Towards Novel Malicious Packet Recognition: A Few-Shot Learning
Approach

Kyle Stein!, Arash Mahyari12, Guillermo Francia, III?, Eman El-Sheikh?
! Department of Intelligent Systems and Robotics, University of West Florida, Pensacola, FL, USA
2 Florida Institute For Human and Machine Cognition (IHMC), Pensacola, FL, USA
3 Center for Cybersecurity, University of West Florida, Pensacola, FL, USA
ks209 @students.uwf.edu, amahyari@uwf.edu, gfranciaiii@uwf.edu, eelsheikh@uwf.edu

Abstract—As the complexity and connectivity of networks
increase, the need for novel malware detection approaches
becomes imperative. Traditional security defenses are becoming
less effective against the advanced tactics of today’s cyberattacks.
Deep Packet Inspection (DPI) has emerged as a key technology
in strengthening network security, offering detailed analysis of
network traffic that goes beyond simple metadata analysis. DPI
examines not only the packet headers but also the payload
content within, offering a thorough insight into the data travers-
ing the network. This study proposes a novel approach that
leverages a large language model (LLM) and few-shot learning
to accurately recognizes novel, unseen malware types with few
labels samples. Our proposed approach uses a pretrained LLM
on known malware types to extract the embeddings from packets.
The embeddings are then used alongside few labeled samples
of an unseen malware type. This technique is designed to
acclimate the model to different malware representations, further
enabling it to generate robust embeddings for each trained and
unseen classes. Following the extraction of embeddings from
the LLM, few-shot learning is utilized to enhance performance
with minimal labeled data. Our evaluation, which utilized two
renowned datasets, focused on identifying malware types within
network traffic and Internet of Things (IoT) environments. Qur
approach shows promising results with an average accuracy of
86.35% and F1-Score of 86.40% on different malware types
across the two datasets.

Index Terms—Malware Detection, Malware Classification,
Traffic Classification, Few-Shot Learning

I. INTRODUCTION

As the digital world expands with the sophistication of net-
works and devices, the urgency for robust malware detection
intensifies. With the constant evoluton of malware being intro-
duced in cyberattacks, traditional security mechanisms, such
as firewalls and antivirus software, are becoming less effective.
These traditional defenses mainly depend on recognizing
predefined packet headers and known malware signatures,
which leaves a gap for more complex cyberattacks that do
not match existing and previously learned patterns. With an
estimated 560,000 new malware instances identified daily, and
over 1 billion malware programs currently known [1], the
sheer volume and diversity of these threats necessitate a shift
from traditional signature-based detection methods to systems
that are more adaptive and intelligent. Deep Packet Inspection
(DPI) steps in as a crucial technology for analyzing network
traffic in detail, surpassing standard network monitoring tools
by inspecting not just the packet’s header information, like
source and destination IP addresses, but also scrutinizing
the data payload. DPI’s integration with machine learning

algorithms can further enhance its effectiveness, allowing
for the dynamic identification of novel threats by analyzing
patterns in network payloads, thereby bridging the gap left by
traditional security measures and fortifying defenses against
introduced cyber threats. This analysis provides a deeper
insight into the traffic’s nature, allowing for the detection of
malicious activities that might otherwise remain hidden.

In the context of advancing malware detection within net-
works, several related works underscore the shift towards more
intelligent and adaptive security solutions. In [2], researchers
highlighted the application of deep learning techniques for
enhancing DPI capabilities, specifically using convolutional
neural networks (CNNs) and fully connected neural net-
works to analyze and classify network traffic. Xu, et al. [3]
investigated the efficacy of ensemble learning models for
malware detection in networks, emphasizing the importance
of developing models capable of swiftly adapting to novel
malware signatures. Farrukh, Wali, Khan and Bastian [4] em-
ployed a method where packet-level byte data was converted
into image-based representations. These images were then
used to train two types of datasets: a base learner dataset
containing examples of benign data, and a meta learner dataset
comprising instances of known cyber attacks. This training
enabled meta-classifier models to identify unknown attacks.
Stein, Mahyari, and El-Sheikh [5] showed that payloads which
are present in the Controller Area Network (CAN) of vehicles
can be classified as either benign or malicious based on an
end-to-end Recurrent Neural Network (RNN). However, it is
important to note the fundamental differences between the
structure of CAN and IP network payloads. The CAN bus
supports a maximum message payload of eight bytes per
frame, while the typical maximum transmission unit (MTU)
of an IP network packet is 1500 bytes.

In this study, we propose a novel framework for detecting
and classifying malware. In this approach, our method relies
on incorporating a LLM-based architecture [6], capitalizing
on the self-attention mechanism to decipher the raw bytes
within network packets effectively. Our proposed approach
leverages the capabilities of LLMs to learn the sequential
patterns of packets and extract embeddings from packets that
best represent them. The main contribution of our approach
lies in learning and classifying novel types of malware from
a limited set of labeled samples (i.e. few shots). This enables
the transfer of knowledge learned from the known malware
types to the newly introduced malware with only few labeled

examples [7], enhancing our model’s ability to quickly adapt
and recognize novel malware threats with limited exposure.
This few-shot adaptability, combined with the LLM’s focus
on producing class-specific embeddings, elevates our clas-
sification methodology beyond traditional malware detection
systems by offering a robust solution to the advancement of
introduced malware threats.

II. DATA AND PRE-PROCESSING

In this section, we describe the pre-processing steps to
prepare the datasets for analysis. We discard packets that
do not contain any payloads, corresponding to handshakes,
acknowledgment, and any other network protocols and only
focus on the packets that contain payloads.

A. UNSW-NBI5

The UNSW-NB15 dataset [8] was developed for enhancing
public intrusion detection datasets, containing 100 GB of raw
network data in PCAP format with a mix of real and simulated
attacks. It includes comprehensive ground truth labels, the
network five-tuple, and attack timelines for in-depth network
analysis. We utilize the extracted UNSW-NB15 dataset made
available in [11]. The dataset preparation involves extracting
five-tuple information from TCP/UDP packets, converting
packet bytes to hexadecimal, and removing duplicates to
form a detailed matrix of network interactions. This matrix
is then cross-referenced with ground truth labels to classify
traffic packets as benign or malicious accurately, based on IP
addresses, ports, and attack timings. For the model, packet
bytes, converted to decimal integers, are the main input. The
dataset is balanced by selecting equal numbers of malicious
packets between three chosen attacks and are subsequently
labeled. It is important to randomly select an equal amount
of malicious entries to ensure the model is not biased toward
the majority class, which could lead to a significant number
of false positives or negatives. The dataset is further refined
by removing duplicate packet bytes to also prevent bias. For
multi-class analysis, three attack types - Fuzzers, Exploits, and
Generic - are focused on due to their payload sophistication,
differentiating from simpler, volume-based attacks like DDoS.

B. CIC-10T23

The CIC-10T23 [9] is a comprehensive dataset specifically
tailored to the study of Internet of Things (IoT) security
vulnerabilities. It encompasses seven distinct classes of cy-
berattacks, including Distributed Denial of Service (DDoS),
Brute Force, Spoofing, Denial of Service (DoS), Recon, Web-
based, and Mirai attacks. Furthermore, these seven classes
are broken down into over thirty specific attacks against IoT
devices. This dataset is notable for its detailed representation
of network traffic gathered from a robust IoT setup comprising
105 distinct devices. It provides a rich compilation of PCAP
files that record both benign and malicious network activities.
The pre-processing approach for the CIC-IOT23 dataset is
similar to that of the UNSW-NB15, starting with the extraction
of transport layer bytes from all TCP or UDP packets within
the selected four PCAP files. The extracted packets bytes are

converted to hexadecimal, with duplicates removed to ensure
data quality.

After converting the packet bytes first to hexadecimal and
then to decimal integers, each malicious class is given a
respective label. To maintain a balanced dataset and mitigate
model bias, an equal number of malicious entries from each
class are randomly chosen. Similarly to the UNSW-NBI15
dataset, our study specifically focuses on three types of attacks
for the CIC-IOT23: Backdoor Malware, Vulnerability Attack,
and Brute Force Attack. These attacks rely on the specific
bytes within the payload to carry out their malicious goals,
similar to the attacks chosen from the UNSW-NB15 dataset.

III. METHODOLOGY

In this section, we describe the system architecture, training,
and evaluation of our model for deep packet inspection. Lever-
aging LLM’s capability to capture contextual patterns, we
show that it can be effectively applied to discern distinctions
in packet sequences. This process is powered by the self-
attention mechanism [12], enabling each byte in the input
sequence to reference other bytes within that sequence. The
computation of attention weights for each byte pair highlights
the importance of each byte, informing the model’s under-
standing and processing of the sequence. The architecture of
the LMM is comprised of several key components:

Embedding Layer: This layer acts as the gateway for input
data into the LLM framework, converting the input sequence,
X = (x1,%2,...,2N), into a matrix representation, E €
RN Xdmoel - ywhere N is the number of decimal integer values
in the sequence and dpoqel 1S the dimension of the embedding
vectors. Through the embedding matrix Wg, the input X
is mapped to the feature space, resulting in Z, a matrix
representation of the input features.

Z=WgX (D

Positional Encodings: To provide the LLM with an under-
standing of sequence order, positional encodings are added to
the embeddings. This encoding assigns a unique identifier to
each sequence position, allowing the model to recognize and
utilize the order of bytes in a packet. The encoding for each
position pos and dimension ¢ is computed as follows:

. pos
PEpos,2; = sin (W) 2)
_ _ pos
PEpos,2i+l = COS (100002i/dmodel) (3)

Multi-head Self-Attention Mechanism: This mechanism
enables the model to evaluate and integrate information across
the entire sequence. It transforms the input sequence Z into
three distinct sets of vectors—queries (Q), keys (K), and
values (V)—using learned weight matrices. These vectors
facilitate the computation of attention weights:

Q=WqZ “4)
K=WgZ ®)
V=WyZ (6)

__

—————

Input Embedding Size

T169 84324731 ... 10 |

Number

| S04Ff5554 20 2F ... 3E |

807983 843247 ... 62 | of

Extract TCP and
UDP Packets

|
|
|
|
|
| Inputs
|
|
|
|

616 163385240 ... 32 |

Find Nearest Class Prototype Few-Shot Learning on Embeddings

Hiyg

Output Embeddings

Label

= =0

iz 1y 768 1
+ ¥
Hzz 1z 768
0@"."@
i i
, 5 ¥ v
| ‘) [(), G

i
|
'
I
1
1
i
'
'
'
1
]
I
'
|
'
]
i

Train with Self-Attention)
'
1
]
'
I
|
'
1
i
'
I
'
'
i
i
|
'
'
|
'
'

Fig. 1: The proposed packet detection algorithm processes packet byte data by initially converting it to hexadecimal and then
to decimal integer values between [0, 255]. The LLM is designed to train on various combinations of classes, using different
permutations of malwares. This approach allows the model to generate a unique embedding matrix for each class combination.
Following the transformation of packet data through the self-attention mechanism, the output embeddings are then leveraged in a
few-shot learning framework. Within this framework, the embeddings from the query set are classified against those in the support
set by determining their closest match through Euclidean distance. The assignment of the appropriate class label is based on the

proximity to the nearest class prototype.

Attention scores are calculated via a scaled dot-product of
queries and keys, normalized using the softmax function, to
guide the aggregation of values:

Attention(Q, K, V) = softmax (QK) A%
vy,
This mechanism allows the model to capture both the global

understanding and complex information necessary for under-
standing the packet input patterns.

T

(7

QOutput Layer and Embedding Extraction: The output
layer’s primary role is to derive embeddings, E, which
encapsulate the learned patterns for each sequence. These
embeddings are averaged across the sequence to distill the
contextual information, offering a condensed yet rich repre-
sentation of the original data, suitable for detailed analysis
or classification in downstream processes. This application
of our LLM for classifying network traffic, including the
essential steps from initial embedding to few-shot learning
with prototypical networks, is detailed in Algorithm 1.

A. Model Configuration, Training, and Fine-Tuning

The selected hyperparameters of the model are critical
for its performance and were chosen based on the specific
requirements of our application. The model incorporates a
diverse set of parameters, including 256 unique bytes, which
signifies the total number of distinct elements identified within
the input data. This set accounts for each unique hexadecimal
value alongside an additional padding integer, ensuring com-
prehensive coverage of the input space. The hidden size is
set at 768, which determines the dimensionality of the hidden
states and is pivotal for the model’s capacity to process and
represent information. The architecture is further defined by

12 hidden layers, establishing the depth of the network and
enhancing its ability to learn complex patterns within the data.
Accompanying these layers, 12 attention heads are employed
to facilitate the model’s focus on various segments of the
input simultaneously, a crucial aspect for understanding and
learning from the data efficiently. The intermediate size is
configured to 3072, which specifies the dimension of the feed-
forward layers within each transformer block, playing a vital
role in the network’s ability to transform input data at each
stage effectively. The maximum position embeddings are set
to 1500, corresponding to the maximum length of the input
sequence that the model can handle. This configuration allows
the model to process input sequences without imposing a strict
limit on the packet length, thereby accommodating a wide
range of data inputs.

The model is trained over 15 epochs, utilizing cross-entropy
as the foundational loss function. Optimization is conducted
using the Adam optimizer, configured with a learning rate of

e — 5, and incorporates weight decay regularization to curb
excessive weight growth, aiding in the prevention of overfit-
ting [13]. Additionally, a learning rate scheduler is employed
to modulate the learning rate throughout the training duration.
This scheduler progressively increases the learning rate from
zero up to a predetermined maximum during the warm-up
phase, followed by a linear reduction of the learning rate
across the subsequent training epochs [14]. We train our model
on various combinations of known classes, using permutations
of class pairs at any given time. This strategy is pivotal
for generating a robust set of embeddings from the LLM,
which few-shot learning then leverages for classification. This
approach not only enhances our model’s adaptability to new
malware types but also deepens its understanding of subtle
distinctions between malware classes. The model was trained
using NVIDIA GeForce RTX 2080 GPUs.

Algorithm 1 Proposed Framework for Network Traffic Clas-
sification

Input: Set of network packet bytes P = {p1,p2,...,pn}
Output: Classifications for network traffic: Malware Type
Identification

Step 1: LLM Model Training

Embed packets X using an embedding matrix Wg to get
Z=WgX

Add positional encodings PE to Z

Train the LLM with self-attention, optimizing with cross-
entropy loss and the Adam optimizer

Step 2: Embedding Extraction

Extract embeddings E from the LLM’s final layer for
downstream tasks

Step 3: Few-Shot Learning with Prototypical Networks
Perform episodic training selecting K classes, support S
and query Qi sets, and number of classes per episode N,
Compute class prototypes ¢ = Nic Z(xi,yi)esk fo(x:)
Classify queries by nearest prototype and update model
with loss J

B. Few-Shot Learning Architecture

In this section, we describe how few-shot learning is used
to transfer a pretrained LLM model on known malware types
to new malware types. The selection of this approach is
motivated by its efficacy in learning accurately from a limited
number of labeled examples, a critical feature for cybersecu-
rity domains facing rapid malware evolution. Models capable
of quick adaptation with few examples are essential.

To develop the few-shot learning algorithm, we use a
pretrained LLM to extract packet embeddings. The LLM
is pretrained from scratch on known malware types. We
first define the terminology used in our few-shot learning
algorithm. Support set consists of a limited number of labeled
examples from each class, while the query set contains unla-
beled examples that the model attempts to classify based on
the knowledge learned from the support set. The model uses
a limited number of support examples (shots) from each class
(ways) to form class-specific prototypes. These prototypes are
the mean representation of each class based on the embed-
dings. The architecture incorporates a fully connected linear
layer to transform the input embeddings of packets (extracted
using the pretrained LLM) into a suitable representation space
for classification. The model undergoes episodic training, a
technique that structures training into small, problem-specific
episodes, enhancing its ability to generalize during actual
deployment.

Algorithm 1 outlines the process for differentiating between
malicious network traffic using episodic training. In each
episode, K classes are randomly selected from the dataset. For
each class k, a support set S, with Ng examples and a query
set @, with Ng examples are prepared. Class prototypes cj,
are computed as the mean of the support set embeddings’
transformed feature vectors from the network’s last layer.
Next, the algorithm evaluates each query example (z,y) in
@y, calculating its Euclidean distance to each class prototype

ci. The example x is then assigned the label of the closest
prototype. Model updates are based on the loss .J, calculated
from the softmax probabilities of the distances between query
examples and prototypes, shown in the equation below.

Je=J+ d(fo(@),cx) +log Y exp(—d(fs(z), cpr)) | @)

NCNQ k!

This iterative process across numerous episodes aims to
improve the model’s generalization to new class examples.

IV. RESULTS AND DISCUSSION

To evaluate the performance of the proposed method, we
consider accuracy and F1-Score on the query dataset. It is
important to note that the query dataset used in our evaluation
process differs from the support dataset. The query dataset
consists of randomly selected, unseen samples and ensures
that the model is using a distinct dataset to evaluate the
performance. This evaluation includes tests for 3-way classi-
fication scenarios, utilizing setups with 5 and 10 shots along
with 15 query samples. The query samples are composed of
instances from each class, rather than solely focusing on the
untrained class. This choice ensures our model maintains a
full understanding towards all classes, not just the novel class.
By incorporating samples from both the trained and untrained
classes in the query set, we aim to present a balanced learning
environment for the model to adapt to all classes.

For a comprehensive evaluation, we conduct this training
process over 10 epochs, where each epoch consists of 1,000
and 5,000 episodes for the UNSW-NB15 and CIC-10T23
datasets, respectively. This variation in the number of episodes
corresponds with the size differences between the balanced
datasets: UNSW-NBI15 contains more than 8,000 samples,
while CIC-I0T23 has over 40,000 samples. In our empirical
study, we determined that the respective number of episodes
per epoch balanced maximum learning and computational
efficiency. This configuration also allowed the model to ad-
equately learn from the data without overfitting, considering
the size and complexity differences between the datasets. To
assess the robustness of the model, we repeat the entire train-
ing and evaluation process across 10 iterations. Each iteration
involves re-initializing the model’s weights and undergoing
the training procedure from scratch, spanning all epochs and
episodes. This approach allows us to gather a more consistent
average on the model’s performance, providing a more reliable
measure of the model’s ability to learn from limited examples
and adapt to new, unseen data.

The results for few-shot learning to classify new and old
types of malwares are shown in Table I. The *Trained Classes’
column shows which classes the LLM was trained on, and
subsequently which class was not trained for that experiment.
The class which is not trained is the introduced class (or novel
class) for that respective experiment. Our few-shot learning
approach transfers the knowledge learned from the known,
or trained, malware types to a newly introduced novel type
of malware with a limited amount of labeled samples. The
best performance on the UNSW-NB 15 dataset occurred when
the model was trained on Fuzzers and Generic malwares,

TABLE I: Results of Few-Shot Classification of Malware Types on the Query Set

. Proposed Method

Dataset Trained Classes Sshiot {0-shot

Acc. F1 Acc. F1
Exploits, Fuzzers 88.11 88.11 88.22 88.22
UNSW-NB15 Fuzzers, Generic 89.11 89.06 92.03 92.03
Exploits, Generic 84.89 84.93 86.22 86.23
Backdoor, Vulnerability 83.11 82.91 83.33 83.23
CIC-IoT23 Vulnerability, Brute Force | 82.22 82.40 88.00 88.79
Backdoor, Brute Force 86.89 86.96 84.00 83.87

TABLE II: Comparison of Methods on UNSW-NB15 Dataset

Method Accuracy | F1-Score
ID-CNN [2] 86.65 86.80
2D-CNN [3] 87.90 88.06
LSTM [3] 75.68 76.14
Proposed Method (Average) 88.10 88.10

TABLE III: Comparison of Methods on CICIOT-23 Dataset

Method Accuracy | F1-Score
ID-CNN [2] 84.37 84.29
2D-CNN [3] 82.53 82.41
LSTM [3] 82.52 82.45
Proposed Method (Average) 84.59 84.69

with Exploits being introduced, correctly classifying 92% of
query samples from all three classes. For the CIC-IoT23
dataset, training on Vulnerability and Brute Force attacks, with
Backdoor attacks being introduced, led to an 88% accuracy
on the query samples. We extend the assessment to compare
the overall performance of our proposed method in relation to
other well-established methodologies [2] [3] shown in Tables
II and III. Unlike these models, which underwent end-to-
end training on all three classes, our method achieves similar
or superior performance despite utilizing significantly less
labeled data and training on only two out of the three classes.
For the results presented in the tables, we calculated averages
for both 5 and 10 shot scenarios.

The main idea in comparing a LLM with other deep
learning approaches is to examine different methods for
processing sequences. Although each of these models deal
with sequences at their core, they do so through unique
methods. Convolutional Neural Networks (CNNs) are adept
at identifying localized patterns and layered structures within
the data, making them particularly useful for detecting patterns
within segments of network traffic. Long Short-Term Memory
(LSTMs) leverage recurrent connections to retain information
across lengthy sequences. However, our model excels at
understanding and identifying context across broader spans
without the iterative approach of LSTMs, thus avoiding poten-
tial data loss. The self-attention mechanism enables the model
to assess the importance of various parts of the sequence,
facilitating a global-understanding of the information.

Our research stands out in several key ways. We began by
removing duplicated packets, enhancing the model’s exposure
to distinct byte data and thereby improving data quality for
more effective generalization to new data. Retaining these
duplicates can reduce the uniqueness of signatures, making the
process for classification algorithms more trivial in identifying

which packets belong to a certain class. Our analysis was not
limited to the initial 784 bytes as described in [2], but extended
to a maximum of 1500 bytes. Given that the typical Maximum
Transmission Unit (MTU) for Ethernet packet-based networks
is 1500 bytes, this approach ensures our model considers the
full length of available data. This is important as malicious
content might be embedded further within a packet’s payload.
This method is also effective in a multi-class classification
scenario, whereas some previous malware detection efforts are
primarily concentrated on binary classifications [16], [17].

V. ENCRYPTED TRAFFIC

In this study, our analysis focuses on the raw packet bytes
contained within TCP and UDP network packets from various
datasets. However, it is crucial to note the limitations when
dealing with encrypted traffic. Encryption—the process of
converting plaintext into ciphertext to secure data transmission
and make it unreadable to unauthorized entities without the
appropriate decryption keys—plays a pivotal role in data
security. Specifically, when plaintext is encrypted using a
key, it transforms into ciphertext that does not reveal any
information about the original content without the correct
decryption key [18].

Let us denote m as the variable representing the raw packet
message, and Ej(-) as the encryption function that encrypts
m with the key k. In this context, observing the ciphertext ¢
yields no information about the original message m, as:

€))

This equation underscores that decrypting the plaintext m;
with the encryption algorithm FEj(-) and key k results in a
unique ciphertext, effectively concealing any details of the
plaintext.

Despite these encryption properties, some studies have suc-
cessfully classified network traffic from various applications
based off encrypted packets [19], [20]. This classification
success is largely due to the unique encryption signatures that
different applications’ random generators leave, which, while
not disclosing plaintext content, offer a form of application-
specific pattern [21]. The challenge, however, lies in malware
detection, where access to plaintext information is crucial.
If malware signatures can be detected in encrypted traffic, it
would suggest that the encryption method fails to adequately
mask the plaintext, thereby violating the principle stated in
Equation (9).

This research involved applying two encryption methods
on packet data: the Advanced Encryption Standard (AES)

p(m = my|Ex(m) = ¢) = p(m = my)

and Fernet symmetric encryption. AES uses a 256-bit key
and a 16-byte initialization vector (IV) to encrypt the raw
data, ensuring a unique encryption outcome for each key and
IV pair [22]. Fernet employs AES in Cipher Block Chaining
(CBC) mode with a 128-bit key for encryption [23]. Following
the encryption, we processed them according to the pre-
processing methodology described earlier, converting each
encrypted packet byte into a sequence of decimal integers and
then padding these sequences to ensure uniform length for
each input. These inputs were then trained and tested using
the method’s architecture from [24].

The AES encryption algorithm yielded an average test
accuracy of 57.16% and an F1-Score of 44.52%, indicating
that the model was unable to effectively distinguish between
malicious and benign packets. This suggests that AES encryp-
tion successfully diminishes the learnable patterns within the
raw bytes, which our model relies on for packet classification.
In contrast, the Fernet encryption algorithm achieved a test
accuracy of 91.41% and an F1-Score of 92.09%, indicating
that not all encryption algorithms are equally effective at
concealing plaintext information, while others can.

VI. CONCLUSION AND FUTURE WORK

This paper explored the application of a LLM and few-shot
learning for malware classification. The model was evaluated
on the UNSW-NB15 and CIC-IDS2017 datasets, focusing on
the packet bytes of UDP and TCP packets serving as inputs.
Our method showed robust results on the classification of
different malware types with limited amounts of training data
when compared to state-of-the-art methods. While the struc-
ture of packet bytes are significantly different from natural
language, this study shows that the LLM developed for natural
language can be leveraged to capture and learn the intricate
sequential patterns of the packet bytes. Future work in this
domain will include applying self-supervised techniques to
help further learn the intricacies of packet bytes, distinguish-
ing between packet header and payload bytes, and exploring
the potential for cross-dataset generalization to enhance model
robustness across various network environments.

VII. ACKNOWLEDGEMENT

This work is partially supported by the UWF Argo Cyber
Emerging Scholars (ACES) program funded by the National
Science Foundation (NSF) CyberCorps® Scholarship for Ser-
vice (SFS) award under grant number 1946442. Any opinions,
findings, and conclusions or recommendations expressed in
this document are those of the authors and do not necessarily
reflect the views of the NSF.

REFERENCES
[1] “Malware Statistics,” DataProt. [Online]. Auvailable:
https://dataprot.net/statistics/malware-statistics/. ~ [Accessed: 20-01-

2024].

[2] M. J. De Lucia et al., "Machine learning raw network traffic detection,”
in Proc. SPIE 11746, Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications III, 117460V, April 12, 2021,
doi: 10.1117/12.2586114.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

L. Xu et al., ”A Traffic Classification Method Based on Packet Transport
Layer Payload by Ensemble Learning,” in Proc. IEEE Symposium on
Computers and Communications (ISCC), Barcelona, Spain, 2019, pp.
1-6, doi: 10.1109/ISCC47284.2019.8969702.

Y. A. Farrukh, S. Wali, I. Khan and N. D. Bastian, "Detecting Unknown
Attacks in IoT Environments: An Open Set Classifier for Enhanced
Network Intrusion Detection,” MILCOM 2023 - 2023 IEEE Military
Communications Conference (MILCOM), Boston, MA, USA, 2023, pp.
121-126, doi: 10.1109/MILCOMS58377.2023.10356319.

K. Stein, A. Mahyari, and E. El-Sheikh, ”Vehicle Controller Area
Network Inspection using Recurrent Neural Networks,” Adv. Comput.
Res. (ACR), Lecture Notes in Networks and Systems, vol. 700, 2023.
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

J. Snell, K. Swersky, and R. S. Zemel, "Prototypical Networks for Few-
shot Learning,” arXiv preprint arXiv:1703.05175, 2017.

N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set
for network intrusion detection systems (UNSW-NBI15 network data
set),” in Proc. 2015 Military Communications and Information Systems
Conference (MilCIS), Canberra, Australia, 2015, pp. 1-6.

E. C. P. Neto et al., "CICIoT2023: A real-time dataset and benchmark
for large-scale attacks in IoT environment,” Sensors, 2023. (Submitted
to Journal of Sensors).

I man Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani,
“Toward Generating a New Intrusion Detection Dataset and Intrusion
Traffic Characterization”, 4th International Conference on Information
Systems Security and Privacy (ICISSP), Portugal, January 2018
Farrukh, Y. A., I. Khan, S. Wali, D. Bierbrauer, J. A. Pavlik, and N.
D. Bastian. 2022. “Payload-Byte: A Tool for Extracting and Labeling
Packet Capture Files of Modern Network Intrusion Detection Datasets”.
In 2022 IEEE/ACM International Conference on Big Data Computing,
Applications and Technologies (BDCAT), 58-67.

A. Vaswani et al., ”Attention is all you need,” in Adv. Neural Inform.
Process. Syst., 2017, pp. 5998-6008.

I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,”
arXiv preprint arXiv:1711.05101, 2019.

Hugging Face, “Main classes - optimizer and sched-
ules,” Transformers Documentation, 2023. [Online].
Available: https://huggingface.co/docs/transformers/main

_classes/optimizer_schedules.

K. Laenen and L. Bertinetto, "On Episodes, Prototypical Networks, and
Few-shot Learning,” arXiv preprint arXiv:2012.09831, 2020.

H. Alanazi, S. Bi, T. Wang and T. Hou, ”Adaptive Feature Engineering
via Attention-based LSTM towards High Performance Reconnaissance
Attack Detection,” MILCOM 2023 - 2023 IEEE Military Communica-
tions Conference (MILCOM), Boston, MA, USA, 2023, pp. 542-547,
doi: 10.1109/MILCOMS58377.2023.10356354

P. Zhang et al., "Real-Time Malicious Traffic Detection With On-
line Isolation Forest Over SD-WAN,” in IEEE Transactions on In-
formation Forensics and Security, vol. 18, pp. 2076-2090, 2023, doi:
10.1109/TIFS.2023.3262121.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography, CRC Press, 2018.

S. Wang et al.,, "Detecting Android Malware Leveraging Text Se-
mantics of Network Flows,” IEEE Trans. Information Forensics
and Security, vol. 13, no. 5, pp. 1096-1109, May 2018, doi:
10.1109/TIFS.2017.2771228.

F. Al-Obaidy et al., "Encrypted Traffic Classification Based ML for
Identifying Different Social Media Applications,” in Proc. IEEE Cana-
dian Conf. Electrical and Computer Engineering (CCECE), Edmonton,
AB, Canada, 2019, pp. 1-5, doi: 10.1109/CCECE.2019.8861934.

M. Lotfollahi et al., "Deep Packet: A Novel Approach For En-
crypted Traffic Classification Using Deep Learning,” arXiv preprint
arXiv:1709.02656, 2017.

PyCryptodome, ”AES - Advanced Encryp-
tion Standard,” 2021. [Online]. Available:
https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html.
Cryptography.io, “Fernet (symmetric encryption),” 2021. [Online].
Available: https://cryptography.io/en/latest/fernet/.

K. Stein, A. Mahyari, G. Francia III, and E. El-Sheikh, ”A Transformer-
Based Framework for Payload Malware Detection and Classification,”
2024, arXiv preprint arXiv:2403.18223.

