
Exploring Extreme Quantization in Spiking
Language Models

Malyaban Bal, Yi Jiang, Abhronil Sengupta
School of Electrical Engineering and Computer Science

The Pennsylvania State University
University Park, PA 16802, USA

Email: {mjb7906, yijiang, sengupta}@psu.edu

Abstract—Despite the growing prevalence of large language
model (LLM) architectures, a crucial concern persists regarding
their energy and power consumption, which still lags far behind
the remarkable energy efficiency of the human brain. Recent
strides in spiking language models (LM) and transformer archi-
tectures aim to address this concern by harnessing the spiking
activity of biological neurons to enhance energy/power efficiency.
Doubling down on the principles of model quantization and
energy efficiency, this paper proposes the development of a novel
binary/ternary (1/1.58-bit) spiking LM architecture. Achieving
scalability comparable to a deep spiking LM architecture is fa-
cilitated by an efficient knowledge distillation technique, wherein
knowledge from a non-spiking full-precision “teacher” model is
transferred to an extremely weight quantized spiking “student”
LM. Our proposed model represents a significant advancement
as the first-of-its-kind 1/1.58-bit spiking LM, and its performance
is rigorously evaluated on multiple text classification tasks of the
GLUE benchmark.

Index Terms—Neuromorphic Computing, Language Mod-
elling, Spiking Neural Networks (SNNs), Model Quantization,
Knowledge Distillation.

I. INTRODUCTION

Large language models (LLMs) are becoming increasingly
popular due to their wide-ranging applications in various
natural language processing (NLP) tasks. The immense scale
of transformer [1] based language models (LMs) comes at the
cost of increased energy/power consumption. By integrating
bio-plausible models with extreme parameter quantization
techniques, we can markedly diminish energy and power costs,
thereby fostering a sustainable future for deep neural models.

Spiking neural networks (SNNs) [2] emulate biological
processes, where communication between neurons takes the
form of spikes. This sparse, event-driven flow of information
enables efficient computation and communication in neuro-
morphic hardware, leading to significant energy savings [3].
Though substantial work on SNN-based transformer architec-
tures are done on vision-based datasets, recent works have
explored spiking LM architectures for language generation [4]
and classification tasks [5].

While spiking architectures assist in reducing multi-bit
neuron activations to binary spiking activity, they offer limited
support in minimizing parameter overhead. Model quantiza-
tion techniques stands out as a promising solution, effectively
slashing the memory footprint and computational expenses
of expansive models, all while upholding their competitive

performance. Model quantization can occur during training or
post-training. While post-training quantization [6] is simpler, it
often leads to more significant accuracy degradation compared
to techniques that incorporate quantization-aware training. Our
work is primarily geared towards developing a quantization-
aware training approach.

The spiking architectures’ capacity to distribute computa-
tions across the temporal domain is pivotal in overcoming the
formidable challenge of crafting an exceptionally quantized
spiking LM. By amalgamating scalable spiking LM with
extreme model quantization [7], [8], this endeavor strives to
markedly diminish model size and enhance energy/power effi-
ciency through the utilization of spiking activation and 1/1.58-
bit weights. This quantized spiking architecture is adaptable
for implementation on neuromorphic chips and specialized
hardware accelerators such as “In-Memory” binary neural
network (BNN) accelerators [9]. Moreover, executing the
binarized spiking LM over an optimal number of time-steps
enables us to reach near full-precision accuracies while capi-
talizing on the specialized “In-Memory” hardware accelerator
tailored for BNNs [9].

In our paper, we introduce a framework for training a spik-
ing LM with parameters quantized to 1/1.58-bits. We leverage
the technique of implicit differentiation at equilibrium for
training the spiking architecture, as outlined in previous works
[5], [10]. This approach offers outstanding memory efficiency
during training compared to Backpropagation Through Time
(BPTT), which demands substantial memory for storing a
large computational graph. Moreover, it eliminates the need for
surrogate gradient methods by implicitly computing gradients,
thus addressing the non-differentiability challenge inherent in
training spiking models with BPTT. Within specific constraints
[11], this learning paradigm parallels biologically plausible
and energy-efficient training methods, such as equilibrium
propagation [12]–[14], thereby reinforcing a neuromorphic
perspective on learning.

In this paper, leveraging the average spiking rate at equi-
librium of the quantized spiking LM, we use an efficient
knowledge distillation (KD) technique to transfer knowledge
from a non-spiking high-precision “teacher” architecture to
a spiking 1/1.58-bit “student” LM. This KD methodology is
pivotal for the creation of an extremely quantized spiking LM,
enabling efficient training of our “student” model even with



limited resources. For this study, we adopt the encoder-based
BERT [15] architecture as our LM, chosen for its suitability
in text classification tasks due to its ability to capture bi-
directional contextual information.

The primary contributions of this paper are as follows:
• We propose an efficient framework for training-aware

extreme model quantization in spiking LM architectures.
• We leverage the equilibrium dynamics of the spiking

LM to efficiently perform the model compression and
quantization through the use of KD.

• To the best of our knowledge, this is the first-of-its-kind
1/1.58-bit spiking LM which is evaluated on multiple
NLP tasks of the GLUE benchmark.

II. METHODS

In this section, we begin by exploring the architecture of
our 1/1.58-bit BERT-based spiking LM. Subsequently, we
provide a concise overview of the training mechanism and
the effective KD technique employed, enabling us to achieve
such extreme quantization by distilling knowledge from a full-
precision “teacher” model.

A. Architecture and Learning Dynamics

The base architecture of this model follows previous BERT-
based spiking architectures [5], and comprises of stacked
spiking encoder layers. Each spiking encoder layer comprises
of a spiking attention module and multiple intermediate layers
as described in Fig 1. In this highly quantized version, we
substitute all linear projection layers, typically full precision
feed-forward layers, with quantized binary/ternary linear lay-
ers, whose operation is detailed later. Additionally, given the
spiking nature of this architecture, communication between
neuronal layers exclusively takes place in the form of spikes
(Fig. 1). The dynamics of the spiking neurons are given as:

ui[t+ δ] = γui[t] +
∑
j

(wijsj [t]) + bi,

si[t+ 1] = S(ui[t+ δ]),

ui[t+ 1] = ui[t+ δ]− Vthsi[t+ 1]

(1)

Here, γ denotes the leaky term; Vth is the spiking threshold;
ui[t] and si[t] signifies the membrane potential and spike from
the ith neuron at time t; wij represents the synaptic weight
between the pre and post-synaptic neurons; t + δ denotes an
intermediate time step to determine if the neuron has fired; bi
indicates a bias term; S denotes the non-differentiable function
for spike generation, with subtraction as reset operation.

The average spiking rate (ASR) for each layer i, which can
be defined as a weighted-average function as follows, ai[t] =∑t

τ=1 γt−τsi[τ ]∑t
τ=1 γt−τ , is leveraged during training and during KD

following [5] and is given as,

ai[t+ 1] =
1

Vth
(Wi(a(i−1)[t+ 1]) + bi −

ui[t+ 1]∑t
i=0 γ

i
) (2)

For linear layers, Eqn. 2 can be derived from Eqn. 1. Theoret-
ically, as t → ∞ the ASRs eventually converge to equilibrium
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Fig. 1. High-level architecture of each encoder layer of the 1-bit Spiking
transformer architecture with Quantized Linear layers. All linear layers,
including those used in the attention module, are quantized to 1-bit.

and we can derive steady-state equations for ASR of linear
layers and formulate surrogate steady-state functions for non-
linear layers [5], [10] of the form:

a∗i = σ(
1

Vth
(Wi(a

∗
i−1) + bi)) (3)

where clipping function σ(x) bounds the values within [0,1]
and Wi is operation of the corresponding layer. The layer-
wise convergence dynamics of ASRs of the 1-bit quantized
Spiking LM model is shown in Fig. 2a. We leverage only the
ASR values at equilibrium to compute error-gradients using
implicit differentiation at equilibrium [10] as shown below,

∂L(a∗)

∂θ
= −∂L(a∗)

∂a∗
(J−1

gθ
|a∗)

∂fθ(a
∗)

∂θ
(4)

where, L is the loss function used, gθ(a) = fθ(a)−a, f is the
steady-state equation of ASR, J−1 is the inverse Jacobian of
gθ when a = a∗, i.e., at equilibrium. Hence, unlike BPTT,
we eliminate the need to store all the intermediate states.
Additionally, we circumvent the need for surrogate gradients
to address the non-differentiability issue encountered by BPTT
during SNN training, as we employ ASRs (real values) rather
than spikes during training. This capacity to utilize ASRs
during training is also crucial for formulating an extremely
quantized spiking architecture, as detailed later.

B. Quantizing linear layers to 1/1.58-bit

The predominant energy expenditure during inference of a
spiking LM arises from the numerous linear projection layers
utilized across various components, including the attention
module and intermediate layers such as feed-forward and out-
put layers. This is primarily attributed to the floating-point ma-
trix multiplication operation performed by these layers, which
incurs significantly higher energy costs compared to normal-
ization or residual layers [7]. Linear projection operations



involve two tensors: neuronal activity and synaptic weights.
Primarily, previous research has typically concentrated on
extreme quantization (< 2 bits) of either neuronal activity
[5] or synaptic weights [7], [16]. In contrast, our objective is
to simultaneously quantize both using just 1 bit (neurons are
intrinsically quantized due to spiking behavior). We further
explore ternary weight quantization, utilizing a log2(3) i.e.
1.58-bit representation, where the states correspond to -1/0/1,
in order to bridge the accuracy gap with the full-precision
model even further.

In line with [7], [8], for 1-bit quantization, the weights (W )
are first centred around zero-mean and then the model weights
are binarized to either +1 or -1 using the signum function.
Thus, after binarization the quantized weight is,

WQ1−bit
= Sign(W − α) (5)

where, Sign(Wij) =

{
+1, if Wij > 0,

−1, if Wij ≤ 0.
and α =

1
nm

∑
ij Wij is the mean of the weight matrix W ∈ Rn×m.

For the 1.58-bit implementation, the quantization can be done
as follows:

WQ1.58−bit
= Round(Clip(W/(β + ϵ),−1, 1) (6)

where, ϵ is a small constant. The output of the linear layer
is scaled by a constant β = 1

nm

∑
ij |Wij |. In addition to

the extreme quantization, our spiking LM distinguishes itself
from non-spiking designs by quantizing the input to linear
layers, solely by binary spikes, contrasted with continuous
values [7], [16], [17]. It is crucial to emphasize that we
harness this spiking activity during inference. During training,
as detailed in the previous section, we utilize the full-precision
ASR which helps us maintain the theoretical constraints of
quantization [7]. Even with extreme quantization, comparable
performance to full-precision model is attributed to the fact
that the spiking LM operates over T timesteps, effectively
spreading neuron activation precision across the temporal
dimension. Additionally, as illustrated in Fig. 2b, the ASR
convergence dynamics of the quantized model aligns closely
with that of the full-precision model, indicating no additional
overhead on the operating latency of the spiking LM.

C. Knowledge Distillation (KD)

Training large spiking transformer models, such as those
found in LMs, demand significant resources. Our approach,
which depends on training-aware extreme quantization, exac-
erbates the challenge of training from scratch. Building on
prior research [5] regarding KD from ANN to SNN models,
our goal is to streamline the training process. We achieve this
by employing a full-precision “teacher” LM to impart knowl-
edge to a quantized spiking “student” LM. This approach
enables efficient compression of knowledge and significantly
reduces the required resources compared to training from
scratch. This formulation, akin to Eqn. 4, capitalizes on the
steady-state ASR of the output of intermediate layers of the
quantized spiking LM. It utilizes this information to minimize

(a)                                                                                                       (b)

Fig. 2. Results obtained after passing a set of randomly sampled inputs
from MRPC dataset. (a) The convergence dynamics of the different sub-layers
of an encoder layer of the 1-bit SpikingBERT4 model. (b) Comparison of
output layer ASR convergence dynamics of full precision (weights) and 1-bit
SpikingBERT4. Y-axis in both shows mean (over number of neurons) of the
ASR while X-axis shows the operating time steps.

a loss function, incorporating the full precision activity of
corresponding intermediate layers within a “teacher”. This
mechanism facilitates the effective transfer of knowledge
leveraging the intermediate layers—specifically, the output of
each individual encoder block—of both the “teacher” and the
“student” model. The underlying loss is given as,

Lhi
= MSE(ASR(S∗

hi
)Wp, Tf(hi)) (7)

Here, MSE is mean squared error loss function, ASR(S∗
hi
)

represents the equilibrium ASR of the output neurons in the
ith SE layer of the “student” model, while Tf(hi) denotes
the output of the f(hi)

th layer in the “teacher” model. Wp

signifies a linear projection aligning the dimensionality of the
“student” layer with its corresponding layer in the “teacher”.
The function f maps the “student” layer hi to a specific target
layer in the “teacher” network.

III. RESULTS

In this section, we showcase the efficacy of extreme quan-
tization techniques primarily on text classification tasks of the
General Language Understanding Evaluation (GLUE) bench-
mark [18]. The experiments were conducted on Nvidia RTX
A5000 GPUs (8 units), each equipped with 24GB of memory.

A. Datasets

We used Quora Question Pair (QQP), Microsoft Research
Paraphrase Corpus (MRPC) to evaluate our model’s perfor-
mance on similarity and paraphrase tasks. For inference-
oriented evaluations, we opted for Multi-Genre Natural Lan-
guage Inference (MNLI), Question-answering NLI (QNLI)
datasets. For single-sentence sentiment analysis tasks, we
utilized the Stanford Sentiment Treebank (SST-2). For all
tasks, we keep the maximum sequence length at 128.

B. Experimental Setup

All experiments use four 1/1.58-bit spiking encoder blocks
(Fig. 1) where encoding dimension of the tokens in the input
is 768 and the intermediate size of the model is 3072. Training
starts with a full-precision BERT-based spiking LM [5], pre-
trained on the Wikipedia corpus. Subsequently, we conduct



TABLE I
RESULTS SHOWING PERFORMANCE (ACCURACY) OF OUR QUANTIZED

SPIKING MODELS AGAINST SOME STANDARD MODELS AND OTHER
EFFICIENT IMPLEMENTATIONS OF BERT ON GLUE EVALUATION SET.

Model QQP MNLI SST-2 QNLI MRPC
CBoW [18] 75.0 57.1 79.5 62.5 75.0
REM W2-A4 [16] 75.7 58.3 82.9 75.3 -
BinaryBERT50% [19] 66.7 39.2 54.1 59.5 68.3
TernaryBERT [19] 74.1 32.7 53.1 59.3 68.3
BERT5 + PF [20] 84.1 67.7 81.6 80.9 78.6
NAS-BERT5 + KD [20] 85.8 74.4 87.3 84.9 79.6
BERTTINY Adam [5] 81.1 65.3 80.1 77.8 69.9
1-bit SpikingBERT4 83.8 75.4 86.7 80.5 75.8
1.58-bit SpikingBERT4 85.4 77.1 87.1 83.1 77.3
SpikingBERT4 86.8 78.1 88.2 85.2 79.2

task-specific internal layer KD for each individual dataset. To
quantize the weights, we employ Eqn. 5 for 1-bit and Eqn.
6 for 1.58-bit variant, followed by intermediate layer KD as
per Eqn. 7 with non-spiking full-precision fine-tuned BERT
as “teacher”. After KD, we refine our quantized models by
minimizing cross-entropy loss against the true labels. This
facilitates the training of our quantized models tailored to the
specific task. Since this is the first work of exploring extreme
quantization in spiking LM, our results are compared with
some common NLP models and other efficient implementation
of BERT. The results are demonstrated in Table. I. The model
trained with ternary (1.58-bit) weights outperform that trained
with binary (1-bit) weights and closely match the performance
of full-precision SpikingBERT. Internal-layer KD (Eqn. 7) is
crucial for high accuracy in quantized models. Without it,
quantization-aware training on the proposed spiking LM leads
to a significant 6-8% accuracy drop across the datasets.

C. Energy & Power Efficiency

As demonstrated empirically in Fig. 2b for the output
layer, the spiking activity of neurons post-quantization remains
comparable to that of full-precision models. Furthermore, em-
pirical results suggest that the total number of Norm#OPS
in full-precision (floating point ACC) and 1/1.58-bit mod-
els (Integer ACC) are similar; for example, for the MRPC
dataset, the ratio of Norm#OPS of 1.58-bit SpikingBERT
to full-precision SpikingBERT is 1.06 (i.e., ≈ 1). The
total normalized OPS [9] is defined as Norm#OPS =∑

i IFRi∗Layer#OPSi+1∑
Layer#OPS , where IFRi represents the number

of spikes over inference time steps averaged across the number
of neurons. However, it is worth noting here that each accumu-
lative operation in 1/1.58-bit quantized models are at least an
order of magnitude more energy efficient than full-precision
models [9] (for instance, a preliminary estimate in terms of
integer ACC versus floating point ACC energy consumption
in 45nm CMOS technology yields 9× energy efficiency [21]).
Thus, the combination of extreme weight quantization and
spiking neuronal activity enables a remarkable reduction in
the model’s size, energy and power consumption.

IV. CONCLUSION & FUTURE WORKS

In our paper, we delve into leveraging the equilibrium-
based convergence dynamics of spiking architectures to craft
an extremely quantized spiking LM. This approach drastically
shrinks model size, facilitating deployment on edge-based
computing devices with limited resources. Furthermore, using
computationally efficient “In-Memory” BNN accelerators over
time enables us to seamlessly perform inference time tradeoff
of accuracy and energy in complex sequence-based NLP tasks.

Future endeavors can broaden the application of this tech-
nique to encompass other deep spiking architectures, including
GPT-like decoder-based LMs. Additional research efforts can
aim to minimize the accuracy disparity between the full-
precision models and quantized spiking transformer-based
architectures. This technique of extreme quantization can also
be explored in other deep spiking architectures beyond LMs.
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