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Abstract

Nonergodicity and Simpson’s paradox pose significant and underappreciated challenges for
neuroscience. Using stop signal task data from over 4,000 children and a Bayesian computational
model of cognitive dynamics, we investigated brain-behavior relationships underlying inhibitory
control at both between-subjects and within-subjects levels. Strikingly, between-subjects
associations of inhibitory control activations with stop signal reaction times, probabilities of
proactivity, and proactive delays were reversed within subjects, revealing the nonergodic nature
of these processes. Nonergodicity was observed throughout the brain but was most pronounced
in the salience network. Furthermore, within-subjects analysis revealed dissociated brain
representations of reactive and proactive processing, and distinct brain-behavior associations for
subjects who adaptively and who maladaptively regulated inhibitory control. This work advances
our knowledge of the dynamic neural mechanisms of inhibitory control during a critical
developmental period and has implications for personalized interventions in cognitive disorders.
Embracing nonergodicity is crucial for understanding brain-behavior relationships and
developing effective interventions.



Introduction

Since the nineteenth century, notions of ergodicity have had an important role in statistical
physics!, but only recently have other disciplines such as economics* and psychology>’ begun
to examine how their own theories and findings rest upon assumptions of ergodicity. In the
behavioral sciences, a clear example of nonergodicity is Simpson’s paradox: an association
between variables in a population may disappear or even reverse when the population is divided
into subpopulations®!!. One form of the paradox occurs when associations are different in a
population and in the individuals that make up the population. A classic case of nonergodicity
and Simpson’s paradox of this sort is the speed-accuracy tradeoff: in some tasks, speed and
accuracy are positively correlated between individuals (faster people are more accurate)'?, but
are negatively correlated within individuals (when an individual tries to respond faster, their
accuracy decreases)'3. This highlights how between-subjects and within-subjects inferences can
diverge. There is growing evidence that many psychological phenomena may be nonergodic,
meaning that inferences about them would differ when data are analyzed across time within an
individual versus across individuals at a single point in time>-7-14-17

Nonergodicity thus implies that associations at the group level (Figure 1a) may fail to generalize
to associations at the individual level (Figure 1b), and thus may fail to capture the dynamic
processes occurring within each subject>®!6, This view suggests that the relationship between
behavior and the underlying brain activity may differ substantially when examined within
subjects over time compared to between subjects at a single time point’-'%, leading to Simpson’s
paradox when comparing inferences from these two perspectives (Figure 1¢). However,
applications of this principle to human cognitive neuroscience have been limited, and nonergodic
dynamics in brain and cognitive functions remain poorly understood. Nonergodic principles have
yet to be fully integrated into the study of human cognition and brain function.

While there has been notable progress in understanding nonergodicity within behavioral
contexts>%18-20jts application to human brain function remains largely unexplored. This gap in
research is significant because insights into nonergodicity in neural dynamics could profoundly
enhance our understanding of brain-behavior relationships. Exploring this concept at the level of
neural dynamics is crucial for identifying how an individual’s differences in brain activity
contribute to variability in their cognitive processes over time. By treating between- and within-
subjects dynamics as dissociable, researchers can potentially develop more personalized and
effective neuroscientific models and interventions, which consider the unique neural pathways
and cognitive strategies employed by individuals. This approach not only promises to advance
theoretical neuroscience but also holds practical implications for tailoring therapeutic strategies
to better address individual neurological and cognitive differences.

To address these limitations and investigate the potential nonergodicity in neurocognitive
processes and mechanisms, we leveraged data from the Adolescent Brain Cognitive
Development (ABCD) study, a large-scale, longitudinal study of brain development and behavior
in children and adolescents?'. We used behavioral and brain imaging data from over 4,000 9- to
10-year-old participants to examine the neural mechanisms of inhibitory control at both the
between-subjects and within-subjects levels.



Inhibitory control is the ability to withhold or cancel maladaptive actions, thoughts, and
emotions, and is a fundamental component of goal-directed behavior?>%3, This critical cognitive
function allows individuals to navigate complex environments, adapt to changing circumstances,
and maintain focus on long-term goals in the face of immediate temptations or distractions*.
Given its central role in cognitive control, understanding the neural mechanisms underlying
inhibitory control has been a primary focus of cognitive neuroscience research?®, Inhibitory
control engages a distributed network of cortical and subcortical regions. Previous studies have
consistently implicated the involvement of the salience network, particularly the anterior insula
and dorsal anterior cingulate cortex, in detecting and processing relevant stimuli and
coordinating neural resources for inhibitory control?®-3°, Additionally, the inferior frontal gyrus,
presupplementary motor area, and basal ganglia have been shown to play crucial roles in
implementing response inhibition?*. The dynamic activation of these cortical and subcortical
regions underlies the successful execution of inhibitory control processes.

Conventionally, studies investigating the neural basis of inhibitory control have relied on
between-subjects analyses, which compare brain activity across individuals who differ in their
ability to inhibit responses. For example, researchers examine how between-individual
differences in a measure of inhibitory control, such as the stop signal reaction time (SSRT)
derived from the stop signal task (SST), relate to between-individual differences in brain
activation from the task?’-3!-37, These analyses involve aggregating data at the individual-level
and making inferences about the neural mechanisms of inhibitory control based on between-
subjects comparisons®®.

However, this approach rests on the assumption of ergodicity, which posits that the statistical
properties of a system are the same whether measured across time within an individual or across
individuals at a point in time'®. In other words, ergodicity assumes that the average behavior of a
group reflects the behavior of each individual within that group®3°. If this assumption holds, then
inferences made from group-level associations can be generalized to explain the cognitive
processes occurring within each individual’-3.

To enable within-subjects analyses and capture the dynamic nature of inhibitory control, we
developed the Proactive Reactive and Attentional Dynamics (PRAD) model of SST behavior.
This computational model extends beyond conventional approaches to the SST by incorporating
both top-down and bottom-up processes, integrating mechanisms of proactive and reactive
control*’. The PRAD model allows us to infer dynamic, trial-level parameters for each subject,
including SSRTs and measures of proactive delaying based on stop signal anticipation. These
parameters characterize the latent cognitive constructs governing action execution and inhibition
in the SST, providing a more comprehensive view of inhibitory control processes than traditional
models.

We combined task fMRI data with the PRAD model to investigate the relationship between task-
evoked brain responses and dynamic inhibitory control processes at both between-subjects and
within-subjects levels. This approach allows us to directly compare inferences made from
traditional group-level analyses (group-level associations) with those derived from a fine-grained
examination of within-individual variation in neurocognitive dynamics. We leveraged the
dynamic representations of subjects’ behaviors from the PRAD cognitive model alongside



simultaneous task fMRI data to probe how moment-to-moment variations in brain activity relate
to fluctuations in inhibitory control processes. This analysis strategy promotes a richer
understanding of the neural basis of inhibitory control, potentially revealing insights that would
be obscured in conventional group-level analyses.

We had five interconnected aims (Figure 1d). First, we examined how key parameters of
reactive and proactive control*! from the PRAD model related to brain activity at both between-
subjects and within-subjects levels, identifying networks showing significant associations. By
comparing these levels, we show the limitations of assuming ergodicity in the study of inhibitory
control and underscore the importance of considering within-subjects variability. Second,
motivated by the replicability crisis in neuroscience research, we assessed the stability and
robustness of our findings. We examined the stability of our within-subjects findings as a
function of the sample and sample size through bootstrap resampling. Then, we tested whether
our finding of nonergodicity was robust to alternative between-subjects analyses using different
measures of brain activation and robust to the use of a directly observed behavioral measure in
place of latent cognitive model parameters. Third, we probed the brain’s implementation of
proactive and reactive control processes underlying inhibitory control. Proactive control involves
the anticipation and preparation for stopping, while reactive control involves the actual
implementation of response inhibition*!. By comparing the brain representations of these
processes, we improve understanding of how their neural underpinnings relate. Fourth, we
identified subgroups of within-subjects results associated with individual differences in adaptive
regulation of inhibitory control. Finally, we quantified and compared nonergodicity levels across
different brain networks, defining nonergodicity as the fraction of subjects whose within-subjects
brain-behavior association showed an opposite sign to the between-subjects association. This
approach allowed us to map the distribution of nonergodicity across the brain and explore its
hierarchical organization.

By comparing traditional between-subjects analyses with within-subjects analyses that account
for dynamic cognitive processes, we highlight the limitations of assuming ergodicity in the study
of cognitive control and provide a more precise understanding of the neural mechanisms
supporting this critical function. Our findings have important implications for both basic research
and clinical applications, emphasizing the need to consider within-subjects variability and the
dynamic nature of cognitive processes in the study of brain-behavior relationships. Ultimately,
this work contributes to a more complete understanding of the neural basis of inhibitory control.

Results
Dynamic cognitive process model of behavior

We used data from the SST (Figure 2a) to investigate dynamic cognitive processes underlying
inhibitory control in a large sample (N~4000) from the baseline visit of the ABCD study. We
developed PRAD, a dynamic cognitive process model*® that provides a multidimensional
perspective of the elemental cognitive processes governing the reactive and proactive dynamics
involved in inhibitory control. This model incorporates latent dynamics that respond to internal
cognitive states (endogenous variables) and external environmental contingencies (exogenous



variables), with interaction between these dynamics governed by latent trait measures. The latent
dynamic (trial-level) and trait (individual-level) measures are simultaneously inferred within a
hierarchical Bayesian framework. The model conceptualizes behavior during the task as arising
from competing drift diffusion processes (Figure 2b). It infers a measure of reactive inhibitory
control, stop signal reaction time (SSRT), and 2 measures of proactive control, probability of
proactivity and proactive delaying (Figure 2¢-d). SSRT measures how long it takes for a subject
to inhibit a response, probability of proactivity determines whether they use a strategy of
proactive delaying, and proactive delaying measures the length of proactive delays when a
proactive strategy is utilized. Importantly, all 3 of these parameters are inferred for each trial
(Figure 2e). Figure 2e shows how these 3 parameters vary over time within an individual.
Figure 3 provides a detailed illustration of the model.

Between-subjects and within-subjects analysis of brain-behavior associations

We examined how 3 key parameters of the PRAD model—SSRT, probability of proactivity, and
proactive delaying—related to brain activity at both between-subjects and within-subjects levels
(Figure 4). To investigate brain-behavior relationships in inhibitory control, we conducted both
between-subjects and within-subjects analyses using fMRI data from the stop signal task (SSRT
and probability of proactivity N = 4469; proactive delaying N = 4176). For the between-
subjects analyses, we Pearson correlated subject-average brain activation during successful
stopping (correct stop versus correct go activation) with subject-average SSRT, probability of
proactivity, and proactive delaying across participants?’3-37, For the within-subjects analyses, we
regressed the fMRI signal on the parameters using fMRI general linear models with SSRT,
probability of proactivity, and proactive delaying included as regressors. We thus modeled the
fMRI signal as a combination of static trial-type effects and dynamic effects proportional to trial-
by-trial variations in the cognitive model parameters. This allowed us to examine how
fluctuations in cognitive processes covaried with brain activity within each individual, while
adjusting for stimulus types. These complementary approaches enabled us to compare group-
level and individual-level trends in brain-behavior relationships.

SSRT: Between subjects, SSRT showed widespread negative correlations with brain activity,
including in frontal, parietal, and temporal areas, and in regions implicated in cognitive control.
This suggests that individuals with faster inhibitory responses (lower SSRT) show greater
activation in these regions during successful stopping, replicating previous findings®’. In
contrast, within subjects, SSRT showed positive associations with brain activity, particularly in
frontal and parietal regions. This suggests that on trials where individuals have slower inhibitory
responses, they show increased activation in these areas.

Probability of proactivity: Between subjects, probability of proactivity showed minimal
correlations with brain activity. In contrast, within subjects, probability of proactivity showed
negative associations in parietal, temporal, and lateral frontal regions, and positive associations
in default mode network regions.

Proactive delaying: Between subjects, proactive delaying showed widespread positive
correlations with brain activity, particularly in frontal and parietal regions. This indicates that
individuals who engage in more proactive delaying exhibit higher activation in these areas



during successful stopping. In contrast, within-subjects, proactive delaying showed negative
associations in frontal and parietal cortex.

These findings reveal a striking divergence of between-subjects and within-subjects brain-
behavior relationships in inhibitory control. The reversal of association directions, particularly
for SSRT and proactive delaying, suggests that inferences about the neural mechanisms
underlying inhibitory control do not generalize between group and individual levels. This
nonergodic pattern highlights the importance of considering both levels of analysis to more fully
understand the neurocognitive dynamics of inhibitory control.

Network-level visualization of between- and within-subjects brain-behavior associations

To elucidate the patterns of brain-behavior relationships across different functional brain
networks, we visualized the between-subjects and within-subjects associations for SSRT,
probability of proactivity, and proactive delaying (Figure 5). We used the Shirer network
atlas*>* for our primary analysis as it includes the basal ganglia, a subcortical system important
for the implementation of inhibitory control?”#,

SSRT: Between-subjects analysis showed consistent negative correlations in most networks, with
effects in the posterior salience, frontoparietal, and default mode networks (all Pgppg < 0.01). In
contrast, within-subjects analysis revealed mixed negative and positive associations, with
opposite associations in the posterior salience, precuneus, visuospatial, auditory, and
sensorimotor networks (all Pgppg < 0.01). The reversal of association directions underscores the
nonergodic nature of SSRT-related brain activity.

Probability of proactivity: Between-subjects analysis demonstrated no significantly nonzero
correlations in the networks (all Prpg = 0.05). However, within-subjects analysis unveiled a
more complex pattern. Negative associations were observed in the salience and frontoparietal
networks, while positive associations were seen in the dorsal and ventral default mode networks
(all Pgpr < 0.01). This disparity highlights the importance of examining within-subjects
dynamics for proactivity.

Proactive delaying: Between-subjects analysis revealed positive correlations in all the networks
(all Pgpr < 0.01). Yet, within-subjects analysis showed predominantly negative associations,
notably in the salience and frontoparietal networks (all Pgpg < 0.01). The ventral default mode
network showed a positive within-subjects associations (Pgpr < 0.01).

These network-level visualizations emphasize the divergent patterns between group-level and
individual-level associations across different functional brain networks. The consistent reversals
observed, for both reactive and proactive control measures, reinforce that brain-behavior
relationships in inhibitory control are nonergodic. These findings indicate that both between-
subjects and within-subjects perspectives are needed to comprehensively understand the neural
dynamics underlying inhibitory control.

Stability of within-subjects brain-behavior associations



To assess the stability of our within-subjects findings, we performed bootstrap resampling at
varying sample sizes (Figure 6). Our results demonstrate that within-subjects associations
between brain activity and the model parameters (SSRT, probability of proactivity, and proactive
delaying) are stable, even in modest sample sizes. Key findings were consistently observed in
samples as small as 25 subjects, with some effects requiring larger samples to emerge reliably.
This stability suggests the validity and potential generalizability of our within-subjects approach
to understanding neurocognitive mechanisms of inhibitory control. A detailed description of
these results is in the Supplementary Materials.

Robustness of nonergodicity to analytical choices

To test the robustness of our findings of nonergodicity, we conducted several control analyses
comparing between- and within-subjects brain-behavior relationships. We tested alternative
between-subjects analyses using different measures of brain activation and explored whether the
observed nonergodicity was specific to the latent model parameters or could also be seen using
reaction time on go trials, a directly observed behavioral measure. Nonergodicity persisted for all
approaches to between-subjects analysis and both model-derived parameters and the observed
behavioral measure. Across all analytical choices, we observed divergent patterns of between-
subjects and within-subjects associations. A detailed description of these control analyses and
their results is in the Supplementary Materials. Our results strongly suggest that the
neurocognitive dynamics of inhibitory control in children are fundamentally nonergodic, with
implications for how we interpret findings from traditional group-level associations.

Representational similarity analysis reveals dissociated reactive and proactive representations

Building on our findings of nonergodic brain-behavior relationships, we sought to deepen
understanding of how the brain implements proactive and reactive control at the individual level.
While the preceding results demonstrate the importance of within-subjects analyses, they leave
unresolved how representations of reactive and proactive processes relate to each other within
brain networks. To investigate this, we used representational similarity analysis to examine the
overlap between brain representations of reactivity (SSRT) and proactivity (probability of
proactivity and proactive delaying) within individuals. For each subject and each brain network,
we computed Pearson correlations between the subject’s brain maps of SSRT and probability of
proactivity, SSRT and proactive delaying, and probability of proactivity and proactive delaying,
over the voxels in each network (Figure 7a).

SSRT showed low similarity with both proactive measures (probability of proactivity and
proactive delaying) in all networks, with median correlations ranging from -0.07 to 0.06. In
contrast, the 2 proactive measures (probability of proactivity and proactive delaying) exhibited
high similarity in all networks, with median correlations ranging from 0.61 to 0.67. In each
network, the 3 similarity measures (SSRT and probability of proactivity, SSRT and proactive
delaying, and probability of proactivity and proactive delaying) were significantly different from
each other in their median values (Figure 7b). These findings suggest that representations of
reactivity and proactivity are largely dissociated. This dissociation persists across multiple brain
networks, indicating a fundamental separation in how the brain encodes reactive and proactive
control processes.



Adaptive regulation of inhibitory control associated with distinct within-subjects results over
subgroups

To understand how our within-subjects associations related to between-subjects variation in
cognitive and task strategies, we examined the within-subjects results between subgroups
showing adaptive and maladaptive regulation of reactive and proactive behaviors. These
subgroups were identified using PRAD model parameters y; and 6;.

First, the cognitive model infers for each subject y;, which determines whether subjects
adaptively (y; > 0) or maladaptively (y; < 0) regulate reactivity. Adaptive (maladaptive)
regulation of reactivity involves increasing (decreasing) expectancy of a stop trial as the number
of successive go trials increases. Since expectancy of a stop trial is one of several determinants
of SSRT, y; influences SSRT variation through time. Thus, we examined within-subjects
associations between SSRT and brain activity separately among subjects with y; < 0 (N =
2513) and y; > 0 (N = 1956) (Figure 8a). We found differences in the distributions of within-
subjects SSRT associations between the y; subgroups in all networks examined (all Pgpg <
0.01). The maladaptive regulation group had a larger (more positive) effect size in every
network. In fact, across most networks, SSRT exhibited opposite associations with brain activity
in the two subgroups. For example, in the frontoparietal and default mode networks, SSRT
displayed a positive association among subjects with y; < 0 and a negative association among
subjects with y; > 0. Moreover, this analysis revealed that some of the effects in the full sample
were driven by subjects belonging to one of the subgroups. For example, in the anterior salience
network, brain activity’s positive association with SSRT in the full sample was driven by y; < 0
subjects; among y; < 0, the effect in the anterior salience had a Cohen’s d of ~0.3, twice that of
the effect in the full sample, while among y; > 0, there was no significant effect at all.

Second, the cognitive model infers for each subject 8, which determines whether subjects
adaptively (6, < 0) or maladaptively (8; > 0) regulate proactivity. Adaptive (maladaptive)
regulation of proactivity involves increasing (decreasing) the probability of proactivity following
a failed stop trial and decreasing (increasing) the probability of proactivity following a no-
response go-trial. Therefore, 8, influences the probability of proactivity’s variation through time.
Thus, we examined the probability of proactivity’s within-subjects associations with brain
activity separately among subjects with 8; < 0 (N = 3054) and 8, > 0 (N = 1415) (Figure
8b). We found consistent differences in the probability of proactivity’s within-subjects
associations between these subgroups. Generally, subjects with 8; < 0 had more negative
associations between probability of proactivity and brain activity. This negative coupling
between proactivity and brain activity was pronounced among 6; < 0 in the anterior salience
network (Cohen’s d of ~0.4). This analysis also clarified how adaptive and maladaptive
regulation of proactivity contributed to the effects observed in the full sample. The within-
subjects positive association between probability of proactivity and ventral default mode
activation was observed in both 8; subgroups, but it was twice as large among subjects who
maladaptively regulated proactivity.



These results demonstrate that population subgroups related to adaptative and maladaptive
regulation of inhibitory control demonstrate different, and even opposite, within-subjects brain-
behavior associations.

Brain networks exhibit varying degrees of nonergodicity and a hierarchical organization by
nonergodicity

To further understand the distribution of nonergodicity across the brain, we quantified and
compared nonergodicity levels in different brain networks. We defined a nonergodicity measure
as the fraction of subjects whose within-subjects brain-behavior association showed an opposite
sign to the between-subjects association. Values above 0.5 indicate higher nonergodicity, while
values below 0.5 suggest more ergodic behavior.

Our analysis revealed substantial variation in nonergodicity across brain networks (Figure 9a).
Notably, the anterior salience network consistently demonstrated the highest level of
nonergodicity for all three cognitive model parameters (SSRT, probability of proactivity, and
proactive delaying). The measures of network nonergodicity for associations with the probability
of proactivity showed wide confidence intervals, reflecting the weak between-subjects
associations between this parameter and brain activation.

To understand how networks related to each other in terms of nonergodicity, we performed
hierarchical clustering on the joint nonergodicity measures of the networks with respect to all
three cognitive model parameters (Figure 9b-d). This analysis revealed a hierarchical
organization of brain networks based on their nonergodicity profiles. The anterior salience
network emerged as the most dissimilar, forming its own cluster separate from all other
networks. Additionally, the dorsal and ventral default mode networks clustered together,
suggesting similarities in their nonergodic behavior.

These findings demonstrate that brain networks exhibit varying levels of nonergodicity and
reveal a hierarchical organization of brain networks based on their nonergodic properties. This
organization suggest a new perspective on the functional architecture of the brain and how it
relates to cognitive control processes.

Discussion

A fundamental question we examined in this study is whether between- and within-subjects
brain-behavior associations yield convergent findings in understanding neurocognitive processes
underlying inhibitory control. Divergence between these levels of analysis would provide
evidence for nonergodicity, a phenomenon where inferences drawn from population-level data
do not accurately represent individual-level processes. To investigate this, we leveraged a large
community sample of children from the ABCD study and employed a dynamic computational
model to elucidate the potentially nonergodic nature of neurocognitive dynamics underlying
inhibitory control. We combined task fMRI data with a Bayesian model of cognitive dynamics to
examine brain-behavior relationships at both between-subjects and within-subjects levels. Our
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findings revealed striking differences between these two levels of analysis, providing robust
evidence of nonergodicity in inhibitory control processes.

At the between-subjects level, inhibitory control activations in key cognitive control networks
were negatively correlated with subject-average SSRTS, aligning with previous studies?”3!-33,
This suggests that individuals with better inhibitory control exhibit greater activation in regions
associated with cognitive control. However, within-subjects analysis revealed a markedly
different pattern: brain activity in some of these same networks was positively associated with
trial-level SSRTs and negatively associated with trial-level proactive control. Thus, within-
subjects associations were largely dissonant with the between-subjects findings, revealing the
nonergodic nature of inhibitory control processes. Specifically, the opposing patterns
demonstrated Simpson’s paradox, a type of nonergodicity frequently observed in behavioral
studies, where relationships at the group level are absent or reversed at the individual
level>1%15:17 This divergence underscores the importance of considering both group-level and
individual-level associations in cognitive neuroscience research and highlights the complex,
dynamic nature of inhibitory control processes.

Furthermore, representational similarity analysis uncovered distinct neural representations for
reactive and proactive cognitive processes. Across all examined brain networks, representations
of reactive control (SSRT) showed low similarity with both measures of proactive control, while
the two proactive measures showed high similarity with each other. This dissociation suggests
that reactive and proactive aspects of inhibitory control rely on distinct neural resources,
potentially allowing for independent modulation and development of these strategies.

Modeling trial-level responses at the single-subject level

We used a hierarchical Bayesian model of proactive and reactive control which represents a
significant advance in the assessment of inhibitory control, surpassing the capabilities of
conventional race models*’. Unlike traditional approaches, which provide subject-aggregate
SSRT estimates as an index of inhibitory control, this model estimates SSRT at the level of each
individual trial. This feature is critical as it allows for precise, trial-specific inferences rather than
broad generalizations across the entire task. Importantly, the trial-level model infers additional
trial-level measures, such as the probability of proactive cognitive states and the length of
proactive delaying of responses.

This trial-level granularity facilitates a more comprehensive examination of how neural
responses are modulated across individual trials. Specifically, this model allowed us to identify
brain areas that tracked neural activity in response to trial-specific SSRT estimated at each stop
trial. Moreover, it enabled tracking ongoing neural dynamics associated with temporal
fluctuations in proactive control, providing insights into the brain systems that support a key
component of cognitive control.

By employing trial-level analyses, we could dissect proactive and reactive control processes to
examine how they fluctuate over time within each individual. This approach deepens our
understanding of the mechanisms underlying inhibitory control and enables us to uncover
whether assumptions of brain-behavior ergodicity are justified.
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Nonergodic brain-behavior associations reveal mechanisms of cognitive control

Nonergodicity, a concept originally from statistical physics, refers to situations where ensemble
averages and time averages do not converge'. In the context of neurocognitive dynamics,
nonergodicity means that brain-behavior associations over a population (ensemble) of subjects
fail to reflect brain-behavior associations over time in the subjects comprising the population.
Nonergodic brain-behavior associations were observed on multiple measures of inhibition
encompassing proactive and reactive control. Proactive control involves the anticipation and
preparation for stopping, while reactive control involves the actual implementation of response
inhibition. Our findings suggest that these two forms of control operate differently at the within-
subjects level and the between-subjects level. This divergence highlights the variability of
individual cognitive processes, which may not be captured fully by traditional group-level
analyses.

We found a positive association within subjects between trial-level SSRTs and brain activity in
the anterior and posterior salience networks, which suggests that longer SSRTs, indicating poorer
reactive control, are associated with greater neural effort or engagement. This may reflect
compensatory mechanisms or the increased demand for cognitive resources when individuals
struggle to inhibit their responses. In contrast, between subjects, we observed no significant
association and a negative association, respectively, in the anterior and posterior salience
networks between SSRT and brain activity.

Within-subjects analysis revealed a negative association between trial-level engagement of
proactive control and brain activity in the frontoparietal, salience, and subcortical systems. This
suggests that greater proactive control is associated with relative suppression of cognitive control
networks to implement successful response inhibition. This finding is consistent with the theory
that proactive mechanisms suppress reactive control pathways, and aligns with recent theoretical
frameworks proposing that proactive control modulates reactive control via preparatory
processes®. In contrast, we observed a positive association between trial-level proactive control
and default mode network activity. This included the posterior medial cortex and the
ventromedial prefrontal cortex, the two core cortical nodes that anchor the default mode
network?®. This may reflect internally oriented processing that supports proactive regulation.
Between-subjects analysis failed to capture these dynamic relationships, showing no association
between one measure of proactive control and brain activations.

Our findings highlight the importance of considering within-subjects variability and dynamics
when studying the neural mechanisms of cognitive control. Conventional between-subjects
analyses, which assume ergodicity, may not capture the complex and dynamic nature of
proactive and reactive control processes as they unfold within individuals over time. Properly
characterizing such dynamics, rather than assuming ergodicity, is thus crucial for advancing our
understanding of the latent processes underlying cognitive control. The nonergodic brain-
behavior associations observed in our study have important implications for understanding the
mechanisms of proactive and reactive control.

12



Robustness of nonergodicity findings and stability of within-subjects brain-behavior
associations

Leveraging the large-scale ABCD dataset, we addressed the critical challenge of replicability in
human neuroscience*’. Our analyses revealed that within-subjects associations were stable and
reliably detectable, even in sample sizes typical of cognitive neuroscience studies. Bootstrap
resampling analyses showed the reliability of key findings across different sample sizes. For
instance, the association between proactivity measures and right anterior insula suppression was
consistently observed in over 95% of samples, even with sample sizes of N = 25. Moreover, our
findings of nonergodicity were robust to various analytical strategies. When comparing the
results of various between- and within-subjects approaches, there were variations in the details of
brain-behavior inferences, but nonergodic dissociations persisted across every approach to brain-
behavior association.

By demonstrating that these patterns are robust and detectable even in modest sample sizes, our
study provides a foundation for future research into nonergodicity in brain function. It also
suggests that meaningful insights into neurocognitive mechanisms can be gained from studies
with more typical sample sizes, although larger samples provide greater precision and the ability
to detect subtler effects. The stability and robustness of our findings suggests their applicability
to diverse research and clinical contexts, including understanding cognitive processes related to
inhibitory control and studying psychiatric disorders.*®

Nonergodicity between brain networks: Implications for understanding cognitive control

Our analysis of the distribution of nonergodicity between brain networks has implications for
understanding the neural mechanisms underlying inhibitory control as well as for cognitive
neuroscience research broadly. The consistent finding of high nonergodicity in the anterior
salience network across all cognitive model parameters is particularly intriguing. The salience
network is a key brain network, known for its role in detecting behaviorally relevant stimuli and
coordinating brain network dynamics*->°. It is noteworthy that this core network, which is of
great interest in the study of cognition?*2%>! and psychopathology®*->*, appears to exhibit the
most pronounced disconnect between group-level and individual-level inferences. Moreover, the
hierarchical clustering of networks based on nonergodicity profiles provides a fresh perspective
on brain organization. The distinct clustering of the anterior salience network and the grouping of
default mode network components suggest that nonergodicity may be an important factor in
understanding functional brain architecture.

These findings have several significant implications for cognitive neuroscience research and
practice. Methodologically, our results underscore the importance of complementing group-level
analyses with individual-level investigations. The high degree of nonergodicity observed,
particularly in key networks involved in cognitive control, suggests that solely relying on group-
level analyses may lead to incomplete or misleading conclusions about brain-behavior
relationships. From the perspective of individual differences, the varying levels of nonergodicity
across networks highlight the importance of considering individual variability in brain function.
This may be particularly relevant for understanding individual differences in inhibitory control
abilities and for developing personalized interventions for disorders characterized by impaired
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inhibitory control. Theoretically, the observed nonergodicity challenges simplistic models of
brain function and calls for quantitatively rigorous theories that can account for the complex,
context-dependent nature of brain-behavior relationships. This may require a shift toward more
dynamic, process-oriented models of cognition and brain function.

Distinct neural representations for reactive and proactive cognitive processes

To further elucidate the neural architecture underlying inhibitory control, we employed
representational similarity analysis, a powerful method for investigating the informational
content of brain activity patterns®. This approach allows us to compare the similarity of neural
representations across different cognitive processes, providing insights into how the brain
organizes and processes information. In our study, we used representational similarity analysis
to examine the overlap between brain representations of reactivity (SSRT) and proactivity
(probability of proactivity and proactive delaying) within individuals. By comparing
representational patterns across different cognitive processes, we sought to determine whether
reactive and proactive control rely on shared or distinct neural resources.

Our analysis revealed a striking dissociation between the neural representations of reactive and
proactive control processes. Across all examined brain networks, we found low similarity
between representations of SSRT and representations of each proactive measure (probability of
proactivity and proactive delaying). In contrast, the two proactive measures showed high
similarity with each other. This pattern suggests that reactive and proactive control processes are
represented orthogonally in the brain. Theoretically, our findings challenge simplistic models of
inhibitory control and suggest that reactive and proactive processes, while both contributing to
inhibitory control, are implemented through distinct neural mechanisms*!->7.

Given that our study focused on children, the clear separation of reactive and proactive
representations may reflect a developmental stage in the organization of cognitive control
processes. Our findings of a separation may allow for independent development of reactive and
proactive strategies, potentially explaining individual differences in inhibitory control abilities*!.
Future studies could investigate whether this orthogonality persists or changes with age’®.

Attentional modulation and performance monitoring associated with distinct brain-behavior
associations

A separate behavioral investigation of our hierarchical Bayesian model highlighted the
significance of adaptive regulation of reactive and proactive control in shaping within-subjects
variability in SSRT and stop failure rates*’. Two model parameters are decisive in controlling
these dynamics: y; represents individual differences in sustained attention and regulates the trial-
level expectancy of stopping, and 81 represents individual differences in performance monitoring
and regulates the trial-level proclivity for proactive control. These findings point to the
importance of considering individual differences in attentional modulation and performance
monitoring systems when studying inhibitory control.

Building on these results, we investigated brain-behavior associations between subjects who
differed on these traits. We used y; and 6, (separately) as a basis for creating subgroups within

14



our sample. By dividing our participants into subgroups, we could examine how individual
differences in attentional regulation and performance monitoring correlate with the relationship
between neural activity and cognitive processes within subjects. Subjects stratified based on
whether they adaptively or maladaptively regulated stopping expectancy showed distinct within-
subjects associations between trial-level SSRTs and brain activity, with different distributions of
associations between the subgroups in every network and opposite associations in most
networks. Among all subjects, we observed that anterior salience network activation
accompanied poorer reactive control at the trial level, but examining these results by y; subgroup
revealed that this association only held for subjects who maladaptively regulated reactivity.
Similarly, subjects divided by whether they adaptively or maladaptively regulated proactivity
showed different within-subjects associations for a measure of proactivity in most networks. The
maladaptive regulation group showed weaker suppression of the anterior salience network and
stronger activation of the ventral default mode network with greater trial-level proactivity.

Collectively, the findings reveal that groups characterized by adaptive and maladaptive
regulation of reactivity and proactivity display notably different patterns of within-subjects
associations between brain activity and model parameters. These distinctions hint that
individuals’ distinct cognitive strategies or profiles relate to the implementation of proactive and
reactive control processes in the brain. This variation highlights the personalized nature of
cognitive function and stresses the importance of considering individual differences in the neural
mechanisms of inhibitory control. Identifying heterogeneity based on cognitive model
parameters provides an interpretable approach for studying individual differences in inhibitory
control and their neural correlates. This approach moves beyond simple between-subjects
comparisons and allows for a theory- and mechanism-driven investigation of the heterogeneity in
brain-behavior relationships.

Conclusions

Our study provides evidence for nonergodicity in the neurocognitive processes underlying
inhibitory control using a large, community-representative sample of children from the ABCD
study. By combining task fMRI data with a dynamic cognitive model, we found that within-
subjects associations between brain activity and model parameters differed from between-
subjects associations, challenging the assumption of ergodicity in cognitive neuroscience
research. The findings demonstrate divergent group-level and individual-level brain-behavior
associations, reveal dissociated proactive and reactive control systems, and identify meaningful
individual differences in these control processes. Crucially, the study establishes the stability and
robustness of within-subjects measures, laying a foundation for characterizing nonergodic
processes. The work highlights the value of large, heterogeneous samples, dynamic
computational models, and analysis of within-subjects variability for studying nonergodic
phenomena. More broadly, it suggests a paradigm shift away from ergodic assumptions and
exclusive reliance on group-level analyses of subject-average measures in cognitive
neuroscience. Appreciating the nonergodic nature of neurocognitive processes may be essential
for advancing our understanding of cognition in both health and disease.
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Methods
Inclusion criteria

Data were from the baseline visit of the ABCD study?! (Collection #2573), N = 11817. Subjects
were excluded if they did not meet each of the following criteria: meet the ABCD study’s SST
task-fMRI inclusion recommendations (in abed imginclO1.txt, imgincl_sst_include==1; N =
3546 excluded); have 2 SST fMRI runs of good quality (in mriqerp20301.txt,

iqc_sst_total ser==iqc_sst good ser==2; N = 677 excluded); are successfully fit with the
cognitive model of the SST (N = 562 excluded); have 2 SST fMRI runs in the release 4.0
minimally processed data (N = 16 excluded); have enough volumes acquired to cover the SST
experiment (the last SST trial must have happened no more than 2 seconds after the final volume
was acquired; N = 16 excluded); have mean framewise displacement of less than 0.5 mm for
both runs (calculated using the method of °%; N = 1986 excluded); have release 4.0 minimally
processed events.tsv files of shape (181,3) for both runs (N = 7 excluded); and have consistent
release 4.0 behavioral data (in release 4.0, for some subjects, the “sst.csv” files from ABCD Task
fMRI SST Trial Level Behavior, abed _sst tlb01, disagreed with the minimally processed
“events.tsv” files; for example, one trial might be labeled a go trial by one file and a stop trial by
the other; N = 102 excluded). Then, we excluded siblings by randomly keeping one member
from each family (using the genetic paired subjectid variables from gen y pihat; N = 436
excluded) and excluded subjects without scanner serial number recorded (in mri_y adm_info,
missing mri_info_deviceserialnumber; N = 10 excluded). Applying these inclusion criteria left
us with a sample of N = 4469. For analyses involving the proactive delaying, a further 293
subjects were excluded who had no trials with probability of proactivity greater than 0.5 during
at least one run, and therefore, by definition, a proactive delaying of 0 for all trials of at least one
run. For these subjects, we were unable to examine within-subjects relationships between
proactive delaying and brain activity. To maintain comparability of the between- and within-
subjects analyses, we also excluded these subjects from the between-subjects analyses involving
proactive delaying. Thus, analyses involving the proactive delaying used a sample of N = 4176.

Brain imaging

Imaging acquisition for the ABCD SST is detailed in other work.%® We used the minimally
processed data from ABCD release 4.0 (Collection #2573), which included distortion correction
and motion correction®'. We then further processed the images using Nilearn and FSL FLIRT: (1)
initial volumes were removed (Siemens: 8, Philips: 8, GE DV25: 5, GE DV26 and other GE
versions: 16); (2) the mean image in the time dimension was computed using mean_img from the
Nilearn Image module; (3) the mean image was registered to an echo-planar imaging template in
MNI152 space (SPM12’s toolbox/OldNorm/EPLnii) using FSL FLIRT, and an affine of this
transformation was obtained; (4) the time-series of images was spatially normalized to MNI152
space with the affine from the previous step using FSL FLIRT; and (5) the images were
smoothed with a Gaussian filter with a full-width at half maximum of 6 mm using smooth _img
from the Nilearn Image module.

Bayesian modeling of cognitive dynamics
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The PRAD model* incorporates latent dynamics that respond to endogenous and exogenous
variables, with trait measures governing the interaction of such endogenous and exogenous
variables with latent processes, giving rise to non-stationary dynamics. This allows the PRAD
model to account for violations of context and stochastic independence. Overall, the PRAD
model incorporates separate evidence accumulation (drift-diffusion) processes for the go and
stop processes, similar to a canonical horse-race model®?. However, in addition to typical drift-
diffusion process parameters, PRAD includes (i) an explicit proactive inhibitory control
mechanism that governs state switching between proactive and non-proactive cognitive states
(governed by parameter 6), and hierarchical dynamics affecting: (ii) adaptive or maladaptive
modulation of executive processes that respond to endogenous variables (error and performance
monitoring, via parameter 8;) to modulate the proclivity for activating proactive inhibitory
control; (iii) adaptive or maladaptive tracking of environmental contingencies that governs how
proactive inhibitory control responds to exogenous variables (stop signal delay, via parameter )
to update beliefs about the stopping contingences and modulate the proactive delays in
responding (PDR); (iv) adaptive or maladaptive attentional modulation of stopping expectancy
(AMS) over trials that governs how the stopping process and SSRT respond to exogenous
variables (number of trials since the last stop signal, n(SSD), via parameters y,, ¥1); (V)
modulation of the go process threshold based on response to endogenous variables (choice
errors, via parameters ;q, &g ); and (vi) trial-level modulation of the drift rate inferred from
behavior. More details can be found in ref. 40,

General linear model analysis of fMRI

We fit general linear models to the fMRI BOLD recordings using Nilearn’s FirstLevelModel.
Condition and parametric regressors were modeled as impulses, with a duration of 0, and
convolved with the SPM software’s double gamma hemodynamic response function and the
function’s time derivative. Before fitting, the BOLD signal was scaled to percent signal-change
from the mean in the time dimension. An AR1 model was used to whiten the data and design
matrices to account for temporal autocorrelation in the BOLD signal.

To investigate the brain activation associated with SST conditions, for each subject and voxel,
we fit the model

BOLD(t) = B, + (HRF * Conditions)(t) + Nuissance(t) + €(t). (Model 1)
BOLD(t) is the BOLD signal of the voxel at time t (t € {1, ..., T} for T the total number of
volumes acquired); (HRF * Conditions)(t) is the value at t of the convolution with the
hemodynamic response function HRF of condition regressor(s) Conditions; Nuissance(t) is the
effect at t of nuisance regressors, which were 6 motion parameters (translational and rotational
displacement along each of three axes) and 6 cosine basis functions (corresponding to high-pass
filtering at 0.01 Hz); and €(t) is the model’s error at t. We fit models with three sets of condition
regressors:

Conditions = B (Ig, + Istop)- (Conditions 1)
Conditions = 1, + B2 1st0p- (Conditions 2)

Conditions = ﬁlICOI‘I‘ECt go + lelncorrect go + ﬁ3ICorrect late go + ,84Ilncorrect late go
+ﬁSIN0 response go + ﬁﬁICorrect stop + ﬁ7llncorrect stop + BSISSD stop-* (COHditiOl’lS 3)

Icondition 18 @n indicator function indicating when the subject experiences Condition (for
example, I, is 0 except at the moment when a subject is presented with a go trial). For between-
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subjects analyses, we used Model 1 with Conditions 1 to obtain task activation (f;); used
Model 1 with Conditions 2 to obtain go activation (f;) and stop activation (£, ); and used
Model 1 with Conditions 3 to obtain correct stop versus correct go activation (fg — 1), correct
stop versus incorrect go activation (fg — f8,), and incorrect stop versus correct stop activation

(B7 = Be)-

To determine within-subjects associations between brain activity and trial-level variables, for
each subject and voxel, we fit the model

BOLD(t) = B, + (HRF * Conditions)(t) + (HRF * Modulation)(t)

+Nuissance(t) + €(t). (Model 2)

(HRF * Modulation)(t) is the value at t of the convolution with the hemodynamic response
function of the parametric regressor Modulation. To investigate within-subjects associations
between brain activity and SSRT on stop trials, probability of proactivity on all trials, proactive
delaying on all trials, and observed reaction time on go trials, we set Modulation = 5SSRT,
Modulation = S;P(Proactive), Modulation = ;Proactive delaying, and Modulation =
p3Go RT, respectively, and used Model 2 with Conditions 2. Each of SSRT, P(Proactive),
Proactive delaying, and Go RT was standardized over the conditions during which it assumed
values by subtracting its mean and dividing by its standard deviation; that is, SSRT had mean 0
and standard deviation 1 over correct and incorrect stop trials (and was 0 on all other trials),
P(Proactive) and Proactive delaying had mean 0 and standard deviation 1 over all trials, and
Go RT had mean 0 and standard deviation 1 over go trials with a recorded response (and was 0
on all other trials).

We fit these regression models for each subject and each of their 2 SST runs. For each model,
subject, and voxel, we combined the regression results from the 2 runs with a fixed effects model
through FirstLevelModel’s compute contrast method. For each model and voxel, we estimated
the effect of each scanner as the mean of the regression coefficients of the subjects who were
scanned by it minus the grand mean of the regression coefficients of all subjects. Then, we
adjusted the regression coefficients by subtracting the estimated scanner effects. All analyses of
the regression coefficients used these adjusted values. We used a 1-sample Cohen’s d (sample
mean divided by sample standard deviation) to measure the effect sizes of regression
coefficients.

Networks and regions of interest

We extracted the whole-brain regression coefficients in 2 networks and 3 sets of regions. We
used the Shirer networks for our primary analyses and used the Yeo-17 networks, Shirer regions,
cognitive control regions, and subcortical regions to test the stability of our within-subjects
findings. For each subject and each regression coefficient of interest, we obtained the
coefficient’s value in each area (network or region) by calculating the mean of the subject’s
coefficients over the voxels belonging to the area. We used these area-average regression
coefficients of each subject: to compute Cohen’s d and Pearson r values for the network-level
comparison of between- and within-subjects associations (Figure 5) and for the measurement of
nonergodicity (Figure 9); and to compute Cohen’s d values for the stability (Figure 6) and
subgroup (Figure 8) analyses.
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The Shirer networks and regions were obtained from*. To obtain the voxel-coordinates of the
Yeo-17 networks, we used a mapping between the Brainnetome®® and Yeo atlases*>. We
assembled the cognitive-control regions to include areas activated by the SST, two core default
mode areas, and one core salience network and error-processing area. The regions activated by
the SST were taken from a metaanalysis of 70 inhibitory control studies?¢ (right anterior insula,
right caudate, right inferior frontal gyrus, right middle frontal gyrus, right presupplementary
motor area, and right supramarginal gyrus) and a study that segmented high-resolution structural
MRI% (left and right subthalamic nucleus). To obtain the dorsal anterior cingulate cortex, we
retrieved a Neurosynth automatic metaanalysis of 464 studies for the term “error” on 2023-09-21
and defined the region to be the 6 mm cube centered on the voxel with the highest metaanlysis Z-
score. To obtain the posterior cingulate cortex and ventromedial prefrontal cortex, we retrieved a
Neurosynth automatic metaanalysis of 777 studies for the term “default mode” on 2024-02-05;
extracted clusters from this map using the connected regions function in Nilearn’s regions
module with keyword argument “extract type” set to “connected components”; identified by
eye the clusters corresponding to the posterior cingulate and ventromedial prefrontal cortex; and
for each cluster defined the region to be the 6 mm cube centered on the voxel with the highest
metaanalysis Z-score in the cluster. We obtained subcortical regions from a subcortical
probabilistic atlas®>. We resampled the atlas’s probabilistic subcortical labels in 1 mm cubed
MNI152 2009c¢ nonlinear asymmetric space to the 2 mm cubed MNI152 space of our SPM echo-
planar imaging template using resample to img from Nilearn’s image module, and then
thresholded these probabilistic maps at 0.5 to obtain region masks.

Stability analysis

To assess the stability of the within-subjects results, regression coefficients were resampled at
varying sample sizes and the correlation was evaluated against the results in the full sample.
Specifically, for each of SSRT, probability of proactivity, and proactive delaying, in each set of
networks or regions: 10,000 samples of n subjects were drawn with replacement; the Cohen’s d’s
of each sample’s regression coefficients were calculated and Pearson correlated with the Cohen’s
d’s of the full sample over the regions or networks; and the mean and 95% and 99% bootstrap
confidence intervals were calculated of the correlation (SSRT and probability of proactivity n =
25, 40, 70, 120, 200, 335, 560, 945, 1585, 2660, 4469; proactive delaying n = 25, 40, 70, 115,
195, 325, 540, 900, 1500, 2505, 4176). The 95% and 99% bootstrap confidence intervals were
calculated, respectively, as the intervals covering the 2.5th to 97.5th percentiles and 0.5th to
99.5th percentiles of the 10,000 correlations at each n.

We also directly examined the distributions of the Cohen’s d’s of the resamples as a function of
n in regions of interest. Specifically, for each of SSRT, probability of proactivity, and proactive
delaying, in each region of interest: 10,000 samples of n subjects were drawn with replacement;
the Cohen’s d of each sample’s regression coefficients was calculated; and the mean and 95%
and 99% bootstrap confidence intervals were calculated of the Cohen’s d (SSRT and probability
of proactivity n = 25, 40, 70, 120, 200, 335, 560, 945, 1585, 2660, 4469; proactive delaying n =
25,40, 70, 115, 195, 325, 540, 900, 1500, 2505, 4176). The 95% and 99% bootstrap confidence
intervals were calculated as the intervals covering, respectively, the 2.5th to 97.5th percentiles
and 0.5th to 99.5th percentiles of the 10,000 Cohen’s d’s at each n.
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Representational similarity analysis

For each Shirer network, and for each subject, we computed the correlation between the subject’s
within-subjects brain maps of SSRT and probability of proactivity, SSRT and proactive delaying,
and probability of proactivity and proactive delaying over the voxels in the network. Density
estimates used Seaborn’s kdeplot function with each distribution of correlations over subjects
normalized to 1 (common_norm=False) and limited to values between -1 and 1 (clip=[-1,1]); all
other parameters, including those determining the kernel smoothing bandwidth, were kept at
their defaults. We tested, for each network, whether there was a difference in the median
correlation of SSRT and probability of proactivity and the median correlation of SSRT and
proactive delaying; the median correlation of SSRT and probability of proactivity and the median
correlation of probability of proactivity and proactive delaying; and the median correlation of
SSRT and proactive delaying and the median correlation of probability of proactivity and
proactive delaying.

Measuring nonergodicity of brain networks

For each of SSRT, probability of proactivity, and proactive delaying, and for each of the Shirer
networks, we computed bootstrap distributions of a measure of nonergodicity: we drew 10,000
samples of n subjects with replacement; for each resample, using the resample’s between- and
within-subjects associations, we computed the fraction of subjects whose (within-subjects) brain
association with the parameter had the opposite sign of the between-subjects brain association
with the parameter, in the network; then, we computed the mean and 95% confidence interval
over the resamples of the fraction of opposite signs (SSRT and probability of proactivity n =
4469; proactive delaying n = 4176). The between-subjects association was the Pearson
correlation between correct stop versus correct go activation and the subject-average parameter,
which was recomputed for the subjects in each resample. The 95% confidence interval was
calculated as the interval covering the 2.5th to 97.5th percentiles of the 10,000 fractions of
opposite signs. The goal of using bootstrapping was to account for the strength of the between-
subjects results. Next, the nonergodicity of each network was defined as the three-dimensional
vector whose ith coordinate was the mean (over bootstrap resamples) fraction of subjects with
opposite signs in the network for the ith cognitive model parameter. Then, the Euclidean
distances were computed between the vectors and hierarchical clustering was performed on the
distances using the linkage function in scipy’s cluster subpackage, hierarchy module with
“method” set to “average”.

Significance testing

Permutation tests were used for all significance testing. The tests used two-sided alternatives and
10,000 resamples and were performed with Scipy’s permutation_test function. FDR correction
was performed using the Benjamini-Hochberg procedure with Scipy’s false discovery control
function. Pgpr denotes an FDR-corrected P value. For a set of brain areas and an fMRI
regression, we tested the null hypothesis for each brain area that the regression coefficients in the
area had a mean of 0 (Figure 5) by computing the means of resamples in which the signs of the
coefficients were randomly chosen (permutation_test permutation_type=*‘samples’). Then, FDR
correction was applied to the P values of all brain areas in the set (e.g., FDR correction was
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applied to the P’s of SSRT’s regression coefficients over the Shirer networks). For a set of brain
areas, an fMRI regression, and a behavioral measure, we tested the null hypothesis for each brain
area that the Pearson correlation between subject-average regression coefficients in the brain area
and subject-average behavioral measures was 0 (Figure 5) by computing the Pearson correlations
of resamples in which regression coefficients were randomly paired with behavioral measures
(permutation_test permutation_type =‘pairings’). Then, FDR correction was applied to the P
values of all brain areas in the set (e.g., FDR correction was applied to the P’s of correlations
between correct stop versus correct go activation and SSRT over the Shirer networks). For a set
of brain areas and a param y, or 6;, we tested the null hypothesis for each brain area that the
mutually exclusive subgroups of subjects with param < 0 and with param > 0 had different
mean regression coefficients (Figure 8) by computing the differences between the means for
resamples in which coefficients were randomly assigned to param < 0 and param > 0
(permutation_test permutation _type=‘independent’). Then, FDR correction was applied to the P
values of all brain areas in the set (e.g., FDR correction was applied to the P’s of mean
differences between y; < 0 and y; > 0 over the Shirer networks). For the Shirer networks, we
tested the null hypothesis for each brain area that there was no difference in the area between the
median correlation of SSRT and probability of proactivity and the median correlation of SSRT
and proactive delaying; the median correlation of SSRT and probability of proactivity and the
median correlation of probability of proactivity and proactive delaying; and the median
correlation of SSRT and proactive delaying and the median correlation of probability of
proactivity and proactive delaying (Figure 7). We computed the differences between the medians
of resamples in which correlations were randomly exchanged within subjects (permutation_test
permutation type=‘samples’). Then, FDR correction was applied to the P values of all
comparisons in all areas. (Since there are 14 Shirer networks and 3 tests per network, FDR
correction was applied over 14X3 P’s.)

Software

Data were processed and analyzed using Python (version 3.9.16), Scipy (version 1.11.4),
Seaborn (version 0.13.2), Nilearn (version 0.10.1), and FSL FLIRT (version 6.0).

21



References

1

10

11
12

13

14

15

16

17

18

19

20

21

Lebowitz, J. L. & Penrose, O. Modern ergodic theory. Physics Today 26, 23-29 (1973).
Badino, M. The foundational role of ergodic theory. Foundations of science 11, 323-347
(20006).

Moore, C. C. Ergodic theorem, ergodic theory, and statistical mechanics. Proceedings of
the National Academy of Sciences 112, 1907-1911 (2015).

Peters, O. The ergodicity problem in economics. Nature Physics 15, 1216-1221 (2019).
Fisher, A. J., Medaglia, J. D. & Jeronimus, B. F. Lack of group-to-individual
generalizability is a threat to human subjects research. Proc Natl Acad Sci U S A 115,
E6106-E6115, doi:10.1073/pnas.1711978115 (2018).

Molenaar, P. C. On the implications of the classical ergodic theorems: Analysis of
developmental processes has to focus on intra-individual variation. Developmental
Psychobiology: The Journal of the International Society for Developmental
Psychobiology 50, 60-69 (2008).

Medaglia, J. D., Ramanathan, D. M., Venkatesan, U. M. & Hillary, F. G. The challenge of
non-ergodicity in network neuroscience. Network: Computation in Neural Systems 22,
148-153 (2011).

Simpson, E. H. The interpretation of interaction in contingency tables. Journal of the
Royal Statistical Society: Series B (Methodological) 13, 238-241 (1951).

Blyth, C. R. On Simpson's paradox and the sure-thing principle. Journal of the American
Statistical Association 67, 364-366 (1972).

Sprenger, J. & Weinberger, N. Simpson’s paradox. The Stanford Encyclopedia of
Philosophy (2021).

Wagner, C. H. Simpson's paradox in real life. The American Statistician 36, 46-48 (1982).
Dhakal, V., Feit, A. M., Kristensson, P. O. & Oulasvirta, A. in Proceedings of the 2018
CHI conference on human factors in computing systems. 1-12.

Heitz, R. P. The speed-accuracy tradeoff: history, physiology, methodology, and behavior.
Frontiers in neuroscience 8, 86875 (2014).

Molenaar, P. C. A manifesto on psychology as idiographic science: Bringing the person
back into scientific psychology, this time forever. Measurement 2, 201-218 (2004).
Kievit, R. A., Frankenhuis, W. E., Waldorp, L. J. & Borsboom, D. Simpson's paradox in
psychological science: a practical guide. Frontiers in psychology 4, 513 (2013).
Molenaar, P. & Newell, K. M. Individual pathways of change: Statistical models for
analyzing learning and development. (American Psychological Association, 2010).
Hamaker, E. L. Why researchers should think" within-person": A paradigmatic rationale.
(2012).

Molenaar, P. C. & Campbell, C. G. The new person-specific paradigm in psychology.
Current directions in psychological science 18, 112-117 (2009).

Castro-Schilo, L. & Ferrer, E. Comparison of nomothetic versus idiographic-oriented
methods for making predictions about distal outcomes from time series data. Multivariate
Behavioral Research 48, 175-207 (2013).

Hamaker, E., Ceulemans, E., Grasman, R. & Tuerlinckx, F. Modeling affect dynamics:
State of the art and future challenges. Emotion Review 7, 316-322 (2015).

Volkow, N. D. ef al. The conception of the ABCD study: From substance use to a broad
NIH collaboration. Dev Cogn Neurosci 32, 4-7, doi:10.1016/j.den.2017.10.002 (2018).

22



22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Diamond, A. Executive functions. Annual review of psychology 64, 135-168 (2013).
Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action: A theory of an
act of control. Psychological review 91, 295 (1984).

Verbruggen, F. & Logan, G. D. Response inhibition in the stop-signal paradigm. Trends
in cognitive sciences 12, 418-424 (2008).

Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal
cortex: one decade on. Trends in cognitive sciences 18, 177-185 (2014).

Cai, W,, Ryali, S., Chen, T., Li, C. S. & Menon, V. Dissociable roles of right inferior
frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-
related functional parcellation, connectivity, and response profile analyses across multiple
datasets. J Neurosci 34, 14652-14667, doi:10.1523/JNEUROSCI.3048-14.2014 (2014).
Cai, W. et al. Hyperdirect insula-basal-ganglia pathway and adult-like maturity of global
brain responses predict inhibitory control in children. Nature communications 10, 4798
(2019).

Cai, W., Griftiths, K., Korgaonkar, M. S., Williams, L. M. & Menon, V. Inhibition-related
modulation of salience and frontoparietal networks predicts cognitive control ability and
inattention symptoms in children with ADHD. Molecular psychiatry 26, 4016-4025
(2021).

Cai, W, Chen, T,, Ide, J. S., Li, C.-S. R. & Menon, V. Dissociable fronto-operculum-
insula control signals for anticipation and detection of inhibitory sensory cue. Cerebral
cortex 27, 4073-4082 (2017).

Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and
executive function. Neuropsychopharmacology 47, 72-89 (2022).

Zhang, S. et al. Independent component analysis of functional networks for response
inhibition: Inter-subject variation in stop signal reaction time. Human brain mapping 36,
3289-3302 (2015).

Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J.-M. & Woldorff, M. G. The
influence of different Stop-signal response time estimation procedures on behavior—
behavior and brain—behavior correlations. Behavioural brain research 229, 123-130
(2012).

Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to stop signal
response inhibition: role of the subthalamic nucleus. Journal of Neuroscience 26, 2424-
2433 (20006).

Li, C. S., Huang, C., Constable, R. T. & Sinha, R. Imaging response inhibition in a stop-
signal task: neural correlates independent of signal monitoring and post-response
processing. J Neurosci 26, 186-192, doi:10.1523/JINEUROSCI.3741-05.2006 (2006).

Li, C. S. et al. Neural correlates of impulse control during stop signal inhibition in
cocaine-dependent men. Neuropsychopharmacology 33, 1798-1806,
doi:10.1038/sj.npp.1301568 (2008).

Chevrier, A. & Schachar, R. J. BOLD differences normally attributed to inhibitory control
predict symptoms, not task-directed inhibitory control in ADHD. J Neurodev Disord 12,
8, d0i:10.1186/s11689-020-09311-8 (2020).

Chaarani, B. et al. Baseline brain function in the preadolescents of the ABCD Study. Nat
Neurosci 24, 1176-1186, doi:10.1038/s41593-021-00867-9 (2021).

23



38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

57

Swick, D., Ashley, V. & Turken, U. Are the neural correlates of stopping and not going
identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage 56,
1655-1665 (2011).

Mangalam, M. & Kelty-Stephen, D. G. Point estimates, Simpson's paradox, and
nonergodicity in biological sciences. Neurosci Biobehav Rev 125, 98-107,
doi:10.1016/j.neubiorev.2021.02.017 (2021).

Mistry, P. K., Warren, S. L., Cai, W., Branigan, N. K. & Menon, V. Proactive, reactive,
and attentional dynamics in inhibitory control. (In Prep.).

Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework.
Trends in cognitive sciences 16, 106-113 (2012).

Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J Neurophysiol 106, 1125-1165, doi:10.1152/jn.00338.2011
(2011).

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding
subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22,
158-165, doi:10.1093/cercor/bhr099 (2012).

Aron, A. R. et al. Converging evidence for a fronto-basal-ganglia network for inhibitory
control of action and cognition. Journal of Neuroscience 27, 11860-11864 (2007).

van den Wildenberg, W. P., Ridderinkhof, K. R. & Wylie, S. A. Towards Conceptual
Clarification of Proactive Inhibitory Control: A Review. Brain Sciences 12, 1638 (2022).
Menon, V. 20 years of the default mode network: A review and synthesis. Neuron (2023).
Ryali, S., Zhang, Y., de Los Angeles, C., Supekar, K. & Menon, V. Deep learning models
reveal replicable, generalizable, and behaviorally relevant sex differences in human
functional brain organization. Proceedings of the National Academy of Sciences 121,
€2310012121 (2024).

Meyer-Lindenberg, A. The non-ergodic nature of mental health and psychiatric disorders:
implications for biomarker and diagnostic research. World Psychiatry 22,272 (2023).
Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. Thermosensory activation of insular
cortex. Nature neuroscience 3, 184-190 (2000).

Menon, V. Insular cortex: A hub for saliency, cognitive control, and interoceptive
awareness. (2024).

Molnar-Szakacs, [. & Uddin, L. Q. Anterior insula as a gatekeeper of executive control.
Neuroscience & Biobehavioral Reviews 139, 104736 (2022).

Uddin, L. Q. & Menon, V. The anterior insula in autism: under-connected and under-
examined. Neuroscience & Biobehavioral Reviews 33, 1198-1203 (2009).

Segal, A. et al. Regional, circuit and network heterogeneity of brain abnormalities in
psychiatric disorders. Nature Neuroscience 26, 1613-1629 (2023).

Xie, C. et al. A shared neural basis underlying psychiatric comorbidity. Nature medicine
29, 1232-1242 (2023).

Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience 2,
249 (2008).

Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural representational spaces
using multivariate pattern analysis. Annual review of neuroscience 37, 435-456 (2014).
Aron, A. R. From reactive to proactive and selective control: developing a richer model
for stopping inappropriate responses. Biological psychiatry 69, e55-e68 (2011).

24



58

59

60

61

62

63

64

65

Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B. & Chahal, R. An integrative model
of the maturation of cognitive control. Annual review of neuroscience 38, 151-170
(2015).

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious
but systematic correlations in functional connectivity MRI networks arise from subject
motion. Neuroimage 59, 2142-2154, doi:10.1016/j.neuroimage.2011.10.018 (2012).
Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging
acquisition across 21 sites. Dev Cogn Neurosci 32, 43-54, d0i:10.1016/j.den.2018.03.001
(2018).

Hagler, D. J., Jr. et al. Image processing and analysis methods for the Adolescent Brain
Cognitive Development Study. Neuroimage 202, 116091,
doi:10.1016/j.neuroimage.2019.116091 (2019).

Band, G. P, Van Der Molen, M. W. & Logan, G. D. Horse-race model simulations of the
stop-signal procedure. Acta psychologica 112, 105-142 (2003).

Fan, L. et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional
Architecture. Cereb Cortex 26, 3508-3526, doi:10.1093/cercor/bhw157 (2016).
Forstmann, B. U. et al. Cortico-subthalamic white matter tract strength predicts
interindividual efficacy in stopping a motor response. Neuroimage 60, 370-375,
doi:10.1016/j.neuroimage.2011.12.044 (2012).

Pauli, W. M, Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of
human subcortical brain nuclei. Sci Data 5, 180063, doi:10.1038/sdata.2018.63 (2018).

25



Figures

Between-subjects associations

Taylor Alex

Jordan

)7

Aim 1 Nonergodicity

B

b Within-subjects associations
Alex

Aim 2 Stability and
robustness

Stability in subsamples
[Fig. 8]

Aim 3 Proactive
and reactive control

Representational
similarity [Fig. 7]

Within-subjects observation
Within-subjects association
Between-subjects observation
Between-subjects association

Aim 4 Subgroups
and adaptive regulation

Attentional modulation and
performance monitoring

@
98 5
=] =
g 3 2
o] 3 2
T e @ @
o c £ 2
oo g
» 8 @ 2
Associate Associate &
o @ ped S / Alex
o 3 3 Q
T @ @ a Q@ (5]
= @ ful
[R] 2 /
§E s
g @ o o
82 2 Taylor
&€ =
S5 O S ©
“ g 1 L L S L 1 1
° t t t o t t +—
Subjects Time Brain activation

Aim 5 Nonergodicity
by network

Distribution and hierarchy
of nonergodicity [Fig. 9]

\R Opposite
3\ inferences
——

. — [Fig. 8] Anterior salience
Between-subjects Within-subjects | &~ 3 4
= - 3 & A S ¥
associations associations 5 5 ,/ \ p P
Nonergodic N [ ) ® o
brain-behavior associations X % / - O% @
[Fig. 4, 5] Robustness in control pLUAN D L1
[S! Fig. ‘1, 2] analyses [SI Fig. 1, 2] >

Figure 1. Conceptual overview of the study and key findings. The figure illustrates the
methodology for between-subjects and within-subjects analyses and the concept of
nonergodicity, and previews the main results. a, Between-subjects analysis. Subject-average
brain activation in each voxel is correlated with a subject-average cognitive measure across the
population. b, Within-subjects analysis. For each individual, the time-series of brain activity in
each voxel is associated with the time-series of a cognitive measure. ¢, Simpson’s paradox.
Simpson’s paradox occurs when associations between subjects and within subjects show
conflicting directions; it exemplifies nonergodicity in the behavioral sciences. d, Study aims. We
examined brain-behavior associations for nonergodicity; tested our within-subjects results for
stability and robustness; used these results to probe the brain implementations of proactive and
reactive control and adaptive regulation of inhibitory control; and investigated how
nonergodicity varied by brain network. Nonergodic patterns in brain-behavior associations were
consistently observed, revealing that group-level (between-subjects) and individual-level
(within-subjects) associations yield divergent results for inhibitory control processes. This
challenges the common assumption that findings from such group-level analyses can be directly
applied to understand individual-level cognitive processes.
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Figure 2. Computational modeling of inhibitory control dynamics in the stop signal task. a,
Stop signal task. On go trials subjects should respond by pressing a button to indicate the arrow
direction, and on stop trials should inhibit their response when the stop signal appears. b, Race
model. The computational model’s foundation is that go and stop processes compete, with the
first to finish determining the behavioral outcome. ¢,d, Key model parameters. Proactive
delaying is the delay in initiating the go process when a subject uses a proactive control strategy.
SSRT is the time it takes for the stop process to complete. Probability of proactivity is the
probability that a subject uses a proactive control strategy. e, Trial-by-trial dynamics. SSRT,
probability of proactivity, and proactive delaying are inferred for each trial for each subject. The
computational model allows for a detailed, dynamic analysis of inhibitory control processes with
trial-level temporal resolution, enabling the investigation of within-subjects variability and
nonergodic patterns in cognitive control.
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Figure 3. The PRAD cognitive model. a, The PRAD model infers latent variables for each
subject from their observed go and stop failure rates, response times, and choice accuracy. The
latent variables relate to three mechanisms of dynamic inhibitory control: the basic reactive
inhibitory process (red 1), proactive delaying of responses (green 2), and modulation of stopping
expectancy (yellow 3). b, Visualization of the three mechanisms of dynamic inhibitory control. ¢,
Mathematical details of how the model parameterizes the go and stop processes.
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Figure 4. Divergence of between-subjects and within-subjects brain-behavior associations
in inhibitory control. a, Between-subjects analysis. Whole-brain correlation maps showing
associations between subject-average brain activation (correct stop versus correct go activation)
and subject-average cognitive model parameters (SSRT, probability of proactivity, and proactive
delaying). Thresholded at Pearson r > 0.05. b, Within-subjects analysis. Whole-brain Cohen's d
maps showing associations between trial-by-trial brain activity and cognitive model parameters
(SSRT, probability of proactivity, and proactive delaying). SSRT associations were computed on
stop trials; probability of proactivity and proactive delaying associations were computed on all
trials. Thresholded at Cohen’s d > 0.1. For both between- and within-subjects analyses: SSRT
and probability of proactivity N = 4469; proactive delaying N = 4176. Striking differences
were observed comparing between-subjects and within-subjects associations across multiple
brain regions. This divergence provides evidence for nonergodicity in inhibitory control
processes, challenging the assumption that group-level findings can be directly applied to
understand individual-level cognitive dynamics.
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Figure 5. Network-level comparison of between-subjects and within-subjects brain-
behavior associations in inhibitory control. The between-subjects analysis correlated subject-
average brain activation (correct stop versus correct go activation) and subject-average cognitive
model parameters (SSRT, probability of proactivity, and proactive delay). The within-subjects
analysis regressed trial-by-trial brain activity on trial-by-trial cognitive model parameters (SSRT,
probability of proactivity, and proactive delay). Effect sizes are shown for both analyses
(between-subjects: Pearson r; within-subjects: Cohen’s d). Statistical significance is indicated by
colored asterisks: red for between subjects (Prpr < 0.01) and blue for within subjects (Prpr <
0.01). Networks are based on the Shirer parcellation.*® Differences in the existence and direction
of associations between between-subjects and within-subjects analyses were observed across

multiple brain networks, including the anterior and posterior salience, left and right
frontoparietal, and dorsal and ventral default mode networks.
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Figure 6. Stability analysis of within-subjects associations. a-c, Stability plots for SSRT (a),
probability of proactivity (b), and proactive delaying (c). In each panel, the top plots show the
distributions of correlation between the effect in resamples and the effect in the full sample,
while the bottom plots show the distributions of the effect in selected regions. For each plot,
10,000 resamples of n subjects were drawn with replacement for each sample size n, and
Cohen’s d was calculated for each resample. For top panel plots, correlations were then
computed for each resample over the areas belonging to the set of brain areas. The dashed lines
depict 95% and 99% bootstrap confidence intervals. Within-subjects associations demonstrated
stability for all 3 cognitive model parameters across 5 different collections of brain areas and in 5

31



regions of interest, even at modest sample sizes. This stability supports the reliability of brain-
behavior associations in inhibitory control processes.
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Figure 7. Dissociated brain representations of reactive and proactive control processes. For
each subject, correlations were computed between pairs of within-subjects brain maps for the
model parameters (SSRT, probability of proactivity, and proactive delaying) over each brain
network. a, Distributions of correlations over subjects. Kernel density estimation was performed.
b, Average correlations over subjects. The height of the bars is the median. Statistical
significance is indicated by asterisks (* Pppr < 0.01). Reactive (SSRT) and proactive
(probability of proactivity, proactive delaying) control processes showed dissociated
representations across all brain networks. This dissociation suggests that the brain employs
distinct neural resources for reactive and proactive aspects of inhibitory control. In contrast, the
two proactive measures showed high similarity, validating their representation of related
cognitive processes.
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Figure 8. Distinct brain-behavior associations for adaptive and maladaptive regulators of
inhibitory control. a, Within-subjects associations of SSRT with brain activity between y;
subgroups. We identified two distinct subgroups of subjects with opposite profiles of attentional
modulation. Subjects showed either maladaptive regulation (y; < 0, N =2513) or adaptative
regulation (y; > 0, N = 1956) of their expectancy of stopping over time. The two groups showed
differences in within-subjects associations between SSRT and brain activity in various networks.
This demonstrates that individual differences in attentional dynamics play a role in shaping the
relationship between neural activity and inhibitory control processes. A colored asterisk indicates
that a network or region’s associations were nonzero among subjects with y; < 0 (blue * Pppr <
0.01) or among subjects with y; > 0 (purple * Pppr < 0.01). b, Within-subjects associations of
probability of proactivity with brain activity between 0, subgroups. We identified two distinct
subgroups of subjects with opposite profiles of performance monitoring. Subjects showed either
adaptive regulation (6; < 0, N =3054) or maladaptive regulation (6; > 0, N = 1415) of their
proactivity over time. The two groups showed differences in within-subjects associations
between probability of proactivity and brain activity in various networks. This demonstrates that
the neural correlates of proactive control are influenced by an individual’s strategy for adjusting
proactivity in response to task outcomes. A colored asterisk indicates that a network or region’s
associations were nonzero among subjects with 8; < 0 (blue * Prpr < 0.01) or among subjects
with 8; > 0 (purple * Pppr < 0.01). For both panels, a black asterisk indicates that associations
had different distributions between the two subgroups (* Prpr < 0.01, n.s. Prpg = 0.01).
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Figure 9. Nonergodicity across brain networks. a, Degree of nonergodicity of brain networks.
Bar plots show the extent of nonergodicity for each brain network across three cognitive model
parameters (SSRT, probability of proactivity, proactive delaying). The height of the bars is the
mean fraction of subjects showing opposite-sign associations compared to between-subjects
results. The bars are shaded by the magnitude of the between-subjects correlations. Error bars
show 95% bootstrap confidence intervals. b, 3-dimensional embedding of each network.
Networks are represented as points based on their nonergodicity measures for the three
parameters. c-d, Hierarchical clustering of networks based on their nonergodicity profiles. ¢,
Dendrogram of clustering. d, Euclidean distances between network embeddings. Brain networks
exhibited varying degrees of nonergodicity. The anterior salience network showed the highest
level of nonergodicity and a unique profile of nonergodicity distinct from that of all other
networks.
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