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A B S T R A C T

This paper explores short duration disturbances in the traffic stream that are large enough to 
impact the traffic dynamics and disrupt stationarity when establishing the fundamental diagram, 
FD, but small enough that they are below the resolution of conventional vehicle detector data and 
cannot be seen using conventional methods. This empirical research develops the Exclusionary 
Vehicle Aggregation method (EVA) to extract high fidelity time series data from conventional 
loop detectors and then extends the method to measure the standard deviation of headways in a 
given fixed time sample, stdevh. Using loop detector data spanning 18 years and five sites, all of 
the sites show that samples with low stdevh tend towards a triangular FD while samples with high 
stdevh tend towards a concave FD that falls inside the triangular FD. The stdevh is also shown to 
be strongly correlated with the duration of the longest headway within the sample. The presence 
of a long headway means the state is perceptively different over the sample and thus, the mea
surement is non-stationary. A review of the earliest FD literature by Greenshields finds strong 
supporting evidence for these trends. Collectively, the loop detector and historical FD results span 
over 75 years of empirical traffic data.

Based on the EVA analysis, this work offers the following insights: the shape of equilibrium FD 
appears to be triangular and that conventional detector data mask critical features needed by 
hydrodynamic traffic flow models, HdTFM. Because the driver behind a long headway can act 
independent of their leader, the long headways can correspond to unobserved boundary condi
tions that generate kinematic waves. If these boundaries were detected many HdTFM could 
accommodate them, especially multi-class models. But the stochastic nature of the long headways 
also challenges the predictive abilities of deterministic HdTFM. Perhaps the largest of these 
challenges is driver agency- the driver behind a long headway can maintain it, resulting in signals 
propagating downstream or they can close the gap, resulting in signals propagating upstream. 
Meanwhile, this work provides a test for stationary conditions to help ensure an empirical FD 
supports the assumptions placed upon it.

1. Introduction

Hydrodynamic traffic flow models (HdTFM) and many of the related continuum traffic flow models postulate that the shape of the 
fundamental diagram (FD) determines the velocity at which signals and characteristics propagate through the traffic stream as 
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kinematic waves (KW). Section 1.1 gives a brief overview HdTFM for context. However, the primary focus of this paper is a better 
understanding of the FD.

The FD relates how the traffic state variables of speed, v, flow, q, and density, k, interrelate as they govern the flow of traffic. 
Generally, q and v are expressed as functions of k, so in the flow-density plane the FD would typically be defined as: q = Q(k), while v =
q/k. There is no universal shape of Q(k), but many researchers employ a concave Q(k), d

2Q(k)

dk2 < 0, which ensures dQ(k)

dk < v and other 
desirable properties (e.g., Whitham, 1974; Del Castillo and Benitez, 1995; Li and Zhang, 2011). A triangular shaped Q(k) is also 
commonly found in the literature (e.g., Drake et al., 1967; Munjal et al., 1971, Hall et al., 1986; Newell, 2002).

Unfortunately, empirical traffic data exhibits considerable scatter, and thus, many different Q(k) curves could be fit to the same set 
of traffic data and the different curves all have similar levels of error. The real challenge is deriving a meaningful Q(k). To this end, the 
formulation of the FD should come strictly from stationary traffic states (Del Castillo and Benitez, 1995; Zhang, 1999), Where a 
stationary traffic state is defined to be homogeneous traffic conditions throughout the entire time-space region of interest, e.g., q and v 
do not perceptively change at a subsample timescale for the entire duration of a macroscopic sample from a loop detector station (see, 
e.g., Cassidy, 1998).

This paper empirically explores macroscopic traffic data that gives rise to a smooth, reproducible Q(k) and shows that the 
macroscopic data can obscure important microscopic dynamics. To study the microscopic dynamics, this paper develops the Exclu
sionary Vehicle Aggregation method (EVA), a new approach to aggregate traffic data in a manner that eliminates major sources of 
noise (inhomogeneous vehicle lengths, partial headways) while still grouping many successive vehicles together using a fixed time 
sampling strategy. It is shown that when the standard deviation of the headways in a sample, σh, is low the resulting data exhibit a 
triangular shaped Q(k). When σh increases, the resulting data shows increasing curvature, consistent with a concave Q(k) that falls 
inside the triangular curve. It is shown that σh is strongly correlated with the maximum headway in the sample, i.e., the presence or 
absence of a large void ahead of a long headway vehicle. These voids are inherently non-stationary because different regions of the 
sample are perceptively distinct. Although conditions are non-stationary within a macroscopic sample containing a void, if the Q(k) is 
constructed from samples that contain voids then the emergent trend from the macroscopic data can still yield a smooth, reproducible, 
concave Q(k) even though it does not represent stationary conditions.

Based on the EVA analysis, this work offers the following insights: the shape of equilibrium FD appears to be triangular and that 
conventional detector data mask critical features needed by HdTFM. This work represents an empirical case study supporting the need 
for multi-class HdTFM with mixed regime samples, but it also illustrates challenges that the randomly occurring long headways have 
on the predictive abilities of deterministic HdTFM and one of the largest challenges is driver agency- the driver behind a long headway 
can maintain it, resulting in signals propagating downstream or they can close the gap, resulting in signals propagating upstream. 
Finally, this work provides a test for stationary conditions to help ensure an empirical Q(k) supports the assumptions placed upon it. 

Table 1 
Glossary of terms and variables.

all_lanes Denotes the case when individual vehicle measurements are combined across all lanes before finding the macroscopic q, k and v.
BHL Berkeley Highway Laboratory
c Velocity at which characteristic signals travel via LWR
EVA Exclusionary vehicle aggregation method for aggregating vehicle detector data
FD Fundamental diagram
FTS Fixed Time Sampling- the conventional method for aggregating vehicle detector data
hi Headway of i-th passing vehicle
HdTFM Hydrodynamic traffic flow models
HOV lane High occupancy vehicle lane
k Density (veh/mi)
kj Jam density (veh/mi)
KW Kinematic waves
Li Effective vehicle length of the i-th passing vehicle- sum of the physical vehicle length and the size of the detection zone
LHV Long headway vehicle
LWR Lighthill Whitham and Richards HdTFM
max(h) Maximum headway in an EVA sample
occ Occupancy (% time that a detector is occupied)
oni Detector "on-time" for i-th passing vehicle
q Flow (vph)
Q(k) The FD curve expressed in terms of q as a function of k
s Spacing between the leading edges of the two loops in a dual loop detector
SHV Short headway vehicle
Stationary Homogeneous traffic conditions throughout the entire macroscopic sample, thus, q and v do not perceptively change at a subsample timescale.
SVP Single vehicle passage method for aggregating vehicle detector data
SwA Shockwave analysis
σh Standard deviation of headways in an EVA sample
T Fixed sampling period in FTS and used for grouping vehicles in EVA. Also used as denominator of q and occ in FTS.
Td Dynamic sample duration in EVA method, Td =

∑
retained h used as denominator of q and occ in EVA, and usually differs from T.

tti Vehicle i’s traversal time between the paired loops in a dual loop detector
u Velocity at which an interface travels via SwA
v Space mean speed (mph)
vF Free speed (mph)
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For reference, Table 1 provides a glossary of terms and variables used throughout this paper.

1.1. Hydrodynamic flow

Shockwave analysis, SwA, is probably the oldest continuum traffic flow model. Wardrop (1952) developed SwA showing that the 
velocity of the interface, u, between abutting states G and H is given by Equation 1. This outcome is a direct result of vehicle con
servation, i.e., SwA is simply one manifestation of vehicle conservation between stationary states. In the purest form SwA does not 
require a FD, it only requires distinct stationary states to exist. When two stationary traffic states abut there must be an interface 
between them. 

u =
qG − qH

kG − kH
(1) 

Taking SwA, restricting the set of feasible traffic states to a concave Q(k), and employing an implicit assumption that all of the states 
on Q(k) are stationary, gives rise to Lighthill Whitham and Richards theory, LWR (Lighthill and Whitham, 1955; Richards, 1956). 
Under these conditions, as the state evolves it does so by progressing along Q(k) (except during shocks). As a result, the state at any 
given point in space should be dictated by a KW emanating from one of the region’s boundaries. If Q(k) is the same over all time and 
space, then the KW propagate at velocity c given by Equation 2. 

c =
dQ(k)

dk
(2) 

To illustrate how these theories depend on the FD, consider the concave FD in Fig. 1D, with stationary states G and H highlighted. If 
these data come from a single lane, the trajectories from state H must be evenly spaced and travel at the same speed, vH, as per Fig. 1A. 
If the traffic state transitions via SwA between states G and H on the concave FD, the resulting interface uGH must travel slower than the 
traffic in ether state G or H. So, vehicles catch up to the interface and change state as they pass it. Whereas LWR predicts that the KW 
within state H should travel at velocity cH, where cH < vH. So, in this case vehicles always overtake the KW and as they do, they adjust 
their state to match the characteristic at the given point in time and space.

Recognizing that real traffic does not stay on a discrete Q(k), Payne (1971) extended the LWR theory to include a velocity equation 
that allows for non-equilibrium states that do not fall on Q(k). At this point the HdTFM family tree branches in many directions, a 
detailed exploration can be found in van Wageningen-Kessels et al. (2015).

The next major advance in HdTFM came with the recognition that different drivers systematically behave differently and their 
interactions can be too complex to capture with homogeneous vehicles. To this end, multi-class models have emerged in which traffic is 
modeled as if it were comprised of different vehicle classes, each class with its own distinct behavior (e.g., Daganzo, 2002; Wong and 
Wong, 2002; Zhang and Jin, 2002; Chanut and Buisson, 2003; Benzoni-Gavage and Colombo, 2003; Logghe and Immers, 2003; Ngoduy 
and Liu, 2007; Logghe and Immers, 2008; van Lint et al., 2008; van Wageningen-Kessels et al., 2014; Qian et al., 2017).

1.2. Conflicts and limitations

In an empirical study of tunnel traffic, Edie and Baverez (1967) observed that, "small changes in flow may not propagate at a speed 
equal to the slope of the tangent to a steady-state q-k curve as suggested by the hydrodynamic wave theories of traffic flow. Instead, 
they are carried along at about stream speed or only slightly less than stream speed right up to saturation flows, at which level they 
suddenly reverse direction." However, Edie and Baverez did not offer any explanation for the unexpected discrepancy between con
ventional theory and their empirically observed dynamics. While Zhang, (2002) offers a theoretical explanation for this phenomenon, 
the topic did not see further empirical examination until Coifman et al. (2023) studied a high occupancy vehicle (HOV) lane that 
exhibited a concave Q(k) in the free flow regime. Examining data locally at individual loop detector stations, Coifman et al. found that 
while the macroscopic data yields a smooth, reproducible Q(k), similar to Fig. 1D, the underlying traffic composition appears to be 
made up of a mix of long headway vehicles (LHV) that act independent of their respective leaders (thus, being able to travel at their 
preferred speeds) followed by brief queues of short headway vehicles (SHV) that act as if they are strictly operating in the queued 
regime of a triangular FD. Although across all vehicles the average state resulted in a concave FD, the two distinct populations 
exhibited their own separate trends, as shown by QSHV(k) and QLHV(k) in Fig. 1E. As the traffic speed drops, fewer drivers can maintain 
their preferred speed, so the percentage of LHV drops and the number of SHV in the moving queues increases. When taking the two 
groups together, the Q(k) from all vehicles shifts from being close to the LHV trend at high speed towards the SHV trend at lower 
speeds, giving rise to the concave Q(k), even though the curve is far from representative of either group of vehicles taken individually. 
The study then measured the velocity at which signals in v and q propagate between successive detector stations and found that 
although the traffic state fell in the free flow regime of the concave Q(k) the dominant signals appear to travel with the traffic at v, 
rather than dQ(k)

dk of LWR or Δq
Δk of SwA.

Coifman et al. found that the microscopic voids ahead of the LHV (bold trajectories in Fig. 1B) and moving queues arising from the 
moving bottlenecks (lighter trajectories in Fig. 1B) are typically too short to be perceptible in conventional vehicle detector data even 
though the impacts violate the stationarity assumptions. In this way, the state transitions from state L on the LHV curve to state S on the 
SHV curve and back again in Fig. 1E, where the dominant state boundaries in Fig. 1B are defined by and travel with the vehicles (what 
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Zhang, 2002, calls "contact discontinuities"). But the duration of states L and S are too short to be isolated in the conventional vehicle 
detector data, only the average state H is recorded, occluding the non-stationary subsample dynamics that violate SwA and LWR.1 In 
this case the voids ahead of the LHV are long-lived, which is why their signals are seen and correlated between successive stations. It is 
likely that small disturbances form in the moving queues of SHV and propagate upstream, but usually these disturbances are 
short-lived, dissipating upon reaching the gap ahead of the next LHV.

This general concept of moving bottlenecks disrupting smooth flow is well established in the theoretical literature (e.g., Newell, 
1998; Leclercq et al., 2004; Laval, 2009; Duret et al., 2010; Leclercq et al., 2016; Chen and Ahn, 2018), including some multi-class 
traffic flow models (e.g., Logghe and Immers, 2008) but there are few studies that have examined it empirically (e.g., Munoz and 
Daganzo, 2002) and we are not aware of any empirical study that has done so on the temporal scale of a detector sampling period. 
Regardless, as will be shown, these features are both relevant to HdTFM and they are generally below the resolution of conventional 
vehicle detector data.

The moving bottleneck scenario in Fig. 1B&E adapted from Coifman et al. (2023) is just one example where the macroscopic 
measurements obscure the non-stationary microscopic dynamics. A vehicle exiting a lane is another example that creates a void, and if 
the prevailing speed is slower than free speed, it is likely that the void will be short-lived as the following vehicles close the gap. This 
process is illustrated in Fig. 1C, after a vehicle exits the lane (shown with a star) the following vehicle is briefly unconstrained (as 
shown with a bold trajectory) as it closes the gap represented by state Y. The gap underlying state Y shrinks as the gap closes, so State Y 
is shown with an open circle in the flow density plane, Fig. 1F, to indicate the point is not fixed, although speed is constant, the flow 
progressively increases until the gap disappears. Wang and Coifman (2008) empirically studied these maneuvers in vehicle trajectory 
data and concluded that the exiting vehicle induced an upstream moving disturbance as the upstream vehicles followed the trajectory 
of the first vehicle behind the exit, as shown with state X in Fig. 1C&F. They found a median lifetime of 5 sec while the voids are 
perceptible. But the dominant speeds in that study were below 20 mph. Xuan and Coifman (2012) undertook a similar study using 

Fig. 1. A hypothetical example showing vehicle trajectories (A) underling a stationary traffic state, (B) non-stationary conditions that yield 
downstream moving signals that could yield the same macroscopic state as part A, and (C) non-stationary conditions that yield upstream moving 
signals. (D) A concave FD commonly assumed to hold for HdTFM and the states associated with part A, (B) a concave FD that emerges as the average 
of two underlying and distinct vehicle groups, each with their own FD, along with the states from part B, and (F) the FD and states associated with 
part C.

1 Throughout this paper, almost all references SwA are in the macroscopic context, i.e., as applied to conventional fixed time averages, and this 
application can fail if the fixed time average is non-stationary. SwA should still hold when correctly applied at the microscopic scale, as follows: In 
the presence of a void, instead of transitioning directly from state G to H, SwA transitions from state G to the origin of the flow-density plane and 
then from the origin to state H, yielding to two signals that travel with the vehicles at the different speeds on either side of the void, rather than the 
single signal predicted by macroscopic SwA that travels slower than any of the vehicles.
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instrumented probe vehicle data and found the median lifetime of 14 sec for a gap behind a departing vehicle, where that study was 
limited to maneuvers at speeds below 44 mph. At higher speeds it is likely that the lifetimes are longer. In aggregate data, the presence 
of these short-lived voids will place the average state somewhere in the E-X-Y triangle of Fig. 1F. So in this case the dominant signals 
should propagate upstream (in contrast to the moving bottleneck example with the dominant signals moving downstream).

In this way, the examples in Fig. 1A-C could all yield the same state measurement from conventional detector data even though part 
A is stationary and the other two parts are non-stationary. These three scenarios also illustrate an underappreciated challenge to traffic 
flow modeling: driver agency: The LHV driver upstream of a void has a choice between options that change how the traffic state evolves. 
The driver could maintain the gap resulting in signals moving downstream with their vehicle (e.g., Fig. 1B) at the risk of attracting 
another vehicle to enter the lane in the gap, or the driver could close the gap resulting in upstream moving signals (e.g., Fig. 1C) while 
choosing to do so either quickly or slowly. Some of the possible outcomes might be in line with the predictions of a given HdTFM, but a 
pure HdTFM is deterministic and cannot capture the uncertainty a priori in terms of which outcome the driver will choose.

1.3. Overview

The remainder of this paper develops a method to detect the non-stationary conditions from conventional point detector data. 
Section 2 reviews both conventional fixed time aggregation and the single vehicle passage methodologies for aggregating loop detector 
data, then develops the EVA method that incorporates different strengths from the two earlier methods. This section also presents the 
five dual loop detector data sets used in the analysis. Section 3 uses the EVA method to first explore how the shape of the emergent Q(k) 
varies in response to the standard deviation of the headways in a given sample, σh. Next, it is shown that σh is strongly correlated with 
the maximum headway in the given sample i.e., the presence or absence of a large void. Finally, the paper closes in Section 4 with 
conclusions.

2. Methodology and Data Sets

This research uses dual loop detector data, and this section presents the details of dual loop detector data aggregation. It begins by 
reviewing two existing data aggregation methods for context. Section 2.1 covers conventional Fixed Time Sampling and highlights 
how this method is deficient for developing traffic flow theory. Section 2.2 covers the Single Vehicle Passage method to show how 
taking a deliberate approach to aggregating the individual vehicle actuations can yield informative insights into traffic dynamics, but 
these insights come at the cost of taking the vehicles out of sequence and discarding any temporal information.

Section 2.3 develops the new Exclusionary Vehicle Aggregation method, which borrows concepts from the other two aggregation 
methods to gain additional insights into traffic dynamics and serves as the basis of the analysis in this research. Meanwhile, Appendix A 
presents some of the finer details of dual loop detector measurements that are not critical to understanding the rest of the paper, but 
these subtle details are very important for anyone who wishes to reproduce or extend this work. Finally, Section 2.4 presents a brief 
review of the five loop detector data sets used in this research.

2.1. Conventional fixed time sampling

Most loop dual loop detector stations are configured to collect conventional fixed time sampling, FTS. FTS dates back to Gazis and 
Foot (1969) if not earlier. The sampling strategy was developed for real time operations, where small sampling errors are not critical, e. 
g., often an operating agency simply wants to know whether speeds are low or high to produce a three color congestion map. Coifman 
(2014a) goes into detail as to why FTS is not ideal for advancing traffic flow theory, but usually the individual vehicle actuations are 
discarded after being aggregated to FTS, leaving no alternatives to FTS in most cases. All of the detector stations used in this study 
collected the individual vehicle actuations, allowing us to also use the alternative aggregation schemes in the following sections.

At any rate, in the FTS scheme, all samples have the same fixed duration time. Fig. 2 shows a hypothetical example to explain the 
individual vehicle measurements. Generally, each vehicle is counted in exactly one sample and each speed measurement is attributed 
to exactly one sample. Ideally both the arrival time and speed measurements from a given vehicle are assigned to the same sample, as 
will be the case in the present study, but that is not necessarily the case for all dual loop detector deployments. Speed, flow and oc
cupancy are then calculated, e.g., via Equations 3-5, where n vehicles are counted in the given sample. 

q =
n
T

(3) 

occ =

∑
time detector occupied

T
⋅ 100% (4) 

v =
n

∑
1/vi

(5) 

It is important to note that there is no universal standard for calculating FTS, e.g., some operating agencies might calculate time 
mean speed or truncate occupancy in ways that undermine using the data to understand traffic dynamics (Coifman, 2001). So, care 
should be taken to understand the specific FTS used in a given data set.

Meanwhile, two of the biggest problems of FTS come from splitting a given vehicle’s observations across different samples. Usually, 
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the headway for the first vehicle in a given sample will fall partially in the previous sample, e.g., vehicle 12 in Fig. 2 arrives in sample 
IV, but the portion of its headway that falls in sample III is allocated to sample III rather than allocating the entire headway to sample IV 
in which vehicle 12 is counted. This fractional headway can significantly degrade the fidelity of q for the two samples. On average, the 
missing fraction of a headway at the start of a sample will be balanced by the added fraction of a headway at the end of the sample, but 
in any given sample the offset could be far from neutral, leading to considerable noise in q. The second problem comes from splitting a 
vehicle’s on-time across samples. Vehicle 6 in Fig. 2 straddles the boundary between samples II and III. In conventional FTS, the portion 
of the on-time falling in a given sample is allocated to that sample. In this way, the on-time can be split across samples while the count 
and speed are allocated to a single sample. As a result, during low flow a sample can have q=0 and occ>0. Additional measurement 
noise comes from the relatively small number of vehicles seen in a sample and aggregating vehicles of different lengths together, e.g., a 
truck will contribute a much larger on-time than a passenger vehicle traveling at the same speed (see, e.g., Coifman and Neelisetty, 
2014).

2.2. Single vehicle passage methodology

The Single Vehicle Passage, SVP, methodology for aggregating dual loop detector data was developed to isolate and extract finer 
details of traffic dynamics. The SVP method was designed to minimize the sampling errors from FTS and ensure large samples of 
homogeneous vehicles. For each single vehicle passage, the flow, qsvp, occupancy, occsvp, speed, vsvp, and effective length, Lsvp, are 
calculated via Equations 6-9 (Coifman, 2014b), thereby avoiding the split headways and on-times of FTS. Where h is the headway of 
the vehicle measured rear bumper of the previous vehicle to the rear bumper of the current vehicle to ensure that the gap ahead of the 
current vehicle is associated with that vehicle since ultimately a given driver controls the gap ahead of themself. On-time, on, is the 
time for which the vehicle occupied the upstream detector; detector spacing, s, is the distance between the leading edge of each loop of 
the dual loop detector; and the traversal time, tt, is the difference between the actuation times at the downstream and upstream 
detectors.

To ensure homogeneous vehicle samples, instead of grouping vehicles based on their arrival order, SVP bins vehicles by their length 
and then their speed. At this point, any individual bin with fewer than 100 vehicles is discarded to ensure the sample sizes are suf
ficiently large enough to be representative. For the remaining bins the median speed, flow and occupancy are found. Because the 
samples have homogeneous vehicle length, the measurements can also be used to calculate density for the given bin via k = q/v, and 
average vehicle spacing from the reciprocal of k (Coifman, 2015). 

qsvp =
1
h

(6) 

occsvp =
on
h

⋅ 100% (7) 

vsvp =
s
tt

(8) 

Lsvp = vsvp ⋅ on (9) 

The SVP method is very different from FTS, the SVP data are collected over an extended period (typically ranging from one day to 
several months) and it is only after all of the data have been binned that any aggregation is done. In the case of SVP, Fig. 2 would 
represent a very small portion of a given sample. Since all vehicles are binned by length the two trucks and one motorcycle would be 

Fig. 2. A hypothetical example showing 17 vehicles passing over a dual loop detector during the span of five fixed time sample periods, numbered I- 
V. The two loop detectors are shown as horizontal stripes in the time space plane while the vehicle trajectories are plotted to show the physical 
length of the individual vehicles. The vehicles are numbered from left to right. Veh 3 is a single unit truck (SUT), veh 9 is a motorcycle (MC), veh 13 
is a multi-unit truck (MUT), and the remaining 14 veh are passenger cars (PV). For a given vehicle its arrival time is the instant the leading edge 
enters the upstream detector zone; on-time is the amount of time the vehicle occupies the upstream detector; headway is the time difference between 
when the vehicle departs the upstream detector and the time the previous vehicle departed the upstream detector; and speed is the quotient of the 
detector spacing, s, and the traversal time, tt, that it takes the vehicle to travel between the paired detectors.
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sorted into their respective length bins. If one wants to study these less common vehicle lengths the data set needs to be very large to 
ensure the respective speed bins are above the 100 observation threshold. Assuming the remaining 13 vehicles all have lengths falling 
in the 18 to 22 ft range, they all go into the same length class and then are sorted by speed into their respective bins. In this way, to 
achieve homogeneous vehicle lengths and speeds the arrival order and times are completely discarded. The SVP provides a low noise 
measure of the central tendency of the vehicle data, often the data yields well defined curves for a given vehicle length bin without any 
smoothing across the independent speed bins.

Various studies have extended the SVP to compare different conditions by adding another dimension to the binning, e.g., adjacent 
lane speed, time of day, flow, and headway (Ponnu and Coifman, 2015 & 2017; Coifman and Ponnu, 2020). These comparison studies 
have revealed previously unknown dependencies, e.g., adjacent lane speed modulating driver behavior and the FD in the ego lane.

2.3. Exclusionary vehicle aggregation methodology

Both FTS and SVP predate this work. To capture the temporal evolution of the traffic state from FTS with the noise suppression of 
SVP, this paper introduces the Exclusionary Vehicle Aggregation, EVA, methodology. Like SVP, the traffic state is measured for each 
vehicle as it passes the dual loop detector: speed; headway, h (rear bumper to rear bumper); detector on-time, on; and vehicle length 
via Equations 6-9. But like FTS, the vehicles are binned into successive fixed time arrival windows (successive T=30 sec in this study). 
Unlike conventional fixed time sampling, the vehicle brings its entire headway. So, the observation time allotted to a given sample is 
dynamic and will vary from the fixed time arrival window used to assign vehicles to samples. By definition the sample will have an 
integer number of headways, and all of the measurements from a given vehicle are allocated to a single sample. For this work each 
vehicle is assigned to the sample in which it first enters the upstream loop detector.2 Next, recognizing that the different vehicle lengths 
have different dynamics (Coifman, 2015), only passenger vehicles are retained for this study (18-22 ft veh, which comprise roughly 
70% of the passing vehicles in the data sets used herein), with all other vehicles excluded from the aggregated state calculation (hence 
the name EVA).3 Note that the headways for the retained vehicles do not change, the aggregation simply skips over the excluded 
vehicles. The discarded trucks and motorcycles reduce the number of vehicles in the sample but since their positions in the sequence of 
vehicles are random, the impact of their removal should be unbiased. In this manner the EVA method can be applied to an individual 
lane or all lanes combined at a given detector station. The latter condition is henceforth denoted "all_lanes," where all vehicles that pass 
during the given sample, regardless of lane, are aggregated together for that sample.

In each sample speed, flow and occupancy are calculated using only the N retained vehicles (i.e., those with 18 ≤ Lsvp ≤ 22 ft) via 
Equations 10-15 for the given fixed sample period using a dynamic sampling duration Td via Equation 11. In this way, Td is the sum of 
the headways from all of the retained vehicles in the sample and thus, Td varies on a sample by sample basis. Meanwhile, for the first 
and last vehicles in the sample a portion of their hi and oni used in the EVA calculations might occur outside of the arrival window 
period.4 So in the EVA method traffic is still sampled every fixed T, but the actual time allotted to the calculations for that sample is 
dynamic Td, where Td could be smaller or larger than T, depending on the passage times of the vehicles bounding the start and end of T 
and the lengths of the observed vehicles. Like the SVP method, because the samples have homogeneous vehicle length, the EVA 
measurements can also be used to calculate density via Equation 15 (Coifman, 2015).5

N = number of 18 ≤ Lsvp ≤ 22 ft vehicles passing during T (10) 

Td =
∑N

i=1
hi (11) 

q =
N
Td

(12) 

occ =

∑N
i=1oni

Td
⋅ 100% (13) 

v =
N

∑N
i=11

/
vi

(14) 

k = q/v (15) 

In this paper we use EVA to generate Q(k). To remove the impacts of low flow free flow conditions (where HdTFTM do not apply), in 

2 The specific event used for assigning vehicles to samples is not critical provided it is consistent across all vehicles, e.g., one could just as easily 
use the time a vehicle departs the downstream loop detector to assign all vehicles to a given sample period.

3 Obviously, the range of retained vehicle lengths may need to be adjusted when applying EVA to a different data set,
4 An extreme example often occurs during the early morning hours, where it is possible for a vehicle to have hi ≫ T.
5 In the case of EVA, Equation 15 only applies when the traffic state in the sample is stationary, but as will be shown in Section 3.1, the presence of 

microscopic voids can disrupt stationarity. As is commonly employed in the literature, the equation should become approximately equal when the 
traffic state is sufficiently near-stationary.
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this paper all samples with fewer than five retained vehicles are also excluded to minimize the noise from small samples.6 Whereas in 
other applications (e.g., time series analysis) one would likely want to keep those samples. Also note that throughout this paper we 
exclude samples with speeds below 10 mph. The conventional speed-trap measurement of Equation 8 assumes acceleration is negli
gible, but as per Wu and Coifman (2014), for measured speeds below 10 mph one cannot ignore the impacts of acceleration when 
measuring speed at a dual loop detector.

To illustrate the basic EVA approach using the hypothetical example in Fig. 2, vehicles 1-6 are assigned to sample II, vehicles 7-11 
are assigned to sample III, and vehicles 12-15 are assigned to sample IV. In the process, vehicles 3, 9 and 13 are discarded because they 
fall outside of the passenger vehicle length range. Using the minimum number of five vehicles per sample, only sample II would be 
retained as having enough vehicles, with N = 5. The resulting state for sample II is given by Equations 16-19, note that vehicle 3 (a long 
truck) has been excluded from all of the calculations. 

Td = h1 + h2 + h4 + h5 + h6 (16) 

q =
5
Td

(17) 

occ =
on1 + on2 + on4 + on5 + on6

Td
⋅ 100% (18) 

v =
5

1/v1 + 1/v2 + 1/v4 + 1/v5 + 1/v6
(19) 

To illustrate the methodology using real data, we apply EVA to the individual loop detector actuation data set from Coifman (2015)
using a 30 sec sampling period. For each lane the resulting scatter plot of the individual measurements is a large cloud of points in the 
flow-density plane, qk (not shown). For each lane taken individually we bin all of the EVA samples by speed, find the median q, k and v 
across all of the EVA samples in a given speed bin and then connect the results from the independent speed bins into a curve without 
any smoothing between bins. This process is then repeated for all five lanes taken together. Any bin with fewer than 50 observations is 
discarded, the remaining bins are retained and used as the resulting Q(k), as shown in Fig. 3A. Note that no smoothing has been applied 
to the curves and the samples underlying any point in a given curve is independent of the samples underlying any other point in that 
curve. Unfortunately, the qk plane visually compresses higher speeds in a small area, so Fig. 3B projects these curves into the 
speed-flow plane, vq. It is clear from Fig. 3B that the curves span the range of speeds from 10 to 70 mph, with the excluded 0 to 10 mph 
taking up roughly half of the physical space in Fig. 3A. These plots (and most other plots in this paper) show dashed curves for reference 
at constant v for 10, 40 and 65 mph, and for u emanating from kj at -10 and -18 mph. Lane 1 is a time of day HOV lane, and so it exhibits 
two separate peak flows in Fig. 3B: the higher speed peak coming from non-HOV hours and the lower speed peak during HOV hours.7

Fig. 3. Curves showing the median EVA (q,k,v) in each speed bin for each lane and all_lanes for the BHL eb 2000 data set, (A) in the flow-density 
plane, and (B) the speed-flow plane. Throughout, dashed curves are shown for reference across the plots at constant v = 10, 40 and 65 mph, and u =
-10 and -18 mph.

6 Although not shown in the paper, the analysis was repeated without the five vehicle per sample threshold and the general trends seen in Section 
3.1 are similar.

7 See Ponnu and Coifman (2015) and Coifman et al. (2023) for details on how HOV operations impact the FD at this site.
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All other lanes exhibit a well-defined concave Q(k), with flows peaking between 40 and 50 mph in most lanes, the same is true for the 
case of all_lanes combined. As Section 3.1 will show, the concave Q(k) is typical of the sites studied in this work.8

While the general concepts underlying EVA are straight forward, the success of the method depends on the quality of the raw data. 
To this end, Appendix A presents some of the finer details of dual loop detector measurements that are not critical to understanding the 
rest of the paper, but these subtle details are very important for anyone who wishes to reproduce or extend this work.

2.4. Empirical dual loop detector data sets

The first data set comes from seven dual loop detector stations in the eastbound lanes of I-80 in Emeryville and Berkeley, CA in the 
Berkeley Highway Laboratory, BHL (Coifman et al., 2000). These data were collected over 29 days in April 2000, they include over 21 
million vehicle passages, and will be called BHL eb 2000.9 For this research we studied: (i) each lane at each of the stations indi
vidually, (ii) all_lanes at each station combined, (iii) each lane at all stations pooled, and (iv) all_lanes at all stations pooled. As per 
above, at a given station, for all_lanes combined: all vehicles that pass in any lane during the given sample are aggregated together, 
whereas for all stations pooled each station is processed independently and then all of the station results are collected into a single pool.

While the results differed by lane, the general trends were similar across each station taken individually. So for brevity we present 
the BHL eb 2000 results from iii & iv. We have already presented some of the results from this data set in Fig. 3. The second data set 
comes from seven stations in the westbound lanes of the BHL over 31 days in October 2003, and will be called BHL wb 2003. Like the 
first data set, we present the results from iii & iv. The third data set comes from westbound station 103 on I-70/71 in Columbus, Ohio, 
consists of 67 days between August 2008 and November 2011, and will be called CMFMS wb 2008.10 Since only one station is used, we 
present the results from i & ii. The fourth data set comes from one station on eastbound I-80 in Pinole, CA. These data were collected 
over 97 days between November 2010 and March 2011 and will be called Pinole eb 2010. Once more, because only one station is used, 
we present the results from i & ii. The final data set comes from the Freeway Service Patrol study (Skabardonis et al., 1996) at seven 
dual loop detector stations11 along southbound I-880 in Hayward, California over 49 days between February and October 1993, and 
will be called FSP sb 1993. Like the first data set, we present the results from iii & iv. Collectively, these loop detector data sets were 
collected over a span of more than 18 years.

For all of the data sets lane 1 is the inside or passing lane on the left and the numbering increases successively as one moves to the 
shoulder on the right. At all sites except CMFMS wb 2008, the speed limit is 65 mph and lane 1 is a time of day HOV lane that aside from 
the HOV diamond markings and signage was marked as if it were a normal general purpose lane. Meanwhile, at CMFMS wb 2008 the 
speed limit is 55 mph and all of the lanes there are strictly general purpose lanes. At all of the sites the legal rule of the road is for slower 
traffic to keep right, so the effective free speed exhibited by the traffic usually drops in each successive lane as one moves from lane 1 to 
lane 5.

Typically, the free flow regime at a given location exhibits a roughly constant free speed over a wide range of flow. This fact can 
undermine the results when binning by speed. So for the loop detector data we will exclude the highest speeds from the calculations, as 
follows. First, it is recognized that the free speed, vF, varies by lane. In the fast lane vF likely exceeds the speed limit while in the slowest 
lane it might fall below the speed limit. Lee and Coifman (2012b) showed that the daily median speed provides a good measure of vF in 
a given lane. For the present study, in each lane we set vF to either the speed limit or the daily median speed, whichever is lower. Then, 
we exclude all speed bins where v > vF − 5mph.

3. Analysis

It is difficult to derive to a clean Q(k) from empirical traffic detector data due to sampling errors (Coifman, 2014a) and the fact that 
real traffic exhibits a wide range of behavior. No matter how individual measurements of q and k (or occ) are made, a scatter plot of the 
individual measurements result in a large cloud of points in the qk plane (e.g., the outer envelope of points in Fig. 4C). As a result, many 
different curve shapes can be fit to the data with similar levels of error (see Coifman and Kim, 2011 for further discussion). As per 
Section 2.3, in using the EVA method to establish Q(k) we take each lane individually, bin all of the EVA samples by speed, find the 
median q, k and v across all of the EVA samples in a given speed bin and then connect the results from the independent speed bins into a 
curve without any smoothing between bins. This process is then repeated for all_lanes combined. Section 3.1 extends the EVA method 
to explore how the shape of Q(k) changes in response to the underlying headways. With these new insights in mind, Section 3.2 reviews 
the earliest FD literature and reveals evidence in these classic papers that supports our findings from the loop detector data. Collec
tively, the loop detector and historical FD results span over 75 years of empirical traffic data.

8 Note that the FD generated by EVA method might differ significantly from the FD generated by the SVP method as applied to the same data set, 
e.g., Fig. 3 shows a concave FD via EVA but using the same data Coifman (2015) generated a triangular FD via SVP. If there is a minority of LHV in 
the traffic stream, the SVP will be insensitive to their presence because it finds the median from hundreds or thousands of vehicles in a single bin 
whereas the EVA finds the average in each sample. Since a given sample might only include a few vehicles just one LHV in an EVA sample could 
have a large impact on the sample’s average.

9 These data are from Coifman (2015) and are available at Coifman (2024)
10 A portion of this data set was released with Wu and Coifman (2019).
11 Specifically, the seven successive stations in the four lane segment: 19, 13, 12, 4, 17, 15, 5.
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3.1. Results from EVA

As noted previously, stationarity is defined as homogeneous traffic conditions throughout the entire macroscopic sample, thus, q 
and v do not perceptively change at a subsample timescale. Like the SVP method, the EVA method can be extended to bin by additional 
dimensions. In this work, recognizing the impact of voids on the stationarity of a macroscopic sample, the EVA method is extended to 
classify each sample by the standard deviation of the headways that were included in the sample, σh, thereby quantifying the ho
mogeneity of the sample’s underlying vehicle headways. In this way, the extended EVA first bins the samples into four successive 
ranges of σh before binning each of them by speed.

3.1.1. A family of curves
Returning to the BHL eb 2000 data set (previously seen in Fig. 3), we now apply the extended EVA with σh thresholds at 0.6, 0.9 and 

1.2 sec to sort the data into four σh bins. The cloud of points in Fig. 4A shows the resulting EVA flow-density measurements from lane 3 
at all seven stations for all samples with σh < 0.6s. The curve shows the median q and k for each 2 mph speed bin between 12 and 60 
mph, and any bin with fewer than 50 samples is excluded. The curve shows the median for each bin, without any smoothing between 
bins, and traces out an almost textbook example of a triangular Q(k).12 Fig 4B repeats the comparison, only now using strictly the 
samples with σh > 1.2s. For the higher σh a concave Q(k) emerges. The flow-density plane visually compresses the speed range over 
which the transition occurs. To highlight how the qk plane compresses higher speeds, a thin curve is used for speeds below 25 mph and 
a thicker curve for speeds above 25 mph, showing that the lowest 1/3 range of speeds consumes more than 1/2 of the physical length of 
the curve. As before, the plots show dashed curves for reference at constant v for 10, 40 and 65 mph, and for u emanating from kj at -10 
and -18 mph.

Fig. 4D-E show the same data in the speed-flow plane, and it is evident that for the Q(k) created from the samples with σh > 1.2s, q 
decreases with v for speeds above 40 mph, i.e., the free flow regime spans v > 40 mph. Whereas, for the Q(k) created from the samples 
with σh < 0.6s, q continues to increase with v throughout the entire range, i.e., the free flow regime does not begin until some point 
above 60 mph.

Of course, binning by speed like this eliminates any meaningful insights for the free flow regime of a triangular Q(k) since all q at 
free flow should have roughly the same v, which is why we terminate the curves when v > vF − 5mph. Fig. 4C&F superimpose the 

Fig. 4. Extended EVA results for Lane 3 in the BHL eb 2000 data set. First in the flow-density plane with the raw EVA measurements and a curve 
showing the median (q,k,v) for each speed bin for (A) σh < 0.6s, (B) σh > 1.2s, and (C) both combined. Bins above 25 mph shown with a thicker line. 
The same data presented in the speed-flow plane, (D) σh < 0.6s, (E) σh > 1.2s, and (F) both combined. Throughout, dashed curves are shown for 
reference across the plots at constant v or u.

12 Recall from Section 2.3 that all samples with fewer than five retained vehicles are excluded to minimize the noise from small samples. This 
decision was made in part because σh for a sample of one vehicle is zero, which has the impact of pulling the lowest σh bin to lower q at free flow 
speeds. The other σh bins were unaffected by the single vehicle samples because they have a minimum σh>0.
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previous plots to facilitate comparison. In the process, these plots demonstrate the benefit of presenting the data in the speed-flow 
plane: the divergence between the curves becomes much clearer in Fig. 4F where the conditions at higher speeds are not com
pressed relative to those at lower speeds. Meanwhile, Fig. 4C also illustrates the importance of binning by speed rather than density: 
when k falls between 20 and 50 veh/mi a density bin can include both high flow congestion (Fig. 4A around 60 mph) and low flow free 
flow states (Fig. 4B around 40 mph).

Fig. 5. Curves showing the median EVA (q,k,v) in each speed bin from the BHL eb 2000 data set for the four different σh bins in (A) Lane 1 to (E) 
lane 5, and (F) all_lanes combined. The top two rows of subplots denoted with .i show the flow-density plane where σh increases from the top curve 
to bottom, while the bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now σh increases from right to 
left. Throughout, dashed curves are shown for reference across the plots at constant v or u.
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As σh of the samples increases the shape of Q(k) transitions from triangular to concave. Trouble is, σh varies from sample to sample, 
so one cannot count on the state falling on Fig. 4A, Fig. 4B, or either of the two intermediate σh bins (not yet shown) at any given time. 
These results are not limited to lane 3, Fig. 5 repeats the comparisons for each of the five lanes taken individually and all_lanes 
combined. Now the cloud of individual measurements has been suppressed for clarity, with only the median curves shown for each σh 
bin and the two intermediate bins have now been added to show the progression. The subplots in this figure show: (A) Lane 1 to (E) 

Fig. 6. Curves showing the median EVA (q,k,v) in each speed bin from the BHL wb 2003 data set for the four different σh bins in (A) Lane 1 to (E) 
lane 5, and (F) all_lanes combined. The top two rows of subplots denoted with .i show the flow-density plane where σh increases from the top curve 
to bottom, while the bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now σh increases from right to 
left. Throughout, dashed curves are shown for reference across the plots at constant v or u.
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lane 5 and (F) all_lanes combined. The top two rows of subplots denoted with .i show the qk plane while the bottom two rows of 
subplots denoted with .ii show the exact same data in the vq plane.13 These plots clearly show that the lowest σh bin always exhibit the 
highest flow at the given v (i.e., σh < 0.6s is the top-most curve in the qk plane and right-most curve in the vq plane) and that the flow at 
a given speed progressively drops as one moves to the next highest σh bin. In other words, Lanes 1-5 taken individually and all_lanes 

Fig. 7. Curves showing the median EVA (q,k,v) in each speed bin from the CMFMS wb 2008 data set for the four different σh bins in (A) Lane 1 to (C) 
lane 3, and (D) all_lanes combined. The top two rows of subplots denoted with .i show the flow-density plane where σh increases from the top curve 
to bottom, while the bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now σh increases from right to 
left. Throughout, dashed curves are shown for reference across the plots at constant v or u.

13 For brevity, the plots show all 7 stations pooled, when taking each station individually the general shape does not change, but noise increases. 
Two of the data sets (CMFMS and Pinole) only contain a single detector station, which in turn, shows examples of stations taken individually. Also 
note that it is rare that the all_lanes exhibit σh < 0.6s using 2 mph bins, so in this data set for all_lanes the lowest σh bin only exceeds the threshold of 
at least 50 observations per bin between 18 and 44 mph.
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combined show the same trend: the Q(k) progresses from a triangular shape for the samples with low σh to a concave shape 
from the samples with high σh.

Fig. 6 repeats the comparisons only now using the BHL wb 2003 data set and the general trends are unchanged. The one exception is 
the curve for samples with σh > 1.2s in lane 1, as shown in Fig. 6A.ii. Like the previous data set, lane 1 is a time of day HOV lane and in 
this case the highest σh bin shows the double peaking due to combining HOV and non-HOV periods that was previously seen in lane 1 
Fig. 3. Fig. 7 repeats the comparisons using the CMFMS wb 2008 data set. This site only has three lanes, but they are all general purpose 
lanes (no HOV). This site sees less congestion so the retention thresholds were reduced for this data set (25 samples per bin instead of 
50), as a result, the curves are noisier than the other data sets; but each lane and all_lanes combined continue to show the trend where 
the Q(k) progresses from a triangular shape when calculated from samples with low σh to a concave shape when calculated from 
samples with high σh. Note that because the speed limit is only 55 mph at this site the curves are terminated at lower top speed than the 

Fig. 8. Curves showing the median EVA (q,k,v) in each speed bin from the Pinole eb 2010 data set for the four different σh bins in (A) Lane 1 to (D) 
lane 4, and (E) all_lanes combined. The top two rows of subplots denoted with .i show the flow-density plane where σh increases from the top curve 
to bottom, while the bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now σh increases from right to 
left. Throughout, dashed curves are shown for reference across the plots at constant v or u.
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other sites. Fig. 8 repeats the comparisons using the Pinole eb 2010 data set, where the speed limit is 65 mph, lane 1 is a time of day 
HOV lane, and there are only four lanes. Like the CMFMS data, there is only one detector station in this data set. Once more the trends 
are readily evident. Fig. 9 repeats the comparisons using the FSP sb 1993 data set. The speed limit is 65 mph, lane 1 is a time of day 
HOV lane, and there are only four lanes. In this case the Q(k) from the samples with σh > 1.2s in lane 2 still exhibits a triangular shaped 
Q(k), as shown in Fig. 9B.ii. As will be seen in Fig. 10Q, lane 2 consistently has very high flow, this result arises because this segment is 
immediately upstream of a lane drop and during the periods of highest demand lane 1 only serves HOV vehicles.

All five of the data sets show the same trend: the Q(k) progresses from a triangular shape when Q(k) is created from 
samples with low σh to a concave shape when Q(k) is created from samples with high σh. Recall that collectively, these data sets 
span over 18 years. Since the data in a given subplot are from the same location and lane, and successive samples will often wind up in 
different σhbins, the difference between the high and low σh curves is not related to location, traffic patterns or time of day.

Fig. 9. Curves showing the median EVA (q,k,v) in each speed bin from the FSP sb 1993 data set for the four different σh bins in (A) Lane 1 to (D) lane 
4, and (E) all_lanes combined. The top two rows of subplots denoted with .i show the flow-density plane where σh increases from the top curve to 
bottom, while the bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now σh increases from right to left. 
Throughout, dashed curves are shown for reference across the plots at constant v or u.
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While the results are shown without the temporal dimension, one should remember that σh can change dramatically from one 
sample to the next, e.g., a LHV might yield a sample with high σh while the moving queue behind the LHV could cause the next sample 
to exhibit a low σh. Because σh changes like this, the Q(k) can rapidly flicker from one curve to another in Fig. 5-9. It is also interesting 
to observe that the gaps that pull q down have little impact on the sample speed. As a result, the non-stationary concave Q(k) falls 
inside the stationary triangular Q(k) and the resulting concave shape simply reflects the presence of the microscopic non-stationary 
transients in the underlying samples used to generate the FD.

3.1.2. From standard deviation of headway to long headway
The first two columns of subplots in Fig. 10 repeat the analysis using all of the data, without binning by σh. Thus, Fig. 10A-B repeat 

Fig. 10. One row of subplots for each data set. The first column of subplots show the curves of median EVA (q,k,v) in flow-density plane for each 
speed bin for each lane and all_lanes for the given data set, the second column of subplots repeat these data in speed-flow plane. Throughout, dashed 
curves are shown for reference across the plots at constant v = 10, 40 and 65 mph, and u = -10 and -18 mph. The third column of subplots show the 
corresponding curves of median σh in a given sample, and the fourth column of subplots show curves of median max(h) in a given sample.
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Fig. 3, while each subsequent row of subplots show the corresponding results for the other data sets. One small change is made in the 
analysis as we move to Fig. 10, now the data are limited to the time period of 6 am to 8 pm because the early morning hours exhibit 
very low flows.

Every lane in every data set except lane 2 in FSP sb 1993 (Fig. 10Q) and the all_lanes combined condition in all of the data sets 
exhibit a concave Q(k) when σh is ignored. As discussed above, lane 2 in FSP sees high q because it is the fastest general purpose lane 
immediately upstream of a lane drop bottleneck.

Upon reviewing the first two columns of subplots in Fig. 10, an astute reader might notice that the all_lanes Q(k) tends to fall inside 
the Q(k) from the individual lanes in the given data set. At first this outcome might seem counter-intuitive, but it should be expected. 
Consider the hypothetical scenario where a single static concave FD applies to every lane individually. It is rare that all lanes will 
exhibit the same speed in a given sample period. If different lanes take different speeds on the same concave FD, the average across the 
different lanes must fall inside the single lane concave FD because of the concavity of the curve. In fact, the rules of the road dictate that 
traffic should sort itself with faster vehicles on the inside lane, leading to standing speed gradients between lanes, while imbalanced 
demand during congestion can lead to even more extreme standing speed gradients between lanes. The situation is further com
pounded at locations with an HOV lane because the HOV lane is often freely flowing while the other lanes are congested. When at least 
one lane is free flowng and at least one other lane is congested like this, the resulting all_lanes state should fall inside the true FD, 
independent of whether the FD is concave or triangular.

Looking at these data from another perspective, the third column of subplots in Fig. 10 shows that the corresponding median σh for 
each speed bin increases with speed for v>20 mph. It is often assumed that when traffic exhibits a concave Q(k) like this, that the 
individual vehicles underlying the sample are roughly homogeneous, or "near stationary." But the last column of subplots show the 
median of the maximum headway, max(h), seen in the given sample for the given speed bin, and like σh, the max(h) generally increases 
with speed for v>20 mph. Taking the data from these last two columns of subplots, Fig. 11 plots max(h) versus σh for each lane and 
all_lanes combined for each of the five data sets. In all cases a roughly linear relationship emerges. Returning to the raw EVA mea
surements for each sample: q, k, v, σh, and max(h), for each lane and all_lanes combined at each station we did a first order linear 
regression of max(h) to σh. The resulting parameters are shown in Table 2. There is a strong correlation between max(h) and σh, in 
every single case the correlation coefficient is at least 0.91 (median value of 0.97). Across the individual lanes the minimum R2 for the 
linear fit was 0.92 (median value 0.95) while dipping as low as 0.82 for all_lanes combined. Applying the fitted model to the threshold 
of the longest σh bin, σh = 1.2s, the smallest estimate of max(h) across all of the fittings is 4.0 sec (median value of 4.6 sec). In short, 
max(h) increases roughly linearly with σh, thus, as σh increases not only does Q(k) become more concave, but the expected 
longest headway in a given sample also grows, i.e., the microscopic voids from LHV that are too small to be perceptible in the 
conventional detector data are large enough to disrupt assumptions of homogeneity and stationarity within the given 
sample. The last column of subplots in Fig. 10 reaffirms this outcome, the median of max(h) in individual lanes steadily increases from 
about 4 sec at 40 mph to about 6 sec at 60 mph.

Fig. 11. max(h) versus σh for each speed bin in the given lane or all_lanes in the given data set for (a) BHL eb 2000, (B) BHL wb 2003, (C) CMFMS 
wb 2008, (D) Pinole eb 2010, and (E) FSP sb 1993. Note that the curves for the individual lanes generally fall on top of one another, making it 
difficult to distinguish the different curves. This similarity across lanes is a key feature that the plots seek to present. Throughout dashed lines are 
shown at the σh thresholds between successive σh bins.
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3.2. The sixth data set- the earliest empirical FD’s

Section 1.2 argued that short-duration disturbances like a void ahead of LHV are large enough to disrupt stationarity but these 
disturbances are too short to be perceptible at the resolution of conventional data aggregation. Section 3.1 then demonstrated that 
indeed, as σh increases, the largest void in the sample increased (over 4 sec for σh > 1.2s) while the shape of Q(k) progressed towards 
concave shape. As per Fig. 1, a Q(k) constructed from non-stationary samples can yield a reproducible concave Q(k) that mimic the 
appearance of a stationary concave FD. Or to put it another way, based strictly on the shape of Q(k) one cannot ascertain whether the 
curve is derived from stationary conditions or from non-stationary conditions.

With this view in mind, let us now consider the seminal concave FD from Greenshields (1935) that inspired LWR. We will call this 
curve G35. Greenshields’s study sought to establish the functional capacity of a "two-lane highway," i.e., two way traffic with one lane 
in each direction. Greenshields ultimately used seven independent observation periods to measure q and v, from which k was then 
calculated. The result is a single measurement of the average traffic state for each of the seven samples. Each of the six free flow data 
points included at least 160 vehicles (mean size 412 vehicles) observed over a sample period of at least 6 min (mean duration 22.7 
min). Greenshields (1935) only presents a small example of the individual vehicle measurements, but from the 35 successive vehicles 
shown in the paper, half of the headways are greater than 10 sec while the individual vehicle speeds ranged between 20 and 62 mph 
(median 46 mph). Separately, the paper provides a distribution of speeds for a few of the samples, in each case the quartiles fall near 28 
and 48 mph, corresponding to a factor of 1.7 across the interquartile range. Given the large range of speeds, large headways are to be 
expected as fast vehicles pull away from slow vehicles behind and in turn, the slow vehicles collect many vehicles behind as the drivers 
wait for an opportunity to overtake; thus, giving rise to a succession of moving bottlenecks with voids ahead and moving queues 
behind. Notably, overtaking on a two-lane highway requires a very large void in the oncoming traffic. Consistent with the σh > 1.2s Q 
(k) from EVA applied to loop detector data, the traffic underlying each sample in G35 is non-stationary even though the concave 
Q(k) is smooth and yields a good fit to the empirical data.

It turns out G35 is not the first recorded FD, Greenshields (1934) undertook a related study, this time, to effectively find q as a 
function of v. Research starting in the early 1920′s sought to establish a theoretical speed-flow relationship of a single lane (Johnson, 
1921; Johnson 1926; Hamlin, 1928; Johnson, 1929, Dougherty, 1930, 1931; and Johannesson, 1931). Unlike the preceding studies, 
Greenshields (1934) appears to be the first FD study that sought to fit empirical data rather than starting with some assumed functional 
form. Recognizing that it is rare to find long queues moving at constant speed, Greenshields (1934) studied small platoons of vehicles 
trapped behind slow moving vehicles on two-lane highways. Specifically, Greenshields used a high speed camera to measure the speed 
and spacing of 794 individual vehicles caught in moving queues, sorted these measurements into 2 mph bins, calculated the average 
spacing in each of the bins, and then fit a straight line to these averages. In this way, he measured a speed-spacing curve that he then 
projected into the speed-flow plane. We will call this curve G34, and because it strictly consists of vehicles caught inside moving 
queues, the sample in each bin was from homogeneous traffic. Reiterating the key figures from Greenshields (1934), Fig. 12A shows his 
speed-spacing curve and Fig. 12B projects his curve into the speed-flow plane and he shows the curves from several of the preceding 
models for reference.

Table 2 
Results of a first order linear regression of max(h) to σh by individual lane and separately all_lanes combined for each station.

data set lane intercept slope R2 Correlation coefficient # samples used

BHL eb 2000 1 1.59 2.47 0.96 0.98 134,415
2 1.49 2.59 0.94 0.97 296,092

​ 3 1.42 2.56 0.94 0.97 264,125
​ 4 1.41 2.56 0.93 0.97 256,630
​ 5 1.52 2.54 0.95 0.97 219,866
​ all_lanes 1.85 3.89 0.82 0.91 310,854
BHL wb 2003 1 1.68 2.52 0.95 0.98 275,943

2 1.59 2.61 0.92 0.96 257,220
​ 3 1.61 2.52 0.93 0.96 264,451
​ 4 1.57 2.53 0.94 0.97 263,877
​ 5 1.57 2.53 0.95 0.98 268,266
​ all_lanes 1.86 3.89 0.84 0.92 344,050
CMFMS wb 2008 1 1.25 2.33 0.97 0.99 4,228

2 1.26 2.40 0.96 0.98 16,409
​ 3 1.11 2.40 0.97 0.99 6,854
​ all_lanes 1.35 2.58 0.94 0.97 76,825
Pinole eb 2010 1 1.64 2.52 0.95 0.98 91,892

2 1.56 2.53 0.95 0.97 130,197
​ 3 1.44 2.51 0.95 0.98 66,971
​ 4 1.55 2.51 0.95 0.98 99,464
​ all_lanes 2.80 3.09 0.84 0.92 144,715
FSP sb 1993 1 1.77 2.41 0.96 0.98 117,955

2 1.47 2.64 0.94 0.97 261,346
​ 3 1.48 2.53 0.94 0.97 263,930
​ 4 1.53 2.46 0.96 0.98 161,357
​ all_lanes 0.93 4.14 0.88 0.94 301,166
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The final models from the respective papers give G34 in Equation 20 and G35 in Equation 21 (in both equations v is in mph and k in 
veh/mi). Fig. 13 projects the resulting curves into the flow-density plane and separately into the speed-flow plane. The triangular G34 
arises from homogeneous (and thus, stationary) samples of congested vehicles and is very similar in form to the low σh from the loop 
detectors. Meanwhile, the concave G35 arises from non-stationary samples of whatever vehicles happened to pass during the 
observation period and is even more concave than the highest σh from the loop detectors. In this way, the very first empirical FD 
provide historical evidence to support our findings that samples of stationary traffic tend towards a triangular Q(k) while 
samples of non-stationary traffic tend toward a concave Q(k) with lower max q, thereby adding an element of timelessness to the 
present work. 

G34 : k =
5280

21 + 1.1 ⋅ v
(20) 

G35 : k =
43.8 − v
0.221

(21) 

4. Conclusions

This paper studied microscopic voids in the traffic stream that are too small to be perceptible in conventional detector data but are 
large enough to disrupt some of the assumptions used in HdTFM. This work used loop detector data sets collected at five different sites, 
collected over a span of more than 18 years. The very first empirical FD provide historical evidence to support the loop detector 
findings and adds an element of timelessness to the present work and collectively, the results span over 75 years of empirical traffic 
data. There are six main conclusions that arise from this analysis. Each one addressed in its own subsection below. The notation in this 
section uses Q(k) to denote the calculated curve, separate from the theoretical concept of a FD.

Fig. 12. Figures from Greenshields (1934) showing (A) his linear speed spacing data and curve fit, (B) several speed-spacing models of the day 
projected into the speed-flow plane.

Fig. 13. The two models from Greenshields (A) in the flow-density plane, and (B) the speed-flow plane. Both curves are plotted with a bold line over 
the range of states Greenshields used for fitting the data: G34: v ≤ 50 mph, and G35: v > 25 mph & q > 400 vph. Dashed lines at 10 mph and 40 mph 
added for reference.
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4.1. The shape of equilibrium FD appears to be triangular

This work has shown that the emergent Q(k) progresses from a triangular shape when Q(k) is created from samples with low σh to a 
concave shape that falls inside the triangular curve when Q(k) is created from samples with high σh. Furthermore, as σh increases not 
only does Q(k) become more concave, but the expected longest headway in a given sample also grows, i.e., the microscopic voids from 
LHV that are too small to be perceptible in the macroscopic data are large enough to disrupt stationarity within the given sample.

As noted earlier, these voids ahead of the LHV are inherently non-stationary because different regions of the sample are percep
tively distinct. As discussed in Section 4.2, the sub-sample disturbances can have significant impact at the macroscopic scale if they 
contain unobserved boundary conditions. Zhang (1999) argued that traffic is only in equilibrium when the temporal stationary 
condition of Equation 22 holds and in non-equilibrium otherwise. At the successive vehicle level, if ∂v

∂t ∕= 0, the sample is 
non-equilibrium by definition and if ∂v

∂t = 0, then the LHV correspond to transient low k in the sample, i.e., ∂k
∂t ∕= 0, and again, the sample 

is non-equilibrium. Thus, by these measures only the low σh curves could be equilibrium FD curves. In other words, these results 
indicate that if the equilibrium FD curve was observed, then for all six data sets it is the triangular shape from low σh. 

∂v
∂t

= 0;
∂k
∂t

= 0 (22) 

This point is readily apparent in Greenshields two curves (Fig. 13). G35 was sampled under extremely inhomogeneous (non-sta
tionary, non-equilibrium) conditions and gives rise to a concave Q(k). Whereas, G34 came from the same class of roadway, but in this 
case, Greenshields was careful to ensure homogeneous conditions, and the resulting Q(k) is triangular in shape.

This work did not evaluate ∂v
∂t and Zhang (1999) also postulated strong criteria for equilibrium that considers the partial derivatives 

in space, which cannot be tested directly with the dual loop detector data. So, it is possible that none of the observed curves represent 
an equilibrium FD curve under Zhang’s criteria. But it is safe to say that the concave Q(k) seen throughout this study do not 
represent the equilibrium FD under Zhang’s criteria.

4.2. Conventional detector data mask critical features needed by HdTFM

On the one hand, just because HdTFM are macroscopic models, it does not mean that the models will always work well with 
conventional fixed time averaged data (Section 2.1). Consider a hypothetical example where a queue backs up past a detector station. 
For ease of illustration suppose the state transitions instantaneously and there are only two states observed at this location, corre
sponding to (A) the free flow conditions before the queue arrives and (B) the congested conditions after. Even if both states are stable, 
long lasting, and stationary, the fixed time average that spans the arrival of the queue will be non-stationary, containing a portion of 
time from state A and the rest of time from state B. That fixed time average is meaningless to HdTFM because the average is across two 
distinct states. In fact, because that sample averages free flow and congested conditions one would expect it to fall somewhere inside 
the FD, without any significant meaning. This problem arises due to the sampling resolution, in this case the sample boundaries did not 
align well with the state boundary. This type of blurring should be expected in fixed time averaged data whenever a transition passes.

On the other hand, just because HdTFM are macroscopic models, it does not mean that all features of interest are long lasting. 
Significant macroscopic features can be too small to be perceived from fixed time averaged data. At best, fixed time averaging can only 
resolve dynamics that last as long as the sample period. But realistically, dynamics would likely have to last several samples to be 
perceptible. This work found evidence of extremely short duration dynamics far below the resolution of fixed time sampling that (i) 
impact the emergent Q(k) as per Section 4.1, and (ii) if they pass undetected can violate the assumptions of HdTFM, as follows.

While the voids from LHV are large enough to impact traffic dynamics (see, e.g., Coifman et al., 2023), their durations are much 
shorter than conventional sampling periods, thus, their presence cannot be detected in conventional fixed time sampling. From the KW 
perspective, an undetected void creates an ill posed problem where the traffic state over all time and space is no longer defined strictly 
by the known boundary conditions. If a driver acts independent of their leader there are no KW from the boundaries that reach the 
driver during their independence, and thus, there is no way to predict how the driver should act. Instead, the independent LHV driver 
forms a new independent boundary that emanates unaccounted KW from within the region of interest.

Generally, this problem could be handled by HdTFM if the boundary condition from the LHV were detected, but because of the 
resolution limitations such detection cannot be achieved with conventional fixed time averaged traffic data. Section 4.5 shows several 
examples of such events as seen in vehicle trajectory data. It is likely that there are other significant traffic dynamics impacting HdTFM 
that also go unobserved in fixed time averaged data because the duration of the event is on the order of the sample period or shorter.

4.3. An empirical case study supporting multi-class HdTFM with mixed regime samples

The empirical results in this study underscore the need for multi-class HdTFM. Assuming all significant features are observable (i.e., 
without any detection limitations as per Section 4.2), following conventional practice of a single Q(k) then SwA and LWR cannot 
capture the dynamics underlying the mix of LHV and SHV seen in this study. Many single-class higher order models would also be 
challenged under these conditions. When the emergent state falls in the free flow regime of a concave Q(k), a HdTFM would have to 
capture the mixed regimes of the quasi-free flowing LHV and queued SHV in a given sample (or more generally, a given region of time 
and space). Multi-class models are well structured to handle these potentially complex interactions.

For example, Zhang (2002) considered the scenario with non-equilibrium states that could be sustained indefinitely. Zhang’s work 
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effectively replicated the acceleration cycle hysteresis in the FD from Newell (1962) and illustrated the case in which conditions on the 
coupled FD curves were strictly congested. In this context, one could view the jump from LHV to SHV behind as a contact discontinuity, 
but unlike Zhang’s example, the LHV is operating in the free flow regime of its class-FD while the SHV are operating in the congested 
regime of their class-FD. Inspired by Daganzo (2002), several multi-class models explicitly consider such mixed regime conditions, e.g., 
Logghe and Immers (2008).

4.4. An empirical case study illustrating challenges to the predictive abilities of HdTFM

Given sufficient resolution (i.e., without any detection limitations as per Section 4.2), a well-crafted multi-class HdTFM should be 
able to capture all of the dynamics explored in this paper, but it can only do so a posteriori. A pure HdTFM is deterministic, but the 
formation and dissolution of the LHV that can create a new boundary condition are random events that cannot be predicted ahead of 
time. For example, while Zhang (2002) can be used to model the long lasting LHV/SHV interactions observed in Coifman et al. (2023), 
that model cannot predict the occurrence of any given LHV. This case of significant microscopic disturbances is similar to the long 
standing issue of stop wave formation and other random events in the HdTFM literature. One could argue that in many cases the 
microscopic disturbances are trivial and can be ignored. Sometimes the LHV events are short lived, e.g., closing the gap behind a 
vehicle that exited, but microscopic disturbances can also be long lived, Coifman et al. (2023) studied situations where the LHV 
persisted for 2/3 mi or further. The longer a LHV persists and the more it deviates from its leader, the more significant it becomes. This 
issue of driver agency is discussed further in Section 4.5.

A few other challenges should be noted. While much of this paper discusses LHV and SHV as if they were homogeneous classes, in 
reality they reflect a continuum of behavior. Furthermore, the distinction between LHV and SHV is not intrinsic to the given vehicle, 
and it is only a "tendency" of the driver. Conceptually, the LHV could attenuate or otherwise distort some characteristics rather than 
always blocking them. LHV could arise for intrinsic reasons, e.g., a driver might prefer a lower free speed or a longer spacing, or 
extrinsic reasons, e.g., in response to the adjacent lanes, lane change maneuvers, or a driver proactively anticipating an imminent 
slowdown. So accurately capturing this continuum of behaviors could be difficult with a small number of classes. In spite of these 
stochastic challenges, while it is impossible to accurately forecast individual random events, it is plausible that a model might be 
developed that could account for the collective impacts of the stochastic events given their rate of occurrence.

4.5. Driver agency

Some drivers exhibit agency, namely, the gaps ahead of the LHV are at the driver’s discretion. As noted in Section 4.2, when the 
LHV drivers act independent of their leader, these vehicles can both block KW and define a new independent boundary that emanates 
KW. Presumably the LHV are only semi-independent of their leader e.g., if their leader undertakes a large deceleration the LHV must 
also slow, but the LHV driver could either close the gap or they could still maintain a large headway when they slow down. In short, the 

Fig. 14. Six examples of vehicles exhibiting driver agency, as highlighted by the dark trajectory in each plot. In all cases the lane and the subject 
vehicle’s max speed are shown above the plot. These data come from the 17 min long reextracted NGSIM I-80 data set.
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LHV drivers are exhibiting driver agency when they choose to take a larger spacing than necessary, and in the process, they violate the 
conventional assumptions, "that vehicles capture no more space than strictly necessary" (Logghe and Immers, 2008). If the drivers were 
self-consistent, new classes could be created and these unusual drivers could be accommodated with multi-class models.

But driver agency also applies to sustaining and dissolving a long headway. Driver agency leads to the uncertainty of the stochastic 
LHV events that challenge the predictive ability of a deterministic HdTFM. A single driver can abruptly change their behavior in a way 
that literally has wide ranging impacts: The driver could maintain the gap resulting in signals moving downstream with their vehicle 
(e.g., Fig. 1B) at the risk of attracting another vehicle to enter the lane in the gap (more uncertainty), or the driver could close the gap 
resulting in upstream moving signals (e.g., Fig. 1C) while choosing to do so either quickly or slowly (further uncertainty). Yet these 
behavioral changes would be difficult or impossible to anticipate.

Driver agency is difficult to illustrate using loop detector data that only capture the vehicle at a single point in time and space. Clear 
examples of driver agency can be seen in all six lanes of the reextracted NGSIM I-80 data set (Coifman and Li, 2024). Conditions 
throughout this data set are well into the congested regime (except for lane 1 which is a HOV lane). The dark trajectories in Fig. 14
show six examples of vehicles that maintained a long headway for at least 20 sec, and during that period the headway exceeded 8 sec at 
least once. For reference, a 10 sec long horizontal red line is shown in each subplot near the location where the given vehicle exhibited 
its largest headway. All these examples were inspected in the validation video. Parts A and F show an unwilling car caught behind 
another vehicle that ignored downstream conditions in the ego lane when they slowed or stopped to match the speed in an adjacent 
lane as they changed lanes. Part B shows a pickup truck that simply chose to move slower than its leader and parts C-E show 
semi-trailer trucks that apparently chose more conservative acceleration than the other vehicles (not all semi-trailer trucks exhibited 
this behavior). In the case of part C, the truck driver appears to have anticipated the forthcoming slow wave. Sometimes the voids 
ahead of the LHV are partially filled by entering vehicles (parts B, D & E) sometimes the driver closes the gap without any entrances 
ahead (part C) or the gap simply persists unfilled when it exits the link (parts A & F).

4.6. A test for stationary conditions when you need it

The application of any hydrodynamic or continuum traffic flow model needs to be cognizant of the underlying microscopic pro
cesses that enable the assumed macroscopic dynamics. As shown herein, there can be microscopic processes far below the detector’s 
sampling resolution that yield a reproducible concave FD but also violate the presumed stationarity. Whenever a model relies on the 
shape of the FD to determine the velocities at which signals and characteristics propagate through the traffic stream, one must be 
mindful of the microscopic dynamics that are necessary to give rise to a macroscopic model and be careful to investigate a concave FD 
to ensure it supports the assumptions placed upon it. To this end, if the individual vehicle actuations are available, the EVA method 
binned by σh developed in this paper offers a simple test of stationary conditions.
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Appendix A

This section presents some of the finer details of dual loop detector measurements, it is not critical to understanding the rest of the 
paper, but these subtle details are very important for anyone who wishes to reproduce or extend this work. The individual vehicle 
actuations used in this work are rarely recorded by operating agencies, typically they are aggregated in the field for FTS and then the 
individual vehicle actuations are discarded. So simply getting the individual vehicle actuations can be a logistical challenge. One 
should not expect consistency between operating agencies in the way detector measurements are calculated, in fact sometimes a given 
agency might calculate the measurements differently at different detector stations. Meanwhile, the quality of the detector data depends 
on how well the detectors were tuned in the field. Although many tuning and calibration errors cannot be corrected post hoc, a few can 
be (Lang and Coifman, 2006; Lee and Coifman, 2012b) while the presence of other chronic errors can be identified (Coifman, 1999; Lee 
and Coifman, 2011 & 2012a). Obviously, the best strategy is to work with the operating agency to ensure the detectors are well tuned 
prior to data collection, but that is not always feasible.
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A vehicle passing over a dual loop detector should register four events: upstream detector rising and falling transitions and 
downstream rising and falling transitions. Where a rising transition is when the given detector is first occupied by the vehicle and a 
falling transition is when the vehicle clears the detector. From these four events it is straight forward to measure the traversal time from 
either the paired rising transitions or paired falling transitions; and the on-time from the difference between the falling and rising 
transition times at either of the detectors. The two pairs of measurements could be combined or averaged in many different ways, and 
in fact the four transitions themselves can be aggregated in more complex ways (Wu and Coifman, 2014). It should be expected that a 
small percentage of vehicles will only be detected by just one of the paired loop detectors either due to a lane change maneuver or a 
detector error. For the EVA method we exclude any unmatched actuation seen at just one of the dual loop detectors and then exclude 
the following vehicle from the EVA calculations because its true headway is unknown.

For greatest fidelity, in this paper we use the paired rising transitions to measure speed because the rising transition is more 
consistent across vehicles than the falling transition (Lee and Coifman, 2011) since the distribution of metal tends to be greater and 
closer to the ground in the front of most vehicles. Generally, the period of time that speed and on-times are measured will not align 
perfectly, in which case vehicle acceleration might cause discrepancies between the speed and on-time measurements. To minimize 
these impacts, the upstream on-time measurement has the greater overlap with the period that speed is measured via the rising 
transitions (Wu and Coifman, 2014), so we use upstream on-time to go with the choice of measuring speed from the paired rising edges. 
Meanwhile, one could define the vehicle’s arrival time to be anything between the upstream rising edge and downstream falling edge 
transition, what is important is that the choice is consistent across all vehicles. We arbitrarily choose the upstream detector’s rising 
edge transition time for the vehicle arrival time.
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