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ABSTRACT. Inaccurate detection and/or localization of strawberries will cause fruit injury or failed attempt during 

robotic picking. In this work, a method is proposed to accurately detect and localize strawberries combining an object 

detection network, YOLOv4, and a classification network, Alexnet. YOLOv4 model was used to detect strawberries into 

various maturity groups (flower, immature, nearly mature, mature, and overripen berries) and provide their location 

information whereas Alexnet model was used for assessing if the detected matured strawberries were completely or 

partially visible. Compared to the same achieved by YOLOv2, YOLOv3 and YOLOv4 trained for regular objects,YOLOv4 

model was specifically trained to detect small objects, which achieved the highest mean average precision of 80.7% and 

F1 score of 0.80 with an average precision (AP) of 91.7% in detecting mature strawberries. YOLOv4 achieved a high 

processing speed of 55 ms on single image (resolution: 1200×1000 pixels). The model was further validated with the RGB 

images generated from point cloud, where it achieved an AP of 90.15% showing that the model was robust to detect 

berries in images collected with different settings. Similarly, Alexnet model achieved an accuracy of 90.0% in classifying 

matured strawberries into completely and partially visible groups with processing speed of 3 ms per image (resolution: 

227×227×3 pixels). This technique also provided 2D to 3D mapping of strawberries for the harvesting robots. This method 
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showed a strong potential as a means for providing accurate strawberry detection desirable for robotic harvesters, 

particularly with a collaborating dual-manipulator system. 

  
Keywords. strawberry detection; deep neural network; YOLOv4; maturity classification; occlusion detection 

 

 

Introduction 
With delicious taste and rich nutritional characteristic, strawberry is one of most popular fruits in the United States 

(Hussen, A.M., 1979). Traditionally, strawberries are harvested manually, which is becoming increasingly more challenging 

due to increasing labor cost and continual labor shortage. To address this challenge, automated or robotic harvesting methods 

are being investigated around the world, which have shown to be promising alternatives to manual harvesting. One of the 

most important tasks of automated/robotic harvesting is to detect the fruit and their locations, and to detect maturity of 

agricultural product under the natural lighting conditions often characterized by uncertain and variable light intensities over 

both time and space.   

In the past, studies used traditional methods, such as segmentation, edge detection, and feature extraction in different 

color spaces, to detect fruits for mechanical harvesting. Researchers have investigated the use of object shape, size (Franz 

et al., 1991; Woebbecke et al., 1995), and color (Yin et al., 2009) to detect fruits in specific field environments. However, it 

is difficult for these conventional methods to achieve desired level of accuracy and robustness in field environment with 

variable and uncertain lighting conditions and complex and varying cropping systems and crop canopies. Soft computing 

models such as support vector machine (SVM) have been used widely to address those challenges in identifying fruit 

(Mahendra et al., 2018). Kurtulmus et al. (2013) established a machine vision system based on SVM to detect immature 

peach in the branch with detecting rate of 77.9% under natural light conditions. A machine vision system was developed by 

Qiang et al. (2014) using SVM for tree branch and fruits identification in field conditions and achieved an accuracy of 

92.4%. The model was trained using RGB images, which achieved better results than the same achieved by threshold-based 

methods but was easily affected by outdoor lighting conditions. Contrast limited adaptive histogram equalization (CLAHE), 

developed by Choi et al. (2016), was used for improving the illumination of image features to detect dropped citrus fruit on 
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the ground and to evaluate the decay stages, which achieved an accuracy of 89.5%. However, outdoor lighting conditions 

still presented challenges on the fruit detection task. These traditional machine learning methods made improvement in 

detecting agricultural objects like fruit but were still found to lack flexibility and reliability when lighting and other 

environmental conditions varied (Kamilaris & Prenafeta-Boldú, 2018). 

With the introduction of deep learning, one of the latest machine learning techniques developed, to computer vision tasks 

in agriculture in recent years, the performance of machine vision systems (e.g. accuracy and robustness) were improved. 

With the rapid advancement in computational hardware including powerful graphical processing units (GPUs), deep 

convolutional neural networks (DCNN) have been widely used for detection and grading on agricultural products. CNN-

based systems were increasingly used in developing robotic harvesting machines, which helped robots to accurately locate 

fruits and/or other types of corps and estimate fruit/crop maturity.  Lamb et al. (2018) developed a strawberry detection 

system using convolutional neural networks (CNN) and reported an average precision (AP) of 0.877 at 360×640 pixels 

resolution with a computational speed of 0.23 frames-per-second under natural lighting conditions. Region-based 

convolutional neural networks (R-CNN), whose mean average precision was 53.7% on PASCAL 2010 dataset (Everingham 

et al., 2010), combine region proposals, such as region boxes, with CNNs (Gishick et al., 2014).  Using this network design, 

Christiansen et al. (2016) developed a real-time machine vision system (called DeepAnomaly) to detect the obstacles, like 

people, animals, and other obstacles in agricultural fields. Chen et al. (2019) applied a Faster R-CNN with backbone of 

ResNet50 (He et al., 2016) to conduct yield prediction by counting the number of strawberries in the field. Compared with 

R-CNN, the model achieved a reduced training time and improved processing speed and reported a mean accuracy of 84.1% 

on average. However, it is still difficult for these methods based on two stage networks including dense prediction and sparse 

perdition to meet the requirement of real-time detection although they achieved a relatively high accuracy and robustness in 

detecting fruit in variable lighting conditions.  

Compared to the two-stage networks like R-CNN, Faster-RCNN, and Mask-RCNN, You-Only-Look-Once (YOLO) 

models (Redmon et al., 2016; Redmon et al., 2017; Redmon, et al., 2018;  Bochkovskiy, et al., 2020) put the detection results 

including bounding boxes and class probability directly with a single feed forward network, which makes YOLO models 

computationally much more efficient. YOLOv2 was improved greatly on detection accuracy and learning process from 

YOLO when anchor was used in YOLOv2, which was inspired from faster-RCNN (Redmon et al., 2017). YOLOv3 was 

built on YOLO and YOLOv2 but included a specific feature (binary cross-entropy loss) for each label in training dataset 

(Redmon, et al., 2018). YOLOv3 become preferred network for object detection in various applications as its computational 

performance was superior allowing machine vision systems to achieve real time object (e.g. fruit) detection. Researchers 

have achieved promising results in fruit detection adopting YOLOv3 structure (Liu, et al., 2020; Lawal et al., 2021; Yu, et 

al., 2020). However, these studies have mostly focused on detecting only two or three classes of big objects which were over 
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40×40 pixels in images with a resolution of 500×500 pixels or more. In addition, with introduction of Spatial pyramid 

pooling (He et al., 2015) and Path aggregation network (Liu et al., 2018), it was demonstrated that YOLOv4 achieved an AP 

of 43.5% for the MS COCO dataset (Lin et al., 2014) and ~65 FPS processing time on Tesla V100 GPU of YOLOv4 

(Bochkovsiy, et al., 2020), which was an improvement of 10% and 12%, respectively, compared to the same with YOLOv3. 

However, there are limited studies in applying YOLOv4 for fruit detection in field conditions, especially for small 

fruit/object detection.   

Strawberries are easily damaged and bruised during mechanical/robotic harvesting, and therefore machine vision systems 

used in these machines need to be highly accurate in detecting and localizing berries. Yang et al. (2019) used Mask-RCNN 

to detect mature and immature groups of strawberries with a high recognition rate of 98.4% but the processing speed was 

only 8 frame per second, on average. In addition, two class classification has a potential to cause more errors for berries in 

the borderline state between mature and immature ones, and there is no provision to find overripen berries. Lab fruit, a fruit 

detection system developed by Kirk et al. (2019), applied one-stage network to achieve real-time strawberry detection from 

different shooting angles to reduce the error caused by occlusion. Yang et al (2020) developed a machine vision system 

based on modified YOLOv3 for identifying only mature strawberries and vines and achieved a success rate of 84.4%. 

Although these past studies achieved good performance on strawberry detection, they focused on only two or three levels of 

strawberry maturities, which can lead to less precise harvest decision (which fruit is optimal for harvest). These past studies 

didn’t have high accuracy on localization or computational speed for real-time application in robotic harvesting systems.  

The specific objectives of this study were:  

1) To develop a machine vision system for detecting and localizing flowers and strawberries of four different 

maturity levels (flower, immature, nearly mature, mature, overripen) in field conditions based on a YOLOv4 

model.  

2) To develop a technique to classify mature (optimal targets for harvesting) berries (detected in Obj# 1) to completely visible and 

partially visible/occluded groups. 

 The results from this multi-class detection and classification technique will be highly valuable to develop an efficient 

harvesting robot, particularly with dual- or multi-manipulator system that can avoid interfering with the canopy areas 

where immature and nearly mature berries are present, and avoid going to overripen berries for picking. The information 

can also be useful to allow collaborative manipulators to work together to open up the canopies in the area where partially 

visible, mature berries are detected so that they could be better exposed for precise picking while directly going for 

picking the completely visible berries thus improving the efficiency and productivity. 
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Material and Methods 

  Data Collection 

Images used in this experiment were collected in a commercial strawberry field (located at 28°41'47.4"N，

81°12'14.4"W; Orlando, Florida), shown in figure 1. The normal strawberry growing season in Florida is usually between 

December and the following April.  ZED2 stereo camera was used for acquiring strawberry canopy images (specification in 

table 1). The camera was mounted on a mobile platform for capturing canopy images including RGB images, depth images 

and point cloud files. Data collection lasted from February 1, 2020 to February 22, 2020; the images ware collected twice a 

day, around 10:00 a.m. – 12:00 a.m. and 2:00 p.m. – 5:00 p.m.  The canopy images were collected from ~100 cm above the 

plant bed using the nadir view of the camera. More than 5,000 RGB images, and 1,000 depth images and point cloud files 

of strawberry canopies were collected (example data in figure 2). 

 

Figure 1. A commercial strawberry field at 28°41'47.4"N，81°12'14.4", Orlando, Florida  

Table 1. General Specifications of ZED2 cameras 

Item Parameters 

Output Resolution Side by Side 2x (2208x1242) @15fps 

2x (1920x1080) @30fps 

2x (1280x720) @60fps 

2x (672x376) @100fps 

Field of View Max. 110°(H) x 70°(V) x 120°(D) 

Interface USB 3.0/2.0 - Integrated 1.2m cable 

Depth Range 0.3 m to 20 m (1 to 65.6 ft) 

Depth Accuracy < 1% up to 3m 

< 5% up to 15m 
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(a) 

             

                                                        (b)                                                                                                                     (c) 

Figure 2. Example of the data collected and used in this study: (a) an RGB image, (b) a depth image, and (c) a point cloud data. 

Data Pre-processing 

Strawberries in the vine canopies undergo a series of physiological and biochemical changes during the growing season, 

which leads to the changes in fruit color and other characteristics unique to different maturity levels of berries (Caiqin et al., 

1998). In this study, maturity development of strawberries was divided in five categories (flower and four maturity stages 

of fruits). The fruit maturity levels were defined based on the fruit grading method described by Barnes et al. (1976) and as 

shown below: 

Immature stage  ‒ small and large green berries 

 Nearly mature stage – reddish berries (1/ 3 to 3/4 of the fruit surface area covered by red color) 

Mature stage – red ripe berries (red color over 3/4 of the surface area) 

Overripen stage – senescent berries 

 To detect objects (flowers and strawberries with four different maturity levels) using YOLOv4 model, the location, and 

maturity of individual strawberries in each canopy image need to be labelled. The RGB images on strawberry canopies were 

cropped to remove unwanted part of the background and resized to 1200×1000 pixels. Annotation/labelling on strawberries 

in five individual classes was performed with rectangle bounding boxes (see figure 3) using an open-source graphical image 

annotation tool, labelimg_v1.8.0 (Amazon, Seattle, WA). Bounding box data contained a five-element vector of the form 

[class x/1000 y/1200 width/1000 height/1200]. This vector specifies the class label for the object, the center point and size 
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of the corresponding bounding boxes.  

 

Figure 3. An example image with bounding box labels generated using labelimg_v1.8.0 (Amazon, Seattle, WA) 

YOLOv4-based object detection  

YOLOv4 model structure 
The 4th generation of YOLO (YOLO v4) was developed in May 2020. YOLOv4 consists of backbone (CSPDarknet 53), 

neck (Spatial pyramid pooling and Path aggregation network), and a head (YOLOv3). The structure of YOLOv4 is shown 

in figure 4. 

 

Figure 4. A generic architecture of YOLOv4 model including backbone (CSPDarknet53), neck (SSP and PAN), and dense prediction (YOLOv4) 

CSPDarknet 53 convolution network, as the backbone of YOLO v4, is responsible for feature extraction, which used a 

CSPNet strategy (Wang et al., 2020) to partition the feature map of the base layer into two parts and then merge them through 

a cross-stage hierarchy while keeping most of the structure of Darknet 53 (Redom & Farhadi, 2018). The use of a split and 
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merge strategy allowed for more gradient flow through the network. The whole structure of CSPDarknet 53 is shown in 

figure 5(a). CSPDarknet 53 has 53 layers, which includes 3*3 convolution layers and 1*1 convolution layers. The 

convolution layer is composed of a batch normalization layer and LeakyReLu layer. Following the convolution layers, a 

residual layer is appended, which is also composed of 2 convolution layers, as shown in figure 5(b). The residual layers were 

added to the structure of CSPDarknet 53 to address the problem of the gradient disappearance or gradient explosion. 

CSPDarknet53 (Wang et al., 2020) was found to be better when used in detecting objects on the MS COCO dataset (Lin, T. 

Y. et al., 2014) compared to the same with CSPResNet50 (Wang et al., 2020). CSPDarknet 53, as a backbone of YOLO v4, 

has ability to detect five classes of strawberries in this study.  

 

(a) 

 

(b) 

Figure 5. A typical network architecture of CSPDarknet 53: (a) CSPDarknet 53 structure with 53 Layers, and (b) structure of convolution 
layers and residual layers built on 2 convolution layers. 

The neck of YOLOv4 is composed of additional blocks called SPP and PAN. The SPP was added over CPSDarknet 53, 
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which greatly separated out the most important feature of context and didn’t put any load on processing speed. Some 

previously modified YOLO models (Lawal et al., 2021) have used this method over YOLOv3 model to achieve increasing 

receptive field effectively. PAN was used as a method of parameter aggregation from different backbone levels for 

different detector levels to replace feature pyramid networks (FPN) used in YOLOv3.  

 Model training for small object detection 
YOLO v4 model was structured such that it received RGB images with resolution of 640×768 pixels as inputs. The 

learning rate, which decreased gradually during the training progress, was set to be 0.001 in the first 8000 iterations, 0.0001 

between 8001 and 9000 iterations, and 0.00001 between 9001 and 10000 iterations. Decreasing learning rate was used to 

help reduce training loss. The batch subdivision of 64 was used to reduce the memory usage during training. Most of the 

labelled strawberries were small occupying <50×50 pixels in RGB image with pixel resolutions of 1200×1000 pixels. 

Because the target objects to be detected were small, it was necessary to set the YOLOv4 model for detecting small objects. 

YOLOv4 model can have better performance on detecting small objects through improving the ability of extracting the 

feature map of small objects when below settings were applied. 

(a) The number of layers of the sixth route layers after SPP was changed to 23 from 54 in regular setting.  

(b) The stride in upsample layer before sixth route layer after SPP was changed to 4 from 2 in regular 

setting.  

(c) The stride in convolutional layer after first yolo layer was changed to 4 from 2 in regular setting.  

The momentum and decay for the network were set to be 0.949 and 0.05 respectively. A dataset including 1,200 regular 

RGB images and 200 RGB images generated form point cloud data was used to train the network. A test dataset, composed 

of 100 images of strawberry canopies, was used to assess the performance of YOLO v4 model during training. The model 

was trained in a laptop computer with NVIDIA GeForce GTX 1070 GPU and intel core i7-8750H CPU (2.20 GHz speed 

and 32.0 GB RAM).  

To assess the performance of this model with the same achieved by previous versions, YOLOv2, YOLOv3 and YOLOv4 

(normal setting) were also implemented and trained with same dataset. Training and test results with these models were then 

compared against the results achieved by YOLOv4 (small object) model.   

Classifying mature strawberries to completely and partially visible groups 

   AlexNet, a deep convolutional neural network consisting of 8-layer CNN including 5 convolution layers and 3 fully 

connected layers (Iandola, F. N., et al, 2016), was used to classify mature strawberries (those within the bounding boxes) 

detected by YOLOv4 into completely visible and partially visible groups. Bounding boxes of completely visible strawberries 

would be saved while bounding boxes of partially visible strawberries would be ignored during providing location of mature 
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strawberries after classification of Alecnet.  

The size of input images to AlexNet was 227×227×3 pixels. After the detection by YOLOv4 model, a dataset including 

bounding boxes, labels and probabilities were created by cropping matured strawberries out of the images and resizing them 

to meeting the input image resolution requirement (227x227 pixels; Figure 6). The images were labeled manually to assign 

them into completely (430 images) or partially visible (367 images) classes. The AlexNet model was trained with those 

images in the same laptop computer used for YOLOv4 model training. The model was trained for 20 epochs with a learning 

rate of 0.0001. Training dataset included 70% of the images and test dataset included the rest of images.  

       

                                                   (a)                                          (b)                                              (c) 

       

                                                   (d)                                             (e)                                             (f) 

Figure 6. Selected examples of mature strawberry images cropped from bounding boxes: (a)(b)(c) complete strawberries under bounding boxes, 
(d)(e)(f) overlapped/partially visible strawberries under bounding boxes.  

Performane Assessment 

Strawberry detection results were evaluated using recall (R), precision (P), F1-score and average precision (AP) and 

mean value of average precisions for each class (mAP) with intersection-over-union (IOU) of 50%. 

The IOU is used for evaluating the correctness of bounding box on detected objects. The IOU is calculated as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼 = |𝐴𝐴∪𝐵𝐵|
|𝐴𝐴∩𝐵𝐵|

 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐼𝐼)
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑈𝑈)

   (1) 

Where A is predicted bounding boxes, B is ground truth bounding boxes, Area(I) is the intersection of predicted and 

ground truth bounding boxes, and Area(U) is the union area of predicted and ground truth bounding boxes (Fu et al., 2018).   

P, R, and F1 score are used for measuring the accuracy of overlap between predicted and ground truth bounding boxes, 

which are calculated as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (2) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (3) 
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    𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                                                         (4) 

Where TP is the number of true positive strawberries detected, FP is the number of false strawberries detected, and FN is 

the number of strawberries falsely not detected as strawberries. The IOU threshold was set at 0.5, which means that the 

result is true positive if the IOU between the predicted result and ground truth bounding boxes was greater than 0.5. F1 score 

was used for showing the comprehensive performance of the models. Average Precision (AP) was used for evaluating 

performance of the model in different classes and mAP was adopted to show the overall performance under different 

confidence thresholds. AP and mAP can be calculated as follow: 

𝐴𝐴𝐴𝐴 =  ∑ (𝑟𝑟𝑛𝑛+1 − 𝑟𝑟𝑛𝑛)
max

𝑟̃𝑟: 𝑟̃𝑟3𝑟𝑟𝑛𝑛+1 𝑝𝑝(𝑟̃𝑟)𝑛𝑛                                                            (5) 

𝑚𝑚𝑚𝑚𝑚𝑚 =  1
𝑁𝑁
∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1      (6) 

Where 𝑝𝑝(𝑟̃𝑟) is the Precision at Recall 𝑟̃𝑟.  

Classification of completely and partially visible mature strawberries was evaluated using accuracy, which can be 

calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

   

 (9) 

Results  

Multi-class Strawberry Detection  

Performance of the trained models was evaluated qualitatively and quantitatively using a canopy image dataset collected 

in different time periods in a commercial field. Both regular RGB images and RGB images generated from point cloud (P-

RGB images) were used to test the performances of the trained YOLOv4 model.  

Performance of YOLOv4 in detecting strawberries with different maturity levels  
The performance in detecting strawberries in each maturity group was assessed with AP (Henderson, 2010) and F1 score. 

The performance measures including AP for each class, mAP and IOU achieved by the YOLOv4 (trained for small object) 

model with varying iterations of training are shown in Table 2. The performance was evaluated using the test dataset 

consisting of 100 images of strawberry canopies acquired in the field conditions.   

Table 2. Performance of YOLOv4 (trained to detect small objects) model in detecting strawberry flowers and berries at different maturity 

levels 

Training 

Iterations  

AP of Individual Classes (%) mAP(%) IOU(%) 

Flower Immature Nearly 

mature 

Mature Overripen   

1000 8.60 62.84 20.49 76.87 18.04 39.05 37.84 
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2000 58.70 84.04 73.17 87.99 51.03 70.99 54.00 

3000 58.62 83.58 75.63 87.25 42.85 69.59 52.45 

4000 59.35 85.49 79.45 87.25 44.83 71.27 51.52 

5000 66.30 89.12 80.33 90.03 58.29 76.81 57.40 

6000 66.79 88.15 84.17 90.92 66.24 79.26 58.45 

7000 67.17 87.71 85.28 91.73 71.56 80.69 58.87 

8000 70.66 88.25 84.25 91.12 68.99 80.71 57.01 

9000 68.31 86.14 83.34 88.85 62.62 77.85 53.98 

10000 70.82 88.62 84.10 87.98 61.08 78.52 47.78 

  

From table 2, it was found that the YOLOv4 model was gradually improving until 8,000 iterations (mAP of 80.71%) but 

then slightly deteriorated (by 2.19%) in later 2,000 iterations. The results showed that the performance of YOLOv2 model 

in detecting immature fruits, nearly mature fruits, and mature fruits, which are the core classes of strawberry detection, is 

better than in detecting flowers and overripen fruit. The main reason of the different level of detection performance is the 

number samples of each class available in the training dataset. The number of flowers and overripen fruits in training dataset 

was substantially smaller compared to the number of immature, nearly mature, and mature fruit. The AP for mature fruit was 

achieved over 90% when the model was trained to 7,000 to 8,000 iterations. As matured berries are the objects of interest 

for harvesting, the good performance with this class is essential even with a slightly reduced performance with the flowers 

and overripen fruit. In addition, the AP for nearly mature class was over 84% when the model was trained to 7000 to 8000 

iterations, which helped to reduce the error in determining if a strawberry was mature or immature, and in determining which 

berries are ready for harvesting.  Occlusion was one of major reasons causing errors in detecting strawberries in all classes. 

YOLOv4 model, as with any other fruit detection models using RGB imaging, can only detect visible berries (at least some 

part of the object visible). In addition, for some partially visible berries, as only the visible parts can be detected, can lead to 

positioning error during strawberry detection. Another challenge in classification was caused by nearby parts of calyx or 

leaves overlapping with given fruit, which made it challenging to distinguish mature berries and nearly mature berries.  

The proposed method achieved good performance in detecting nearly mature, and mature strawberries whereas the 

performance was not as good with the flower and overripen groups. The physical structures of flowers and overripen fruits 

are more complex than structures of other three classes and were somewhat similar to the leaves or dead leaves, which could 

have caused some issues in detecting them correctly with YOLOv4 (small object) model. Increasing the dataset size could 

be helpful in the future to improve AP for all the strawberry classes. Additionally, more than two cameras could be applied 

from different angles to detect strawberries, which can provide better point cloud of canopies and also help minimize 

occlusion problems in the canopy.  



ASABE 2021 Annual International Meeting Page 13 

Comparison of YOLO models on strawberry detection  
As mentioned before, different versions of YOLO models were trained and tested for strawberry detection and to 

compare their performances. Fgure 7 shows some example images with different classes of objects detected and visualized. 

The red and blue bounding boxes in the figure were labelled manually to represent the missed detection (FN) and false 

detection (FP) in different classes.  From the figure 7, it can be viewed, qualitattively, that the YOLOv4 (small objects) 

achieved the best performace while there are 2 missed detction with YOLOv2 (figure 7a),  and 2 missed detection and 1 

false detection with YOLOv3 (figure 7b). Although there was no substantial differene in F1 score and mAP (table 3, 

discussed later) between YOLOv4 and YOLOv4 (small objects), there was one missed detction and one false detction with 

YOLOv4 (figure 7c).  

    

                                                                (a)                                                                                         (b) 

    

                                                                          (c)                                                                                         (d) 

Figure 7. Selected example images with depiction of missed detections (red boxes) and wrong detections (blue boxes) of strawberries in different 
groups with (a)YOLO v2, (b)YOLOv3, (c) YOLOv4, and (d) YOLOv4 (small objects). 

The quantitative performance measures based on training dataset and test dataset were shown in table 3 and 4. The 

average processing time of YOLO models on single image with the resolution of 1200×1000 pixels was shown in table 5.   

Table 3. Training performance of various YOLO models on detecting strawberry classes 

Methods AP of Class (%) mAP 

(%) 

F1 

Flower Immature Nearly 

mature 

Mature Overripen   

YOLOv2 55.46 70.88 82.73 84.87 67.08 72.20 0.73 

YOLOv3 79.25 91.80 86.48 93.74 76.94 85.64 0.82 

YOLOv4 86.84 94.45 95.95 96.73 89.31 92.66 0.86 
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YOLOv4(small 

objects) 

88.71 97.23 93.21 97.23 92.29 93.24 0.86 

 

Table 4. Performance of various YOLO models in detecting strawberry classes based on the test dataset 

Methods AP of Class (%) mAP 

(%) 

F1  

Flower Immature Nearly 

mature 

Mature Overripen   

YOLOv2 45.66 65.27 70.09 79.04 44.60 60.93 0.65 

YOLOv3 65.00 84.00 65.67 85.44 59.93 72.01 0.73 

YOLOv4 67.75 86.01 83.82 88.82 67.95 78.87 0.78 

YOLOv4 

(small objects) 

71.51 87.71 85.28 91.73 68.99 80.69 0.80 

 

Table 5. Average processing time of YOLO models for an image with resolution of 1200×1000 pixels 

Model Time (ms)  

YOLOv2 30.80 

YOLOv3 50.75 

YOLOv4 55.26 

YOLOv4(small object) 55.19 

The results (tables 3 and 4) showed that YOLOv2 didn’t perform well on both training and test datasets achieving the 

lowest mAP of 60.9% with test dataset among the YOLO versions evaluated. Meanwhile, the performance of YOLOv3 

increased substanially compared to YOLOv2, as shown by 11.08% increase in AP with the test dataset. When it comes to 

YOLOv4 and YOLOv4 (specialized to small objects), it was found that both models were substantially better in detecting 

various strawberry classes compared to YOLOv2 and YOLOv3,  with mAP over 78.00% in test dataset and over 92.00% in 

training dataset. When comparing YOLOv4 (small object) with YOLOv4 (normal) in detecting mature strawberries, it was  

found that mAP of YOLOv4 (small objects) increased by 1.82% from YOLOv4 while F1 score was increased by 0.02 

(marginal improvements). The AP achieved by YOLOv4 (small object) in each class were also slightly higher than AP 

achieved by YOLOv4 (table 4), in general. It was found that AP of nearly mature class achieved by YOLOv4 on training 

dataset was slightly higher (by 3.74%) than the same achieved by YOLOv4 (small object) model, which, however, was 
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higher with the YOLOv4 (small object) model when it comes to the test dataset.  

From table 5, it was found that YOLOv2 was the fastest model among the tested YOLO versions in detecting strawberries 

classes on a given image (resolution of 1200×1000 pixels), which was expected  as YOLOv2 has a much simpler architecture 

compared to YOLOv3 and YOLOv4. Compared to YOLOv2, the processing speed of YOLOv3 increased by 19.95 ms while 

YOLOv4 and YOLOv4 (small objects) have slower speeds of 55.26 ms and 55.19 ms, respectively. As can be seen and as 

expected, there was no noticeable difference on processing speed of YOLOv4 and YOLOv4 (small objects).  

Detection Results of mature strawberry on Point Cloud 
The point clouds, which were dense and complete, were collected from 100 cm above the plant bed using ZED2 camera. 

The P-RGB images from point cloud had gaps in the both sides of the plant bed, which are the unnecessary parts and 

therefore were removed before strawberry detection but the canopies in the center of the bed were constructed completely. 

Examples of P-RGB images and RGB image were shown in figure 8.  

                   

                               (a)                                                                                    (b)                                                                       (c) 

    

                                  (e)                                                                                     (f)                                                                      (g) 

Figure 8. Examples of P-RGB images and RGB images: (a)(b)(c) examples ofRGB images generated form point cloud, and (e)(f)(g) regular RGB 
images. 

The performance of YOLOv4 (small object) was assessed using 50 P-RGB images. The number of P-RGB images 

used in training dataset was only a small fraction of the total RGB images used. With this test dataset, the model achieved 

an AP of 90.5% in detetcting mature berries, which was slightly lower than when the model was tested with normal RGB 

images (AP of  91.73%). This result indicated that the model is robust to process images collected with different kinds of 

sensors and setting. However, more comprehesive research would be necessary to fully validate this finding. The labels of 

matrue strawberries detected on P-RGB images were projected on the point clouds (figure 12). The location information of 

mature starwberries then can be acquired from these point coulds and can be sent to the controller for robotic harvesting.  
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Figure 9. Selcected examples of completely visible strawberry detection on point cloud based on YOLOv4 and Alexnet 

Classification of mature berries to completely and partially visible categories 

From figure 10(a) and figure 10(b), it was found that the accuracy of AlexNet in detecting completely visible berries was 

90.7% and the same in detecting partially visible berries was 90.0% with the test dataset. The performance of the model was 

slightly better with the training dataset (95.7% for completely visible and 94.2% for partially visible berries. Completely 

visible group had 60 more images than overlapped group, which might have caused the slight difference in the performance 

with two individual classes. The processing time per image (227×227×3 pixels) for this model was 3ms on average.  

    

(a) 
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(b) 

Figure 10.   Confusion matrix of dataset from Alexnet on complex group and occluded group: (a)test dataset, (b) training dataset.   

Conclusion  
In this paper, we presented a machine vision system based on YOLOv4 for strawberry detection including flowers and 

those in four different maturity levels. A post-processing method base on Alexnet was also proposed to classify mature 

berries into completely and partially visible groups for improving the detection result on mature class. This system had 

ability to provide the presence, location, and maturity information of strawberries (including visibility information of mature 

berries) in the canopy under field condition. 

A ZED2 camera was used to collect RGB images, depth images and point clouds of strawberry canopies from 100 cm 

above the plant beds. The performance of YOLOv4 (small object) model was evaluated using average precision (AP), mean 

average precision(mAP), and intersection of union (IOU).  With a test dataset of 100 images, a mAP of 80.7% with IOU of 

57.0% was achieved in detecting mature berries when the model was trained to 8,000 iterations. The model took 55 ms to 

process a single RGB image with a resolution of 1200×1000 pixels. It was found that, among the classes studied, overripen 

fruit were the most difficult to detect (AP of 69.0%) as the overripen fruit had multiple structures and the model may mix 

them with dead leaves. The performance of different YOLO models was also compared, which showed that YOLOv4 (small 

object) had the best performance in strawberry detection task with highest F1 score of 0.80. Besides, the accuracies of 

AlexNet model was found to be 90.7% in classifying mature berries to completely visible category and 90.0% in classifying 

to partially visible category. This information can be useful to allow collaborative manipulators to work together to open up 

the canopies in the area where partially visible, mature berries are found so that they could be better exposed for precise 

picking while directly going for picking the completely visible berries thus improving the efficiency and productivity. 

As mentioned before, the model did not perform well in detecting flower and overripen berries Increasing the dataset 

size could be helpful in the future to improve AP for all the strawberry classes. Additionally, more than two cameras could 

be applied from different angles to detect strawberries, which can provide better point cloud of canopies and help minimize 

occlusion problems in the canopy. In addition, reconstruction of partially visible, mature strawberries and estimation of 

corrected berry locations could be investigated in the future.  
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