A Transformer-Based Framework for Payload Malware Detection and
Classification

Kyle Stein!, Arash Mahyari'-2, Guillermo Francia, III?>, Eman El-Sheikh?
! Department of Intelligent Systems and Robotics, University of West Florida, Pensacola, FL, USA
2 Florida Institute For Human and Machine Cognition (IHMC), Pensacola, FL, USA
3 Center for Cybersecurity, University of West Florida, Pensacola, FL, USA
ks209 @students.uwf.edu, amahyari@ihmc.org, gfranciaiii@uwf.edu, eelsheikh@uwf.edu

Abstract—As malicious cyber threats become more sophisti-
cated in breaching computer networks, the need for effective
intrusion detection systems (IDSs) becomes crucial. Techniques
such as Deep Packet Inspection (DPI) have been introduced to
allow IDSs analyze the content of network packets, providing more
context for identifying potential threats. IDSs traditionally rely
on using anomaly-based and signature-based detection techniques
to detect unrecognized and suspicious activity. Deep learning
techniques have shown great potential in DPI for IDSs due to their
efficiency in learning intricate patterns from the packet content
being transmitted through the network. In this paper, we propose
an accurate DPI algorithm based on transformers adapted for
the purpose of detecting malicious traffic with a classifier head.
Transformers learn the complex content of sequence data and
generalize them well to similar scenarios thanks to their self-
attention mechanism. Our proposed method uses the raw payload
bytes that represent the packet contents and is deployed as man-in-
the-middle. The payload bytes are used to detect malicious packets
and classify their types. Experimental results on the UNSW-NB15
and CIC-IOT23 datasets demonstrate that our transformer-based
model is effective in distinguishing malicious from benign traffic in
the test dataset, attaining an average accuracy of 79 % using binary
classification and 72 % on the multi-classification experiment, both
using solely payload bytes.

Index Terms—Malware Detection, Malware Classification, Deep
Packet Inspection, Transport Layer Security

I. INTRODUCTION

As network traffic continues to evolve in modern society, the
importance of Deep Packet Inspection (DPI) becomes an essen-
tial tool for the analysis of network packets and the security of
networks. DPI goes beyond analyzing the network five-tuple,
which consists of the source and destination IP address, source
and destination port number, and the transport layer protocol,
but also examines the data payload of each packet. The data
payload of each packet consists of the content or information
flowing through the network and processed by the respective
end hosts. DPI dives into the actual content of data packets to
extract valuable insights to identify threats or anomalies. The
importance of DPI lies in the fact that adversaries can modify
their MAC addresses or employ third-party devices, such as
cloud services, to transmit malicious packets. These alterations
make it challenging to identify such packets using only the
traditional five-tuple approach. By thoroughly examining the
payload of each packet, DPI can help distinguish between
malicious or benign payloads, as well as the types of cyber
attacks. Malicious payloads may include malware, viruses,
or phishing attacks, while benign payloads include legitimate

979-8-3503-8780-3/24/$31.00 ©2024 IEEE

data and information exchanged between the network. Several
research papers have contributed significantly to the field of
DPI by proposing various approaches and methodologies.

In [1], researchers describe an overview of the three differ-
ent implementations of DPI. 1) Signature-based Identification:
Relies on comparing the signatures (port numbers, string pat-
terns, or bit sequences) of packets with known signatures in
order to identify the associated application. Each application
is associated with a specific signature that may include port
numbers, string patterns, or bit sequences. By matching the
signatures, DPI can recognize the data flow and determine the
corresponding application. 2) Application layer-based Identifi-
cation: Particularly useful for applications with distinct control
and service features, this method zeroes in on the application
gateway via the analysis of control and relative service flows.
3) Behavior-based Identification: Employed when data flows
cannot be recognized by any known protocol. Instead, DPI
analyzes user behavior or specific terminal characteristics to
make judgments. For example, certain behaviors can be used to
identify and filter out spam emails. The flow and relative service
flow are examined to define the specific protocol associated
with the behavior. Machine and deep learning models tend to
fall under the category of behavior-based identification since
they are designed to identify patterns and behaviors within the
data.

Aceto et al. [2] discuss the intersection of deep learning
on mobile traffic classification. The authors discuss how deep
learning models offer the potential to handle network traffic
without relying on port information and can effectively distin-
guish between traffic generated by different applications. In [3],
authors employed various techniques, such as self-taught learn-
ing and soft-max regression. The study used the NSL-KDD as
a benchmark dataset. Supervised learning techniques were used
on over 41 statistical features, where none of the features were
strict payload bytes. Doshi et al. [4] leveraged machine learning
for identifying Distributed Denial of Service (DDoS) attacks.
Four machine learning models and one simple neural network
were used to distinguish between normal Internet of Things
(IoT) traffic and DDoS attacks. The paper focused on creating
a novel dataset to test the algorithms and resulted in a large
sample size of unbalanced malicious and benign samples.

In [5], machine learning techniques are leveraged to classify
IP traffic on a 4G network. These researchers also generated
their own dataset on the 4G network and applied common

machine learning algorithms to the packet content of the
dataset. The paper does not mention testing on malicious
traffic, but rather the IP traffic being transmitted through the
network. In [6], the authors applied machine and deep learning
techniques to detect DDoS attacks on a sample dataset. None
of the included features included raw payload bytes, but instead
variables such as total number of packets, bytes, and total
duration of packet transaction.

DPI faces several current limitations that impact its effective-
ness and performance. DPI is known to be resource-intensive
since analyzing packet data requires substantial computational
resources, especially since most networks have high volumes
of traffic being transmitted through it. Thus, the state-of-the-art
DPI algorithms limit the inspection of payloads to the initial
bytes of packets. By only inspecting the initial portion of a
packet’s data, a system may overlook threats hidden deeper
within the payload. Another challenge that DPI is currently
facing is the growth of encrypted traffic being transmitted over
networks. It is estimated by security researchers at Sophos
that nearly 46% of all malware in 2020 was hidden within
an encrypted package [7]. This challenge limits the ability to
preserve privacy while inspecting payloads and requires parties
to share their encryption keys with them to decrypt payloads,
perform inspection and encrypt packet contents.

The main contribution of this paper is the introduction of
an algorithm for malware detection and classification based on
transformers [8]. The proposed architecture capitalizes on the
self-attention mechanism of transformers to capture the intricate
patterns and dependencies present in the raw bytes of the
network packet payloads, rather than relying on statistical-based
features from packets. The payload contains the actual content
of the network packet and would likely hold discernible patterns
or signatures of malicious activity, while other information,
such as the packet headers, are only meant for the transmission
and management of data over a network and primarily contain
addressing and protocol information. The proposed approach
achieves not only enhanced accuracy in identifying malicious
payloads, but also pushes the boundaries of current methodolo-
gies that help distinguish malicious payload types by employing
two different classification heads.

II. DATA
A. Datasets

To evaluate the performance of the proposed method, we
use several well-known and reputable datasets in this pa-
per: the UNSW-NB15 [9] and CIC-1oT23 [10]. The UNSW-
NB15 dataset was created to overcome the shortcomings of
the limited amount of publicly available intrusion detection
network datasets, and includes 100 GB of raw network PCAP
(Packet Capture) traffic, with various types of real and synthetic
attacks. The CIC-IoT23 dataset aims to contribute a new and
realistic IoT attack dataset, including seven different types of
attacks categories. The data was recorded over an IoT topology
composed of 105 devices, including raw network PCAP files
for each type of attack and benign instances. The sample sizes
for both datasets are shown in Table I

B. Data Pre-processing

In this section, we describe the pre-processing steps to pre-
pare the datasets. The UNSW-NB15 dataset offers an extensive
set of ground truth labels and various components like the
network five-tuple and attack timelines. From the available 100
GB of PCAP data, 4 GB were chosen to ensure efficiency
throughout the study. For the CIC-IOT23 dataset, one benign
and three attack PCAP files were chosen: Benign, Backdoor
Malware, Vulnerability Attack, and Brute Force Attack.

For our study, we are only interested in the TCP and the UDP
transport layer information since these account for the majority
of the network traffic on the transport layer. We discard packets
that do not contain any payloads, corresponding to handshakes,
acknowledgment, and any other network protocols and only
focus on the packets that contain payloads.

1) UNSW-NBI5: Each PCAP file is processed by extracting
the network five-tuple from each TCP or UDP packet, along
with the timestamp and the corresponding transport layer
payload. The transport layer payload bytes are converted to
hexadecimal format, with all duplicate payload values omitted.
The following step is to cross-reference the resulting dataset
against the ground truth labels. By matching the rows based on
IP addresses, ports, and adjusting the attack start and end time
fields, we accurately label the benign and malicious network
traffic flows. The network five-tuple is only used to cross-
reference the ground truth labels, not as input into the model.
The payload bytes are converted into hexadecimal and are then
transformed into decimal integer format. These decimal integers
are the primary input into the model architecture.

The outputs of the above process finalize the attack portion
of the UNSW-NBI15 dataset. The payload column data are
selected and assigned labels of 1 for each row of malicious
data. Similarly, we randomly select an equal number of benign
payload entries as malicious entries to balance the final dataset.
The benign entries are labeled as 0. It is important to randomly
select an equal amount of benign and malicious entries to
ensure the model is not biased toward the majority class,
which could lead to a significant number of false positives or
negatives. The finalized binary classification dataset contains
an equal amount of benign and malicious entries.

For the multi-class dataset, we specifically analyze three
types of attacks: Fuzzers, Exploits, and Generic. These attacks
were selected because they are known for their complex and
sophisticated payloads, in contrast to attacks like distributed de-
nial of service (DDoS), which primarily rely on overwhelming
volume rather than payload complexity. Fuzzers aim to disrupt
the functioning of a program or network by feeding it randomly
generated data. Exploits are attacks that take advantage of
known security vulnerabilities within an operating system or a
piece of software. Generic refers to a broad category of attacks
that are effective against all block ciphers, regardless of the
block or key size, without considering the specific structure of
the block-cipher. This could involve a variety of methods to
undermine encryption and data integrity.

2) CIC-10T23: The pre-processing steps for the CIC-IOT23
dataset are similar to that of the UNSW-NB15. The processing

TABLE I
Dataset Sample Sizes for Binary and Multiclass Classification

Dataset Total Benign Malware | Malware Type | Multiclass

UNSW-NB15 40,030 20,015 20,015 Fuzzers 821
Exploits 821
Generic 821

CIC-I0oT23 2,953,980 | 1,476,990 | 1,476,990 | Backdoor 12,454
Vulnerability 12,454
Brute Force 12,454

starts with the extraction of the respective transport layer
payload from every TCP or UDP packet for each of the four
selected PCAP files. These payload bytes are then transformed
into hexadecimal format, ensuring once again the removal
of any duplicate payloads. Each extracted sample of attack
payload bytes are concatenated to form one dataset, while other
resulting dataset consists of benign payload bytes.

Following these steps, the attack and benign datasets are
established. The payload bytes are converted to hexadecimal
format and are then converted to decimal integers. Every row
of malicious data is tagged with a label of 1. To ensure balance
in the dataset and prevent biases in the model that could
potentially lead to a high number of false positives or negatives,
an equal number of benign payload entries are randomly chosen
to match the malicious ones. All benign traffic entries are
consequently labeled as O for the classification analysis.

Similarly to the UNSW-NB15 dataset, our study specifically
focuses on three types of attacks for the CIC-IOT23: Backdoor
Malware, Vulnerability Attack, and Brute Force Attack. These
attacks rely on the specific bytes within the payload to carry
out their malicious goals, similar to the attacks chosen from the
UNSW-NBI15 dataset. Backdoor Malware attacks demonstrate
how unauthorized remote access can be gained by attackers.
Vulnerability Attacks aim to show the exploitation of weak-
nesses within the IoT devices or network. Brute force attacks
are attempts to crack passwords or encryption through trial and
error.

III. ARCHITECTURE AND MODEL TRAINING

In this section, we describe the architecture, training, and
evaluation of our model for deep packet inspection.

A. Architecture

Transformer-based models have been powerful in natural
language processing tasks due to their ability to understand
the relationships between words in sequential textual data. Al-
though individual bytes in a network packet may not inherently
carry semantic meanings like words in a sentence, their se-
quences, patterns, and relative positions can encapsulate infor-
mation about the nature of the packet. Leveraging transformer’s
capability to capture contextual patterns, we show that it can be
effectively applied to discern distinctions in packet sequences.
This process is powered by the self-attention mechanism [11],
enabling each byte in the input sequence to reference and weigh
other bytes within that sequence while formulating its output
representation. This determines a significance score for each
byte in the sequence, denoting the degree of attention it should
receive.

The model architecture can be divided into three main parts:

« Embedding Layer: The initial layer converts input se-
quences, segment identifiers, and position indexes into
vectors. These input sequences are derived from the en-
coded and padded data prepared during the preprocessing
phase.

o Transformer Blocks and Self-Attention Mechanism:
The transformer blocks form the core of the model,
with each block comprised of a transformer encoder that
integrates a multi-head self-attention mechanism and a
position-wise fully connected feed-forward network [12].
Within our model are 12 of these transformer blocks. The
self-attention mechanism is what sets transformers apart
from other traditional deep learning architectures. The self-
attention mechanism can attend to all positions in the
sequence concurrently, which is necessary in capturing
long-range interdependencies. With the aid of positional
encodings, transformers can maintain the sequence’s order,
an essential feature for sequential data such as network
packets.

o Output Layer: The final hidden state corresponding to
the first token in each sequence is used as the aggregate
sequence representation for classification tasks. In our
case, it is used to determine whether a network packet
is benign or malicious.

The selected hyperparameters of the model include the
number of unique bytes (i.e. 256), hidden size, number of
hidden layers, number of attention heads, the intermediate size,
maximum length of the input payload, and the number of labels
for this application, and are presented in Table II.

TABLE II: Model Configurations

Configuration Parameter | Value
unique_bytes 256
hidden_size 768

num_hidden_layers 12
num_attention_heads 12
intermediate_size 3072

max_position_embeddings 1460

num_labels 2or3

The unique bytes parameter represents the total number of
unique elements found in the input data, totalling 256, for
each unique hexadecimal value. The hidden size parameter
is essential in determining the dimension of the hidden state.
The number of hidden layers represents the number of stacked
transformer layers present in the model. Complementing these
layers is the number of attention heads, which control the
model’s ability to attend to different segments of the input.
This is pivotal for the model to comprehend and learn from the
input data effectively.

The intermediate size determines the dimension of the inter-
mediate later in the network within each transformer layer. This
value helps ensure that the network can process and transform
the input data at each layer effectively. The maximum position
embeddings denote the maximum length of the input sequence.
For this study, we do not restrict the maximum payload length,
which is up to 1460 bytes. The last hyperparameter is the

N [Model Architecture] —
Data Pre-Processing Model Training
Extract TCP and UDP Packets from PCAP Embedding Layer Data Split
T | | Converts input sequences, segment I
} | } identifiers, and position indexes into |
| | | vectors. | S
77777 ! Training Testing Validation
Hexadecimal Payload Representation @ @
Self-Attention Mechanism
4745S4202F 20 ... 04 Training and Loss Function
504753 54202F ... 3E t.’ - =
Y Y n 2 AdamW, Leaming Rate = 2e-5
v v v v a
3D 06A3 0355 FO ... 20 +-Entropy Loss
*. ks @ @
¥ v v ¥

Decimal Integer Payload Representation

716984324731.... 1

807983843247 ...

616163 3 85 240 .

I|u I|m I|
[M Bl =

Classifier

I

Fig. 1: The overall architecture of the proposed packet detection algorithm. Represented here is the payload as input for
the model. First, the input payload is pre-processed and converted to hexadecimal format. Next, every two hexadecimal
characters are converted to a decimal integer value between [0, 255]. The integer strings are then fed into the embedding
layer to obtain its embedding vector, then processed in the self attention mechanism. The classifier head then predicts

if the packet is either benign or malicious.

number of labels, which is set to 2 for binary classification or
3 for multi-class classification. These configurations remained
consistent through our study of analyzing the payload bytes.

B. Model Training

The model is trained using a 70-20-10 split: 70% of the data
is used for training, 20% is used for testing, and 10% is used
for validation. To enhance the model’s generalization across
all classes, each class is balanced to have the same number of
samples, ensuring fair representation of each class throughout
model training. The training process of the transformer and
classification head is conducted end-to-end. The transformer is
responsible for encoding the input sequences into representa-
tions that capture the patterns and dependencies in the data.
The classification head takes these representations and maps
them to respective class labels.

Cross-entropy loss is used as the cost function to train the
model and the AdamW optimizer is used with a learning
rate of 2e-5. The AdamW optimizer provides weight decay
regularization, an approach which is crucial as it limits the
magnitude of the weights, preventing the model from becoming
overly complex and generalized to the training data, in-turn
resulting in the mitigation of overfitting [13].

The model is trained for 5 epochs and a scheduler for
learning rate decay is also used to reduce the learning rate
over the training period. The scheduler gradually increases the
learning rate from zero to a specified learning rate during the
warmup period, then linearly decreases the learning rate over
the remaining epochs of training [14]. This process encourages
the model to find a more generalized solution for the test and
validation sets, rather than just the training set. This learning
rate strategy also benefits in the prevention of overfitting, as it
prevents the model from converging too quickly to a solution
that may be specific to the training data. The training of the

model was conducted on NVIDIA GeForce RTX 2080 GPUs.
This state-of-the-art hardware enabled us to harness significant
computational power, facilitating faster processing and more
efficient learning from the datasets.

IV. ENCRYPTED TRAFFIC

In our study, we focus on the raw payload bytes within
TCP and UDP network packets from the discussed datasets.
However, it is crucial to note the limitations when dealing
with encrypted traffic. Cryptography—the process of encrypting
the data—secures the transmission of data flowing through a
network, making the data unreadable to unauthorized users
without the proper keys. When the plaintext is encrypted
with a key resulting in the ciphertext, the ciphertext gives no
information about the plaintext [15]. Let’s assume m is the
random variable representing the raw payload message and
Ey(.) is the encryption algorithm that encrypts the message
with the key k. Then, knowing the ciphertext c¢; reveals
absolutely no information about the plaintext mq: p(m =
m1|Ex(ml) = ¢1) = p(m = mq). In plain words, every
time the plaintext m; is decrypted with the same cryptography
algorithm Fj(.) and the same encryption key k, it results
in a different ciphertext, thus revealing no information about
the plaintext [15]. While several studies have been able to
classify the traffic of different applications from the cipher text
[16] [17], their success is attributed to the fact that different
applications use different random generators for encryptions
which appears as a signature in their encrypted payloads but
still reveal no information about the plaintext [18]. On the other
hand, malware detection algorithms (including the proposed
algorithm in this paper) requires access to the information of
the plaintext that cannot be revealed by the ciphertext. If any
algorithm is able to detect the signature of malware from the
ciphertext, it means that the encryption algorithm is not strong

TABLE III: Results of Binary Classification of Malware Detection on the Test Dataset

Method UNSW-NBIS CIC-IOT23

Accuracy | Precision | Recall | FI-Score | Accuracy | Precision | Recall | F1-Score
1D-CNN [21] 74.98 68.37 93.06 | 78.82 75.30 72.63 81.72 | 7691
2D-CNN [22] 75.56 68.41 9546 | 75.56 72.19 68.47 82.54 | 74.85
LSTM [22] 71.65 69.33 77.71 73.28 71.60 71.18 72.65 | 7191
Proposed Method | 79.57 73.26 93.16 | 79.57 79.07 73.79 90.38 | 81.25

TABLE IV: Results of Multiclass Classification of Malware Types on the Test Dataset

Method UNSW-NBIS CIC-IOTZS

Accuracy | Precision | Recall | FI-Score | Accuracy | Precision | Recall | FIl-Score
1D-CNN [21] 71.60 72.50 71.60 71.93 62.61 66.75 62.61 62.45
2D-CNN [22] 72.41 7717 72.41 73.22 61.05 66.28 61.05 60.60
LSTM [22] 69.98 70.21 69.83 69.92 60.39 62.94 60.41 60.24
Proposed Method | 74.24 76.34 74.24 74.61 69.25 70.51 69.25 69.31

enough to hide the information about the plaintext which means
p(m = mq|Ex(ml) = ¢1) # p(m = mq). We have conducted
several experiments to demonstrate this.

We implemented both Advanced Encryption Standard (AES)
encryption [19] and Fernet symmetric encryption [20] on the
payloads. AES takes the raw payload data, a 256-bit key, and
a 16-byte initialization vector (IV) to produce the encrypted
output. Each key and IV combination ensures the uniqueness
of the encryption process. Fernet uses AES in Cipher Block
Chaining (CBC) mode with a 128-bit key for encryption.
After encrypting the payloads, similar procedures discussed
in the methodology above were implemented. Each encrypted
payload, in hexadecimal format, was converted to a decimal
integer sequence and then padded to ensure uniform length for
each input.

These inputs were then trained and tested in a similar manner
as above with the same architecture. The AES cryptologic
algorithm results showed that the model was not able to
effectively distinguish between malicious and benign payloads,
with a test accuracy of 57.16% and an F1-Score of 44.52%. This
demonstrates that encryption algorithms like AES successfully
diminish the learnable patterns in the raw bytes, which our
model relies on to classify the payloads. However, the Fernet
algorithm produced a test accuracy of 91.41% and an FI-
Score of 92.09%. This experiment shows that certain encryption
algorithms may not be strong enough to hide the plaintext
information, while others can.

V. RESULTS

To evaluate the performance of the proposed method, several
metrics are taken into consideration. For this study, we consider
accuracy, precision, recall, and F1-Score on the test dataset. It
is important to note that the test dataset used in our evaluation
process differs from the training dataset. The test dataset con-
sists of randomly selected, unseen samples and ensures that the
model is using a distinct dataset to evaluate the performance.

The proposed method is compared against other state-of-the-
art models [21] [22]. Our primary intention behind compar-
ing a transformer model with these deep learning algorithms
lies in evaluating different sequence processing architectures.
While all of these models fundamentally process sequences,

their mechanisms are distinct. Convolutional Neural Networks
(CNNSs) capture localized patterns and hierarchical structures in
data. This is valuable when analyzing patterns emerging from
chunks of network packets. Long Short-Term Memory networks
(LSTMs) utilize recurrent connections to remember patterns
over long sequences. However, our transformer-based model
is designed to comprehend and capture context over a wider
range without the recursive nature of LSTMs. The self-attention
mechanism allows the model to weigh significance of different
parts of the sequence, providing a global understanding of data.

Our study differs in several aspects. We first eliminated
duplicate payload values, which allowed the model to analyze
unique payloads, increasing the data quality to better generalize
to unseen data. Additionally, our input was not limited to the
inital 784 payload bytes as seen in [21], but used the maximum
of 1460 bytes. The typical Maximum Transmission Unit (MTU)
which can be sent through a packet-based network is 1500
bytes, minus 40 bytes for the header information. The header
data was omitted to reduce bias that may be introduced by
the networking addresses and protocol details. By utilizing
strict payload bytes, we ensured our model had access to all
available information within each payload, which is crucial
since malicious data may be hidden deeper into the payload of
some packets. The limitation of discarding portions of byte data
is addressed, showing a more global nature of the complexity
of each payload. The evaluation results for the classifiers can
be found in Tables III and IV. We assessed the performance of
these classifiers under two conditions: binary classification and
multi-class classification tasks.

A. Binary Classification

Table II displays the performance comparisons of the stateof-
the-art methods for malware detection in a binary classification
setting. Across the two datasets used for evaluation, the pro-
posed method consistently outperformed the other techniques.
For the UNSW-NB15 dataset, the proposed method achieved
the highest accuracy of 79.57%, superior to 1D-CNN, 2D-
CNN, and LSTM, which scored 74.98%, 75.56%, and 71.65%,
respectively. The great performance of the proposed method
is attributed to its ability to capture the context using its
self-attention mechanism. In terms of F1-Score, the proposed

method reported the best score at 79.57%, while 1D-CNN,
2D-CNN, and LSTM secured 78.82%, 75.56%, and 73.28%,
respectively. However, the recall of the proposed method was
slightly less compared to the 2D-CNN. This indicates a po-
tential area of improvement in minimizing our method’s false
negatives, which is crucial for reducing the risk of undetected
malware.

For the CIC-IOT23 dataset, our method outperformed sev-
eral benchmarks. Our proposed method achieved an accuracy
of 79.07% and an F1-Score of 81.25%. In comparison, the
IDCNN vyielded an accuracy of 75.30% with an F1-Score
of 76.91%, the 2D-CNN had an accuracy of 72.19% and an
F1-Score of 74.85%, and the LSTM delivered an accuracy
of 71.60% alongside an F1-Score of 71.91%. The results
indicate that the proposed method, when trained on either of
the datasets, provides a significant performance improvement
over the compared models across the majority of metrics. This
demonstrates the valuable information that the payload carries
for network intrusion detection tasks.

B. Multi-Class Classification

Table III reveals significant improvements in multi-class
malware detection compared to state-of-the-art methods on both
datasets. Each dataset consisted of three different types of
malware, referenced above in the data pre-processing section.
For the UNSW-NB15 dataset, the proposed method achieved
the highest performance metrics across most categories: an
accuracy of 74.24%, recall of 74.24%, and F1-Score of 74.61%.
In comparison, the 2D-CNN method achieved an accuracy of
72.41%, the highest precision of 77.17%, recall of 72.41%,
and F1-Score of 73.22%. The 1D-CNN method resulted in an
accuracy of 71.60%, precision of 72.50%, recall of 71.60%, and
F1-Score of 71.93%. The LSTM method produced an accuracy
of 69.98%, precision of 70.21%, recall of 69.83%, and F1-
Score of 69.92%. When applied to the CIC-IOT23 dataset, the
proposed method again outperformed the comparative methods
with an accuracy of 69.25%, precision of 70.51%, recall of
69.25%, and F1-Score of 69.31%. The 1D-CNN achieved
metrics of 62.61% in both accuracy and recall, 66.75% in
precision, and 62.45% in F1-Score. The 2D-CNN metrics
showed 61.05% for accuracy and recall, 66.28% for precision,
and 60.60% for F1-Score. The LSTM model’s performance
once again produces the lowest results at 60.39% for accuracy,
62.94% for precision, 60.41% for recall, and 60.24% for F1-
Score. The findings suggest that the proposed method for
multi-class classification demonstrates enhanced performance
in identifying the three distinct types of attacks within each
dataset, compared to the previous methodologies. This further
highlights the impact our proposed approach has in bolstering
network intrusion detection, reinforcing the performance of our
methodology for cybersecurity defenses.

VI. CONCLUSION

This paper explored the application of a transformer-based
model for malware detection and classification. The model
was evaluated on the UNSW-NB15 and CIC-IOT23 datasets,

focusing on the payloads of UDP and TCP packets serving as
inputs. Our method produced robust results on the classification
of benign versus malicious packets when compared to state-of-
the-art methods. Using the payload bytes as input vectors, we
were able to classify when different packets are either benign
or malicious, as well as which types of attacks were present.
While the payload bytes of packets are significantly different
from the natural language structure, this study shows that the
transformer-based model developed for natural language can be
leveraged to capture and learn the intricate sequential patterns
of the payload bytes. Future research in this area will focus
on utilizing self-supervised and few-shot learning methods
to deepen the understanding of packet bytes, differentiating
between packet headers and payloads, and examining the ability
for models to generalize across different datasets. This approach
aims to boost the robustness of models in diverse network
settings.

VII. ACKNOWLEDGEMENT

This work is partially supported by the UWF Argo Cyber
Emerging Scholars (ACES) program funded by the National
Science Foundation (NSF) CyberCorps® Scholarship for Ser-
vice (SFS) award under grant number 1946442. Any opinions,
findings, and conclusions or recommendations expressed in this
document are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES

[1] R. T. El-Maghraby, N. M. Abd Elazim and A.M. Bahaa-Eldin, A
survey on deep packet inspection,” 2017 12th International Conference
on Computer Engineering and Systems (ICCES), Cairo, Egypt, 2017, pp.
188-197, doi: 10.1109/ICCES.2017.8275301.

[2] G. Aceto, D. Ciuonzo, A. Montieri and A. Pescapé, "Mobile Encrypted
Traffic Classification Using Deep Learning: Experimental Evaluation,
Lessons Learned, and Challenges,” in IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 445-458, June 2019, doi:
10.1109/TNSM.2019.2899085.

[3] P. Patheja, M. Kulkarni. (2016). A Deep Learning Approach for Network
Intrusion Detection System. In Proceedings of the Ninth International
Conference on Ubiquitous and Future Networks (ICUFN) (pp. 63-68).
IEEE.

[4] R. Doshi, N. Apthorpe and N. Feamster, "Machine Learning DDoS
Detection for Consumer Internet of Things Devices,” 2018 IEEE Security
and Privacy Workshops (SPW), San Francisco, CA, USA, 2018, pp. 29-
35, doi: 10.1109/SPW.2018.00013.

[5]1 A. Rahul, A. Gupta, A. Raj and M. Arora, "IP Traffic Classifica-
tion of 4G Network using Machine Learning Techniques,” 2021 5th
International Conference on Computing Methodologies and Commu-
nication (ICCMC), Erode, India, 2021, pp. 127-132, doi: 10.1109/IC-
CMC51019.2021.9418397. communications/

[6] JG. Almaraz-Rivera , JA. Perez-Diaz , JA. Cantoral-Ceballos, Transport
and Application Layer DDoS Attacks Detection to IoT Devices by Using
Machine Learning and Deep Learning Models. Sensors. 2022; 22(9):3367.
https://doi.org/10.3390/5s22093367

[7]1 S. Gallagher. Nearly half of malware now use TLS to conceal

communications. [Online]. Available. https:/news.sophos.com/en-
us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-
communications/

[8] J. Devlin, M-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9]1 Moustafa, N. and Slay, J., “UNSW-NBI15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
2015 Military Communications and Information Systems Conference
(MIICIS), 1-6, IEEE, Canberra, Australia (2015).

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, A. A.
Ghorbani. "CICIoT2023: A real-time dataset and benchmark for large-
scale attacks in IoT environment,” Sensor (2023) — (submitted to Journal
of Sensors).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
1. Polosukhin, (2017). Attention is all you need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

A. Zhang, Z. C. Lipton, M. Li, A.J. Smola (2023). Transformer. In Dive
into Deep Learning.

1. Loshchilov and F. Hutter, "Decoupled Weight Decay Regularization,”
arXiv preprint arXiv:1711.05101, 2019.

Hugging Face, ”“Main classes - optimizer and schedules,”
Transformers, Accessed: May 17, 2023. [Online]. Available:
https://huggingface.co/docs/transformers/main_classes/ opti-

mizer_schedules

Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. (2018).
Handbook of applied cryptography. CRC press.

S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao and M. Conti, "Detecting
Android Malware Leveraging Text Semantics of Network Flows,” in IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1096-1109, May 2018, doi: 10.1109/TIFS.2017.2771228.

F. Al-Obaidy, S. Momtahen, M. F. Hossain and F. Mohammadi, "En-
crypted Traffic Classification Based ML for Identifying Different Social
Media Applications,” 2019 IEEE Canadian Conference of Electrical and
Computer Engineering (CCECE), Edmonton, AB, Canada, 2019, pp. 1-5,
doi: 10.1109/CCECE.2019.8861934.

Lotfollahi, M., Zade, R. S. H., Siavoshani, M. J., and Saberian, M. (2017).
Deep Packet: A Novel Approach For Encrypted Traffic Classification
Using Deep Learning. http://arxiv.org/abs/1709.02656

PyCryptodome. (n.d.). AES - Advanced Encryption Standard. Retrieved
from https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html
Cryptography.io. Fernet (symmetric encryption). (n.d.). Retrieved from
https://cryptography.io/en/latest/fernet/”

M.J. De Lucia, PE. Maxwell, N.D. Bastian, A. Swami, B. Jalaian,
N. Leslie, "Machine learning raw network traffic detection,” Proc.
SPIE 11746, Artificial Intelligence and Machine Learning for Multi-
Domain Operations Applications III, 117460V (12 April 2021); doi:
10.1117/12.2586114

L. Xu, X. Zhou, Y. Ren and Y. Qin, ”A Traffic Classification Method
Based on Packet Transport Layer Payload by Ensemble Learning,” 2019
IEEE Symposium on Computers and Communications (ISCC), Barcelona,
Spain, 2019, pp. 1-6, doi: 10.1109/ISCC47284.2019.8969702.

