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ABSTRACT

Solvothermal liquefaction (STL) is a thermochemical conversion technique that employs solvents other than
water to transform waste plastics into valuable compounds. The objective of this study was to explore the po-
tential use of supercritical toluene, a nonpolar solvent, for the depolymerization of four electrical waste (e-waste)
thermoplastics, namely polyamide (PA), polycarbonate (PC), polyoxymethylene (POM), and polyether ether
ketone (PEEK), into liquid products. Depolymerization experiments were carried out in batch reactors at three
reaction temperatures (325, 350, and 375 °C), and three residence times (1, 3, and 6 h). The findings revealed
that increasing STL temperature and extending the reaction time enhances the depolymerization of e-waste
thermoplastics. The highest STL conversation (100 %) was observed for POM, and the lowest STL conversation
(32.23 %) was observed for PEEK. Additionally, the ultimate analysis showed that the liquid product obtained
from STL at 375 °C and 6 h exhibited higher heating values (HHV) within the range of 31.43 to 35.31 MJ/kg.
Thermogravimetric analysis (TGA) demonstrated that the boiling point distributions of liquid products are highly
dependent on thermoplastic type. Finally, the reaction mechanisms of STL for PA, PC, POM, and PEEK were
proposed based on gas chromatography-mass spectrometry (GCMS) analysis.

1. Introduction

Global production of thermoplastics reached nearly 400 million
metric tons in 2020 and is projected to approach approximately 590
million metric tons by 2050 (“Global thermoplastic production by type,
2050,” Statista.). Polycarbonate (PC), polyamide (PA), poly-
etheretherketone (PEEK), and polyoxymethylene (POM), are four types
of thermoplastics commonly used in various electrical applications
(Bagotia et al., 2018; Chen et al., 2021; Krause et al., 2009; X. Liu et al.,
2022). PC is a strong and durable plastic that can withstand high impact
and is often used in the production of electrical components such as
switches, connectors, and housings due to its excellent electrical insu-
lation properties and high-temperature resistance (Kim and Jo, 2009;
Sung et al., 2006). PA, also known as nylon, is a lightweight plastic with
high strength and abrasion resistance, commonly used in the production
of electrical connectors, circuit breakers, and cable insulation due to its
high strength, good electrical insulation properties, and resistance to
abrasion and impact (Zhang et al., 2009; Zuev and Ivanova, 2012). PEEK
is a high-performance thermoplastic with exceptional mechanical
strength, high temperature resistance, and excellent chemical resistance
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(Santiago et al., 2021). PEEK is used in industries such as aerospace,
automotive, electronics, and medical devices for components requiring
strength, durability, and resistance to harsh environments (Rahman
et al., 2016). POM, also known as acetal, is a low-friction and wear-
resistant plastic widely employed in electrical applications because of
its superb mechanical and electrical properties, making it a reliable and
durable material for a wide range of electrical components (Mamunya
et al., 2001; Zhao and Ye, 2011). Each of these thermoplastics possesses
unique properties and is selected based on specific application re-
quirements, contributing to their versatility and widespread use across
various industries.

Despite all the advantages, these e-waste thermoplastics can also
take hundreds of years to decompose in landfill, and their disposal can
lead to pollution of the soil, air, and water (Mondal et al., 2019).
Moreover, improper disposal of e-waste thermoplastics can also harm
wildlife and cause health problems for humans (Kong et al., 2012).
Recycling e-waste thermoplastics has several benefits, including mini-
mizing waste disposal to landfills and reducing the environmental
impact of e-waste thermoplastic (Preetam et al., 2023). However, the
recycling process can be complicated because of the wide range of
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plastic types and additives that are used in electronic devices, as well as
the potential for contamination with hazardous materials (Asante et al.,
2019; Zhang et al., 2012). The process of upcycling e-waste thermo-
plastic using thermochemical methods involves subjecting the plastic to
high temperatures, breaking it down into its constituent parts that can
subsequently be transformed into new materials (Jung et al., 2023).
Thermochemical methods offer numerous advantages in the upcycling
of e-waste thermoplastics. Initially, they enable the transformation of a
diverse array of plastic materials into new products (Ghalandari et al.,
2023), including those that are difficult to recycle through traditional
mechanical or chemical methods (Capricho et al., 2022; Lee et al.,
2023). Second, thermochemical methods can generate energy and
valuable materials from waste, reducing the need for fossil fuels and
virgin materials (Karimi Estahbanati et al., 2021). Finally, thermo-
chemical methods can help to reduce the environmental impact of e-
waste thermoplastic by diverting it from landfills and reducing green-
house gas emissions (Alam et al., 2022; Lettieri and Al-Salem, 2011).
Among different thermochemical methods, solvothermal liquefac-
tion (STL) using supercritical solvents is an emerging one (Azwar et al.,
2023). STL is a chemical process that involves the conversion of solid
biomass or plastic into valuable chemicals and liquid fuel using a solvent
(Azwar et al., 2023; Su et al., 2022). The process typically occurs within
a closed system, wherein the solid feedstock is combined with a solvent,
and heated to temperatures ranging from 250 to 400 °C under high
pressure (up to 200 bar) (Abdelraheem et al., 2023; Wadrzyk et al.,
2023). Supercritical solvents have become increasingly popular in
recent years due to their unique properties and numerous advantages
(Faraz et al., 2022). One major advantage of using supercritical solvents
is their high solvating power, which enables them to dissolve a wide
range of compounds, including both polar and nonpolar substances
(Park et al., 2021; Wang et al., 2019). Moreover, they can be performed
at lower temperatures and pressures than traditional solvent processes,
leading to reduced energy consumption and lower costs (Santana et al.,
2012). Supercritical solvents are employed to provide a moderate re-
action environment with improved mass and heat transport (Serrano
et al.,, 2007). In recent years, numerous types of solvents have been
evaluated for the STL process (Baloch et al., 2021b; Banivaheb et al.,
2022; Ha Tran and Lee, 2020; Y. Liu et al., 2022; Riaz et al., 2018). One
of the most commonly used solvents is either sub or supercritical water,
or its combination with COy (Zhao et al. (2022)). This process is
generally known as hydrothermal liquefaction (HTL). Plastics are less
reactive than biomass even at temperatures when water is subcritical
(Singh and Sharma, 2008). Additionally, HTL often leads to carbon loss
in both aqueous and gaseous phases. Furthermore, the HTL process
liquid must be appropriately treated before being discharged into the
surrounding area (Mumtaz et al., 2023; Saha et al., 2022b). Methanol
and acetone, as oxygenated solvents, were used in the STL process for
plastic depolymerization (Y. Liu et al., 2022). The finding demonstrated
that methanol and acetone depolymerize plastic more effectively than
water (Banivaheb et al., 2022). Nevertheless, a previous investigation
indicated that oxygenated solvents could be unsuitable for a variety of
fuel-based usage (Brand et al., 2013). Using oxygenated solvents en-
hances the oxygen content in liquid product and boosts the cost of the
process, which requires separation (Saha et al., 2022a). Alternatively,
non-oxygenated solvents can be used for the STL of plastics. Recently,
the STL of waste mixed plastics and waste polyurethane in toluene,
which is a non-oxygenated solvent, was studied (Banivaheb et al., 2022;
Ghalandari et al., 2022a). Toluene can donate hydrogen and has a lower
critical temperature and pressure in comparison to water (Lee et al.,
2005). Employing a hydrogen-donor solvent like toluene can substan-
tially minimize the repolymerization reaction by stabilizing the gener-
ated free radicals (Sangon et al., 2006). Toluene, being a non-polar
solvent, is an excellent option for applications requiring the extraction
or separation of polar compounds from non-polar compounds. The
nonpolar fraction of depolymerized plastic is readily dissolved in
toluene, which can facilitate product separation (Saha et al., 2022a).
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Supercritical toluene has a low viscosity, making it a good solvent for
processes that require rapid mass transfer (Hutchenson et al., 1991; Lee
et al,, 2004). Overall, the advantages of using toluene as a non-
oxygenated and non-polar solvent make it a suitable choice for a vari-
ety of applications such as STL process (Ghalandari et al., 2022a).

To the best of the authors’ knowledge, just a few investigations have
been carried out on the STL process of waste plastics using supercritical
solvents (Baloch et al., 2021a, 2020; Banivaheb et al., 2022; Ghalandari
etal., 2022a; Y. Liu et al., 2022; Saha et al., 2022a), but no research was
identified by the authors covering STL of e-waste thermoplastics using
supercritical toluene. To address this gap, the aim of the work was to
study the possibility of using toluene in STL process of e-waste ther-
moplastic under supercritical conditions. In pursuit of this objective, the
effect of STL temperature and residence time on STL conversion for
types of e-waste thermoplastic (PA, PC, PEEK, and POM) was investi-
gated. Subsequently, the liquid product resulting from the STL process
was characterized to determine its potential applications. Conclusively,
the study proposed the reaction mechanisms for each type of e-waste
thermoplastic.

2. Material and methods
2.1. Materials

The four different types #7 thermoplastics (virgin plastics) includes
polyamide (PA), polycarbonate (PC), polyoxymethylene (POM), and
polyetheretherketone (PEEK) obtained from commercially accessible
sources. The particle size, elemental analysis and proximate analysis of
these thermoplastics are presented in the Supplementary File (Tables S1,
and S2). The toluene with a purity of 99.5 % was purchased from Fisher
Scientific (Waltham, MA, USA). The nitrogen gas (99.9 %), oxygen gas
(99.9 %) and helium gas (99.9 %) were purchased from NexAir (Mel-
bourne, FL, USA). The vanadium oxide (V2Os) and 2,5-Bis (5-tert-butyl-
benzoxazol-2-yl) thiohene (BBOT) were purchased from Sigma-Aldrich
(St. Louis, MO, USA).

2.2. Solvothermal liquefaction (STL) process

Custom-built stainless steel (SS-316) 7 mL custom reactors were used
to carry out STL. The reactor vessels were brought to reaction temper-
ature via a Techne SBL-2 sand bath (Vernon Hills, IL, USA). In the ex-
periments, a specific plastic to toluene mass ratio of 1:10 was utilized.
This resulted in the combination of 0.5 g of plastic with 5 g of toluene for
each test. Each plastic, under three reaction temperatures (325, 350, and
375 °C), was also subjected to three residence times of 1, 3, and 6 h.
After STL reaction, the reactor vessels were cooled via natural convec-
tion. The choice to examine the range of reaction temperature (325 to
375 °C) and residence time (1 to 6 h) at three different points was based
on our previous well-considered experimental studies (Saha et al.,
2022a; Banivaheb et al., 2022; Ghalandari et al., 2022a). Following
cooling to ambient temperature, the vessels were then opened under the
lab hood to vent the gas, and the solution product was filtered through a
syringe filter with a pore size of 1.0 um. This filtration process allowed
for the separation of the liquid and solid phases. The solid mass was
subsequently calculated after the solid residue was subjected to oven
drying at 105 °C. The weight of the gas produced during the STL trial
was determined by measuring the weight of the reactor vessel after
loading it with feedstock and toluene before the trial, and then weighing
it again after venting the gas following the trial.

Due to the constraints of the custom reactors, analyzing the gaseous
products proved unfeasible. Therefore, further analysis was exclusively
performed on the liquid products. To this end, all the filtered liquid
products were carefully collected and stored in glass vials. These vials
were promptly refrigerated to ensure the preservation of the liquid
samples until the analysis could be conducted. Toluene was not recov-
ered because the primary focus of this study was the investigation of the
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liquefaction process, its conditions, and the resulting liquid product,
while the recovery and recycling of toluene were considered beyond the
scope of this specific research, which aimed to comprehend the funda-
mental aspects of the process and its impact on plastic depolymerization.
Each experiment was performed two times, and the values presented in
the manuscript are the averages of these replicates. The schematic dia-
gram of STL process steps are illustrated in Fig. 1. The STL conversion,
solid residue yield, gas yield, and liquid product yield were calculated
employing Egs. (1)-(4).

weightofdriedsolidresidueafterSTL

STLc ion(%) = (1 —
conversion(%) = ( weightoffeedstock

) x 100% (1)

weightofdriedsolidresidueafterSTL
weightoffeedstock

Solidresidueyield(%) = ( ) x 100% 2)

R _ weightofgas
Casyield(%) = (weightoffeedstock) x 100% 3
Liquidproductyield(%) = 100 — Solidyield(%) — Gasyield(%) “4)

2.3. Characterization of STL liquid products

Liquid products underwent elemental analysis via a Thermo Scien-
tific Flash 1112 Organic Elemental Analyzer (Waltham, MA, USA) (Saha
et al., 2022a). Once the toluene was dried off, the liquid products were
mixed with a vanadium oxide conditioner. Standards for the CHNS
analyzer were prepared with BBOT being utilized as a calibration
standard and V505 again as a conditioner. The samples were combusted
in the elemental analyzer’s furnace at 950 °C in ultra-high purity oxygen
and with a helium carrier gas. The oxygen content was found by means
of a difference method (Quaid et al., 2022). The Dulong formula (Eq. (5)
was utilized to determine the higher heating value (HHV) of liquid
product (Hosokai et al., 2016).

MJ o
HHV|— | =0.3383 1.422(H — — 5
( Kg) C+1422(H - ) 6]
where C, H, and O are the wt.% of carbon, hydrogen, and oxygen
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respectively, determined from the elemental analysis. Please note that
that the HHYV is reported as ash-free.

The STL liquid product’s boiling point distribution was determined
via a Perkin Elmer TGA 4000 (Waltham, MA, USA) (Saha et al., 2022a).
Under a nitrogen environment (flow of 20 mL/min), the liquid product
was first heated from ambient temperature to 115 °C and held isother-
mally for 5 min to eliminate any excess toluene present in the samples.
Then, at a continuous rate of 20 °C/min, the sample was heated from
115 to 600 °C, and were held isothermally for 5 min at 600 °C. It should
be noted that only liquid components with boiling points higher than
115 °C (the boiling point of toluene) were considered, and any compo-
nents with boiling points below this temperature were not included.

FTIR analysis of liquid products was performed with a Nicolet 6700
FTIR Spectrophotometer (Waltham, MA, USA). A total of 64 scans with a
spectra wavelength of 500-4000 cm !, were taken at a resolution of 4,
which allowed for analysis of the functional groups in the STL liquid
products. With the STL solvent being toluene, a background of toluene
was implemented via placing a droplet of it onto the IR card before
adding the liquid product (Ghalandari et al., 2022b).

Gas Chromatography-Mass spectroscopy was implemented via a
5975 Mass Spectrometric detector coupled with an Agilent 7890 GC. A
Supelco Equity 1701 column was also equipped with the GC. The gas
input was held steadily at 250 °C with a splitting ratio of 1:1 and the
helium flowed at 5 mL/min. The oven was heated up for 4 min to a
temperature of 45 °C, and then further heated to reach 280 °C for 20
min. Excluding any overlap chromatogram peaks, prior to injection, the
samples were doped with an (n-decane, 99 %) solution (0.1 wt%).
Compounds were identified by comparing data to the NIST mass spectral
database.

3. Results and discussion
3.1. STL conversion of e-waste thermoplastic

Fig. 2a illustrates the STL conversion of PA, PC, PEEK, and POM at
different STL process conditions. The given data in Fig. 2a consists of

three temperature and conversion data sets for PA, PC, PEEK, and POM
at three residence times: 1, 3, and 6 h. The temperature values are 325,
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Fig. 1. Schematic diagram of Solvothermal liquefaction of e-waste plastics.
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Fig. 2. (2a) The effect of reaction temperature and residence time on the STL conversion of PA, PC, POM, and PEEK. (2b) Variation of product fraction yields (wt.%)

from STL using toluene by e-waste thermoplastics type (375 °C, 6 h).

350, and 375 °C, and the corresponding STL conversion values of PA for
the 1 h residence time are 38.72, 48.25, and 60.01 %, for the 3 h resi-
dence time are 42.3, 58.85, and 62.44 %, and for the 6 h residence time
are 46.46, 64.12, and 65.62 %. These data suggest that as the temper-
ature increases, the conversion of PA also tends to increase. One study
(Seshasayee and Savage, 2020a) reported the positive effect of reaction
temperature on the conversion rate of polypropylene and polystyrene
for HTL. Additionally, the conversion values for the 1 h residence time
are lower than those for the 3 and 6 h residence times, suggesting that
longer residence times lead to higher conversion rates. As the residence
time increases, more of the plastic molecules have an opportunity to
come into contact with the solvent, allowing for more depolymerization
to occur (Dement’ev et al., 2019). This is because the solvent molecules
can penetrate into the plastic and break the polymer chains (Baloch
et al., 2021b).

From Fig. 2a, it can be observed that as the temperature increases,
the STL conversion of PC tends to increase. Additionally, as the resi-
dence time increases, the STL conversion also tends to increase. Spe-
cifically, for PC, at a residence time of 1 h, the STL conversion increases
from 43.04 % at 325 °C to 63.11 % at 375 °C. At a residence time of 3 h,
the STL conversion increases from 52.25 % at 325 °C to 72.41 % at
375 °C. Finally, at a residence time of 6 h, the STL conversion increases

129

from 64.21 % at 325 °C to 89.01 % at 375 °C. The higher STL conversion
rate at 375 °C may be the result of extensive depolymerization reactions
that break down the solid phase into smaller liquid product molecules.
This is because higher temperatures can increase the mobility of the
polymer chains and make them more susceptible to breaking apart in the
presence of the solvent (Murthy, 2006; Xu et al., 2021).

Based on the result (Fig. 2a), the STL conversion of PEEK at 325 and
350 °C is negligible (less than 5 %). The conversion of PEEK 375 °C
increases from 10.85 % for 1 h to 32.23 % for 6 h. It shows that the
depolymerization of PEEK happens at a high temperature (375 °C).
However, in comparison with PA and PC, the depolymerization of PEEK
in toluene through STL is low. Depolymerization of PEEK in a solvent
can be challenging for several reasons. First, PEEK has a high degree of
crystallinity, which means that the polymer chains are densely packed
and closely linked, making it harder for the solvent to access the polymer
chains and break them apart (Mehmet-Alkan and Hay, 1993). Second,
PEEK has strong intermolecular forces, which can make it difficult for
the solvent molecules to penetrate into the polymer matrix and break the
polymer chains (Kurtz, 2012). Third, PEEK has a high melting temper-
ature of around 343 °C, which means that it is a highly stable polymer
and requires high temperatures to initiate depolymerization (Wu et al.,
2014).
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It can also be observed in Fig. 2a that the conversion of POM in-
creases by raising temperature. Furthermore, as the residence time is
increased, the conversion rate tends to approach 100 %. Specifically, the
conversion rates for POM at a residence time of 1 h, increase from 75.25
% at 325 °C to 89.1 % at 375 °C. At a residence time of 3 h, the con-
version rates increase from 90.25 % at 325 °C to 96.05 % at 375 °C.
Finally, at a residence time of 6 h, the conversion rates increase from
97.87 % at 325 °C to 100 % at both 350 °C and 375 °C. It is worth noting
that the conversion rates for POM are quite high, with conversion rates
of over 90 % at a residence time of 3 h even at lower temperatures.
Depolymerization of POM in the STL process is high for several reasons.
First, POM has a lower melting temperature (175 °C) than some other
thermoplastic polymers, such as PEEK, which means that it can be
depolymerized at lower temperatures (Chen et al., 2008). Second, POM
has weaker intermolecular forces compared to other thermoplastic
polymers, such as PEEK. The intermolecular forces between polyoxy-
methylene molecules are primarily due to van der Waals forces, which
are weak (Gray and McCRUM, 1971). This makes the polymer chains
more susceptible to depolymerization in the presence of a suitable sol-
vent. Finally, POM is less thermally stable compared to some other
thermoplastic polymers, such as PEEK. This means that it can be depo-
lymerized more easily under milder reaction conditions (Archodoulaki
et al., 2006).

The production yields of STL at 375 °C and 6 h for PA, PC, POM, and
PEEK are illustrated in Fig. 2b. PA results in a solid residue yield of
34.38 %, with a notable liquid product yield of 49.22 % and a gas yield
of 16.41 %. It indicates that a significant portion of the PA is converted
into oil and gas. PC, on the other hand, shows a lower solid residue yield
0f 10.99 % and a high liquid product yield of 71.21 %, with a gas yield of
17.80 %. PC is more readily converted into liquid product, making it a
promising feedstock for maximizing liquid product production. POM
distinguishes itself with a 0 % solid residue yield, indicating complete
conversion into other products. It primarily yields liquid product (70 %)
and gas (30 %), highlighting its high reactivity during STL process using
toluene. In contrast, PEEK has the highest solid residue yield at 67.77 %,
with a lower liquid product yield of 20.95 % and a gas yield of 11.28 %.
PEEK is the least reactive among the four materials, leaving a significant
solid residue.

In Table 1, the production yield results of this study at 350 °C for 1 h
are presented, alongside recent non-catalytic solvothermal plastic
studies. These detailed production yield and operating condition data
assist researchers in making informed decisions regarding feedstock
selection and process optimization, aligning with their specific goals,
whether it involves maximizing oil production, minimizing solid res-
idue, or achieving other desired outcomes for various applications.
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3.2. Elemental analysis of STL liquid products

Fig. 3a shows the range of carbon, hydrogen, and nitrogen content in
four different types of raw e-waste thermoplastic and liquid product
samples. PA liquid product has the lowest carbon content, while PEEK
liquid product has the highest carbon content. PA liquid product has the
lowest carbon and highest hydrogen content, while PEEK liquid product
and PC liquid product have the highest carbon, and lowest hydrogen
content, respectively. Furthermore, PA liquid product has a significant
amount of nitrogen (between 8.07 wt% and 10.73 wt%), while PC, PEEK
and POM have a small amount of nitrogen. Based on the results, the
carbon content of liquid product samples is significantly higher than the
carbon content of raw thermoplastics, and the oxygen content of liquid
product samples is significantly less than the oxygen content of raw
thermoplastics. Similar finding was observed when toluene was used as
solvent in STL of polyurethane, polypropylene, polystyrene, and poly-
urethane (Ghalandari et al., 2022a; Saha et al., 2022a). The reason
might be the breakdown of the polymer chains and the release of volatile
hydrocarbons during STL process. These hydrocarbons are then
condensed and recovered as liquid product, which has a higher carbon
content compared to the feedstocks (Baek et al., 2004; Keane, 2009).
Generally, when reaction time and residence time is increased, the
carbon content of liquid product samples increases, and oxygen content
of liquid product samples decreases. A similar trend were observed for
STL of e-waste plastics using methanol and acetone as solvents (Y. Liu
et al., 2022). The increase in carbon content of liquid product samples
with increasing temperature of solvothermal reaction can be attributed
to the thermal cracking of the feedstocks because the formation of
smaller hydrocarbon molecules through thermal cracking can increase
in higher temperature (Angyal et al., 2007; Chandrasekaran et al.,
2015). The longer residence time allows for more extensive cracking
reactions to take place, resulting in a greater conversion of the feed-
stocks to liquid product and an overall increase in the carbon content of
the liquid product sample (Chandrasekaran et al., 2015; Hussein et al.,
2021).

Fig. 3b displays a Van Krevelen diagram (Li et al., 2022) for STL
liquid product samples. The data presented shows the changes in O/C
and H/C atomic ratios of STL liquid product samples under different
operational conditions, and highlights the variations observed in com-
parison to the raw thermoplastics. The O/C atomic ratio reflects the level
of oxygenation of the liquid product (Lee et al., 2013), while the H/C
atomic ratio reflects the level of hydrogenation (Saxby, 1980). These
ratios are used to determine the quality of liquid product, its thermal
stability, and its potential as a feedstock for various processes such as
refining, upgrading, and conversion into value-added products (Chen
etal., 2016; Lu et al., 2018). The raw PA has an O/C atomic ratio of 0.89
and an H/C atomic ratio of 1.82, and although the O/C atomic ratio of

Table 1
Product distribution in the current STL study and recent plastic STL studies.
Feedstock Solvent Temperature Residence Time Solvent-to-Plastic Solid residue Liquid product Gas (wt Reference
[{O) (min) (gram) Ratio (Wt%) (Wt%) %)
Polyamide Toluene 350 60 10 51.75 36.19 12.06 Current study
Polycarbonate Toluene 350 60 10 44.22 44.62 11.16 Current study
Polyoxymethylene Toluene 350 60 10 11.80 61.74 20.46 Current study
Polyetheretherketone  Toluene 350 60 10 98.03 1.28 0.69 Current study
Polyethylene Acetone 350 90 5 24.66 39.33 36.01 (Liu et al., 2022a)
Polyethylene Methanol 350 90 5 33.51 15.22 48.73 (Liu et al., 2022b)
Polyethylene Water 350 90 5 97.74 0 2.26 (Liu et al., 2022)
Polystyrene Ethanol 350 60 1 4.42 82.23 13.35 (Ahmad et al., 2020)
Rubber Methanol 350 30 1 5.67 18.42 75.91 (Ahmad et al., 2023)
Polycarbonate Water 350 60 17 4.33 24.87 70.8 (Seshasayee and
Savage, 2020a)
Polystyrene Water 350 60 17 3.54 78.52 17.94 (Seshasayee and
Savage, 2020a)
Polypropylene Water 350 60 17 81.52 1.42 82.94 (Seshasayee and

Savage, 2020a)
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PA liquid products is less than that of raw PA, the H/C atomic ratio of
liquid products is similar to that of raw PA. The raw PC has an O/C
atomic ratio of 0.47 and an H/C atomic ratio of 0.9, and while the O/C
atomic ratio of PC liquid products is lower than that of raw PC, the H/C
atomic ratio of liquid products is slightly higher than that of raw PC. The
raw POM has an O/C atomic ratio of 0.98 and an H/C atomic ratio of 2,
and while the O/C atomic ratio of POM liquid products is lower than that
of raw POM, the H/C atomic ratio of liquid products is significantly less
than that of raw POM. The raw PEEK has an O/C atomic ratio of 0.21 and
an H/C atomic ratio of 0.64, and while the O/C atomic ratio of PEEK
liquid products is slightly lower than that of raw PEEK, the H/C atomic
ratio of liquid products is higher than that of raw PEEK. Earlier studies
demonstrated that the H/C and O/C atomic ratios significantly correlate
with the type of plastics. For example, a previous research (Seshasayee
and Savage, 2020a) discovered that whereas HTL of polyethylene tere-
phthalate creates a liquid product with lower O/C and higher H/C

O Naphta (115-150°C)
O Diesel+Lubricant (300-550°C)

10

=}

90
80
70
S
S 60
=
2
N
2
550
z
=
=
£ 40
(=%
on
=
Z 30
[=4]
20
10
0
[ R R R N | = a s s s =
SRR een88s moHmeee
[ONONORONONORONONS) [ONONGRONONG)
O O O O O O O o o O O O O O o
wmownwunmowmuwouw wm o nwmowm
[ 2NN ol o BTN il o BN T T ol [ LN ol o I 0T wl
IR R L BB L B B
gttt VOOOOO
B A A A A A A A A B A A A A A

Waste Management 174 (2024) 126-139

atomic ratios than the feedstocks, HTL of polypropylene provides a
liquid product with greater O/C and lower H/C atomic ratios than the
raw material.

The HHVs of liquid products, which are calculated based on
elemental analysis, are illustrated in Fig. 3a. The estimation of the
Higher Heating Value (HHV) of crude oil in this study is crucial for
assessing the energy content and potential recovery from liquefied e-
waste plastic products, essential for evaluating their feasibility as an
energy source or feedstock. The HHV of liquid products is significantly
higher than the HHV of raw thermoplastics. The HHV value for PA liquid
product HHV is between 19.61 and 31.80 MJ/kg, for PC liquid product is
between 26.56 and 30.34 MJ/kg, for POM liquid product is between
23.54 and 32.98 MJ/kg, and for PEEK liquid product is between 31.69
and 34.98 MJ/kg. The reason is that the STL process reduces the oxygen
content of raw thermoplastic by breaking it and converting it to liquid
product with low oxygen content, and high carbon content (Azwar et al.,
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Fig. 4. Distribution of boiling points of the STL liquid product samples prepared at different process conditions (PEEK only has three points because the STL of PEEK

at 325 and 350 °C resulted in negligible liquid product).
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2023;Y. Liuetal., 2022). The previous STL study in supercritical toluene
demonstrated that the HHV of mixed plastic’s mixed plastic is between
30 and 37 MJ/kg (Saha et al., 2022a). Overall, by increasing reaction
temperature, and residence time, the HHV of liquid product samples
increases. The reason is that the carbon and hydrogen contents in liquid
product increase by deoxygenation mechanism during the STL process,
resulting in the production of liquid products with a higher HHV (Y. Liu
et al., 2022; Saha et al., 2022a). In overall, the data suggests that these
four types of liquid product differ in their chemical composition, with
variations in carbon, hydrogen, and nitrogen content that may have
implications for their processing and use in various applications.

3.3. Boiling point distribution of STL liquid products

The liquid product from STL of thermoplastics comprises so many
different compounds, therefore, the boiling temperatures for various
combinations vary (Y. Liu et al., 2022). TGA was used to measure weight
loss of the liquid product as the temperature gradually rises. Fig. 4 shows
the data by displaying the weight-percent loss of each liquid product at
various temperature ranges corresponding to boiling point cuts in re-
finery products.

The naphtha weight percentages of produced liquid products are as
follows: PA liquid product ranges from 10.94 % to 16.83 %, PC liquid
product ranges from 3.16 % to 11.25 %, POM liquid product ranges from
11.61 % to 17.45 %, and PEEK liquid product ranges from 21.82 % to
24.09 %. It can be observed that PEEK liquid product has the highest
naphtha weight percentage, followed by POM liquid product and PA
liquid product. PC liquid products have the lowest naphtha weight
percentage range. PA liquid product exhibits the highest kerosene
weight percentage range, ranging from 75.94 % to 81.35 %. Following
PA liquid product, POM liquid product has the second-highest range,
varying from 45.36 % to 56.80 %. PEEK liquid product falls in the
middle with a narrower range of 19.85 % to 21.94 %. PC liquid product
has the lowest kerosene weight percentage range, ranging from 16.4 %
to 25.57 %. PC liquid product has the highest diesel and lubricant weight
percentage range, ranging from 51.64 % to 65.79 %. PEEK liquid
product follows with a range of 47.3 % to 50.2 %, indicating a relatively
high proportion of diesel and lubricant. POM liquid product falls in the
middle with a range of 22.73 % to 32.4 %. PA liquid product has the
lowest diesel and lubricant weight percentage range, ranging from 3.06
% to 8.82 %. These ranges indicate the varying amounts of diesel and
lubricant components present in each liquid product type. POM liquid
product exhibits the highest residual fuel oil weight percentage range,
ranging from 4.79 % to 16.48 %. PC liquid products follow with a range
of 8.54 % to 15.45 %, indicating a relatively high proportion of residual
fuel oil. PEEK liquid product falls in the middle with a narrower range of
6.66 % to 8.43 %. PA liquid product has the lowest residual fuel oil
weight percentage range, ranging from 0 % to 0.72 %. These ranges
represent the varying amounts of residual fuel oil present in each liquid
product type, with POM and PC liquid products having the highest
content and PA liquid product having the lowest.

The reason for the variation in naphtha, kerosene, diesel, and
lubricant weight percentages among different liquid products is mainly
due to differences in their chemical compositions and sources. Different
types of liquid products have varying proportions of hydrocarbons and
other components, which results in variations in naphtha, kerosene,
diesel, and lubricant content. One study (Seshasayee and Savage,
2020Db) also reported the significant effect of the type of plastic on the
proportion of hydrocarbons in plastic liquid product, which is in line
with this study. Finally, a specific relation between STL temperature/
residence time and the proportion of hydrocarbons is not observed from
TGA results in Fig. 4.

3.4. The FTIR of STL liquid products

FTIR of liquid products can provide valuable information about its
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chemical bonding. As shown in Fig. 5, the PA liquid product sample, the
peak at 732 ecm ™! is attributed to C-H bending vibrations in aromatic
compounds (Nava et al., 1996), while the peaks at 1145 cm ' and 1193
em! corresponds to C-O stretching vibrations (Stuart and Sutherland,
2004). The peak at 1550 cm™! corresponds to N-O stretching (Hadjii-
vanov et al., 1994), and at 2613 cm ! corresponds to N-H in nitrogen
compounds (Tripp and Hair, 1993). The peak at 1645 cm ™! is attributed
to C = C stretching vibrations in conjugated aromatics. The peak at
2952 cm™! corresponds to C-H stretching vibrations in alkanes (Kim and
Kang, 2012).

In the case of the PC liquid product samples, the peak at 683 cm ™" is
attributed to C-H bending vibrations in aromatic compounds, while the
peak at 893 cm™! corresponds to G-H bending vibrations in alkanes
(Nava et al., 1996). The peak at 1275 em™! corresponds to CHy bending
vibrations, and the peak at 1411 cm ™' corresponds to C-H bending vi-
brations in aromatic compounds (Matos et al., 1992). The peak at 1579
cm ! is attributed to C = C stretching vibrations in aromatics, while the
peak at 1643 cm ™! corresponds to C = C stretching vibrations in con-
jugated aromatics (Shibagaki et al., 2001). The peak at 1716 em s due
to C = O stretching vibrations in ketones and esters, and the peak at
1775 ecm ™! corresponds to C = O stretching vibrations in phenol com-
pounds (Yang et al., 2013). Finally, the peak at 2960 cm ™" is due to C-H
stretching vibrations in alkenes and aromatics (Kim and Kang, 2012).

As can be seen in Fig. 5, the POM liquid product sample, the peak at
696 cm™! is associated with C-H bending vibrations in alkanes (Nava
et al., 1996). The peak at 728 cm ™! corresponds to the wagging mode of
CH, groups (Nava et al., 1996), and the peak at 1145 cm ™" is due to C-O
stretching vibrations in aliphatic ether (Stuart and Sutherland, 2004).
The peak at 1193 cm ™! is attributed to G-O bending vibrations in oxygen
compounds like phenol (Stuart and Sutherland, 2004), while the peak at
1495 ecm™! corresponds to C-C stretching vibrations in aromatics.
Finally, the peak at 3023 cm™! is due to C-H and CHj stretching vi-
brations in alkenes and aromatics (Kim and Kang, 2012).

In the case of the PEEK liquid product sample, the peak at 691 cm ™
is attributed to C-H bending vibrations in aromatic compounds (Nava
et al., 1996), while the peak at 1014 cm ™' corresponds to C-O bending
vibrations (Ahmed Ismail et al., 2022). The peak at 1194 cm~! corre-
sponds to C-O bending vibrations in oxygen compounds (Stuart and
Sutherland, 2004). The peak at 1496 em! is attributed to C-C
stretching vibrations in aromatics, while the peak at 1590 cm™! corre-
sponds to C = C stretching vibrations in conjugated aromatics. The peak
at 1749 cm™! is due to C = O stretching vibrations in aromatic com-
pounds (Yang et al., 2013). Finally, the peak at 3021 cm™! is attributed
to C-H and CHj, stretching vibrations in alkenes and aromatics (Kim and
Kang, 2012).

3.5. Chemical composition of STL liquid products

GCMS was utilized to specify the molecular components in the STL
liquid product samples for each of the four thermoplastic types at high
temperature (375 °C) for different residence times, and the results were
presented in Fig. 6 and Tables S3-S14 (Supplementary file). In the liquid
product, the components were divided into four main types: aliphatic
hydrocarbons, aromatic hydrocarbons, oxygen containing compounds,
and nitrogen containing compounds. Due to the polymers used in the
experiment not containing a pure carbon backbone, there is not a sig-
nificant number of aliphatic groups in the liquid product (Li et al.,
2002), with only the POM group containing any noticeable percentage
of aliphatic compounds.

When the PA underwent STL, the major components produced are
caprolactam, o-xylene, p-xylene, ethylbenzene, cyclopentanone, and
3,5-dimethyl phenol. Caprolactam is the major nitrogen containing
chemical in the liquid product and composed 47 % and 48 % of the
liquid product in the 1 and 3 h residence times respectively. Capro-
lactam is a significant product due to it being used in the production of
PA through a ring opening polymerization mechanism (Oh et al., 2019;
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Fig. 5. FTIR spectra of STL liquid products obtained at 375 °C and 6 h.

Vicard et al., 2017). The percentage of caprolactam dropped signifi-
cantly to 26.8 % during the 6 h residence time. The drop in the capro-
lactam percentage is likely caused from the caprolactam degrading at a
slow rate during the process (Scelia et al., 1967), the result of which
appears at longer residence times.

The GCMS data of PC liquid product show that it consists of only
aromatic and oxygen containing compounds. The oxygen containing
components primarily of phenols and the concentration of oxygenated
compounds increase from 35.7 % at 1 h to 64.8 % at 3 h and decreases to
29.5 % at 6 h. This trend is likely caused by the PC still being degraded
into phenols between 1 and 3 h during STL, and the formation of phenols
likely slows down past the 3 h mark phenol is likely to degrade after
some time under high temperature and pressure(lurascu et al., 2009);
therefore, the concentration of phenol will decrease if the residence time
is significantly high.

The STL of POM has a much higher variety of compounds produced
with there being approximately 32 compounds produced in the 6 h trial
that composed of less than 1 % of the total area. Another thing that
makes it difficult for POM to be characterized is the presence of nitrogen
in the range of 12-26 % in the liquid product, while the typical structure
of POM does not have any nitrogen (Carazzolo and Mammi, 1963;
Carazzolo, 1963). As such, it is likely that there are chemical additives to
the structure such as a crosslinker or coating. Based on the formation of
altretamine in the liquid product, it is likely that the POM uses the
melamine formaldehyde based crosslinking mechanism in order to
structurally strengthen the POM and that is the source of the nitrogen
within the compounds(Hu et al., 2006).

PEEK is typically more degradation resistant than PC and will take a
longer time to degrade under similar conditions (Liao et al., 2020;
Martin et al., 2003). Based on the GCMS data, at residence time of 1 h,
most of the oxygenated compounds is benzaldehyde, which consists of
22 % of the total product. The benzaldehyde is then shown to degrade
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over time, with only 13.8 % of benzaldehyde remaining at 3h, and 1.1 %
remaining at 6 h. While the benzaldehyde is degrading, phenol is
forming, resulting in the total amount of oxygenated compounds
increasing from residence times of 3 h (13.8 %) to 6 h (47 %).

3.6. Proposed STL reaction mechanisms

As seen in Fig. 7a, the primary purpose of toluene in the reaction
mixture is to serve as a hydrogen donor to the components to prevent
further degradation of the components via beta scission or homolysis.
This hydrogen abstraction reaction is expected to occur due to the
appearance of bibenzyl in the reaction mixture, which would most
reasonably be formed by the combination reaction between two toluene
radicals. Toluene would be particularly effective at this due to having a
high presence of tertiary carbon atoms along with a resonance structure
to stabilize the toluene radical, meaning that the toluene radical would
likely be more stable than the radicals formed during the degradation
process. This process is expected to run in parallel to methyl cleavage, in
which the toluene loses its methyl group to thermolysis (Pamidimukkala
et al., 2002). This reaction is demonstrated by the presence of methyl
substituted toluene groups in the PEEK degradation product, which are
unlikely to form via PEEK degradation due to the lack of methyl groups
within the PEEK structure.

The most significant result of the PA degradation was the significant
formation of caprolactam in the liquid product (Fig. 7b). This fits with
most pyrolysis-based studies on PA degradation, as the heterolysis of the
amide bonds throughout the polymer can give way to the formation of
caprolactam through a ring closing mechanism, functionally being the
inverse of most common PA synthesis methods (Zakharyan and Maksi-
mov, 2022). Under a significant longer reaction time, the caprolactam
will decompose, resulting in lower caprolactam formation in the final
product. The formation of cyclopentanone in each of the products is
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Fig. 6. Total identified area of different chemical compounds presents in the STL liquid products at 375 °C.

likely based on a similar mechanism, with the thermolysis of bonds
resulting in radical formation that can undergo radical recombination on
its poles to form a ring. The formation of the dimethyl benzyl groups is
likely to be formed by reactions between the toluene radicals formed in
the reaction and methyl radicals formed by thermolysis of methyl
groups.

The degradation of PC with toluene results in the formation of pri-
marily substituted benzyl groups (Fig. 7c). This fits with most literature
as reactions at these temperatures and pressures are unlikely to break
aromatic compounds and the degradation would rather start at the
linkage molecules in this compound, being the quaternary carbon and
the carbonate linkage (Wan et al., 2021). The partial degradation can be
seen by the formation of 4-(2-Phenyl-2-propanyl) phenol in the liquid
product, which is a direct decomposition of the bisphenol A (BPA)
component. The formation of the methyl substituted toluene in the
liquid product is likely from the thermolysis of the methyl groups on the
quaternary carbon in the BPA component followed by hydrogen
abstraction and radical combination of the methyl group and the toluene
solvent. The phenol groups are direct decomposition products of BPA, as
seen in Fig. 7c.

The typical degradation mechanism for POM is to have an unzipping
reaction along the chain after the initial lysis to for formaldehyde (Kusy
and Whitley, 2005). The formaldehyde can react with radical benzyl
groups to form benzaldehyde (Fig. 7d). Outside of Formaldehyde,
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another initial decomposition product is likely to be methyl formate.
Methyl formate and toluene appear to be the precursor of a significant
amount of the liquid product, including 2-phenylethyl ester acetic acid
and 2-phenylethyl ester benzeneacetic acid. There is also a significant
amount of nitrogen containing compounds within the liquid feed, which
is likely due to the crosslinking agent containing nitrogen.

For the STL process of PEEK, it is expected that the polymer degra-
dation to begin via scission of the weaker linkage bonds between the
aromatic rings (Patel et al., 2010). The formation of benzaldehyde in the
liquid product can be seen on the left of Fig. 7e. The ketone linkage is
cleaved via thermolysis and then the resulting radicals are quenched via
hydrogen abstraction with toluene. Similarly, phenols are generated via
the same mechanism except the initial thermolysis reaction is with the
ether bonds. The formation of 3,5-dimethyl-phenol on the liquid product
can be explained via the substitution of the phenol with the methyl
groups formed from the toluene thermolysis. The use of toluene in the
solvent is beneficial in prevention of the production of fluorenone in the
liquid product, as without the presence of a hydrogen donor, diradical
benzyl groups can combine to form fluorenone (Perng et al., 1999).

4. Conclusions

In this study, solvothermal liquefaction (STL) of four types of e-waste
thermoplastics (PA, PC, POM, and PEEK) were performed using
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supercritical toluene. The results indicated the significant impact of
temperature and residence time on the solvothermal liquefaction (STL)
conversion of thermoplastics. For instance, at 375 °C, PA’s conversion
increases from 60.01 % (1 h) to 65.62 % (6 h), while PC’s conversion
rises from 43.04 % to 89.01 %. In contrast, PEEK exhibits minimal
conversion at 325 °C and 350 °C, emphasizing its high thermal stability.
On the other hand, POM shows consistent high conversion rates,
reaching 100 % at 375 °C and 6 h, owing to its lower melting temper-
ature and weaker intermolecular forces. STL liquid products, produced
at higher temperatures (375 °C) and longer residence times (6 h),
exhibited the following HHV values: PA — 31.80 MJ/kg, PC — 30.34 MJ/
kg, POM — 32.98 MJ/kg, and PEEK — 34.98 MJ/kg. The boiling tem-
peratures of most portions of liquid products were in the range of boiling
temperature of naphtha (115-150 °C), kerosene (150-300 °C), and
diesel/lubricant (300-550 °C). The FTIR analysis revealed the presence
of aromatics and oxygen compounds in all liquid products. GCMS
analysis demonstrated that the presence of significant amount of nitro-
gen components in PA, and PC liquid products. Moreover, a small
number of aliphatic components were detected in PC liquid products. In
summary, the results showed that STL process using supercritical
toluene is a significant method for upcycling e-waste thermoplastic to
produce liquid product. The result of this work can be used to design a
sustainable  thermochemical process for wupcycling e-waste
thermoplastic.
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