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Robust Algorithmic Recourse Under Model
Multiplicity With Probabilistic Guarantees

Faisal Hamman , Erfaun Noorani, Saumitra Mishra , Daniele Magazzeni, and Sanghamitra Dutta

Abstract—There is an emerging interest in generating robust
algorithmic recourse that would remain valid if the model
is updated or changed even slightly. Towards finding robust
algorithmic recourse (or counterfactual explanations), exist-
ing literature often assumes that the original model m and
the new model M are bounded in the parameter space,
i.e., ‖Params(M)−Params(m)‖<!. However, models can often
change significantly in the parameter space with little to no
change in their predictions or accuracy on the given dataset.
In this work, we introduce a mathematical abstraction termed
naturally-occurring model change, which allows for arbitrary
changes in the parameter space such that the change in
predictions on points that lie on the data manifold is limited.
Next, we propose a measure – that we call Stability – to
quantify the robustness of counterfactuals to potential model
changes for differentiable models, e.g., neural networks. Our
main contribution is to show that counterfactuals with sufficiently
high value of Stability as defined by our measure will remain
valid after potential “naturally-occurring” model changes with
high probability (leveraging concentration bounds for Lipschitz
function of independent Gaussians). Since our quantification
depends on the local Lipschitz constant around a data point
which is not always available, we also examine estimators
of our proposed measure and derive a fundamental lower
bound on the sample size required to have a precise estimate.
We explore methods of using stability measures to generate
robust counterfactuals that are close, realistic, and remain valid
after potential model changes. This work also has interesting
connections with model multiplicity, also known as the Rashomon
effect.

Index Terms—Counterfactual explanation, model multiplicity,
algorithmic recourse, explainable AI, responsible machine
learning.

I. INTRODUCTION

ALGORITHMIC recourse and counterfactual explana-
tions [2], [3], [4] have garnered significant interest in
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Fig. 1. (left) We depict the original model’s decision boundary. Given
a point in the rejected region, a counterfactual explanation (counterfactual)
typically refers to the closest point on the accepted side. Counterfactual
explanations provide guidance on actions for recourse. (right) We depict a
changed model where the initial counterfactual becomes invalid. A robust
counterfactual should remain valid even when the model changes while
maintaining proximity to the original data point.

various high-stakes applications, such as lending, hiring, etc.
Algorithmic recourse aim to guide an applicant on how they
can change a model outcome by providing suggestions for
improvement. Given an original data-point (e.g., an applicant
who is denied a loan), the goal is to try to find a point on the
other (desired) side of the decision boundary (a hypothetical
applicant who is approved for the loan) which also satisfies
several other preferred constraints, such as, (i) proximity to
the original point; (ii) changes in as few features as possible;
and (iii) conforming to the data manifold. Such a data-point
that alters the model decision is widely referred to as a
“counterfactual explanation,” as illustrated in Fig. 1.

However, in several real-world scenarios, such as credit
lending, the models have to be updated due to various
reasons [5], [6], [7], e.g., to retrain on a few additional data
points, change the hyper-parameters or seed, or transition to
a different model class [8]. Such model changes can often
cause the counterfactuals to become invalid because typically
they are quite close to the original data point, and hence, also
quite close to the decision boundary. For instance, suppose the
counterfactual explanation suggests an applicant to increase
their income by 10K to get approved for a loan, and they act
upon that, but now, due to updates to the original model, they
are still denied by the updated model (see Fig. 1).

If recourse becomes invalid due to model updates, this can
lead to confusion and distrust in the use of algorithms in high-
stakes applications altogether. Users would typically act on the
suggested counterfactuals over a period of time, e.g., increase
their income for credit lending, but only to find that it is no
longer enough since the model has slightly changed (perhaps
due to retraining with a new seed or hyperparameter). This
cycle of invalidation and regenerating new counterfactuals can
not only be frustrating and time-consuming for users but also
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potentially hurt an institution’s reputation. This motivates our
primary question:

How to provide theoretical guarantees on the robustness of
counterfactuals to potential model changes?

Towards addressing this question, in this work, we introduce
the abstraction of “naturally-occurring” model change for
differentiable models. Our abstraction allows for arbitrary
changes in the parameter space such that the change in
predictions on points that lie on the data manifold is limited.
This abstraction is centered on the inherent need for model
explanations to remain robust against variations such as weight
initialization or minor adjustments in hyperparameters (chang-
ing seed) [5], [6], [9], [10], [11], [12]. Another insightful
angle is the concept of machine unlearning, particularly in
light of regulatory frameworks like the GDPR [13]. The right
to be forgotten necessitates the removal of an individual’s
data upon request, potentially leading to model updates. These
updates could, in turn, impact the validity of previously issued
explanations, thus challenging the balance between the right
to explanation and the right to be forgotten [7].

This abstraction motivates a measure of robustness for coun-
terfactuals that arrives with provable probabilistic guarantees
on their validity under naturally-occurring model change. We
also introduce the notion of adversarial or targeted model
change and provide an impossibility result for such model
change. We examine estimators of our proposed measure and
derive a fundamental lower bound on the sample size required
to have a precise estimate. Next, by leveraging this computable
estimator, we explore methods of using stability measures to
generate robust counterfactuals that are close, realistic, and
remain valid after potential model changes. Our experimental
results validate our theoretical understanding and illustrate
the efficacy of our proposed algorithms. We summarize our
contributions here:

Abstraction of “naturally-occurring” model change for
differentiable models: Existing literature [5], [6] on robust
counterfactuals often assumes that the original model m and
the new model M are bounded in the parameter space, i.e.,
‖Params(M)−Params(m)‖<!. Building on [9] for tree-based
models, we note that models can often change significantly
in the parameter space with little to no change on their
predictions or accuracy on the given dataset. To capture this,
we introduce an abstraction (see Definition 5), that we call
naturally-occurring model change, which instead allows for
arbitrary changes in the parameter space such that the change
in predictions on points that lie on the data manifold is
limited. Our proposed abstraction of naturally-occurring model
change also has interesting connections with predictive/model
multiplicity, also known as, the Rashomon Effect [14], [15].

We also make a clear distinction between our proposed
naturally-occurring and adversarial model change. Under the
adversarial model change, we provide an impossibility result
(Theorem 2) that given any counterfactual for a model, one can
always design a new model that is quite similar to the original
model and that renders that particular counterfactual invalid.
However, in this work, our focus is on non-targeted model
change such as retraining on a few additional data points,
changing some hyperparameters or seed, etc. which is captured
in “naturally-occurring” model change (see Definition 5).

A measure of robustness with probabilistic guarantees on
validity: Next, we propose a novel mathematical measure
– that we call Stability – to quantify the robustness of
counterfactuals to potential model changes. Stability of a
counterfactual x ∈ Rd with respect to a model m(·) is given
by:

Rk,σ 2(x, m) = 1
k

∑

xi∈Nx,k

(m(xi)− γx‖x− xi‖),

where Nx,k is a set of k points in Rd drawn from the Gaussian
distribution N (x, σ 2Id) with Id being the identity matrix, and
γx is the local Lipschitz constant of the model m(·) around x
(see Definition 6).

Our main contribution is to provide a theoretical guarantee
(Theorem 3) that counterfactuals with a sufficiently high value
of Stability (as defined by our measure) will remain valid with
high probability after naturally-occurring model changes. In
Theorem 3, we assume a strict upper bound |E[Z|M]−E[Z]| <

ε′, where Z = 1
k

∑k
i=1(m(Xi) − M(Xi)). We generalize this

by introducing a probabilistic bound Pr(|E[Z|M] − E[Z]| >

ε′) ≤ δ (see Corollary 1). Further, we characterize this bound
δ under the conditions of naturally-occurring model change
and specific assumptions about the expected variability in a
data point’s neighborhood (see Assumption 1). Leveraging
this characterization, we introduce Lemma 3|, which serves as
the foundation for proving Theorem 4. This theorem offers
a comprehensive probabilistic guarantee on the validity of
counterfactuals with a high value of Stability (as per our
measure) on the data manifold. Our results leverage concentra-
tion bounds for Lipschitz functions of independent Gaussian
random variables (see Lemma 2).

Estimators of Stability and Their Properties: Since our
proposed Stability measure depends on the local Lipschitz
constant which is not always known, we also examine two
practical estimators of our measure: (1) The Stability-Lipschitz
estimator (see Definition 7) aims to approximate the local
Lipschitz constant using γ̂x = maxxi∈Nx,k

|m(x)−m(xi)|
‖x−xi‖ . This

captures the worst-case variability in the model’s outputs in
the neighborhood of x. We also derive a fundamental lower
bound on sample size to ensure that the Stability-Lipschitz
estimator approximates the true stability within an ε error (see
Theorem 5). (2) We introduce the Stability-Soft estimator (see
Definition 8) as a less computationally expensive, albeit less
accurate, alternative for estimating stability:

R̂k,σ 2(x, m) = 1
k

∑

xi∈Nx,k

(m(xi)− |m(x)− m(xi)|).

The first term essentially captures the mean value of the model
output in a region around it (higher mean is expected to
be more robust and reliable). The second term captures the
local average variability of the model output around it (lower
variability is expected to be more reliable). This intuition is
in alignment with the results in [9] for tree-based models (see
Section III-D).

Generating Robust Counterfactuals Using Stability: We
explore strategies for using stability measures to generate
robust counterfactuals for neural networks. We introduce
T-Rex:I (Algorithm 1), which finds robust counterfactuals
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that are close to the original data point. T-Rex:I can be
integrated into any base technique for generating counter-
factuals to improve robustness. We also propose T-Rex:NN
(Algorithm 2), which generates robust counterfactuals that are
data-supported (along the lines of [9] for tree-based models).
We propose a hybrid method T-Rex:Hybrid (Algorithm 3)
that focuses on finding robust counterfactuals on the data
manifold, making them more realistic. The hybrid method
employs generative models to learn a latent representation of
the data manifold, within which we conduct our search for
counterfactuals.

Experimental Results: We conduct experiments on sev-
eral benchmark datasets, namely, HELOC [16], German
Credit, Cardiotocography (CTG), Adult [17], and Taiwanese
Credit [18] to support our theoretical findings (see Section V).
Our experiments show that T-Rex:I can improve robustness
for neural networks without significantly increasing the cost,
and T-Rex:NN consistently generates counterfactuals that are
similar to the data manifold, as measured using the Local
Outlier Factor (LOF). The Local Outlier Factor (LOF) is a
popular evaluation metric that assesses the relative isolation
of a data point within their local neighborhood to identify
anomalies (see Definition 4).

Related Works: Algorithmic recourse and counterfac-
tual explanations have seen growing interest in recent
years [2], [3], [11]. Regarding their robustness to model
changes, [19], [20], [21] argue that counterfactuals situated
on the data manifold are more likely to be more robust
than the closest counterfactuals. Later, [9] demonstrate that
generating counterfactuals on the data manifold may not be
sufficient for robustness. While the importance of robustness
in local explanation methods has been emphasized [22], the
problem of specifically generating robust counterfactuals has
been less explored, with the notable exceptions of some recent
works [5], [6], [9], [10], [23]. In [5], the authors propose an
algorithm called ROAR that uses min-max optimization to
find the closest counterfactuals that are also robust. In [23],
the focus is on analytical trade-offs between validity and
cost. Reference [10] introduces a method for identifying
close and robust counterfactuals based on a framework that
utilizes interval neural networks. Reference [6] propose that
local Lipschitzness can be leveraged to generate consis-
tent counterfactuals and propose an algorithm called Stable
Neighbor Search to generate consistent counterfactuals for
neural networks. Our research builds on this perspective and
further performs Gaussian sampling around the counterfac-
tual, leading to a novel estimator for which we are also
able to provide probabilistic guarantees going beyond the
bounded model change assumption. Furthermore, examining
all three performance metrics, namely, cost, validity (robust-
ness), and likeness to the data-manifold has received less
attention with the notable exception of [9] but they focus
only on tree-based models (non-differentiable). Following our
conference publication, [24] proposed a robust optimization
framework to generate provably robust and plausible coun-
terfactuals for neural networks and proved its soundness,
completeness, and convergence. We also refer to [25] for a
survey.

We note that [26], [27] propose an alternate perspective of
robustness in explanations (called L-stability in [27]) which
is built on similar individuals receiving similar explana-
tions. [28], [29], [30] focus on finding counterfactuals that
are robust to small input perturbations (noisy counterfactuals).
In contrast, our focus is on counterfactuals remaining valid
after some changes to the model, and providing theoretical
guarantees thereof.

Our work also shares interesting conceptual connections
with a body of work on model multiplicity or predictive
multiplicity, also known as the Rashomon effect [14], [15],
[31], [32]. [14] suggested that models can be very differ-
ent from each other but have almost similar performance
on the data manifold. The term predictive multiplicity was
suggested by [15] which defined it as the ability of a
prediction problem to admit competing models with conflict-
ing predictions. Reference [31] investigates ways to leverage
model multiplicity beneficially in model selection processes
while simultaneously addressing its concerning implications.
Reference [33] offered a framework for measuring predictive
multiplicity in classification, introducing measures that encap-
sulate the variation in risk estimates over the ensemble of
competing models. Reference [32] unveiled a novel metric,
Rashomon Capacity, for measuring predictive multiplicity
in probabilistic classification. Our proposed abstraction of
naturally-occurring model change in this work can be viewed
as a fresh perspective on model multiplicity that further
emphasizes the models that are more likely to occur.

II. PRELIMINARIES

Let m(·) : Rd → [0, 1] denote the original machine learning
model that takes a d-dimensional input value and produces an
output probability lying between 0 and 1. The final decision
is denoted by 1(m(x) ≥ 0.5) where 1(·) denotes the indicator
function.

Definition 1 (γ−Lipschitz): A function m(·) is said to be
γ−Lipschitz if |m(x)− m(x′)|≤γ ‖x− x′‖ ∀ x, x′∈Rd.

Here ‖ · ‖ denotes the Euclidean norm, i.e., for u ∈ Rd,
we have ‖u‖ =

√
u2

1 + u2
2 + . . . + u2

d. In Remark 2, we also
discuss relaxations to local Lipschitz constants from global
Lipschitz constants. We denote the updated or changed model
as M(·) : Rd → [0, 1] where M is a random entity. We mostly
use capital letters to denote random entities, e.g., M, X, etc.,
and small letters to denote non-random entities, e.g., m, x, γ ,
n, etc.

Definition 2 (Closest Counterfactual Cp(x, m)): Given x ∈
Rd such that m(x) < 0.5, its closest counterfactual (in terms
of lp-norm) with respect to the model m(·) is defined as a
point x′ ∈ Rd that minimizes the lp norm ‖x− x′‖p such that
m(x′) ≥ 0.5.

Cp(x, m) = arg min
x′∈Rd
‖x− x′‖p such that m

(
x′
)
≥ 0.5.

When one is interested in finding counterfactuals by chang-
ing as few features as possible, the l1 norm is used (enforcing
a sparsity constraint). These are called sparse counterfac-
tuals [19]. However, such closest counterfactuals often fall
too far from the data manifold, resulting in unrealistic and
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Fig. 2. Models can often change drastically in the parameter space causing
little to no change in the actual decisions on the points on the data manifold.

anomalous instances, as noted in [3], [11], [19], [20], [21],
[34]. This highlights the need for generating counterfactuals
that lie on the data manifold.

Definition 3 (Closest Data-Manifold Counterfactual
Cp,X (x, m)): Given x ∈ Rd such that m(x) < 0.5, its closest
data-manifold counterfactual Cp,X (x, m) with respect to the
model m(·) and data manifold X ⊆ Rd is defined as a point
x′ ∈ X that minimizes the lp norm ‖x − x′‖p such that
m(x′) ≥ 0.5.

Cp,X (x, m) = arg min
x′∈X
‖x− x′‖p such that m

(
x′
)
≥ 0.5.

In order to assess the similarity or anomalous nature of a
point concerning the given dataset S ⊆ X , various metrics
can be employed, e.g., K-nearest neighbors, Mahalanobis
distance, Kernel density, LOF. These metrics play a crucial
role in understanding the quality of counterfactual explanations
generated by a model. One metric widely used in litera-
ture [9], [19], [20] is the Local Outlier Factor (LOF).

Definition 4 (Local Outlier Factor [35]): For x ∈ S ,
let Lk(x) be its k-Nearest Neighbors (k-NN) in S . The k-
reachability distance rdk of x with respect to x′ is defined
by rdk(x, x′) = max{δ(x, x′), dk(x′)}, where dk(x′) is the
distance δ between x′ and its k-th nearest instance on S .
The k-local reachability density of x is defined by lrdk(x) =
|Lk(x)|(

∑
x′∈Lk(x) rdk(x, x′))−1. Then, the k-LOF of x on S is

defined as follows:

LOFk,S(x) = 1
|Lk(x)|

∑

x′∈Lk(x)

lrdk
(
x′
)

lrdk(x)
.

Here, δ(x, x′) is the distance between two d-dimensional
feature vectors. The LOF Predicts −1 for anomalous points
and +1 for inlier points.

Goals: In this work, our main goal is to provide prob-
abilistic guarantees on the robustness of counterfactuals to
potential model changes for differential models such as neural
networks. Towards achieving this goal, our objective involves:
(i) introducing an abstraction that rigorously defines the class
of model changes that we are interested in; and (ii) establishing
a measure, denoted as R&(x, m), for a counterfactual x and
a given model m(·), that quantifies its robustness to potential
model changes. Here, & represents the hyperparameters of
the robustness measure. Ideally, we desire that the measure
R&(x, m) should be high if the counterfactual x is less likely
to be invalidated by potential model changes. We seek to
provide: (i) theoretical guarantees on the validity of counter-
factuals with sufficiently high value of R&(x, m) with a deeper

Fig. 3. Illustrates our proposed abstraction of naturally-occurring model
change: The distribution of the changed model outputs M(x) (stochastic) is
centered around the original model output m(x). The points specifically lying
on the data-manifold acting as anchors without much change as they exhibit
lower variance in model outputs compared to points outside the manifold.
This visualization also connects with the Rashomon effect, encapsulating the
diverse yet similarly accurate models that can be learned from a given dataset.

understanding of the guarantee under various assumptions; (ii)
various estimators R̂&(x, m) and study fundamental require-
ments needed to ensure precise estimates; and (iii) strategies
to incorporate our measure into an algorithmic framework
for generating robust counterfactuals while meeting other
requirements, such as low cost or likeness to the data manifold.

III. MAIN CONTRIBUTIONS

In this section, we first introduce our proposed abstraction
of naturally-occurring model change and then propose a
novel measure – that we call Stability – to quantify the
robustness of counterfactuals to potential model changes.
We derive a theoretical guarantee that counterfactuals that
have a sufficiently high value of Stability will remain valid
after potential naturally-occurring model change with high
probability. But since our quantification would depend on the
local Lipschitz constant around a data point, which is not
always known, we also examine estimators of our proposed
measure and demonstrate its applicability.

A. Naturally-Occurring Model Change

A popular assumption in existing literature [5], [6] to
quantify potential model changes is to assume that the model
changes are bounded in the parameter space, i.e.,

‖Params(M)− Params(m)‖ < ! for a constant !.

Here, Params(M) denote the parameters of the model M, e.g.,
weights of a neural network. However, we note that models
can often change drastically in the parameter space causing
little to no change in the actual decisions on the points on
the data manifold (see Fig. 2 for an example). In this work,
we avoid the bounded-model-change assumption and instead
introduce the notion of a naturally-occurring model change as
defined in Definition 5. Our abstraction allows for arbitrary
model changes such that the change in predictions on points
that lie on the data manifold is limited (see Fig. 3).

This abstraction is motivated from the observation that
points residing in the data-manifold generally demonstrate
reduced variance in model outputs compared to those outside
the manifold. This behavior can be attributed to the fact that
during training, the model is predominantly exposed to data
points from the data-manifold, leading to higher confidence
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in its predictions in that regions. Consequently, the model’s
behavior for points outside the manifold can be unpredictable
(also see Fig. 4).

Definition 5 (Naturally-Occurring Model Change): A
naturally-occurring model change is defined as follows:

1) E[M(X)|X = x] = E[M(x)] = m(x) where the expecta-
tion is over the randomness of M given a fixed value of
X = x ∈ Rd.

2) Whenever m(x) is γm-Lipschitz, any updated model
M(x) is also γ−Lipschitz for some constant γ . Note
that, this constant γ does not depend on M since we
may define γ to be an upper bound on the Lipschitz
constants for all possible M as well as m.

3) Var[M(X)|X = x] = Var[M(x)] = νx which depends on
the fixed value of X = x ∈ Rd. Furthermore, νx is small
for x lying on the data manifold X .

Closely connected to naturally-occurring model change is
the idea of the Rashomon effect, alternatively known as
predictive or model multiplicity. [14], [15], [19], [32] which
suggests that models can be very different from each other
but have almost similar performance on the data manifold.
Model multiplicity arises when models trained on the same
dataset (with different weight initialization) assign varying
predictions to a given sample. This is mainly because the
primary objective of training is to minimize empirical risk loss.
Consequently, several models can be distinctly different (even
yielding opposing predictions) but still maintain comparable
accuracy levels. These models are generally more confident on
the data manifold, e.g., 1

n

∑n
i=1 |M(xi)−m(xi)| is small when

the points xi lie on the data manifold. Under the naturally-
occurring model change, this holds in expectation:

Theorem 1 (Connection to Rashomon Effect): For points
x1, . . . , xn ∈ X (lying on the data-manifold) under naturally-
occurring model change, the following holds:

E
[

1
n

n∑

i=1

|M(xi)− m(xi)|
]

≤ √ν, (1)

where ν = 1
n

∑n
i=1 νxi .

Rashomon effect [14], [15], [19], [32] or model multiplicity
typically refers to the phenomenon of a diverse models
yielding similar accuracy levels on the same dataset. In this
context, the Rashomon set [32] aims to characterize the entire
set of models whose predictions differ by a small amount
with additional constraints, e.g., models within a certain model
class. We adopt a probabilistic stance on model multiplicity.
Our proposed abstraction of naturally-occurring model change
attempts to characterize the distribution of the models which
are more likely to occur naturally rather than the entire set.
Theorem 1 ties to the Rashomon effect by demonstrating
how, under naturally-occurring model multiplicity, different
models (despite their varied structures and predictions) can
exhibit a surprisingly consistent performance when evaluating
on points lying on the data manifold. This consistency is
quantified by the expectation that the absolute difference in
predictions across models is bounded, implying that a diverse
set of models can indeed yield similar accuracy levels on the
same dataset. Thus, Definition 5 might be better suited over

boundedness in the parameter space. Proof of Theorem 1 is
in Appendix B.

Remark 1 (Adversarial Model Change): In contrast to
naturally-occurring model change, we also introduce adversar-
ial model change (targeted) which essentially refers to a model
change that is more deliberately targeted to make a particular
counterfactual invalid.

Theorem 2 (Impossibility Under Adversarial Change):
Given a model and a counterfactual, one can always design
another similar model such that the particular targeted coun-
terfactual can be invalidated.

The proof, provided in Appendix E, shows that there is
a new model M(x) = m(x) almost everywhere except at or
around the targeted point x′, i.e., M(x′) = 1 − m(x′). Such
a model could emerge from training with a poisoned data
point or as a split model. These scenarios represent adversarial
manipulations rather than naturally occurring model variations,
and illustrate non-standard model behaviors that we distinguish
from the naturally occurring model changes.

B. Measure of Robustness of a Counterfactual

Definition 6 (Stability): Given a model m(·), the stability
of a counterfactual x ∈ Rd is defined as follows:

Rk,σ 2(x, m) = 1
k

∑

xi∈Nx,k

(m(xi)− γ ‖x− xi‖), (2)

where Nx,k is a set of k points drawn from the Gaussian
distribution N (x, σ 2Id) with Id being the identity matrix, and
γ is an upper bound on the Lipschitz constant for all models
M(·) under naturally-occurring change.

Our stability measure generalizes to any predictive class, as
it can be fundamentally tied to the confidence of predicting
a class (in our case class 1). For cases where a prediction
needs to shift from 1 to 0, the concept can seamlessly apply
by considering the logits (or softmax outputs) for predicting
class 0. This could also extend to multi-class classification
providing logits for each class.

Since obtaining the precise Lipschitz constant for neural
networks is a complex task; hence, we operate under the
assumption of a finite upper bound on the Lipschitz continuity
for both our original model and changed models. This assump-
tion might be more likely to hold if all the models belong
to the same model class with roughly similar architectures.
Furthermore, in practice models can also be trained using
regularization to prevent their Lipschitz constant from being
very high [36].

Remark 2 (Relaxations to Local Lipschitz): While we prove
our theoretical result (Theorem 3) with the global Lipschitz
constant γ , we can relax this to local Lipschitz constants γx,
around a given point x. This is because we sample from a
Gaussian centered around the point x and hence mainly capture
the variability around x. So most points will be very close to x
but a few points can still lie far away. Potential extensions of
our guarantees could apply to truncated Gaussian and uniform
sampling methods, given their sub-Gaussian properties. This
is because Lipschitz concentration inherently extends to sub-
Gaussian random variables [37].
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C. Probabilistic Guarantees on Validity

To justify stability as a measure of robustness for a coun-
terfactual to natural-occurring model changes, we provide a
probabilistic guarantee on the validity of the counterfactual in
Theorem 3.

Theorem 3 (Probabilistic Guarantee): Let X1, X2, . . . , Xk
be k iid random variables with distribution N (x, σ 2Id) and
Z = 1

k

∑k
i=1(m(Xi)−M(Xi)). Suppose |E[Z|M]−E[Z]| < ε′.

Then, for any ε > 2ε′, a counterfactual x ∈ X under naturally-
occurring model change satisfies:

Pr
(
M(x) ≥ Rk,σ 2(x, m)−ε

)
≥ 1− exp

( −kε2

8(γm+γ )2σ 2

)
.

Probability is over the randomness of both M and Xi’s.
This stability metric (see Definition 6) is a way to measure

the robustness of counterfactuals that are subject to natural
model changes (see Definition 5). The first term in the
metric, represented by 1

k

∑k
i=1 m(Xi), captures the average

model outputs for a group of points centered around the
counterfactual x. The second term, represented by γ ‖x− Xi‖,
is an upper bound on the potential difference in outputs of
any new model on the points x and Xi (Recall the Lipschitz
property of M around the point x). Using our measure, the
guarantee in Theorem 3 can be rewritten as:

Pr

(
1
k

k∑

i=1

m(Xi)−M(x)≤γ
k

k∑

i=1

‖x−Xi‖+ε
)

≥ 1− exp
( −kε2

8(γ + γm)2σ 2

)
.

This form of the inequality allows for the following
interpretation of Theorem 3: The distance between the output
of the new model on an input x, i.e., M(x), and the average
prediction of the neighborhood of the given input by the
old model, i.e., 1

k

∑
m(Xi) is upper bounded by ε-corrected,

γ multiplied average distance of the datapoints within the
neighborhood of the input x, i.e., 1

k

∑ ‖x− Xi‖.
Proof Sketch: The complete proof of Theorem 3 is provided

in Appendix C. Here, we include a proof sketch. Notice that,
using the Lipschitz property of M(·) around x, we have M(x) ≥
M(Xi)− γ ‖x− Xi‖ for all Xi. Thus,

M(x) ≥ 1
k

k∑

i=1

(M(Xi)− γ ‖x− Xi‖)

(a)
≥ 1

k

k∑

i=1

(m(Xi)− γ ‖x− Xi‖)− ε, (3)

where (a) holds from Lemma 1 with probability at
least 1 − exp ( −kε2

8(γ+γm)2σ 2 ). [Deviation Bound]lembound Let

X1, X2, . . . , Xk ∼ N (x, σ 2Id) and Z= 1
k

∑k
i=1(m(Xi)−M(Xi)).

Suppose |E[Z|M] − E[Z]| < ε′. Then, under naturally-
occurring model change, E[Z]=0. Moreover, for any ε>2ε′,

Pr(Z ≥ ε) ≤ exp
( −kε2

8(γ + γm)2σ 2

)
. (4)

Proof Sketch: The proof of Lemma 1 leverages concentra-
tion bounds for Lipschitz functions of independent Gaussian

random variables (see Lemma 2). The complete proof of
Lemma 1 is provided in Appendix C.

Lemma 1 (Gaussian Concentration Inequality): Let W =
(W1, W2, . . . , Wn) consist of n i.i.d. random variables belong-
ing to N (0, σ 2), and Z = f (W) be a γ -Lipschitz function, i.e.,
|f (W)− f (W ′)| ≤ γ ‖W −W ′‖. Then:

Pr(Z − E[Z] ≥ ε) ≤ exp
( −ε2

2γ 2σ 2

)
for all ε > 0. (5)

For the proof of Lemma 2 refer to [38, p.125]. Our robust-
ness guarantee (Theorem 3) essentially states that Pr(M(x) ≤
Rk,σ 2(x, m)− ε) ≤ exp ( −kε2

8(γ+γm)2σ 2 ) under naturally-occurring
model change. For instance, if we find a counterfactual x such
that Rk,σ 2(x, m) − ε is greater or equal to 0.5, then M(x)
would also be greater than 0.5 with high probability. The term
exp ( −kε2

8(γ+γm)2σ 2 ) decays with k.
In Theorem 3, we assume the bound |E[Z|M] − E[Z]| <

ε′. In Corollary 1, we relax this assumption to Pr(|E[Z|M]−
E[Z]| > ε′) ≤ δ, i.e., the bound is relaxed to allow a
probability of δ for the deviation to exceed ε′ (see proof in
Appendix C-B). For small δ, a high stability measure implies
a high probability of being valid for changed models.

Corollary 1: Let X1, X2, . . . , Xk ∼ N (x, σ 2Id) and Z =
1
k

∑k
i=1(m(Xi)−M(Xi)). Suppose Pr(|E[Z|M]−E[Z]| > ε′) ≤

δ. Then, for any ε > 2ε′, a counterfactual x ∈ X under
naturally-occurring model change satisfies:

Pr(M(x) ≥ Rk,σ 2(x, m)−ε)

≥ (1− δ)
(

1− exp
( −kε2

8(γm+γ )2σ 2

))
.

Probability is over the randomness of both M and X′is.
Under certain assumptions, we are able to characterize δ.

For instance, in Assumption 1, we build on condition (3) of
Definition 5 by further bounding the expected variance around
the neighborhood of a point.

Assumption 1: Let x be a point that lies on the data
manifold X . Assume that the random variable X is drawn from
a Gaussian distribution N (x, σ 2Id). Under these conditions,
we make the following assumption:

EX[Var(M(X)|X)] = EX[νX] ≤ α (6)

where α is a small constant. The expectations are over X, and
the variance over M.

This assumption posits that the expected variance of
the changed models’ prediction around the neighborhood is
bounded by a small constant α. Points residing on the data-
manifold generally demonstrate reduced variance in model
outputs compared to those outside the manifold since the
model is predominantly exposed to training data points
from the data-manifold, leading to higher confidence in its
predictions in those regions (see Fig. 4 for illustration).

Leveraging this Assumption 1, we introduce Lemma 3,
which serves as the foundation for proving Theorem 4 which
offers a comprehensive probabilistic guarantee on the validity
of counterfactuals with a high Stability value on the data
manifold (see Appendix C-B for proof).
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Lemma 2: Let X1, X2, . . . , Xk ∼ N (x, σ 2Id) on the data-
manifold and Z = 1

k

∑k
i=1(m(Xi)−M(Xi)). Then, for all ε > 0,

under naturally-occurring model change and Assumption 1,

Pr(|E[Z|M]− E[E[Z|M]]| ≥ ε) ≤ α

ε2 . (7)

Theorem 4: Let X1, X2, . . . , Xk ∼ N (x, σ 2Id) on the
data-manifold and Z = 1

k

∑k
i=1(m(Xi) − M(Xi)). Then, a

counterfactual x ∈ X under Assumption 1 and naturally-
occurring model change satisfies:

Pr(M(x) ≥ Rk,σ 2(x, m)− ε)

≥
(

1− α

ε2

)(
1− exp

( −kε2

8(γm+γ )2σ 2

))
.

Probability is over the randomness of both M and X′is.

D. Estimators of Stability and Their Properties

Here, we provide practical estimators of stability measure
since true stability (see Definition 6) relies on the Lipschitz
constant γ (or the local Lipschitz constant γx around the
point x), which is often unknown. We propose two practical
estimators and study their properties.

Definition 7 (Stability-Lipschitz Estimator): Let Nx,k be
a set of k points drawn from the Gaussian distribution
N (x, σ 2Id), the stability (Lipschitz Estimate) of a counterfac-
tual x ∈ Rd is defined as follows:

R̂k,σ 2(x, m) = 1
k

∑

xi∈Nx,k

(
m(xi)− γ̂x‖x− xi‖

)
,

where γ̂x = max
xi∈Nx,k

|m(x)− m(xi)|
‖x− xi‖

. (8)

The Stability-Lipschitz Estimate aims to approximate the
local Lipschitz constant γx through the term γ̂x. By design,
this estimate focuses on capturing the worst-case variability in
the local neighborhood of the point x.

Insight into the Stability-Lipschitz Relaxation: Through this
localized assessment, our Stability-Lipschitz Estimate offers a
fine-grained, yet computationally feasible, metric for stability.
However, the accuracy of this estimate is closely tied to the
number of samples k drawn from the local neighborhood
of x. In essence, a sufficient k is crucial for the robust
approximation of the local Lipschitz constant γx. We formally
address this requirement in Theorem 5, where we derive a
fundamental lower bound on k to ensure that the Stability-
Lipschitz estimator approximates the true stability within an
ε error.

Theorem 5 (Fundamental Lower Bound on Sample Size):
Let M be a class of all models with Lipschitz constant γ in
domain [−T, T]d ⊂ Rd and bound on the second-order partial
derivatives, i.e., ∀m ∈ M, | ∂2m

∂xi∂xj
| ≤ ψ for all x ∈ Rd and

i, j ∈ {1, 2, . . . , d}. If,

supm∈ME
[∣∣∣R̂k,σ 2(x, m)− Rk,σ 2(x, m)

∣∣∣
]

< ε,

then k ≥ (

√
2σ 2 T ψ +( d+1

2 )

9.69ε +( d
2 )

)d, where +(z) =
∫∞

0 tz−1e−tdt

(Gamma function).

Theorem 5 highlights that the estimation of our measure
is adversely affected by the curse of dimensionality, meaning
that as the dimensionality of the data increases, so does the
number of samples required for accurate estimation. This
poses a computational challenge, particularly when employ-
ing gradient-based methods to identify robust counterfactuals
based on stability metrics. To mitigate this computational
burden, we introduce the Stability-Soft Estimator as a more
efficient, albeit less accurate, alternative for estimating stabil-
ity. To arrive at this estimator, we utilize the Lipschitz property
to approximate the aspect that involves the Lipschitz constant,
specifically, by approximating γx||x− xi|| with |m(x)−m(xi)|.

Remark 3: A reverse statement of Theorem 5 would
depend on the particular estimation technique. Estimating
the Lipschitz constant is challenging in general, and most
estimators tend to underestimate the true Lipschitz constant.
This happens because even if there is a small region of the
input manifold where the model has erratic behavior, the global
Lipschitz constant is high and this can be missed in estimation
if there are no samples collected from that small region.
Proving a reverse might require additional assumptions, e.g.,
the Lipschitz constant is further known to be bounded or has
limited variation which will be explored in future work.

Definition 8 (Stability-Soft Estimator): Let Nx,k be a set of
k points drawn from the Gaussian distribution N (x, σ 2Id),
the stability variance estimator of a counterfactual x ∈ Rd is
defined as follows:

R̂k,σ 2(x, m) = 1
k

∑

xi∈Nx,k

(m(xi)− |m(x)− m(xi)|).

Properties of Stability Estimators: To gain a deeper
understanding of stability, we now consider some desirable
properties of counterfactuals from [9], which proposed these
properties for tree-based ensembles. The first property is based
on the fact that the output of a model m(x) ∈ [0, 1] is
expected to be higher if the model has more confidence in that
prediction.

Property 1: For x ∈ Rd, a higher value of m(x) makes it
less likely to be invalidated due to model changes.

A high m(x) alone does not guarantee robustness, as local
variability around x can make predictions less reliable, e.g.,
points with high m(x) near the decision boundary are more
vulnerable to invalidation.

Property 2: An x is less likely to be invalidated if several
points close to x (denoted by x′) have a high m(x′).

Counterfactuals may also be more likely to be invalidated if
it lies in a highly variable region of the model output function.
This is because the confidence of the model predictions in that
region may be less reliable.

Property 3: An x is less likely to be invalidated if model
outputs around x have low variability.

We recognize the insights provided by the three axiomatic
properties which highlight individual aspects contributing to
robustness. We note that robustness cannot be ascribed to any
single property in isolation. Rather, it is that the collective
integration of these properties—high confidence in predictions
(Property 1), the reinforcement of confidence through neigh-
borhood consensus (Property 2), and low variability in model
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Fig. 4. Effect of stability measure on naturally-occurring model changes: (a) corresponds to the original data distribution and the trained model. (b)-(e)
demonstrate some examples of changed models obtained on retraining with different weight initializations. One may notice that the model decision boundary
is changing a lot in the sparse regions of the data-manifold (few data-points), possibly violating the bounded-parameter change assumption but the predictions
on the dense regions of the data-manifold do not change much (in alignment with Rashomon effect). This motivates our proposed abstraction of naturally-
occurring model change which allows for arbitrary changes in the parameter space with little change in the actual predictions on the dense regions of the data
manifold. (f) demonstrates our proposed measure of stability R̂k,σ2 (x, m) (high mean model output, low variability, almost like a Gaussian filter) for which we
derive probabilistic guarantees on validity. In essence, we show that under the abstraction of naturally-occurring model change, the stability measure captures
the reliable intersecting region of changed models with high probability. In the original model, we observe that certain non-robust regions (i.e., those caused
by overfitting to certain data points in the original model) have higher local Lipschitz values and variability. Counterfactuals assigned to these regions (even
if m(x) is high) would be invalidated in the changed models. The stability measure, which samples around a region, penalizes these higher local Lipschitz
values.

outputs around a point (Property 3)—is essential for the
robustness of a counterfactual. Our stability measures excel at
collectively respecting these properties.

Given a point x ∈ Rd, it generates a set of k points centered
around x. The first term 1

k

∑
x′∈Nx,k

m(x′) is expected to be high
if the model output value m(x) is high for x as well as several
points close to x. But the mean value of m(x′) around a point
x may not always capture the variability in that region, hence,
the second term of the stability measure. In the Stability-
Lipschitz estimator, the second term 1

k

∑
x′∈Nx,k

γ̂x‖x − x′‖
captures the worst-case variability of the model outputs in
the neighborhood of x. The second term of the Stability-
Soft estimator, 1

k

∑
x′∈Nx,k

|m(x)−m(x′)|, captures the average
variability of the model outputs around x. The variability
term is only useful in conjunction with the mean term which
captures the average confidence in the neighborhood of a given
point. This mean term along with the variability term make
up our stability measure.

Fig. 4 provides an example on a synthetic dataset to show
the effect of our stability measure on naturally changed models
realized from actual experiments by retraining with different
weight initializations.

IV. GENERATING ROBUST COUNTERFACTUALS USING

OUR PROPOSED MEASURE: STABILITY

In this section, we examine several techniques of incorpo-
rating our proposed stability measure for generating robust
counterfactuals for neural networks. We first define a counter-
factual robustness test along the lines of [9].

Definition 9 (Counterfactual Robustness Test): A counter-
factual x ∈ Rd satisfies the test if: R̂k,σ 2(x, m) ≥ τ.

A. Closest Robust Counterfactual

Here, we focus on finding a point that satisfies the robust-
ness test, R̂k,σ 2(x′, m) ≥ τ . The threshold value of τ can be
adjusted based on the desired effective validity. Hence, a larger
threshold would likely ensure that the new model, M, remains
valid with high probability.

We propose Algorithm 1, T-Rex:I, which incorporates our
measure to find robust counterfactuals on top of any preferred

base method for generating counterfactuals. It evaluates the
stability of the generated counterfactual and, if necessary,
iteratively updates the generated counterfactual through a
gradient descent process until a robust counterfactual that
meets the desired criteria is obtained. We anticipate that since
the robustness measure maximizes the mean value of the
model prediction probabilities, it would steer toward the more
favorable region. We also check for m(xc) ≥ 0.5 as a stopping
criterion. An alternative T-Rex variant could start directly from
the original instance x, aiming to find a counterfactual that is
both close and robust by integrating multiple (differentiable)
loss functions including a distance metric and our stability
measure.

Remark 4 (Gradient of Stability): In Algorithm 1 and 3,
we compute the gradient of Rk,σ 2(x, m) with respect to x
(not model m parameters). Such gradients w.r.t. x instead
of m are also computed commonly in adversarial machine
learning and also in feature-attributions for explainability. We
use TensorFlow tf.GradientTape for automatic differen-
tiation, which allows for the computation of gradients with
respect to certain inputs.

B. Robust Counterfactuals on Data Support

In certain cases, it may be desirable to generate counter-
factuals from a predefined set of data points (i.e., training
dataset S . This is to remove the risk of producing unrealistic
or anomalous results. In this context, we define the Robust
Data Support Counterfactual.

Definition 10 (Robust Data Support Counterfactual): Given
x ∈ Rd such that m(x) < 0.5, its robust nearest neighbor
counterfactual C(τ )

p,S(x, m) with respect to the model m(·) and
dataset S is defined as another point x′ ∈ S that minimizes the
lp norm ‖x− x′‖p such that m(x′) ≥ 0.5 and R̂k,σ 2(x′, m) ≥ τ .

The closest data-supported counterfactual serves as a reli-
able reference, as it inherently has a high Local Outlier Factor
(LOF). We propose Algorithm 2, T-Rex:NN, for finding data-
supported counterfactuals. The algorithm begins by locating
the K nearest neighbor counterfactuals to a given point x within
the dataset S . It then iterates through each of these candidates,
evaluating them against a robustness test, R̂k,σ 2(x′, m) ≥ τ . If
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Algorithm 1 T-Rex:I: Theoretically Robust EXplanations:
Iterative Version

Input: Model m(·), Datapoint x with m(x) < 0.5,
Algorithm parameters (k, σ 2, η, τ, max_steps).
Generate initial counterfactual x′ using any technique.
Initialize robust counterfactual xc = x′ and steps = 0.
while R̂k,σ 2(xc, m) < τ and steps < max_steps do

Compute R̂k,σ 2(xc, m)

Compute gradient ∇xc R̂k,σ 2(xc, m)

Update xc via gradient ascent:
xc = xc + η∇xc R̂k,σ 2(xc, m)

Increment steps
end while
Output xc and exit

Algorithm 2 T-Rex:NN: Theoretically Robust EXplanations:
Nearest Neighbor Version

Input: Model m(·), Datapoint x with m(x)<0.5, Dataset S ,
Algorithm parameters (K, σ 2, k, τ ).
Let NNx = (x′1, x′2, . . . , x′K) be the K nearest neighbors to
x with m(x′) ≥ 0.5,
for x′i ∈ NNx do

Perform counterfactual robustness test on x′i:
Check if R̂k,σ 2(x′i, m) ≥ τ

if counterfactual robustness test is satisfied: then
Output x′i and exit

end if
end for
Output: No robust counterfactual found and exit

a counterfactual meets this criterion, it is considered robust
and the algorithm terminates.

C. Robust Counterfactuals on Data Manifold

Here, we focus on finding robust counterfactuals on the
data manifold X ⊆ Rd (realistic samples; see Definition 3).
We leverage generative models to learn a lower dimensional
latent representation of the data manifold in Rl where l < d.
We focus on the Variational Auto-Encoders (VAEs) [39]. We
designate the encoder component of the VAE, parameterized
by θ , as Fθ : Rd → Rl which transforms any data point x ∈
X into its corresponding latent variable z ∈ Rl. The decoder
denoted as Gφ : Rl → Rd, parameterized by φ, maps the latent
variable back to the original data space.

Our method uses this latent space learned by a VAE
for robust counterfactual search. Given that the latent space
captures the data manifold, searching for counterfactuals in
this representation enables us to discover instances coherent
with the intrinsic data distribution and hence more plausible
(higher LOF). The objective is as follows:

z′ = arg min
z
0(m(Gφ(z)), 1) + λ1‖x− Gφ(z)‖p

− λ2R̂k,σ 2(Gφ(z), m). (9)

Here 0(·, ·) denotes a differentiable loss function (e.g. mean
square loss, 0(u, v) = (u − v)2 or binary cross-entropy, loss

Algorithm 3 T-Rex: Hybrid: Theoretically Robust
EXplanations: Hybrid Version

Input: Model m(·), Dataset S , Datapoint x with m(x) < 0.5,
Algorithm parameters (k, σ 2, η, τ , λ1, λ2, max_steps)
Train VAE encoder Fθ (·) and decoder Gφ(·) with dataset S
Initialize z = Fθ (x)
while steps < max_steps do

z← z− η∇z(0(m(Gφ(z)), 1) + λ1‖x− Gφ(z)‖
−λ2R̂k,σ 2(Gφ(z), m))

steps ← steps +1
if m(Gφ(z)) > 0.5 and R̂k,σ 2(Gφ(z), m) > τ then

Return x′ = Gφ(z) and exit
end if

end while
Return No robust counterfactual found and exit

0(u, v) = −[v log(u)+ (1− v) log(1−u)]) that minimizes the
gap between the prediction and the favorable outcome of 1,
and the counterfactual returned is Gφ(z′). The counterfactual
lies in the data manifold since our algorithm obtains the latent
encoding of our sample x using the encoder z = Fφ(x).
The gradient steps are in the latent space of the encoder to
minimize our overall loss function until we reach a z with
robustness threshold Rk,σ 2(Gφ(z), m) > τ on the desired side
of the decision boundary. The details are in Algorithm 3: T-
Rex: Hybrid.

V. EXPERIMENTS

Here, we present experimental results to demonstrate how
our proposed Algorithm 1 & 2 utilizes our stability measure
to generate robust counterfactuals effectively.

1) Datasets: We conduct experiments on several bench-
mark datasets, namely, HELOC [16], German Credit,
Cardiotocography (CTG), Adult [17], and Taiwanese
Credit [18]. These have two classes, with one class
representing the most favorable outcome, and the other
representing the least desirable outcome for which we aim
to generate counterfactuals. For simplicity, we normalize the
features to lie between [0, 1].

2) Performance Metrics: Our metrics of interest are:
• Cost: Average l1 or l2 distance between counterfactuals

x′ and original points x.
• Validity (%): Percentage of counterfactuals that remain

valid under the new model M.
• LOF: Predicts −1 for anomalous points, and +1 for

inliers. A high average LOF essentially suggests the
points lie on the data manifold and hence more realistic,
i.e., higher is better (see Definition 4). We use an existing
implementation to compute LOF from [40].

3) Methodology: We begin by training a baseline neural
network model and find counterfactuals for data points with
true negative predictions. To test the robustness of these
counterfactual examples, we then train 50 new models (M)

and evaluate the validity of the counterfactuals under dif-
ferent model change scenarios, which include: (i) Weight
Initialization (WI): Retraining new models using the same
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TABLE I
EXPERIMENTAL RESULTS

hyperparameters but with different weight initialization by
using different random seeds for each new model; and (ii)
Leave Out (LO): Retraining new models by randomly remov-
ing a small portion (1%) of the training data each time
(with replacement) as well as different weight initialization.
This can be justified by the concept of machine unlearning,
especially within the context of regulatory frameworks like the
GDPR [13]. The “right to be forgotten” mandates the deletion
of an individual’s data upon request, which may necessitate
updates to the model. These updates can affect the reliability of
previously provided explanations, thereby posing a challenge
to reconciling the “right to explanation” with the “right to be
forgotten” [7].

4) Hyperparameter Selection: Our findings indicate that
higher k improves robustness, but comes at the cost of
increased computational cost. Our choice of k = 1000 also
aligns with practices in the adversarial robustness literature,
where similar trade-offs between performance and compu-
tational feasibility are considered. The value of σ 2 was
determined by analyzing the variance of the features. In the
dataset with the features between [0, 1], we found that a value
of σ 2 = 0.01 produced good results. The threshold τ is a
critical aspect of our method and can be adjusted based on the
desired effective validity. A higher τ value improves validity at
the expense of l1 or l2 cost. See Appendix F for more details.

5) Baseline: We compare our approaches with estab-
lished baselines. First, we find the min Cost (l1 and l2)
counterfactual [2] and use it as our base method for gen-
erating counterfactuals. We then compare T-Rex:I to the
Stable Neighbor Search (SNS) [6] and Robust Algorithmic
Recourse (ROAR) [5]. We evaluate the performance of our
Robust Nearest Neighbor (Algorithm 2:T-Rex:NN) against the
Nearest Neighbor (NN) counterfactuals (closest data-support

robust counterfactual in Definition 10). We choose a value of τ
to get high validity and compare cost and LOF with baselines.

6) Results: Results for HELOC, German Credit, and CTG
datasets are in Table I. Observe that the min Cost counterfac-
tual is not robust to variations in the training data or weight
initialization as expected. ROAR generates counterfactuals
with high validity, albeit at the expense of a higher cost. Our
proposed method, T-Rex:I, significantly improves the validity
of the counterfactuals compared to the minimum cost. The
T-Rex:I algorithm achieves comparable validity results to the
SNS method for both types of model changes, and often
accomplishes this with lower costs and higher LOF. This can
be observed across all three datasets for both l1 and l2 cost
metrics. The T-Rex:NN algorithm also significantly improves
the validity of the counterfactuals compared to the traditional
Nearest Neighbor (NN) method and maintains a high LOF,
except for the CTG dataset with a low LOF score. This appears
to be an exception rather than the norm, possibly due to the
specific characteristics of the CTG dataset itself. T-Rex:NN
shows competitive performance on other datasets, such as the
Taiwanese Credit and Adult datasets (see Appendix F). It
comes at a price of increased cost, but the counterfactuals
are guaranteed to be realistic since they are data-supported.
We observe a lower LOF score on the CTG dataset. Refer
to Appendix F for additional results for Adult and Taiwanese
credit datasets.

7) Ablation: To evaluate the efficacy of our proposed sta-
bility measure, we conduct an ablation study on the German
credit dataset. We first evaluate a robustness measure that
solely relies on the model’s prediction of the counterfactual,
denoted as r(x′, m) = m(x′). We then examine a measure
that only incorporates the mean, the average predictions for k
points sampled from the distribution N(x′, σ 2Id), denoted as
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rk,σ 2(x′, m) = 1
k

∑
x′i∈Nx′,k

m(x′i). We compare these with our

proposed robustness measure R̂k,σ 2(x′, m), which also takes
into account the variability around the counterfactual. The
results of the ablation study, for various τ thresholds, are
summarized in Table VI in Appendix F.

VI. DISCUSSION

We introduce an abstraction called naturally-occurring
model change and propose a measure, Stability, to quantify
the robustness of counterfactuals with probabilistic guarantees.
We show that counterfactuals with high Stability will remain
valid after potential model changes with high probability. We
investigate various techniques for incorporating stability in
generating robust counterfactuals and introduce the T-Rex:I,
T-Rex:NN, and T-Rex:Hybrid algorithms. We also make a
novel conceptual connection with the body of work on model
multiplicity, further emphasizing on the models that are more
likely to occur.

The naturally-occurring model changes rest on assumptions
that may not apply to all models or datasets. Our stabil-
ity estimators, although practically implementable, lack the
same theoretical guarantees as the initial stability measure.
Estimating the Lipschitz constant around a counterfactual can
be computationally demanding, particularly when leveraging
gradient descent to optimize stability. Though generating
robust counterfactuals is a key step towards trustworthy AI, it
can fall short of other important factors such as fairness [41],
[42], [43], [44], [45]. Future research could explore links
between robustness and fairness, improving the estimation
of stability, or integrating Stability into training-time-based
approaches for generating robust counterfactuals. Our current
framework assumes a continuous space, but exploring exten-
sions to discrete feature spaces would also be interesting.

Disclaimer: This paper was prepared for informational
purposes in part by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates (“JP Morgan”), and
is not a product of the Research Department of JP Morgan.
JP Morgan makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, accuracy, or
reliability of the information contained herein. This document
is not intended as investment research or investment advice,
or a recommendation, offer or solicitation for the purchase or
sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be
unlawful.
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