dissociation suggests 
that reactive and proactive aspects of inhibitory control rely on distinct neural resources, 
potentially allowing for independent modulation and development of these strategies. 
 
Modeling trial-level responses at the single-subject level 
 
We used a hierarchical Bayesian model of proactive and reactive control which represents a 
significant advance in the assessment of inhibitory control, surpassing the capabilities of 
conventional race models40. Unlike traditional approaches, which provide subject-aggregate 
SSRT estimates as an index of inhibitory control, this model estimates SSRT at the level of each 
individual trial. This feature is critical as it allows for precise, trial-specific inferences rather than 
broad generalizations across the entire task. Importantly, the trial-level model infers additional 
trial-level measures, such as the probability of proactive cognitive states and the length of 
proactive delaying of responses. 
 
This trial-level granularity facilitates a more comprehensive examination of how neural 
responses are modulated across individual trials. Specifically, this model allowed us to identify 
brain areas that tracked neural activity in response to trial-specific SSRT estimated at each stop 
trial. Moreover, it enabled tracking ongoing neural dynamics associated with temporal 
fluctuations in proactive control, providing insights into the brain systems that support a key 
component of cognitive control. 
 
By employing trial-level analyses, we could dissect proactive and reactive control processes to 
examine how they fluctuate over time within each individual. This approach deepens our 
understanding of the mechanisms underlying inhibitory control and enables us to uncover 
whether assumptions of brain-behavior ergodicity are justified. 
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Nonergodic brain-behavior associations reveal mechanisms of cognitive control 
 
Nonergodicity, a concept originally from statistical physics, refers to situations where ensemble 
averages and time averages do not converge1. In the context of neurocognitive dynamics, 
nonergodicity means that brain-behavior associations over a population (ensemble) of subjects 
fail to reflect brain-behavior associations over time in the subjects comprising the population. 
Nonergodic brain-behavior associations were observed on multiple measures of inhibition 
encompassing proactive and reactive control. Proactive control involves the anticipation and 
preparation for stopping, while reactive control involves the actual implementation of response 
inhibition. Our findings suggest that these two forms of control operate differently at the within-
subjects level and the between-subjects level. This divergence highlights the variability of 
individual cognitive processes, which may not be captured fully by traditional group-level 
analyses. 
 
We found a positive association within subjects between trial-level SSRTs and brain activity in 
the anterior and posterior salience networks, which suggests that longer SSRTs, indicating poorer 
reactive control, are associated with greater neural effort or engagement. This may reflect 
compensatory mechanisms or the increased demand for cognitive resources when individuals 
struggle to inhibit their responses. In contrast, between subjects, we observed no significant 
association and a negative association, respectively, in the anterior and posterior salience 
networks between SSRT and brain activity.  
 
Within-subjects analysis revealed a negative association between trial-level engagement of 
proactive control and brain activity in the frontoparietal, salience, and subcortical systems. This 
suggests that greater proactive control is associated with relative suppression of cognitive control 
networks to implement successful response inhibition. This finding is consistent with the theory 
that proactive mechanisms suppress reactive control pathways, and aligns with recent theoretical 
frameworks proposing that proactive control modulates reactive control via preparatory 
processes45. In contrast, we observed a positive association between trial-level proactive control 
and default mode network activity. This included the posterior medial cortex and the 
ventromedial prefrontal cortex, the two core cortical nodes that anchor the default mode 
network46. This may reflect internally oriented processing that supports proactive regulation. 
Between-subjects analysis failed to capture these dynamic relationships, showing no association 
between one measure of proactive control and brain activations. 
 
Our findings highlight the importance of considering within-subjects variability and dynamics 
when studying the neural mechanisms of cognitive control. Conventional between-subjects 
analyses, which assume ergodicity, may not capture the complex and dynamic nature of 
proactive and reactive control processes as they unfold within individuals over time. Properly 
characterizing such dynamics, rather than assuming ergodicity, is thus crucial for advancing our 
understanding of the latent processes underlying cognitive control. The nonergodic brain-
behavior associations observed in our study have important implications for understanding the 
mechanisms of proactive and reactive control. 
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Robustness of nonergodicity findings and stability of within-subjects brain-behavior 
associations 
 
Leveraging the large-scale ABCD dataset, we addressed the critical challenge of replicability in 
human neuroscience47. Our analyses revealed that within-subjects associations were stable and 
reliably detectable, even in sample sizes typical of cognitive neuroscience studies. Bootstrap 
resampling analyses showed the reliability of key findings across different sample sizes. For 
instance, the association between proactivity measures and right anterior insula suppression was 
consistently observed in over 95% of samples, even with sample sizes of 𝑁 = 25. Moreover, our 
findings of nonergodicity were robust to various analytical strategies. When comparing the 
results of various between- and within-subjects approaches, there were variations in the details of 
brain-behavior inferences, but nonergodic dissociations persisted across every approach to brain-
behavior association. 
 
By demonstrating that these patterns are robust and detectable even in modest sample sizes, our 
study provides a foundation for future research into nonergodicity in brain function. It also 
suggests that meaningful insights into neurocognitive mechanisms can be gained from studies 
with more typical sample sizes, although larger samples provide greater precision and the ability 
to detect subtler effects. The stability and robustness of our findings suggests their applicability 
to diverse research and clinical contexts, including understanding cognitive processes related to 
inhibitory control and studying psychiatric disorders.48 
 
Nonergodicity between brain networks: Implications for understanding cognitive control 
 
Our analysis of the distribution of nonergodicity between brain networks has implications for 
understanding the neural mechanisms underlying inhibitory control as well as for cognitive 
neuroscience research broadly. The consistent finding of high nonergodicity in the anterior 
salience network across all cognitive model parameters is particularly intriguing. The salience 
network is a key brain network, known for its role in detecting behaviorally relevant stimuli and 
coordinating brain network dynamics49,50. It is noteworthy that this core network, which is of 
great interest in the study of cognition26-29,51 and psychopathology52-54, appears to exhibit the 
most pronounced disconnect between group-level and individual-level inferences. Moreover, the 
hierarchical clustering of networks based on nonergodicity profiles provides a fresh perspective 
on brain organization. The distinct clustering of the anterior salience network and the grouping of 
default mode network components suggest that nonergodicity may be an important factor in 
understanding functional brain architecture. 
 
These findings have several significant implications for cognitive neuroscience research and 
practice. Methodologically, our results underscore the importance of complementing group-level 
analyses with individual-level investigations. The high degree of nonergodicity observed, 
particularly in key networks involved in cognitive control, suggests that solely relying on group-
level analyses may lead to incomplete or misleading conclusions about brain-behavior 
relationships. From the perspective of individual differences, the varying levels of nonergodicity 
across networks highlight the importance of considering individual variability in brain function. 
This may be particularly relevant for understanding individual differences in inhibitory control 
abilities and for developing personalized interventions for disorders characterized by impaired 



 14 

inhibitory control. Theoretically, the observed nonergodicity challenges simplistic models of 
brain function and calls for quantitatively rigorous theories that can account for the complex, 
context-dependent nature of brain-behavior relationships. This may require a shift toward more 
dynamic, process-oriented models of cognition and brain function. 
 
Distinct neural representations for reactive and proactive cognitive processes  
 
To further elucidate the neural architecture underlying inhibitory control, we employed 
representational similarity analysis, a powerful method for investigating the informational 
content of brain activity patterns55. This approach allows us to compare the similarity of neural 
representations across different cognitive processes, providing insights into how the brain 
organizes and processes information56. In our study, we used representational similarity analysis 
to examine the overlap between brain representations of reactivity (SSRT) and proactivity 
(probability of proactivity and proactive delaying) within individuals. By comparing 
representational patterns across different cognitive processes, we sought to determine whether 
reactive and proactive control rely on shared or distinct neural resources. 
 
Our analysis revealed a striking dissociation between the neural representations of reactive and 
proactive control processes. Across all examined brain networks, we found low similarity 
between representations of SSRT and representations of each proactive measure (probability of 
proactivity and proactive delaying). In contrast, the two proactive measures showed high 
similarity with each other. This pattern suggests that reactive and proactive control processes are 
represented orthogonally in the brain. Theoretically, our findings challenge simplistic models of 
inhibitory control and suggest that reactive and proactive processes, while both contributing to 
inhibitory control, are implemented through distinct neural mechanisms41,57.  
 
Given that our study focused on children, the clear separation of reactive and proactive 
representations may reflect a developmental stage in the organization of cognitive control 
processes. Our findings of a separation may allow for independent development of reactive and 
proactive strategies, potentially explaining individual differences in inhibitory control abilities41. 
Future studies could investigate whether this orthogonality persists or changes with age58. 
 
Attentional modulation and performance monitoring associated with distinct brain-behavior 
associations 
 
A separate behavioral investigation of our hierarchical Bayesian model highlighted the 
significance of adaptive regulation of reactive and proactive control in shaping within-subjects 
variability in SSRT and stop failure rates40. Two model parameters are decisive in controlling 
these dynamics: 𝛾$ represents individual differences in sustained attention and regulates the trial-
level expectancy of stopping, and 𝜃1 represents individual differences in performance monitoring 
and regulates the trial-level proclivity for proactive control. These findings point to the 
importance of considering individual differences in attentional modulation and performance 
monitoring systems when studying inhibitory control. 
 
Building on these results, we investigated brain-behavior associations between subjects who 
differed on these traits. We used 𝛾$ and 𝜃$ (separately) as a basis for creating subgroups within 



 15 

our sample. By dividing our participants into subgroups, we could examine how individual 
differences in attentional regulation and performance monitoring correlate with the relationship 
between neural activity and cognitive processes within subjects. Subjects stratified based on 
whether they adaptively or maladaptively regulated stopping expectancy showed distinct within-
subjects associations between trial-level SSRTs and brain activity, with different distributions of 
associations between the subgroups in every network and opposite associations in most 
networks. Among all subjects, we observed that anterior salience network activation 
accompanied poorer reactive control at the trial level, but examining these results by 𝛾$ subgroup 
revealed that this association only held for subjects who maladaptively regulated reactivity. 
Similarly, subjects divided by whether they adaptively or maladaptively regulated proactivity 
showed different within-subjects associations for a measure of proactivity in most networks. The 
maladaptive regulation group showed weaker suppression of the anterior salience network and 
stronger activation of the ventral default mode network with greater trial-level proactivity. 
 
Collectively, the findings reveal that groups characterized by adaptive and maladaptive 
regulation of reactivity and proactivity display notably different patterns of within-subjects 
associations between brain activity and model parameters. These distinctions hint that 
individuals’ distinct cognitive strategies or profiles relate to the implementation of proactive and 
reactive control processes in the brain. This variation highlights the personalized nature of 
cognitive function and stresses the importance of considering individual differences in the neural 
mechanisms of inhibitory control. Identifying heterogeneity based on cognitive model 
parameters provides an interpretable approach for studying individual differences in inhibitory 
control and their neural correlates. This approach moves beyond simple between-subjects 
comparisons and allows for a theory- and mechanism-driven investigation of the heterogeneity in 
brain-behavior relationships. 
 
Conclusions 
 
Our study provides evidence for nonergodicity in the neurocognitive processes underlying 
inhibitory control using a large, community-representative sample of children from the ABCD 
study. By combining task fMRI data with a dynamic cognitive model, we found that within-
subjects associations between brain activity and model parameters differed from between-
subjects associations, challenging the assumption of ergodicity in cognitive neuroscience 
research. The findings demonstrate divergent group-level and individual-level brain-behavior 
associations, reveal dissociated proactive and reactive control systems, and identify meaningful 
individual differences in these control processes. Crucially, the study establishes the stability and 
robustness of within-subjects measures, laying a foundation for characterizing nonergodic 
processes. The work highlights the value of large, heterogeneous samples, dynamic 
computational models, and analysis of within-subjects variability for studying nonergodic 
phenomena. More broadly, it suggests a paradigm shift away from ergodic assumptions and 
exclusive reliance on group-level analyses of subject-average measures in cognitive 
neuroscience. Appreciating the nonergodic nature of neurocognitive processes may be essential 
for advancing our understanding of cognition in both health and disease.  
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Methods  
 
Inclusion criteria 
 
Data were from the baseline visit of the ABCD study21 (Collection #2573), 𝑁 = 11817. Subjects 
were excluded if they did not meet each of the following criteria: meet the ABCD study’s SST 
task-fMRI inclusion recommendations (in abcd_imgincl01.txt, imgincl_sst_include==1; 𝑁 =
3546 excluded); have 2 SST fMRI runs of good quality (in mriqcrp20301.txt, 
iqc_sst_total_ser==iqc_sst_good_ser==2; 𝑁 = 677 excluded); are successfully fit with the 
cognitive model of the SST (𝑁 = 562 excluded); have 2 SST fMRI runs in the release 4.0 
minimally processed data (𝑁 = 16 excluded); have enough volumes acquired to cover the SST 
experiment (the last SST trial must have happened no more than 2 seconds after the final volume 
was acquired; 𝑁 = 16 excluded); have mean framewise displacement of less than 0.5 mm for 
both runs (calculated using the method of 59; 𝑁 = 1986 excluded); have release 4.0 minimally 
processed events.tsv files of shape (181,3) for both runs (𝑁 = 7 excluded); and have consistent 
release 4.0 behavioral data (in release 4.0, for some subjects, the “sst.csv” files from ABCD Task 
fMRI SST Trial Level Behavior, abcd_sst_tlb01, disagreed with the minimally processed 
“events.tsv” files; for example, one trial might be labeled a go trial by one file and a stop trial by 
the other; 𝑁 = 102 excluded). Then, we excluded siblings by randomly keeping one member 
from each family (using the genetic_paired_subjectid variables from gen_y_pihat; 𝑁 = 436 
excluded) and excluded subjects without scanner serial number recorded (in mri_y_adm_info, 
missing mri_info_deviceserialnumber; 𝑁 = 10 excluded). Applying these inclusion criteria left 
us with a sample of 𝑁 = 4469. For analyses involving the proactive delaying, a further 293 
subjects were excluded who had no trials with probability of proactivity greater than 0.5 during 
at least one run, and therefore, by definition, a proactive delaying of 0 for all trials of at least one 
run. For these subjects, we were unable to examine within-subjects relationships between 
proactive delaying and brain activity. To maintain comparability of the between- and within-
subjects analyses, we also excluded these subjects from the between-subjects analyses involving 
proactive delaying. Thus, analyses involving the proactive delaying used a sample of 𝑁 = 4176. 
 
Brain imaging 
 
Imaging acquisition for the ABCD SST is detailed in other work.60 We used the minimally 
processed data from ABCD release 4.0 (Collection #2573), which included distortion correction 
and motion correction61. We then further processed the images using Nilearn and FSL FLIRT: (1) 
initial volumes were removed (Siemens: 8, Philips: 8, GE DV25: 5, GE DV26 and other GE 
versions: 16); (2) the mean image in the time dimension was computed using mean_img from the 
Nilearn Image module; (3) the mean image was registered to an echo-planar imaging template in 
MNI152 space (SPM12’s toolbox/OldNorm/EPI.nii) using FSL FLIRT, and an affine of this 
transformation was obtained; (4) the time-series of images was spatially normalized to MNI152 
space with the affine from the previous step using FSL FLIRT; and (5) the images were 
smoothed with a Gaussian filter with a full-width at half maximum of 6 mm using smooth_img 
from the Nilearn Image module. 
 
Bayesian modeling of cognitive dynamics  
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The PRAD model40 incorporates latent dynamics that respond to endogenous and exogenous 
variables, with trait measures governing the interaction of such endogenous and exogenous 
variables with latent processes, giving rise to non-stationary dynamics. This allows the PRAD 
model to account for violations of context and stochastic independence. Overall, the PRAD 
model incorporates separate evidence accumulation (drift-diffusion) processes for the go and 
stop processes, similar to a canonical horse-race model62. However, in addition to typical drift-
diffusion process parameters, PRAD includes (i) an explicit proactive inhibitory control 
mechanism that governs state switching between proactive and non-proactive cognitive states 
(governed by parameter 𝜃%), and hierarchical dynamics affecting: (ii) adaptive or maladaptive 
modulation of executive processes that respond to endogenous variables (error and performance 
monitoring, via parameter 𝜃$) to modulate the proclivity for activating proactive inhibitory 
control; (iii) adaptive or maladaptive tracking of environmental contingencies that governs how 
proactive inhibitory control responds to exogenous variables (stop signal delay, via parameter 𝜇) 
to update beliefs about the stopping contingences and modulate the proactive delays in 
responding (PDR); (iv) adaptive or maladaptive attentional modulation of stopping expectancy 
(AMS) over trials that governs how the stopping process and SSRT respond to exogenous 
variables (number of trials since the last stop signal, n(SSD), via parameters 𝛾%, 𝛾$); (v) 
modulation of the go process threshold based on response to endogenous variables (choice 
errors, via parameters 𝛼&$, 𝛼&'); and (vi) trial-level modulation of the drift rate inferred from 
behavior. More details can be found in ref. 40. 
 
General linear model analysis of fMRI 
 
We fit general linear models to the fMRI BOLD recordings using Nilearn’s FirstLevelModel. 
Condition and parametric regressors were modeled as impulses, with a duration of 0, and 
convolved with the SPM software’s double gamma hemodynamic response function and the 
function’s time derivative. Before fitting, the BOLD signal was scaled to percent signal-change 
from the mean in the time dimension. An AR1 model was used to whiten the data and design 
matrices to account for temporal autocorrelation in the BOLD signal.  
 
To investigate the brain activation associated with SST conditions, for each subject and voxel, 
we fit the model  

BOLD(𝑡) = 𝛽% + (HRF ∗ Conditions)(𝑡) + Nuissance(𝑡) + 𝜖(𝑡). (Model	1) 
BOLD(𝑡) is the BOLD signal of the voxel at time 𝑡 (𝑡 ∈ {1, … , 𝑇} for 𝑇 the total number of 
volumes acquired); (HRF ∗ Conditions)(𝑡) is the value at 𝑡 of the convolution with the 
hemodynamic response function HRF of condition regressor(s) Conditions; Nuissance(𝑡) is the 
effect at 𝑡 of nuisance regressors, which were 6 motion parameters (translational and rotational 
displacement along each of three axes) and 6 cosine basis functions (corresponding to high-pass 
filtering at 0.01 Hz); and 𝜖(𝑡) is the model’s error at 𝑡. We fit models with three sets of condition 
regressors:  

Conditions = 𝛽$(𝐼Go + 𝐼Stop). (Conditions	1) 
Conditions = 𝛽$𝐼Go + 𝛽'𝐼Stop. (Conditions	2) 

Conditions = 𝛽$𝐼Correct	go + 𝛽'𝐼Incorrect	go + 𝛽5𝐼Correct	late	go + 𝛽8𝐼Incorrect	late	go
+𝛽9𝐼No	response	go + 𝛽<𝐼Correct	stop + 𝛽=𝐼Incorrect	stop + 𝛽>𝐼SSD	stop. (Conditions	3) 

𝐼Condition	is an indicator function indicating when the subject experiences Condition (for 
example, 𝐼Go is 0 except at the moment when a subject is presented with a go trial). For between-
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subjects analyses, we used Model	1 with Conditions	1 to obtain task activation (𝛽$); used 
Model	1 with Conditions	2 to obtain go activation (𝛽$) and stop activation (𝛽'); and used 
Model	1 with Conditions	3 to obtain correct stop versus correct go activation (𝛽< − 𝛽$), correct 
stop versus incorrect go activation (𝛽< − 𝛽'), and incorrect stop versus correct stop activation 
(𝛽= − 𝛽<). 
 
To determine within-subjects associations between brain activity and trial-level variables, for 
each subject and voxel, we fit the model  

BOLD(𝑡) = 𝛽% + (HRF ∗ Conditions)(𝑡) + (HRF ∗ Modulation)(𝑡)
+Nuissance(t) + 𝜖(𝑡). (Model	2) 

(HRF ∗ Modulation)(𝑡) is the value at 𝑡 of the convolution with the hemodynamic response 
function of the parametric regressor Modulation. To investigate within-subjects associations 
between brain activity and SSRT on stop trials, probability of proactivity on all trials, proactive 
delaying on all trials, and observed reaction time on go trials, we set Modulation = 𝛽5SSRT, 
Modulation = 𝛽5P(Proactive), Modulation = 𝛽5Proactive	delaying, and Modulation =
𝛽5Go	RT, respectively, and used Model	2 with Conditions	2. Each of SSRT, 𝑃(Proactive), 
Proactive	delaying, and Go	RT was standardized over the conditions during which it assumed 
values by subtracting its mean and dividing by its standard deviation; that is, SSRT had mean 0 
and standard deviation 1 over correct and incorrect stop trials (and was 0 on all other trials), 
𝑃(Proactive) and Proactive	delaying had mean 0 and standard deviation 1 over all trials, and 
Go	RT had mean 0 and standard deviation 1 over go trials with a recorded response (and was 0 
on all other trials). 
 
We fit these regression models for each subject and each of their 2 SST runs. For each model, 
subject, and voxel, we combined the regression results from the 2 runs with a fixed effects model 
through FirstLevelModel’s compute_contrast method. For each model and voxel, we estimated 
the effect of each scanner as the mean of the regression coefficients of the subjects who were 
scanned by it minus the grand mean of the regression coefficients of all subjects. Then, we 
adjusted the regression coefficients by subtracting the estimated scanner effects. All analyses of 
the regression coefficients used these adjusted values. We used a 1-sample Cohen’s 𝑑 (sample 
mean divided by sample standard deviation) to measure the effect sizes of regression 
coefficients. 
 
Networks and regions of interest 
 
We extracted the whole-brain regression coefficients in 2 networks and 3 sets of regions. We 
used the Shirer networks for our primary analyses and used the Yeo-17 networks, Shirer regions, 
cognitive control regions, and subcortical regions to test the stability of our within-subjects 
findings. For each subject and each regression coefficient of interest, we obtained the 
coefficient’s value in each area (network or region) by calculating the mean of the subject’s 
coefficients over the voxels belonging to the area. We used these area-average regression 
coefficients of each subject: to compute Cohen’s 𝑑 and Pearson 𝑟 values for the network-level 
comparison of between- and within-subjects associations (Figure 5) and for the measurement of 
nonergodicity (Figure 9); and to compute Cohen’s 𝑑 values for the stability (Figure 6) and 
subgroup (Figure 8) analyses. 
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The Shirer networks and regions were obtained from43. To obtain the voxel-coordinates of the 
Yeo-17 networks, we used a mapping between the Brainnetome63 and Yeo atlases42. We 
assembled the cognitive-control regions to include areas activated by the SST, two core default 
mode areas, and one core salience network and error-processing area. The regions activated by 
the SST were taken from a metaanalysis of 70 inhibitory control studies26 (right anterior insula, 
right caudate, right inferior frontal gyrus, right middle frontal gyrus, right presupplementary 
motor area, and right supramarginal gyrus) and a study that segmented high-resolution structural 
MRI64 (left and right subthalamic nucleus). To obtain the dorsal anterior cingulate cortex, we 
retrieved a Neurosynth automatic metaanalysis of 464 studies for the term “error” on 2023-09-21 
and defined the region to be the 6 mm cube centered on the voxel with the highest metaanlysis 𝑍-
score. To obtain the posterior cingulate cortex and ventromedial prefrontal cortex, we retrieved a 
Neurosynth automatic metaanalysis of 777 studies for the term “default mode” on 2024-02-05; 
extracted clusters from this map using the connected_regions function in Nilearn’s regions 
module with keyword argument “extract_type” set to “connected_components”; identified by 
eye the clusters corresponding to the posterior cingulate and ventromedial prefrontal cortex; and 
for each cluster defined the region to be the 6 mm cube centered on the voxel with the highest 
metaanalysis Z-score in the cluster. We obtained subcortical regions from a subcortical 
probabilistic atlas65. We resampled the atlas’s probabilistic subcortical labels in 1 mm cubed 
MNI152 2009c nonlinear asymmetric space to the 2 mm cubed MNI152 space of our SPM echo-
planar imaging template using resample_to_img from Nilearn’s image module, and then 
thresholded these probabilistic maps at 0.5 to obtain region masks.  
 
Stability analysis 
 
To assess the stability of the within-subjects results, regression coefficients were resampled at 
varying sample sizes and the correlation was evaluated against the results in the full sample. 
Specifically, for each of SSRT, probability of proactivity, and proactive delaying, in each set of 
networks or regions: 10,000 samples of 𝑛 subjects were drawn with replacement; the Cohen’s 𝑑’s 
of each sample’s regression coefficients were calculated and Pearson correlated with the Cohen’s 
𝑑’s of the full sample over the regions or networks; and the mean and 95% and 99% bootstrap 
confidence intervals were calculated of the correlation (SSRT and probability of proactivity 𝑛 = 
25, 40, 70, 120, 200, 335, 560, 945, 1585, 2660, 4469; proactive delaying 𝑛 = 25, 40, 70, 115, 
195, 325, 540, 900, 1500, 2505, 4176). The 95% and 99% bootstrap confidence intervals were 
calculated, respectively, as the intervals covering the 2.5th to 97.5th percentiles and 0.5th to 
99.5th percentiles of the 10,000 correlations at each 𝑛. 
 
We also directly examined the distributions of the Cohen’s 𝑑’s of the resamples as a function of 
𝑛 in regions of interest. Specifically, for each of SSRT, probability of proactivity, and proactive 
delaying, in each region of interest: 10,000 samples of 𝑛 subjects were drawn with replacement; 
the Cohen’s 𝑑 of each sample’s regression coefficients was calculated; and the mean and 95% 
and 99% bootstrap confidence intervals were calculated of the Cohen’s 𝑑 (SSRT and probability 
of proactivity 𝑛 = 25, 40, 70, 120, 200, 335, 560, 945, 1585, 2660, 4469; proactive delaying 𝑛 = 
25, 40, 70, 115, 195, 325, 540, 900, 1500, 2505, 4176). The 95% and 99% bootstrap confidence 
intervals were calculated as the intervals covering, respectively, the 2.5th to 97.5th percentiles 
and 0.5th to 99.5th percentiles of the 10,000 Cohen’s 𝑑’s at each 𝑛. 
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Representational similarity analysis 
 
For each Shirer network, and for each subject, we computed the correlation between the subject’s 
within-subjects brain maps of SSRT and probability of proactivity, SSRT and proactive delaying, 
and probability of proactivity and proactive delaying over the voxels in the network. Density 
estimates used Seaborn’s kdeplot function with each distribution of correlations over subjects 
normalized to 1 (common_norm=False) and limited to values between -1 and 1 (clip=[-1,1]); all 
other parameters, including those determining the kernel smoothing bandwidth, were kept at 
their defaults. We tested, for each network, whether there was a difference in the median 
correlation of SSRT and probability of proactivity and the median correlation of SSRT and 
proactive delaying; the median correlation of SSRT and probability of proactivity and the median 
correlation of probability of proactivity and proactive delaying; and the median correlation of 
SSRT and proactive delaying and the median correlation of probability of proactivity and 
proactive delaying. 
 
Measuring nonergodicity of brain networks 
 
For each of SSRT, probability of proactivity, and proactive delaying, and for each of the Shirer 
networks, we computed bootstrap distributions of a measure of nonergodicity: we drew 10,000 
samples of 𝑛 subjects with replacement; for each resample, using the resample’s between- and 
within-subjects associations, we computed the fraction of subjects whose (within-subjects) brain 
association with the parameter had the opposite sign of the between-subjects brain association 
with the parameter, in the network; then, we computed the mean and 95% confidence interval 
over the resamples of the fraction of opposite signs (SSRT and probability of proactivity 𝑛 = 
4469; proactive delaying 𝑛 =	4176). The between-subjects association was the Pearson 
correlation between correct stop versus correct go activation and the subject-average parameter, 
which was recomputed for the subjects in each resample. The 95% confidence interval was 
calculated as the interval covering the 2.5th to 97.5th percentiles of the 10,000 fractions of 
opposite signs. The goal of using bootstrapping was to account for the strength of the between-
subjects results. Next, the nonergodicity of each network was defined as the three-dimensional 
vector whose 𝑖th coordinate was the mean (over bootstrap resamples) fraction of subjects with 
opposite signs in the network for the 𝑖th cognitive model parameter. Then, the Euclidean 
distances were computed between the vectors and hierarchical clustering was performed on the 
distances using the linkage function in scipy’s cluster subpackage, hierarchy module with 
“method” set to “average”.  
 
Significance testing 
  
Permutation tests were used for all significance testing. The tests used two-sided alternatives and 
10,000 resamples and were performed with Scipy’s permutation_test function. FDR correction 
was performed using the Benjamini-Hochberg procedure with Scipy’s false_discovery_control 
function. 𝑃FDR denotes an FDR-corrected 𝑃 value. For a set of brain areas and an fMRI 
regression, we tested the null hypothesis for each brain area that the regression coefficients in the 
area had a mean of 0 (Figure 5) by computing the means of resamples in which the signs of the 
coefficients were randomly chosen (permutation_test permutation_type=‘samples’). Then, FDR 
correction was applied to the 𝑃 values of all brain areas in the set (e.g., FDR correction was 
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applied to the 𝑃’s of SSRT’s regression coefficients over the Shirer networks). For a set of brain 
areas, an fMRI regression, and a behavioral measure, we tested the null hypothesis for each brain 
area that the Pearson correlation between subject-average regression coefficients in the brain area 
and subject-average behavioral measures was 0 (Figure 5) by computing the Pearson correlations 
of resamples in which regression coefficients were randomly paired with behavioral measures 
(permutation_test permutation_type =‘pairings’). Then, FDR correction was applied to the 𝑃 
values of all brain areas in the set (e.g., FDR correction was applied to the 𝑃’s of correlations 
between correct stop versus correct go activation and SSRT over the Shirer networks). For a set 
of brain areas and a param 𝛾$	or 𝜃$, we tested the null hypothesis for each brain area that the 
mutually exclusive subgroups of subjects with param < 0 and with param > 0 had different 
mean regression coefficients (Figure 8) by computing the differences between the means for 
resamples in which coefficients were randomly assigned to param < 0 and param > 0 
(permutation_test permutation_type=‘independent’). Then, FDR correction was applied to the 𝑃 
values of all brain areas in the set (e.g., FDR correction was applied to the 𝑃’s of mean 
differences between 𝛾$ < 0 and 𝛾$ > 0 over the Shirer networks). For the Shirer networks, we 
tested the null hypothesis for each brain area that there was no difference in the area between the 
median correlation of SSRT and probability of proactivity and the median correlation of SSRT 
and proactive delaying; the median correlation of SSRT and probability of proactivity and the 
median correlation of probability of proactivity and proactive delaying; and the median 
correlation of SSRT and proactive delaying and the median correlation of probability of 
proactivity and proactive delaying (Figure 7). We computed the differences between the medians 
of resamples in which correlations were randomly exchanged within subjects (permutation_test 
permutation_type=‘samples’). Then, FDR correction was applied to the 𝑃 values of all 
comparisons in all areas. (Since there are 14 Shirer networks and 3 tests per network, FDR 
correction was applied over 14×3 𝑃’s.) 
 
Software 
 
Data were processed and analyzed using Python (version 3.9.16), Scipy (version 1.11.4), 
Seaborn (version 0.13.2), Nilearn (version 0.10.1), and FSL FLIRT (version 6.0).  
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Figures 
 

 
Figure 1. Conceptual overview of the study and key findings. The figure illustrates the 
methodology for between-subjects and within-subjects analyses and the concept of 
nonergodicity, and previews the main results. a, Between-subjects analysis. Subject-average 
brain activation in each voxel is correlated with a subject-average cognitive measure across the 
population. b, Within-subjects analysis. For each individual, the time-series of brain activity in 
each voxel is associated with the time-series of a cognitive measure. c, Simpson’s paradox. 
Simpson’s paradox occurs when associations between subjects and within subjects show 
conflicting directions; it exemplifies nonergodicity in the behavioral sciences. d, Study aims. We 
examined brain-behavior associations for nonergodicity; tested our within-subjects results for 
stability and robustness; used these results to probe the brain implementations of proactive and 
reactive control and adaptive regulation of inhibitory control; and investigated how 
nonergodicity varied by brain network. Nonergodic patterns in brain-behavior associations were 
consistently observed, revealing that group-level (between-subjects) and individual-level 
(within-subjects) associations yield divergent results for inhibitory control processes. This 
challenges the common assumption that findings from such group-level analyses can be directly 
applied to understand individual-level cognitive processes. 
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Figure 2. Computational modeling of inhibitory control dynamics in the stop signal task. a, 
Stop signal task. On go trials subjects should respond by pressing a button to indicate the arrow 
direction, and on stop trials should inhibit their response when the stop signal appears. b, Race 
model. The computational model’s foundation is that go and stop processes compete, with the 
first to finish determining the behavioral outcome. c,d, Key model parameters. Proactive 
delaying is the delay in initiating the go process when a subject uses a proactive control strategy. 
SSRT is the time it takes for the stop process to complete. Probability of proactivity is the 
probability that a subject uses a proactive control strategy. e, Trial-by-trial dynamics. SSRT, 
probability of proactivity, and proactive delaying are inferred for each trial for each subject. The 
computational model allows for a detailed, dynamic analysis of inhibitory control processes with 
trial-level temporal resolution, enabling the investigation of within-subjects variability and 
nonergodic patterns in cognitive control. 
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Figure 3. The PRAD cognitive model. a, The PRAD model infers latent variables for each 
subject from their observed go and stop failure rates, response times, and choice accuracy. The 
latent variables relate to three mechanisms of dynamic inhibitory control: the basic reactive 
inhibitory process (red 1), proactive delaying of responses (green 2), and modulation of stopping 
expectancy (yellow 3). b, Visualization of the three mechanisms of dynamic inhibitory control. c, 
Mathematical details of how the model parameterizes the go and stop processes. 
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Figure 4. Divergence of between-subjects and within-subjects brain-behavior associations 
in inhibitory control. a, Between-subjects analysis. Whole-brain correlation maps showing 
associations between subject-average brain activation (correct stop versus correct go activation) 
and subject-average cognitive model parameters (SSRT, probability of proactivity, and proactive 
delaying). Thresholded at Pearson 𝑟 ≥	0.05. b, Within-subjects analysis. Whole-brain Cohen's 𝑑 
maps showing associations between trial-by-trial brain activity and cognitive model parameters 
(SSRT, probability of proactivity, and proactive delaying). SSRT associations were computed on 
stop trials; probability of proactivity and proactive delaying associations were computed on all 
trials. Thresholded at Cohen’s 𝑑 ≥ 0.1. For both between- and within-subjects analyses: SSRT 
and probability of proactivity 𝑁 = 4469; proactive delaying 𝑁 = 4176. Striking differences 
were observed comparing between-subjects and within-subjects associations across multiple 
brain regions. This divergence provides evidence for nonergodicity in inhibitory control 
processes, challenging the assumption that group-level findings can be directly applied to 
understand individual-level cognitive dynamics. 
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Figure 5. Network-level comparison of between-subjects and within-subjects brain-
behavior associations in inhibitory control. The between-subjects analysis correlated subject-
average brain activation (correct stop versus correct go activation) and subject-average cognitive 
model parameters (SSRT, probability of proactivity, and proactive delay). The within-subjects 
analysis regressed trial-by-trial brain activity on trial-by-trial cognitive model parameters (SSRT, 
probability of proactivity, and proactive delay). Effect sizes are shown for both analyses 
(between-subjects: Pearson 𝑟; within-subjects: Cohen’s 𝑑). Statistical significance is indicated by 
colored asterisks: red for between subjects (𝑃FDR < 0.01) and blue for within subjects (𝑃FDR <
0.01). Networks are based on the Shirer parcellation.43 Differences in the existence and direction 
of associations between between-subjects and within-subjects analyses were observed across 
multiple brain networks, including the anterior and posterior salience, left and right 
frontoparietal, and dorsal and ventral default mode networks. 
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Figure 6.  Stability analysis of within-subjects associations. a-c, Stability plots for SSRT (a), 
probability of proactivity (b), and proactive delaying (c). In each panel, the top plots show the 
distributions of correlation between the effect in resamples and the effect in the full sample, 
while the bottom plots show the distributions of the effect in selected regions. For each plot, 
10,000 resamples of 𝑛 subjects were drawn with replacement for each sample size 𝑛, and 
Cohen’s 𝑑 was calculated for each resample. For top panel plots, correlations were then 
computed for each resample over the areas belonging to the set of brain areas. The dashed lines 
depict 95% and 99% bootstrap confidence intervals. Within-subjects associations demonstrated 
stability for all 3 cognitive model parameters across 5 different collections of brain areas and in 5 
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regions of interest, even at modest sample sizes. This stability supports the reliability of brain-
behavior associations in inhibitory control processes. 
 

 
Figure 7. Dissociated brain representations of reactive and proactive control processes. For 
each subject, correlations were computed between pairs of within-subjects brain maps for the 
model parameters (SSRT, probability of proactivity, and proactive delaying) over each brain 
network. a, Distributions of correlations over subjects. Kernel density estimation was performed. 
b, Average correlations over subjects. The height of the bars is the median. Statistical 
significance is indicated by asterisks (* 𝑃FDR < 0.01). Reactive (SSRT) and proactive 
(probability of proactivity, proactive delaying) control processes showed dissociated 
representations across all brain networks. This dissociation suggests that the brain employs 
distinct neural resources for reactive and proactive aspects of inhibitory control. In contrast, the 
two proactive measures showed high similarity, validating their representation of related 
cognitive processes. 
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Figure 8. Distinct brain-behavior associations for adaptive and maladaptive regulators of 
inhibitory control. a, Within-subjects associations of SSRT with brain activity between 𝛾$ 
subgroups. We identified two distinct subgroups of subjects with opposite profiles of attentional 
modulation. Subjects showed either maladaptive regulation (𝛾$ < 0, 𝑁 = 2513) or adaptative 
regulation (𝛾$ > 0, 𝑁 = 1956) of their expectancy of stopping over time. The two groups showed 
differences in within-subjects associations between SSRT and brain activity in various networks. 
This demonstrates that individual differences in attentional dynamics play a role in shaping the 
relationship between neural activity and inhibitory control processes. A colored asterisk indicates 
that a network or region’s associations were nonzero among subjects with 𝛾$ < 0 (blue * 𝑃FDR <
0.01) or among subjects with 𝛾$ > 0 (purple * 𝑃FDR < 0.01).  b, Within-subjects associations of 
probability of proactivity with brain activity between θ$	subgroups. We identified two distinct 
subgroups of subjects with opposite profiles of performance monitoring. Subjects showed either 
adaptive regulation (𝜃$ <  0, 𝑁 = 3054) or maladaptive regulation (𝜃$ > 0, 𝑁 = 1415) of their 
proactivity over time. The two groups showed differences in within-subjects associations 
between probability of proactivity and brain activity in various networks. This demonstrates that 
the neural correlates of proactive control are influenced by an individual’s strategy for adjusting 
proactivity in response to task outcomes. A colored asterisk indicates that a network or region’s 
associations were nonzero among subjects with 𝜃$ < 0 (blue * 𝑃FDR < 0.01) or among subjects 
with 𝜃$ > 0 (purple * 𝑃FDR < 0.01). For both panels, a black asterisk indicates that associations 
had different distributions between the two subgroups (* 𝑃FDR < 0.01, n.s. 𝑃FDR ≥ 0.01). 
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Figure 9.  Nonergodicity across brain networks. a, Degree of nonergodicity of brain networks. 
Bar plots show the extent of nonergodicity for each brain network across three cognitive model 
parameters (SSRT, probability of proactivity, proactive delaying). The height of the bars is the 
mean fraction of subjects showing opposite-sign associations compared to between-subjects 
results. The bars are shaded by the magnitude of the between-subjects correlations. Error bars 
show 95% bootstrap confidence intervals. b, 3-dimensional embedding of each network. 
Networks are represented as points based on their nonergodicity measures for the three 
parameters. c-d, Hierarchical clustering of networks based on their nonergodicity profiles. c, 
Dendrogram of clustering. d, Euclidean distances between network embeddings. Brain networks 
exhibited varying degrees of nonergodicity. The anterior salience network showed the highest 
level of nonergodicity and a unique profile of nonergodicity distinct from that of all other 
networks. 
 


