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Abstract—This paper introduces a novel information-theoretic
perspective on the relationship between prominent group fairness
notions in machine learning, namely statistical parity, equalized
odds, and predictive parity. It is well known that simultaneous
satisfiability of these three fairness notions is usually impossible,
motivating practitioners to resort to approximate fairness solu-
tions rather than stringent satisfiability of these definitions. How-
ever, a comprehensive analysis of their interrelations, particularly
when they are not exactly satisfied, remains largely unexplored.
Our main contribution lies in elucidating an exact relationship
between these three measures of (un)fairness by leveraging a
body of work in information theory called partial information
decomposition (PID). In this work, we leverage PID to identify
the granular regions where these three measures of (un)fairness
overlap and where they disagree with each other leading to
potential tradeoffs. We also include numerical simulations to
complement our results.

I. INTRODUCTION

The rapid infiltration of machine learning (ML) into high-
stakes applications such as employment, education, finance,
healthcare brings the promise of enhanced efficiency. However,
this can also accompanied by escalating concerns about the
disparate impact [1]–[5] that these systems might cause on
unprivileged groups based on sensitive attributes such as
gender, race, age, nationality, etc. Several anti-discrimination
legislations and ethical principles [1] are being actively put
forth to ensure algorithmic fairness.

Existing literature has fostered a plethora of definitions,
metrics, and scholarly debates about algorithmic fairness [6].
Central to the debate of quantifying fairness at a group
level are three popular definitions, namely, statistical parity,
equalized odds, and predictive parity [6]–[8]. Due to the
multitude of fairness definitions available, it is often unclear
which measure of fairness is most appropriate to adopt in
a given setting [9]. Furthermore, it is also well-known that
simultaneous satisfiability of these three fairness definitions is
generally impossible [10], [11].

Given such a fundamental impossibility, practitioners often
strive for approximate fairness solutions rather than stringent
satisfiability of all these definitions. Such approximate fairness
solutions consist of two pivotal aspects: (i) quantification of
(un)fairness (i.e., a gap from exact satisfiability); and (ii)
development of strategies to mitigate such unfairness in ML
models. For instance, one may jointly minimize one or more
measures of unfairness while training an ML model which has
often led to empirical tradeoffs between accuracy and different
measures of unfairness [12], [13].

Although previous studies have identified certain impos-
sibilities among these fairness notions [10], [11], a detailed
analysis focusing on the interrelationships among different
measures of unfairness, specifically explaining when they will
be in agreement and when they will be in disagreement leading
to potential tradeoffs has received limited attention.

Our research bridges this gap by leveraging Partial Informa-
tion Decomposition (PID) [14], a body of work in information
theory, to elucidate the exact relationship between different
measures of unfairness. In particular, we consider information-
theoretic quantifications [15] of the respective gaps from
statistical parity, equalized odds, and predictive parity as our
measures of unfairness. Using PID, we demonstrate the exact
relationship between these three measures of unfairness in
Proposition 1 (also see Fig. 3 for a pictorial illustration of
the relationship between the measures of unfairness).

PID enables us to provide a unified information-theoretic
framework that is instrumental in establishing the fundamen-
tal limits and tradeoffs among these unfairness measures,
particularly in the context of approximate fairness solutions
when exact satisfiability of all three fairness definitions is
not met. Furthermore, the impossibility among the three
fairness definitions can also be derived from our result (see
Theorem 1). We also identify and delineate the regions of
agreement and disagreement among these three measures of
unfairness (see Section III), providing insights on when there
will be a tradeoff and when there will be no tradeoff among the
measures of unfairness. We perform numerical simulations on
the Adult dataset [16] to complement our theoretical results.
Moreover, our work holds broader implications in fields such
as algorithmic fairness auditing [17], where it can significantly
contribute to the evaluation of fairness in ML models.
Related Works: Information-theoretic measures have been
used to study group fairness in the fairness literature [4],
[5], [15], [18]–[27]. Another related line of work is exploring
trade-offs between fairness and accuracy [12], [28]–[32].

PID is recently gaining traction across various ML appli-
cations [4], [5], [33]–[40]. It is particularly noteworthy in
the realm of algorithmic fairness [4], [5], [33], [34]. [5]
leverages PID to dissect total disparity in decision-making into
exempt and non-exempt components. Similarly, [34] employs
PID to study the interplay between global and local fairness
in federated learning. We also refer to [33] for a survey of
PID in fairness and explainability. Understanding tradeoffs and
agreement disagreement between unfairness measures using
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Fig. 1. Venn diagram showing PID of I(Z;A,B).

PID has not been studied. In this work, our objective is to
develop a unified information-theoretic framework that effec-
tively delineates the fundamental limits and trade-offs among
the existing unfairness measures: statistical parity, equalized
odds, and predictive parity.

II. PRELIMINARIES

Let X denote the input features, Z denote the sensitive
attribute, and Y denote the true label. The sensitive attribute
Z is assumed to be binary with 1 indicating the privileged
group and 0 indicating the unprivileged group. We also let Ŷ
represent the predictions of a model, i.e., Ŷ = f✓(X) where
the model is parameterized by ✓. Standard machine learning
aims to minimize the empirical risk:

min
✓

L(✓) = min
✓

1

n

nX

i=1

l(f✓(xi), yi),

where l(·, ·) is a predefined loss function, xi is the input
feature, yi 2 {0, 1} is the true label, and n is the number
of datapoints in the dataset.

A. Background on Partial Information Decomposition
Partial Information Decomposition (PID) [14] decomposes

the total mutual information about a random variable Z con-
tained in the tuple (A,B), i.e., I(Z;A,B) into four nonnega-
tive terms as follows (also see Fig. 1):

I(Z;A,B) = Uni(Z:A|B) + Uni(Z:B|A) (1)
+Red(Z:A,B) + Syn(Z:A,B)

Here, Uni(Z:A|B) denotes the unique information about Z
that is present only in A and not in B. E.g., shopping
preferences (A) may provide unique information about gender
(Z) that is not present in address (B). Red(Z:A,B) denotes
the redundant information about Z that is present in both
A and B. E.g., zipcode (A) and county (B) may provide
redundant information about race (Z). The term Syn(Z:A,B)
denotes the synergistic information not present in either A
or B individually, but present jointly in (A,B), e.g., each
individual digit of the zipcode may not have information about
race but together they provide significant information. Before
formally defining these terms, we provide an example.
Motivational Example. Let Z=(Z1, Z2, Z3) with each Zi⇠
i.i.d. Bern(1/2). Let A = (Z1, Z2, Z3�N), B = (Z2, N), and
N ⇠ Bern(1/2) which is independent of Z. Here, I(Z;A,B) =
3 bits. The unique information about Z that is contained only

Fig. 2. Blackwell sufficiency of channel PB|Z with respect to PA|Z means
A has no unique information about Z that is not in B.

in A and not in B is effectively in Z1, and is given by
Uni(Z:A|B) = I(Z;Z1) = 1 bit. The redundant information
about Z that is contained in both A and B is effectively in
Z2 and is given by Red(Z:A,B) = I(Z;Z2) = 1 bit. Lastly,
the synergistic information about Z that is not contained in
either A or B alone, but is contained in both of them together
is effectively in the tuple (Z3 � N,N), and is given by
Syn(Z:A,B)=I(Z; (Z3 �N,N)) = 1 bit. This accounts for
the 3 bits in I(Z;A,B).

We also note that defining any one of the PID terms
suffices in obtaining the others. This is because of another
relationship among the PID terms as follows [14]: I(Z;A) =
Uni(Z:A|B) + Red(Z:A,B). Essentially Red(Z:A,B) is
viewed as the sub-volume between I(Z;A) and I(Z;B) (see
Fig. 1). Hence, Red(Z:A,B) = I(Z;A) � Uni(Z:A|B).
Lastly, Syn(Z:A,B) = I(Z;A,B) � Uni(Z:A|B) �
Uni(Z:B|A)� Red(Z:A,B) (can be obtained from (1) once
both unique and redundant information has been defined).

The main results of our paper hold regardless of the specific
definition of a given PID term. However, our experiments are
based on the precise definition of Uni(Z:A|B) from [14].

Definition 1 (Unique Information [14]). Let � be the set of
all joint distributions on (Z,A,B) and �p be the set of joint
distributions with the same marginals on (Z,A) and (Z,B)
as the true distribution, i.e., �p = {Q2� : PrQ(Z = z,A =
a) = Pr(Z = z,A = a) and PrQ(Z = z,B = b) = Pr(Z =
z,B = b)}. Then,

Uni(Z:A|B) = min
Q2�p

IQ(Z;A|B),

where IQ(Z;A|B) is the conditional mutual information when
(Z,A,B) have joint distribution Q and PrQ(·) denotes the
probability under Q.

Operational meaning of Unique Information from Black-
well sufficiency: Unique information is closely tethered to
Blackwell Sufficiency [41] in statistical decision theory. The
concept of Blackwell sufficiency [41] from statistical decision
theory helps characterize if a random variable A is more
informative than B about Z (also relates to stochastic degra-
dation of channels [42], [43]). A channel PB|Z is Blackwell
sufficient with respect to another channel PA|Z (also denoted
as B �Z A) if there exists a stochastic transformation PA0|B
such that the effective channel from Z to A0 is equivalent
to the original channel from Z to A (see Fig. 2). The unique
information Uni(Z:A|B) is 0 if and only if PB|Z is Blackwell
sufficient with respect to PA|Z [14], [42]–[44]. Otherwise,
Uni(Z:A|B) > 0, and it is viewed as a departure from
Blackwell sufficiency, i.e., there exists a scenario where A
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gives something unique about Z that you can never get after
degrading to B.

III. PARTIAL INFORMATION DECOMPOSITION OF
THE THREE MEASURES OF UNFAIRNESS

We first introduce the information-theoretic quantification
corresponding to the three definitions of fairness, namely,
statistical parity, equalized odds, and predictive parity. Sta-
tistical parity (independence), requires the model prediction
Ŷ to be statistically independent of the sensitive attribute Z.
Several measures have been proposed to quantify the gap from
statistical parity [8], [45] (essentially dependence between
Ŷ and Z). In this work, we use the information-theoretic
quantification of the statistical parity gap as defined next.

Definition 2 (Statistical Parity Gap). The statistical parity gap
of a model f✓ with respect to Z is defined as I(Z; Ŷ ), the
mutual information between Z and Ŷ (where Ŷ = f✓(X)).

The concept of statistical parity has often been criticized
for not considering the true labels. A perfect predictor Ŷ = Y
might not satisfy this criterion if Y is correlated to the
sensitive attribute Z. Hence, the concept of equalized odds
emerges as an alternative definition of fairness [7]. Equalized
odds (separation) require the model’s predictions Ŷ to be
independent of the sensitive attribute Z, conditioned on the
true label Y , i.e., Z ?? Ŷ |Y .

Definition 3 (Equalized Odds Gap). The equalized odds gap
of a model f✓ with respect to Z is defined as I(Z; Ŷ |Y ), the
conditional mutual information between Z and Ŷ given Y .

Yet another vital fairness measure is predictive parity (suffi-
ciency), which focuses on error parity among individuals given
the same prediction [6]. Predictive parity requires the sensitive
attribute Z to be independent of the true label Y conditioned
on the model prediction Ŷ , i.e., Z ?? Y |Ŷ .

Definition 4 (Predictive Parity Gap). The predictive parity gap
of a model f✓ with respect to Z is defined as I(Z;Y |Ŷ ), the
conditional mutual information between Z and Y given Ŷ .

We leverage PID to derive exact relationships among the
three measures of unfairness. We decompose the statistical par-
ity gap I(Z; Ŷ ), equalized odds gap I(Z; Ŷ |Y ), and predictive
parity gap I(Z;Y |Ŷ ) into nonnegative overlapping terms. The
significance of this decomposition is that it highlights regions
where these measures are in agreement and disagreement.
Fig. 3 provides a pictorial illustration of the overlaps between
these three measures of unfairness.

Proposition 1. The statistical parity gap I(Z; Ŷ ), equalized
odds gap I(Z; Ŷ |Y ), and predictive parity gap I(Z;Y |Ŷ ) can
be decomposed into nonnegative terms as follows:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ). (2)

I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ). (3)

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ). (4)

Fig. 3. Venn diagram showing the exact relationship between the various
unfairness measures using PID: A critical observation is that all four PID
terms are nonnegative. This enables us to derive several fundamental limits and
tradeoffs among the unfairness measures, providing a nuanced understanding
of when they agree and disagree.

The term Uni(Z:Ŷ |Y ) quantifies the unique information
about the sensitive attribute Z in the model prediction Ŷ that
is not there in the true label Y . Uni(Z:Ŷ |Y ) is the common
region between the statistical parity gap and the equalized
odds gap, highlighting the region where they overlap. The
term Red(Z:Ŷ , Y ) quantifies the information about sensitive
attribute Z that is common between prediction Ŷ and true
label Y . Red(Z:Ŷ , Y ) contributes only to the statistical parity
gap I(Z; Ŷ ) and not to any other measure of unfairness.
The term Syn(Z:Ŷ , Y ) represents the synergistic information
about sensitive attribute Z that is not present in either Ŷ or Y
individually but is present jointly in (Ŷ , S). Syn(Z:Ŷ , Y ) is
the common region between equalized odds gap and predictive
parity gap, highlighting their region of agreement. The unique
information Uni(Z:Y |Ŷ ) contributes exclusively to the pre-
dictive parity gap I(Z;Y |Ŷ ). This decomposition delineates
the distinct regions where these unfairness measures overlap
and diverge, offering a nuanced perspective on the interplay
in machine learning models.

To better illustrate this decomposition, we now provide
examples to understand each of these regions separately.
Consider a hiring scenario featuring binary sensitive attributes
and true labels i.e., Ŷ , Z, Y 2 {0, 1} with Z⇠ Bern(1/2).

Example 1 (Pure Uniqueness to Model Prediction). Let
Ŷ = Z and Z ?? Y (an equal base rate for privileged
and unprivileged groups). Suppose, the model only approves
privileged candidates (Z = 1) but rejects the unprivileged
(Z = 0). This model violates both statistical parity and
equalized odds, i.e., I(Z; Ŷ ) = I(Z; Ŷ |Y ) = 1. This model
satisfies predictive parity criterion, I(Z;Y |Ŷ ) = 0. This is
a case of purely unique information in the model prediction
that is not in the true label since all the information about
Z is derived exclusively from the model predictions; the true
label Y does not correlate with Z. Here, Uni(Z:Ŷ |Y ) = 1,
Red(Z:Ŷ , Y ) = 0, Syn(Z:Ŷ , Y ) = 0, and Uni(Z:Y |Ŷ ) = 0.
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Example 2 (Pure Redundancy). Let Ŷ = Y and Y = Z with
probability 0.9. There is a correlation between the true label Y
and protected attribute Z, but this model has perfect accuracy.
Such a model satisfies equalized odds and predictive parity
criterion, i.e., I(Z; Ŷ |Y ) = I(Z;Y |Ŷ ) = 0. However, the
model fails to satisfy statistical parity since I(Z; Ŷ ) = 0.53.
This is a case of purely redundant information since the
information about Z is entirely common between both Ŷ
and Y . Here, Uni(Z:Ŷ |Y ) = 0, Red(Z:Ŷ , Y ) = 0.53,
Syn(Z:Ŷ , Y ) = 0, and Uni(Z:Y |Ŷ ) = 0.

Example 3 (Pure Synergy). Let Ŷ = Z XNOR Y and
Z ?? Y . The model approves candidates from the privileged
group (Z = 1) with true label Y = 1, and also from the
unprivileged group (Z = 0) with Y = 0. On the other hand,
it rejects candidates from the unprivileged group (Z = 0)
with true label Y = 1, and the privileged group (Z = 1)
with true label Y = 0. Such a model violates equalized
odds (and predictive parity) as it singularly prefers one group
within each true label class. Thus, I(Z; Ŷ |Y ) = 1, and
I(Z;Y |Ŷ ) = 1. However, it achieves statistical parity since
it maintains an equal approval rate for both privileged and
unprivileged groups with I(Z; Ŷ ) = 0. This is a case of
synergistic information about Z that is not observable in either
Ŷ or Y individually but is present jointly in Y, Ŷ . Here,
Uni(Z:Ŷ |Y ) = 0, Red(Z:Ŷ , Y ) = 0, Syn(Z:Ŷ , Y ) = 1,
and Uni(Z:Y |Ŷ ) = 0.

Example 4 (Pure Uniqueness to True Label). Let Y = Z
with probability 0.9 and Z ?? Ŷ . The true label Y is highly
correlated to sensitive attribute Z, but the model prediction
Ŷ is independent of sensitive attribute Z. This model violates
predictive parity (I(Z;Y |Ŷ ) = 0.53) but satisfies statistical
parity and equalized odds (I(Z; Ŷ ) = I(Z; Ŷ |Y ) = 0). This
is a case of unique information about sensitive attributes
in the true label that is not in the model prediction. Here,
Uni(Z:Ŷ |Y ) = 0, Red(Z:Ŷ , Y ) = 0, Syn(Z:Ŷ , Y ) = 0, and
Uni(Z:Y |Ŷ ) = 0.53.

These examples demonstrate scenarios of pure uniqueness,
redundancy, and synergy to help us understand the decomposi-
tion. PID serves as a tool to highlight regions of agreement and
disagreement between these fairness definitions. In contrast,
traditional fairness metrics lack the granularity to capture these
nuanced interactions, making PID an essential asset for a more
comprehensive understanding and mitigation of disparities.

We can go beyond the impossibility between the three
fairness definitions and further analyze their interrelationships.

Theorem 1 (Revisiting Impossibility). If I(Z; Ŷ , Y ) >
0, at least one of the PID terms, namely, Uni(Z:Ŷ |Y ),
Red(Z:Ŷ , Y ), Syn(Z:Ŷ , Y ), or Uni(Z:Y |Ŷ ) will be nonneg-
ative. Hence, at least one of the fairness measures, namely,
the Statistical Parity Gap (I(Z; Ŷ )), Equalized Odds Gap
(I(Z; Ŷ |Y )), or Predictive Parity Gap (I(Z;Y |Ŷ )) will be
nonzero. Conversely, all these unfairness measures will be zero
if and only if I(Z; Ŷ , Y ) = 0.

Proof Sketch: The proof relies on the nonnegativity of each
of the PID terms (also recall Fig. 3). PID of I(Z; Ŷ , Y ) is
expressed as I(Z; Ŷ , Y ) = Uni(Z:Ŷ |Y ) + Uni(Z:Y |Ŷ ) +
Red(Z:Ŷ , Y ) + Syn(Z:Ŷ , Y ). Since each component in this
decomposition is nonnegative, the presence of mutual informa-
tion (I(Z; Ŷ , Y ) > 0) implies that at least one of these terms
has a nonzero contribution. According to Proposition 1, each
of these PID terms influences at least one unfairness measure.
Therefore, the nonnegativity of any one of these terms results
in at least one of the unfairness measures being nonzero.

This is a general result from which one can also derive the
impossibility of the three fairness definitions under specific
conditions. Our next result examines the unfairness measures
only when I(Z;Y ) > 0. It is important to note that I(Z;Y )
is an inherent characteristic of the dataset alone and hence it
is independent of the model predictions.

Theorem 2 (Dataset Dependent Relationships). If I(Z;Y ) >
0, either the Statistical Parity Gap I(Z; Ŷ ) or the Predictive
Parity Gap I(Z;Y |Ŷ ) must be greater than zero.

Proof Sketch: The proof relies on demonstrating that the
mutual information between Z and Y can be expressed as:

I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Y, Ŷ ). (5)

Though, the PID terms Uni(Z:Y |Ŷ ) and Red(Z:Y, Ŷ ) may
vary based on the model chosen, their sum remains constant,
reflecting the fixed nature of the mutual information between
Z and Y in the dataset. Notably, Uni(Z:Y |Ŷ ) contributes to
the predictive parity gap, and Red(Z:Y, Ŷ ) contributes to the
statistical parity gap (recall Fig. 3).

IV. TRADEOFFS BETWEEN UNFAIRNESS MEASURES

In this section, we delineate the fundamental limits and
tradeoffs between various unfairness measures. Our findings
underscore the intricate and sometimes conflicting nature of
different fairness objectives in algorithmic decision-making.
Examining fairness through the lens of PID uncovers the
nuanced interplay between different unfairness measures.

We explore scenarios where models are trained with a focus
on achieving any one specific fairness criterion and analyze
its implications on the other two fairness notions. This applies
to models that have been trained to achieve fairness either
through in-processing techniques, such as adding fairness
regularizers to the loss function, or through post-processing
methods that adjust model outputs after training.

Theorem 3. If Statistical Parity is satisfied, i.e., I(Z; Ŷ ) = 0,
then the Predictive Parity Gap is greater than the Equalized
Odds Gap, i.e., I(Z;Y |Ŷ ) � I(Z; Ŷ |Y ). Additionally, if the
dataset is such that I(Z;Y ) = 0, then Predictive Parity and
Equalized Odds are equivalent, i.e., I(Z;Y |Ŷ ) = I(Z; Ŷ |Y ).

Proof Sketch: We refer to Fig. 3 for an intuitive under-
standing of the proof. Given that Statistical Parity is zero,
we have I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) = 0.
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TABLE I
RESULTS OF REGULARIZERS ON DIFFERENT MEASURES OF UNFAIRNESS

Regularizers
Equalized Odds I(Z; Ŷ |Y )

Statistical Parity I(Z; Ŷ ) Predictive Parity I(Z;Y |Ŷ )
Red(Z:Ŷ , Y ) Uni(Z:Ŷ |Y ) Syn(Z:Ŷ , Y ) Uni(Z:Y |Ŷ )

SP 0.012 0.000 0.001 0.024
PP 0.026 0.007 0.008 0.011
EO 0.011 0.000 0.001 0.026
EO, PP 0.000 0.000 0.000 0.037
SP, PP 0.000 0.000 0.000 0.037
SP, EO 0.008 0.000 0.000 0.028
SP, EO, PP 0.000 0.000 0.000 0.037

Since all PID terms are non-negative, it follows that indi-
vidually Uni(Z:Ŷ |Y ) = 0 and Red(Z:Ŷ , Y ) = 0. Conse-
quently, the Equalized Odds gap simplifies to I(Z; Ŷ |Y ) =
Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ) = Syn(Z:Ŷ , Y ). On the other
hand, the Predictive Parity gap is I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ )+
Syn(Z:Ŷ , Y ). Since all PID terms are nonnegative, it follows
that I(Z;Y |Ŷ ) � I(Z; Ŷ |Y ).

Furthermore, when I(Z;Y ) = 0, it results in Uni(Z:Y |Ŷ )+
Red(Z:Ŷ , Y ) = 0, leading to each of those individual terms
being zero, i.e., Uni(Z:Y |Ŷ ) = 0 and Red(Z:Ŷ , Y ) = 0.
Therefore, I(Z;Y |Ŷ ) = Syn(Z:Ŷ , Y ) = I(Z; Ŷ |Y ).

Similar to Theorem 3, one can also derive the relationship
between the statistical parity gap and equalized odds gap when
predictive parity is satisfied.

Theorem 4. If Predictive Parity is satisfied, i.e., I(Z;Y |Ŷ ) =
0, then the Statistical Parity Gap is greater than the Equalized
Odds Gap, i.e., I(Z; Ŷ ) � I(Z; Ŷ |Y ). Additionally, if the
dataset is such that I(Z;Y ) = 0, then Statistical Parity and
Equalized Odds are equal, i.e., I(Z;Y |Ŷ ) = I(Z; Ŷ |Y ).

Theorem 3 & 4 demonstrate scenarios where one unfairness
measure dominates another and are in agreement, now we
provide a third scenario where two measures of unfairness
will be in disagreement.

Theorem 5. If Equalized Odds is satisfied, i.e., I(Z; Ŷ |Y ) =
0 and I(Z;Y ) > 0, an inverse relationship (tradeoff) exists
between Statistical Parity and Predictive Parity, i.e., I(Z; Ŷ ) =
I(Z;Y )�I(Z;Y |Ŷ ). Thus, increasing one leads to a decrease
in the other, and vice versa.

Proof Sketch Given that Equalized Odds is met, we have
I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ) = 0. Conse-
quently, from nonnegativity, both the terms Uni(Z:Ŷ |Y )
and Syn(Z:Ŷ , Y ) are 0. Statistical Parity gap simplifies to
I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) = Red(Z:Ŷ , Y ),
and the Predictive Parity gap is expressed as I(Z;Y |Ŷ ) =
Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ) = Uni(Z:Y |Ŷ ). Hence,
I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ) = I(Z; Ŷ ) +
I(Z;Y |Ŷ ). Since, I(Z;Y ) is fixed for a dataset, an increase in
the statistical parity gap leads to a decrease in the predictive
parity gap, and vice versa.

V. EXPERIMENTAL DEMONSTRATIONS

In this section, we provide an experimental demonstration
on the Adult dataset [16] to validate our theoretical findings.
The classification task for this dataset involves predicting
whether an individual’s income exceeds 50K per year, using
features such as occupation, marital status, and education. We
use gender as a sensitive attribute.

We train a neural network consisting of a sequence of
layers: the input layer is followed by three hidden layers,
each with 32 units and ReLU activation, and concludes with
a single output layer using a sigmoid activation function.
Training is conducted using a batch size of 512, and the
Adam optimizer with a learning rate of 0.01. We apply various
fairness regularizers and measure the unfairness as well as their
decomposition (results are summarized in Table.I). We use the
dit package [46] for PID computation and FairTorch [47] for
fairness regularizer implementation.

A key observation in our analysis is that I(Z;Y ) consis-
tently measures 0.037 using the Adult dataset. This mass does
not decrease across various models since it only depends on
the dataset. The PID terms in I(Z;Y ), i.e., Uni(Z:Y |Ŷ ) and
Red(Z:Ŷ , Y ) contribute to either predictive parity or statistical
parity gap. Also, when statistical parity is achieved (scenario
with SP regularizer), the predictive parity gap is greater than
the equalized odds gap. Also due to the impossibility of
attaining zero unfairness with all the measures (see scenario
with SP, EO, and PP regularizers), the mass typically moves
to Uni(Z:Y |Ŷ ), contributing to the predictive parity.

VI. CONCLUSION

By introducing this unifying framework, we provide a tool
for gaining a more nuanced understanding of the interplay
between different unfairness measures, thereby enhancing the
decision-making process in the deployment of fair ML sys-
tems. Our work holds broader implications in fields such as
algorithmic fairness auditing [17], explainability [48], policy
regulation [1], where it can significantly contribute to the
evaluation and understanding of unfairness in ML models. This
work not only furthers the theoretical discourse but would also
have significant societal implications, guiding the trajectory
toward more responsible and equitable machine learning in
high-stakes settings.
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