
Stochastic Spiking Neural Networks with
First-to-Spike Coding

Yi Jiang, Sen Lu, Abhronil Sengupta
School of Electrical Engineering and Computer Science

The Pennsylvania State University
University Park, PA 16802, USA

Email: {yijiang, senlu, sengupta}@psu.edu

Abstract—Spiking Neural Networks (SNNs), recognized as the
third generation of neural networks, are known for their bio-
plausibility and energy efficiency, especially when implemented
on neuromorphic hardware. However, the majority of existing
studies on SNNs have concentrated on deterministic neurons
with rate coding, a method that incurs substantial computa-
tional overhead due to lengthy information integration times
and fails to fully harness the brain’s probabilistic inference
capabilities and temporal dynamics. In this work, we explore the
merger of novel computing and information encoding schemes in
SNN architectures where we integrate stochastic spiking neuron
models with temporal coding techniques. Through extensive
benchmarking with other deterministic SNNs and rate-based
coding, we investigate the tradeoffs of our proposal in terms of
accuracy, inference latency, spiking sparsity, energy consumption,
and robustness. Our work is the first to extend the scalability
of direct training approaches of stochastic SNNs with temporal
encoding to VGG architectures and beyond-MNIST datasets.

Index Terms—Spiking Neural Networks, First-to-Spike Cod-
ing, Temporal Coding, Stochastic Computing

I. INTRODUCTION

Spiking neural networks (SNNs) bridge the gap between
artificial and biological neural networks (ANNs), offering
insights into neurological processes. In the human neuronal
system, most of the information is propagated between neurons
using spike-based activation signals over time. Inspired by this
property, SNNs use binary spike signals to transmit, encode,
and process information. Compared with analog neural net-
works where neuron and synaptic states are represented by
non-binary multi-bit representations, SNNs have demonstrated
significant energy and computational power savings, especially
when deployed on neuromorphic hardware [1].

In SNNs, rate coding is one of the most popular coding
methods. Under such a scheme, the information is represented
by the rate or frequency of spikes over a defined period of
time. However, such coding methods overlook the information
of precise spike timings [2] and are constrained by slow
information transmission and large processing latency. On the
other hand, temporal coding represents information by the
precise timing of individual spikes but often lacks scalability
and robustness [3]. Compared to rate coding, which requires
high firing rates to represent the same information, temporal
coding can represent complex temporal patterns with relatively
few spikes. In particular, First-to-Spike coding is a temporal
coding scheme inspired by the rapid information processing

observed in certain biological neural systems such as the
retina [4] and auditory system [5]. In First-to-Spike coding,
prediction is made when the first spike is observed on any
one of the output neurons, thereby saving the need to operate
over a redundant period of time as in rate coding. Therefore, it
is often claimed that temporal coding is more computationally
efficient than rate coding [3].

Nevertheless, it is a challenging task to train an SNN
due to the disruptive nature of information representation
and processing, especially for frameworks based on temporal
coding. Most existing works on scalable SNN training with
temporal encoding convert pre-trained ANN to SNN [6],
[7]. The conversion process typically involves mapping the
analog activation values of the ANN’s neurons to the timing
of spikes of the SNN’s neurons. SNN training algorithms
with conventional architectures and rate encoding [8] have
witnessed rapid development [9], [10] in recent years ranging
from global spike-driven backpropagation techniques [11] to
more local approaches like Deep Continuous Local Learning
(DECOLLE) [12], Equilibrium Propagation (EP) [13], [14],
Deep Spike Timing Dependent Plasticity [15], among others.
In stark contrast, literature on direct training of SNNs with
temporal encoding remains extremely sparse with demonstra-
tions primarily on toy datasets like MNIST.

Although the vast majority of algorithm development and
applications in SNNs employ deterministic neuron models
such as the deterministic Spike Response Model (SRM) [16],
Integrate and Fire (IF), and Leaky Integrate and Fire (LIF)
models [17], it is important to recognize that biological
neurons generate spikes in a stochastic fashion [18]. Fur-
thermore, deterministic neuron models are discontinuous and
non-differentiable, which presents substantial challenges in the
application of gradient-based optimization methods. On the
other hand, stochastic neuron models smoothen the network
model to be continuously differentiable [19] and therefore have
the potential to offer enhanced efficiency and robustness. Addi-
tionally, stochasticity can enhance generalization performance
by improving fault tolerance [20] and by preventing overfitting
[21].

Recently, there has been growing interest in exploiting
stochastic devices in the neuromorphic hardware community
[22], [23]. With the scaling of device dimensions, memristive
devices lose their programming resolution and are character-



ized by increased cycle-to-cycle variation. Work has started
in earnest to design stochastic state-compressed SNNs using
such scaled neuromorphic devices that exhibit iso-accuracies
in comparison to their multi-bit deterministic counterparts
enabled by the alternate encoding of information in the prob-
ability domain [24], [25]. Ref. [26] proposes noisy spiking
neural network (NSNN) which leverages stochastic noise as
a resource for training SNNs using rate-based coding. While
there is significant progress in the domain of stochastic SNN
training algorithms, there remains a noticeable gap in the
design of SNN architectures that integrate the benefits of
both stochastic neuronal computing and temporal information
coding. Most of the current efforts on directly training stochas-
tic SNNs with temporal coding have primarily demonstrated
success on simple datasets and shallow network structures
[27]–[29]. Scaling these networks to deeper architectures and
more complex datasets presents significant challenges. Further,
as we demonstrate in this work, many of the supposed benefits
of temporal encoding, like enhanced spiking sparsity, may not
necessarily hold true for deep architectures. This necessitates
a co-design approach to identify the relative tradeoffs of
stochastic temporally encoded SNNs in terms of accuracy,
latency, sparsity, energy cost, and robustness.
The specific contributions of this work are summarized below:
(i) Algorithm Development: We present a simple and struc-
tured algorithm framework to train stochastic SNNs directly
with First-to-Spike coding. We also present training frame-
works to train deterministic SNNs with temporal encoding that
serve as a comparison baseline for our work to identify the rel-
ative merits/demerits of the computing and encoding scheme.
We present empirical results to substantiate the scalability of
our approach by demonstrating state-of-the-art accuracies on
MNIST [30] and CIFAR-10 [31] datasets for 2-layer MLP,
LeNet5, and VGG15 architectures. Notably, this is the first
work to demonstrate direct SNN training employing First-to-
Spike coding for VGG architectures on the CIFAR dataset.
(ii) Co-Design Analysis: We present a comprehensive quanti-
tative analysis of previously unexplored trade-offs for stochas-
tic SNNs with temporal encoding in terms of neuromorphic
compute specific metrics like accuracy, latency, sparsity, en-
ergy efficiency, and robustness.

The rest of the paper is organized as follows. Section II
describes related works. Section III introduces the training
frameworks of SNNs with First-to-Spike coding for both
deterministic and stochastic computing architectures. Section
IV presents the experimental results and Section V provides
conclusions and future outlook.

II. RELATED WORKS

Temporal Coding: Temporal coding is characterized by its
emphasis on the timing of spikes rather than the frequency in
rate coding. Time-to-First-Spike (TTFS) coding [32] is a popu-
lar temporal coding scheme that is demonstrated to have rapid
and low power processing [33]–[36] since it typically imposes
a limitation that each neuron should only generate at most
one spike. This limitation lacks biological plausibility and it

cannot handle the complex temporal structure of sequences
of real-world events [37]. Although latency is significantly
reduced compared to rate coding, it still suffers from high
latency, particularly when processing complex datasets [35],
[38], [39]. Therefore, we focus on First-to-Spike coding based
temporal coding strategy that can further reduce the latency in
comparison to TTFS coding. First-to-Spike coding is distinct
from other approaches since it does not primarily rely on
the precise timing of each spike. Instead, this coding strategy
focuses on the order of the first spike of all the output neurons.
The efficacy and potential applications of the First-to-Spike
coding mechanism have been extensively explored in recent
literature [37], [40]. Nevertheless, the process of generating a
spike in SNNs is non-differentiable. To tackle this problem,
there are several common methods for developing and training
SNNs with temporal coding, which will be introduced next.
ANN-SNN Conversion Approaches for Temporal Coding:
ANN-SNN Conversion is a widely adopted method for con-
verting pre-trained ANNs to SNNs [41]–[43]. The neurons
with continuous activation functions, such as sigmoid or
ReLU, need to be mapped to spiking neurons like IF/LIF
neurons. Algorithmic approaches usually aim to reduce infor-
mation loss caused during the conversion process. Proposal by
[6] designed an exact mapping from an ANN with ReLUs to a
corresponding SNN with TTFS coding. The key achievement
of this mapping is that it maintains the network accuracy
after conversion with minimal drop. However, the conversion
process involves complex steps which can make the process
difficult to implement and optimize. Additionally, the necessity
to use different conversion strategies for different types of
layers further adds to the complexity. Also, it is important
to note that the ANNs are trained without any temporal
information, which typically results in high latency when
converted to SNNs [11]. Hence, it is critical to explore direct
training strategies for SNNs with temporal encoding.
Direct SNN Training Approaches for Temporal Coding:
In the domain of TTFS coding, a convolutional-like coding
method [44], [45] was proposed to directly train an SNN,
which uses a temporal kernel to integrate temporal and spatial
information. It can significantly reduce the model size and
transform the spatial localities into temporal localities which
can improve efficiency and accuracy. Some recent works use
the surrogate gradient [37], [46] or surrogate model [39] to
solve the non-differentiable backpropagation issue in deter-
ministic neurons with temporal coding. Another technique is
to directly train SNNs with stochastic neurons. The smoothing
effect of stochastic neurons is crucial for enabling gradient-
based optimization methods in SNNs [19] by solving the non-
linear, non-differentiable aspects of the spiking mechanism.
Research by [27], [28] introduced a stochastic neuron model
for directly training SNNs. This model uses the generalized
linear model (GLM) [47] and first-to-spike coding. The GLM
consists of a set of linear filters to process the incoming spikes,
followed by a nonlinear function that computes the neuron’s
firing probability based on the filtered inputs. Subsequently,
this model employs a stochastic process such as the Poisson



process to generate spike trains. However, the computational
complexity of adapting a GLM for large-scale SNN training
can be quite high. Other recent works have also explored
stochastic SNNs with TTFS coding where the stochastic
neuron is implemented by the intrinsic physics of spin devices
[29]. However, existing research primarily focuses on shallow
networks and MNIST-level datasets and lacks quantification
of benefits offered by stochastic computing and temporal
encoding in SNNs at scale.

III. METHODS

In this section, we introduce the methodology to train deter-
ministic and stochastic SNNs with First-to-Spike coding where
the key idea is to find the neuron that generates the first spike
signal, thereby terminating the inference process. Associated
loss function design and weight gradient calculations are also
elaborated considering discontinuity issues observed in spiking
neurons.

A. Deterministic SNN

The Leaky Integrate-and-Fire (LIF) neuron model is one of
the most recognized spiking neuron models in SNNs, primarily
chosen for its balance between simplicity and biological plau-
sibility [48]. The LIF model simulates the behavior of neurons
by accumulating input signals (voltage) until they reach the
threshold. During this period, the accumulated voltage decays
over time, which simulates the electrical resistance seen in real
neuronal membranes. However, the process to generate a spike
in LIF models is non-differentiable which makes it challenging
for traditional gradient-based methods. Defining a surrogate
gradient (SG) as a continuous relaxation of the real gradients
is one of the common ways to tackle the discontinuous spiking
nonlinearity [19]. The deterministic LIF neuron model used in
our network can be summarized as:

V t
i = λV t−1

i +
∑
j

wi,jX
t
j − (V t−1

i ≥ Vth) ∗ Vth (1)

where, V t
i is the membrane potential of neuron i at time t, wi,j

is the weight connecting the pre-synapse neuron j and post-
synapse neuron i, Xt

j is the input signal of pre-synapse neuron
j at time t, Vth is the threshold, and λ is the leak scaling
factor. When neuron i’s membrane potential at time t − 1
is larger than the threshold, it generates a spike and resets its
membrane potential. Soft reset is used to reduce the membrane
potential by the threshold instead of hard reset which resets
the membrane potential to a certain value. This reset method
ensures that the residual potential that exceeds the threshold
is carried over to subsequent timesteps, thereby minimizing
potential information loss [11].

The output spike train oti is generated by following this
equation:

oti =

{
1 if V t

i ≥ Vth

0 if V t
i < Vth

(2)

The temporal cross-entropy loss function [49], which inte-
grates the principles of First-to-Spike coding, is formalized as

follows: For each neuron i, the estimated activation probability
is computed using the equation:

pi =
e−ti∑n
i=1 e

−ti
(3)

where, ti is the time of the first spike of neuron i and n is the
number of output neurons. The loss function is given by the
following equation:

L(θ) =
n∑

i=1

yilog(pi) (4)

where, yi ∈ {0, 1} is a one-hot target vector and n is the
number of output neurons. In the context of First-to-Spike
coding, the goal is to minimize the time of the first spike of the
correct neuron, which leads to maximizing its corresponding
probability, as indicated by the cross-entropy loss function.

The gradient of the weights corresponding to the determin-
istic LIF neuron model is given by the following equation:

∆wi,j =
∑
t

∂L

∂pi

∂pi
∂ti

∂ti
∂oti

∂oti
∂V t

i

∂V t
i

∂wi,j
(5)

Surrogate gradients provide a solution by approximating the
gradient of the spike generation process, enabling gradient
descent through these non-differentiable neurons. In the deter-
ministic LIF neuron model, the process of extracting the first
spike time from the output spike train is non-differentiable.
Therefore, we use the sign estimator by replacing the gradient
∂ti/∂o

t
i with −1 only at the time of the first spike [49]. Since

Eqn. 2 is also non-differentiable, in order to compute ∂oti/∂V
t
i ,

we need a surrogate gradient to solve the discontinuous spiking
nonlinearity. In this paper, the Arctan surrogate [50] is used.
After employing the Arctan surrogate, Eqn. 2 can be written
as:

oti ≈
1

π
arctan

(
πV t

i

α

2

)
(6)

By using the surrogate gradient function, the discrete event
is approximated as a differentiable function. The gradient
∂ti/∂o

t
i can be expressed as:

∂oti
∂V t

i

=
1

π

1

1 +
(
πV t

i
α
2

)2 (7)

This allows the network to be trained using variants of
backpropagation. In this paper, Backpropagation through time
(BPTT) [51] is used where the network is unrolled across
timesteps for backpropagation.

B. Stochastic SNN

On the other hand, the introduction of stochasticity can
efficiently smoothen out discontinuous spiking nonlinearities.
Inspired by [27], we integrate stochastic LIF neurons with
First-to-Spike coding. The membrane potential is computed
by using the following equation:

V t
i =

λV t−1
i +

∑
j wi,jX

t
j

ki
(8)



where, ki is a scaling factor of the membrane potential of the
neuron. Subsequently, the sigmoid activation function is used
to calculate pti, which is the probability of neuron i generating
a spike at time t. The probability pti is used to generate an
independent and identically distributed (i.i.d.) Bernoulli value,
which represents the discrete spike train generated by the
neuron. Due to the non-differentiable nature of the Bernoulli
function, it poses a problem for backpropagation techniques
which rely on gradient-based optimization. To address this
issue, we use the Straight-Through (ST) estimator [52], which
passes the gradient received from the deeper layer directly to
the preceding layer without any modification in the backward
phase. In the output layer, we compute the probability Pt of
the correct neuron to generate the earliest spike at time t by
the following equation:

Pt = ptc

n∏
i=1,i ̸=c

t∏
t′=1

(1− pt
′

i )
t−1∏
t′=1

(1− pt
′

c ) (9)

where, ptc is the probability of correct neuron c generating a
spike at time t. This equation represents the probability that
no wrong neurons generate a spike before the correct neuron
produces a spike at time t. We use the same ML (Maximum
Likelihood) criterion used in [27] by maximizing the sum of
all Pts through the following equation:

L(θ) = log

(
T∑

t=1

Pt

)
(10)

As the timestep increases, Pt reduces, and the contributions
to the overall losses diminish progressively which encourages
neurons to fire earlier but not before the correct neuron,
resulting in reduced latency. Furthermore, the BPTT algorithm
is employed in a similar fashion as the deterministic SNN
model, unfolding the network across timesteps and calculating
the gradients of Eqn. 10 with respect to the weights at each
timestep.

IV. RESULTS

In this section, we evaluate the accuracy, latency, sparsity,
energy cost, and noise sensitivity of different types of models
to evaluate the influence of information encoding, computing
scheme, and training methods independently: ANN-SNN con-
version utilizing deterministic neurons and rate coding (D-R-
CONV) [41], BPTT trained models with deterministic neurons
utilizing rate coding (D-R-BPTT) [11], deterministic neural
networks trained by BPTT utilizing First-to-Spike coding
(D-F-BPTT) and the stochastic neural networks trained by
BPTT utilizing First-to-Spike coding (S-F-BPTT). It is worth
noting that First-to-Spike coding is only applied in the final
output layer to leverage the spike timing at which a neuron
first spikes to encode information. Acronyms are used to
simplify the naming that reflects its key features: The first
part indicates the type of neurons: deterministic (D) and
stochastic (S), the second part denotes the coding method:
rate coding (R) and First-to-Spike coding (F), and the third
part represents the training method: ANN-SNN conversion

(CONV) and Backpropagation Through Time (BPTT). We will
use these acronyms throughout the remainder of the paper
for brevity. We conduct experiments for three neural network
architectures, ranging from shallow to deep: 2-layer MLP,
LeNet5, and VGG15.

A. Datasets

In this paper, we use the MNIST [30] and CIFAR-10
[31] datasets for our experiments. In the preprocessing stage
for the MNIST dataset, we adjust the pixel intensities from
their original range of 0-255 to a normalized range of 0-
1. For the CIFAR-10 dataset, we use data augmentation to
effectively increase the diversity of the training data and reduce
overfitting. In our case, the random horizontal flipping is
applied with a probability of 0.5, and the image is rotated at
an angle randomly selected from a range of -15 to 15 degrees
[53]. Our preprocessing also includes random cropping of
images, with a padding of 4 pixels [54]. To further augment the
dataset, a random affine transformation is applied to the image.
This includes shear-based transformations, where the degree
of shear is precisely set to 10, effectively introducing a specific
level of distortion to the images. Additionally, scaling adjust-
ments are applied, altering the image size to fluctuate between
80% and 120% of the original size. The image attributes such
as brightness, contrast, and saturation are adjusted [55], each
by a factor of 0.2, to enhance model robustness against varying
lighting and color conditions. Furthermore, normalization of
the input image data is employed based on the mean and
standard deviation for each color channel in the CIFAR-10
dataset.

B. Model Training

TABLE I
TRAINING HYPERPARAMETERS

Dataset MNIST CIFAR-10
Model S-F-BPTT D-F-BPTT S-F-BPTT D-F-BPTT
Leakage Factors 0.7 0.9 0.7 0.9
Epoch 150 150 1000 1000
Batch Size 512 512 64 64
Learning Rate 5e-2 1e-3 1e-2 5e-5
Weight Decay 1e-6 1e-4 1e-6 1e-2
Scheduler
Step-Size 50 50 200 120

Scheduler
Gamma 0.8 0.5 0.5 0.5

In the training of all architectures, the Adam optimizer
[56] is utilized, accompanied by a learning rate scheduler.
For deterministic LIF neurons, the parameter α is set to 2
in Eqn 7. The detailed hyperparameter settings are listed
in Table I. Additionally, a critical aspect of SNN-specific
optimization involves layerwise tuning of the neuron’s firing
threshold Vth in the D-F-BPTT model and the scaling factor
ki in the S-F-BPTT model (see Section III). For this purpose,
we used a Neuroevolutionary optimized hybrid SNN training
approach [57] where the trained model was subsequently
optimized using the gradient-free differential evolution (DE)



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT TYPES OF SNNS

Dataset Architecture Model Accuracy Timesteps Energy Cost

MNIST 2-Layer MLP

D-R-CONV [41] 97.74% 15 1.38
D-R-BPTT [11] 98.57% 15 0.87

S-F-BPTT 98.62% 2.03 0.11
D-F-BPTT 98.76% 3.10 0.07

MNIST LeNet5

D-R-CONV [41] 97.74% 25 1.44
D-R-BPTT [11] 98.59% 35 4.95

S-F-BPTT 98.69% 2.07 0.76
D-F-BPTT 99.12% 3.23 0.28

CIFAR-10 VGG15

D-R-CONV [41] 90.12% 110 3.77
D-R-BPTT [11] 89.61% 100 12.26

S-F-BPTT 90.03% 5.43 0.81
D-F-BPTT 89.55% 10.95 0.75

Other Temporal Coding Models

MNIST
2-Layer MLP Sakemi et al. 2023 [60] 98.34% - -
5Conv-1FC Kim et al. 2024 [36] 98.50% - -
2Conv-1FC T2FSNN [35] 99.33% 40 -

CIFAR-10 VGG16
T2FSNN [35] 91.43% 680 -

Park et al. 2021 [39] 91.90% 544 -
DTA-TTFS [38] 93.05% 160 -

algorithm [58], [59] to achieve the best accuracy-latency
tradeoff. Prior work has demonstrated that such a hybrid
framework significantly outperforms approaches that combine
such hyperparameter tuning during the BPTT training process
itself [57].

C. Quantitative Analysis

Accuracy: The performance of each network is summarized in
Table II. The accuracy is determined by calculating the mean
value across ten independent runs. Transitioning from rate cod-
ing to temporal coding actually does not reduce the accuracy
and even increases the accuracy in some cases. However, the
introduction of stochasticity to the model causes a consistent
increase in the network accuracy on the more complex CIFAR-
10 dataset. For complex datasets, the variability introduced
by stochasticity could act as a form of data augmentation,
presenting the network with a wider range of data during the
training. This can prevent the model from overfitting, leading
to better generalization.

Inference Latency: In SNNs, reducing latency without sac-
rificing accuracy can be a critical goal, allowing for faster
and more energy-efficient computation. In particular, for the
D-R-CONV and D-R-BPTT models, the optimal number of
timesteps is determined by identifying the saturation point on
a plot of timesteps versus accuracy, where further increase
in timesteps no longer significantly improves model accuracy.
For the S-F-BPTT and D-F-BPTT models, the inference
latency is determined by averaging the number of timesteps
at which the first spike is detected in the output layer across
all input data. The differences in SNN inference latency in
terms of timesteps are noted in Table II. Compared to other
temporal coding models, First-to-Spike coding models show a
significantly lower latency. The First-to-Spike coding scheme
requires only a single spike in the output layer to ascertain
the result, reducing the number of timesteps significantly.
On the other hand, rate coding relies on the frequency of

spikes over time, and therefore the network needs a longer
observation window to establish an accurate spike rate. This
phenomenon is magnified when the dataset becomes complex.
On the CIFAR-10 dataset, the rate coding approaches require
a substantially higher number of timesteps to achieve the same
level of accuracy compared to the models employing First-to-
Spike coding. Interestingly, we find that the S-F-BPTT model
reduces the latency even further in comparison to the D-F-
BPTT model. The stochastic nature of spike generation in S-
F-BPTT models may cause an output spike generation even
when the input stimulus is not too strong or the membrane
potential is low, allowing for a faster response to the input.

Sparsity: Spiking sparsity in SNNs is an important metric
for evaluating the efficiency and functionality of models. The
average spiking rate of a particular layer, defined as the
average number of spikes that a neuron generates over a fixed
time interval, is utilized to quantitatively represent sparsity.
In this context, a higher average spike rate indicates lower
sparsity, and vice versa. The average spiking rate of each
model across various layers for the LeNet5 architecture trained
on the MNIST dataset and VGG15 architecture trained on
the CIFAR-10 dataset is shown in Fig. 1. Contrary to the
common assumption of higher sparsity in temporal coding
models than in rate coding models, the figure shows that first-
to-spike models do show higher sparsity in the final layer, with
the hidden layers presenting a contrary trend, especially for
the stochastic model, as shown in the results. The main reason
is the necessity to encode the same information with reduced
latency for temporally encoded models, which demands an in-
creased spike count. It also explains why the S-F-BPTT model
has the highest spiking rate with the lowest latency. Moreover,
to achieve a reliable and consistent output in the presence
of stochasticity, the stochastic SNN model needs to increase
its spiking rate. This compensates for the unpredictability of
individual spikes, ensuring that the overall signal transmission
between neurons remains stable and correct.



Layer 1 Layer 2 Layer 3 Layer 4 Layer 50.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

Sp
ik

in
g 

R
at

e
S-F-BPTT
D-F-BPTT
D-R-BPTT
D-R-CONV

(a) LeNet5 on MNIST Dataset

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 150.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

Sp
ik

in
g 

R
at

e

S-F-BPTT
D-F-BPTT
D-R-BPTT
D-R-CONV

(b) VGG15 on CIFAR-10 Dataset

Fig. 1. Average spiking rate of different neuronal layers for different SNN models (S-F-BPTT, D-F-BPTT, D-R-BPTT, D-R-CONV) corresponding to (a)
LeNet5 on the MNIST dataset, (b) VGG15 on the CIFAR-10 dataset.

Energy Cost: The total number of SNN computations, that
serves as a proxy metric for the resultant energy consumption
of the model when deployed on neuromorphic hardware [41],
is also a crucial factor in designing SNN models. The total
“energy cost” E of each model, defined as the ratio of the
number of computations performed in the SNN relative to that
of an iso-architecture ANN, can be estimated as:

E =
L∑

i=2

Si−1 × T × OP i∑L
j=2 OP j

(11)

where, L is the total number of layers, Si−1 is the average
spiking rate of the (i−1)th layer, T is the number of timesteps
used for inference, and OP i is the number of operations in
the ith layer. Following [41], OP i of convolutional layers and
linear layers can be summarized as:

OP i =

{
CI ·KH ·KW · CO ·OH ·OW li ∈ Conv
IF ·OF li ∈ Linear

(12)

where, li is the ith layer, CI and CO are the number of
input and output channels, KH and KW are the height and
width of the kernel, OH and OW are the height and width
of the output, and IF and OF are the number of input and
output features. The results depicted in Table II demonstrate
the energy cost of the four models: D-R-BPTT, D-R-CONV,
S-F-BPTT, and D-F-BPTT. The D-R-BPTT model has the
highest energy requirement, followed by the D-R-CONV, S-F-
BPTT, and D-F-BPTT models, in descending order. The results
demonstrate that the models using First-to-Spike coding are
more energy efficient than rate-coded models. Furthermore, it
is observed that the benefit of lower latency for the S-F-BPTT
model is outweighed by its significantly higher spiking rate
in contrast to the D-F-BPTT model, ultimately resulting in
comparable or increased energy expenditure. However, on the
CIFAR-10 dataset, this difference is less pronounced, as the D-
F-BPTT model requires almost twice the number of timesteps
compared to the S-F-BPTT model, resulting in only a slight
difference in the total energy cost.

Fig. 2. Comparative analysis of the performance of different SNN models
(S-F-BPTT, D-F-BPTT, D-R-BPTT) under Gaussian noise.

Noise Sensitivity: A key aspect of ML model design is to
ensure robustness to noise. A model’s noise sensitivity can
be measured by adding different levels of noise to the input
and observing the impact on the network’s accuracy. In this
paper, Gaussian noise is used to assess how well the model can
maintain its performance under noisy conditions. The variance
of Gaussian noise is adjusted from 0 to 1. Fig. 2 shows the
relationship between accuracy degradation and the magnitude
of applied noise. It can be observed that the D-R-BPTT
model demonstrates a higher tolerance to noise, maintaining
higher accuracy as the noise intensity increases. Since it uses
rate coding, which encodes information by the frequency of
multiple spikes over time, individual perturbations caused by
noise have less impact on the overall information conveyed.
Temporal coding models (D-F-BPTT and S-F-BPTT) are more
sensitive to noise because they rely on the precise timing of
spikes to encode information. However, the stochastic model
has better performance than the deterministic model at high
noise levels. This can be attributed to the stochasticity which
is incorporated during the training process itself and therefore
can provide more resilience to noise (through more tolerance
towards the precision of individual spikes).



V. CONCLUSIONS

In summary, our research explores the interplay of de-
terministic/stochastic computing with First-to-Spike informa-
tion coding in SNNs. This integration bridges a gap in
current research, demonstrating scalable direct training of
SNNs with temporal encoding on large-scale datasets and
deep architectures. We showcase that First-to-Spike coding
has significant performance benefits for SNN architectures
in contrast to traditional rate-based models with regard to
various metrics, including latency, sparsity, and energy ef-
ficiency. We also underscore notable trade-offs between the
stochastic and deterministic SNN models in temporal encod-
ing scenarios. Stochastic models reduce latency and provide
enhanced noise robustness, which is important for real-time
confidence-critical applications. However, this advantage is
offered at the expense of a slight decrement in sparsity, which
consequentially results in higher energy costs compared to
deterministic SNNs employing First-to-Spike coding. In terms
of accuracy, stochastic SNNs have the potential to aid in better
generalization, especially for complex datasets. Although our
results are promising, scaling this method to ImageNet level
vision tasks as well as beyond vision applications could be a
future research direction. Energy and sparsity aware training
techniques can be also considered for stochastic SNN models
with temporal encoding to further enhance its applicability for
resource-constrained edge devices.

ACKNOWLEDGMENTS

This material is based upon work supported in part by
the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under Award
Number #DE-SC0021562, the U.S. National Science Foun-
dation under award No. CCSS #2333881, CCF #1955815,
CAREER #2337646 and EFRI BRAID #2318101 and by
Oracle Cloud credits and related resources provided by the
Oracle for Research program.

REFERENCES

[1] A. Javanshir, T. T. Nguyen, M. A. P. Mahmud, and A. Z. Kouzani,
“Advancements in Algorithms and Neuromorphic Hardware for Spiking
Neural Networks,” Neural Computation, vol. 34, no. 6, pp. 1289–1328,
05 2022.

[2] W. Maas, “Networks of spiking neurons: The third generation of neural
network models,” Trans. Soc. Comput. Simul. Int., vol. 14, no. 4, p.
1659–1671, dec 1997.

[3] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Neural
coding in spiking neural networks: A comparative study for robust
neuromorphic systems,” Frontiers in Neuroscience, vol. 15, 2021.

[4] T. Gollisch and M. Meister, “Rapid neural coding in the retina with
relative spike latencies,” Science, vol. 319, no. 5866, pp. 1108–1111,
2008.

[5] P. Heil, “First-spike latency of auditory neurons revisited,” Current
Opinion in Neurobiology, vol. 14, no. 4, pp. 461–467, 2004.

[6] A. Stanojevic, S. Woźniak, G. Bellec, G. Cherubini, A. Pantazi, and
W. Gerstner, “An exact mapping from relu networks to spiking neural
networks,” 2022.

[7] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[8] J. Lin, S. Lu, M. Bal, and A. Sengupta, “Benchmarking spiking
neural network learning methods with varying locality,” arXiv preprint
arXiv:2402.01782, 2024.

[9] M. Bal and A. Sengupta, “Spikingbert: Distilling bert to train spiking
language models using implicit differentiation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, no. 10, 2024, pp.
10 998–11 006.

[10] R.-J. Zhu, Q. Zhao, G. Li, and J. K. Eshraghian, “Spikegpt: Genera-
tive pre-trained language model with spiking neural networks,” arXiv
preprint arXiv:2302.13939, 2023.

[11] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent
backpropagation,” in International Conference on Learning Represen-
tations, 2020.

[12] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, May 2020. [Online]. Available: http://dx.doi.org/10.3389/fnins.
2020.00424

[13] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation,” 2017.

[14] M. Bal and A. Sengupta, “Sequence learning using equilibrium propa-
gation,” arXiv preprint arXiv:2209.09626, 2022.

[15] S. Lu and A. Sengupta, “Deep Unsupervised Learning Using Spike-
Timing-Dependent Plasticity,” Neuromorphic Computing and Engineer-
ing, 2023.

[16] W. Gerstner, R. Ritz, and J. L. van Hemmen, “Why spikes? hebbian
learning and retrieval of time-resolved excitation patterns,” Biol. Cy-
bern., vol. 69, no. 5-6, pp. 503–515, Sep. 1993.

[17] L. Lapicque, “Recherches quantitatives sur l’excitation électrique des
nerfs traitée comme une polarisation,” J Physiol Paris, vol. 9, pp. 620–
635, 1907.

[18] W. Maass, “To spike or not to spike: That is the question,” Proceedings
of the IEEE, vol. 103, no. 12, pp. 2219–2224, 2015.

[19] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in
spiking neural networks,” 2019.

[20] A. Ardakani, A. Ardakani, and W. J. Gross, “Fault-tolerance of bina-
rized and stochastic computing-based neural networks,” in 2021 IEEE
Workshop on Signal Processing Systems (SiPS), 2021, pp. 52–57.

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” 2012.

[22] A. Sengupta, M. Parsa, B. Han, and K. Roy, “Probabilistic deep spiking
neural systems enabled by magnetic tunnel junction,” IEEE Transactions
on Electron Devices, vol. 63, no. 7, p. 2963–2970, Jul. 2016.

[23] K. Yang and A. Sengupta, “Stochastic magnetoelectric neuron for
temporal information encoding,” Applied Physics Letters, vol. 116, no. 4,
Jan. 2020.

[24] A. Islam, K. Yang, A. K. Shukla, P. Khanal, B. Zhou, W.-G. Wang, and
A. Sengupta, “Hardware in loop learning with spin stochastic neurons,”
arXiv preprint arXiv:2305.03235, 2023.

[25] A. Islam, A. Saha, Z. Jiang, K. Ni, and A. Sengupta, “Hybrid stochastic
synapses enabled by scaled ferroelectric field-effect transistors,” Applied
Physics Letters, vol. 122, no. 12, 2023.

[26] Ma, G., Yan, R. & Tang, H. Exploiting noise as a resource for
computation and learning in spiking neural networks. Patterns, vol. 4,
no. 10, pp. 100831, 2023.

[27] A. Bagheri, O. Simeone, and B. Rajendran, “Training probabilistic
spiking neural networks with first-to-spike decoding,” 2018.

[28] B. Rosenfeld, O. Simeone, and B. Rajendran, “Learning first-to-spike
policies for neuromorphic control using policy gradients,” in 2019 IEEE
20th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2019, pp. 1–5.

[29] K. Yang, D. P. Gm, and A. Sengupta, “Leveraging probabilistic switch-
ing in superparamagnets for temporal information encoding in neuro-
morphic systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2023.

[30] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[31] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for

advanced research).”
[32] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, 2002.
[33] J. Göltz, L. Kriener, A. Baumbach, S. Billaudelle, O. Breitwieser,

B. Cramer, D. Dold, A. F. Kungl, W. Senn, J. Schemmel, K. Meier, and
M. A. Petrovici, “Fast and energy-efficient neuromorphic deep learning

http://dx.doi.org/10.3389/fnins.2020.00424
http://dx.doi.org/10.3389/fnins.2020.00424


with first-spike times,” Nature Machine Intelligence, vol. 3, no. 9, p.
823–835, Sep. 2021.

[34] S. Oh, D. Kwon, G. Yeom, W.-M. Kang, S. Lee, S. Y. Woo, J. Kim, and
J.-H. Lee, “Neuron circuits for low-power spiking neural networks using
time-to-first-spike encoding,” IEEE Access, vol. 10, pp. 24 444–24 455,
2022.

[35] S. Park, S. Kim, B. Na, and S. Yoon, “T2fsnn: Deep spiking neural
networks with time-to-first-spike coding,” 2020.

[36] Y. Kim, A. Kahana, R. Yin, Y. Li, P. Stinis, G. E. Karniadakis, and
P. Panda, “Rethinking skip connections in spiking neural networks with
time-to-first-spike coding,” Frontiers in Neuroscience, vol. 18, 2024.
[Online]. Available: https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2024.1346805

[37] S. Liu, V. C. H. Leung, and P. L. Dragotti, “First-spike coding promotes
accurate and efficient spiking neural networks for discrete events with
rich temporal structures,” Front. Neurosci., vol. 17, p. 1266003, Oct.
2023.

[38] W. Wei, M. Zhang, H. Qu, A. Belatreche, J. Zhang, and H. Chen,
“Temporal-coded spiking neural networks with dynamic firing thresh-
old: Learning with event-driven backpropagation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2023, pp. 10 552–10 562.

[39] S. Park and S. Yoon, “Training energy-efficient deep spiking neural
networks with time-to-first-spike coding,” 2021.

[40] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and
M. Ganjtabesh, “First-spike-based visual categorization using reward-
modulated stdp,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 12, p. 6178–6190, Dec. 2018.

[41] S. Lu and A. Sengupta, “Exploring the connection between binary and
spiking neural networks,” Frontiers in Neuroscience, vol. 14, jun 2020.

[42] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” 2019.

[43] Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu, “A free lunch from ann:
Towards efficient, accurate spiking neural networks calibration,” 2021.

[44] T. Liu, Z. Liu, F. Lin, Y. Jin, G. Quan, and W. Wen, “Mt-spike: A
multilayer time-based spiking neuromorphic architecture with temporal
error backpropagation,” 2018.

[45] T. Liu, L. Jiang, Y. Jin, G. Quan, and W. Wen, “Pt-spike: A precise-
time-dependent single spike neuromorphic architecture with efficient
supervised learning,” in 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), 2018, pp. 568–573.

[46] M. Zhang, J. Wang, B. Amornpaisannon, Z. Zhang, V. Miriyala, A. Bela-
treche, H. Qu, J. Wu, Y. Chua, T. E. Carlson, and H. Li, “Rectified linear
postsynaptic potential function for backpropagation in deep spiking
neural networks,” 2020.

[47] J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, and E. J.
Chichilnisky, “Prediction and decoding of retinal ganglion cell responses
with a probabilistic spiking model,” J. Neurosci., vol. 25, no. 47, pp.
11 003–11 013, Nov. 2005.

[48] E. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE
Transactions on Neural Networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[49] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,
M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural
networks using lessons from deep learning,” Proceedings of the IEEE,
vol. 111, no. 9, pp. 1016–1054, 2023.

[50] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian,
“Incorporating learnable membrane time constant to enhance learning
of spiking neural networks,” 2021.

[51] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in Neuroscience, vol. 12, May 2018.

[52] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
CoRR, vol. abs/1308.3432, 2013.

[53] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” J. Big Data, vol. 6, no. 1, Dec. 2019.

[54] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” 2014.

[55] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation policies from data,” 2019.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[57] S. Lu and A. Sengupta, “Neuroevolution guided hybrid spiking neural
network training,” Front. Neurosci., vol. 16, p. 838523, Apr. 2022.

[58] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 01 1997.

[59] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“SciPy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[60] Y. Sakemi, K. Morino, T. Morie, and K. Aihara, “A supervised learning
algorithm for multilayer spiking neural networks based on temporal
coding toward energy-efficient vlsi processor design,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 34, no. 1, pp. 394–408,
2023.

https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1346805
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2024.1346805

	Introduction
	Related Works
	Methods
	Deterministic SNN
	Stochastic SNN

	Results
	Datasets
	Model Training
	Quantitative Analysis

	Conclusions
	References

