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Understanding and learning the actor-to-X interactions (AXIs), such as those between the focal vehicles (actor) and other
traic participants, such as other vehicles and pedestrians, as well as traic environments like the city or road map, is essential
for the development of a decision-making model and the simulation of autonomous driving. Existing practices on imitation
learning (IL) for autonomous driving simulation, despite the advances in the model learnability, have not accounted for
fusing and diferentiating the heterogeneous AXIs in complex road environments. Furthermore, how to further explain the
hierarchical structures within the complex AXIs remains largely under-explored.

To meet these challenges, we propose HGIL, an interaction-aware and hierarchically-explainable Heterogeneous Graph-
based Imitation Learning approach for autonomous driving simulation. We have designed a novel heterogeneous interaction
graph (HIG) to provide local and global representation as well as awareness of the AXIs. Integrating the HIG as the state
embeddings, we have designed a hierarchically-explainable generative adversarial imitation learning approach, with local
sub-graph and global cross-graph attention, to capture the interaction behaviors and driving decision-making processes. Our
data-driven simulation and explanation studies based on the Argoverse v2 dataset (with a total of 40,000 driving scenes)
have corroborated the accuracy (e.g., lower displacement errors compared to the state-of-the-art (SOTA) approaches) and
explainability of HGIL in learning and capturing the complex AXIs.

Additional Key Words and Phrases: Interaction awareness, hierarchical explainability, heterogeneous graph fusion, imitation
learning, autonomous driving simulation.

1 Introduction

Imitation learning (IL) for autonomous driving simulation aims to capture a cost function or a policy from the
human driver demonstrations (e.g., real-world driving datasets) [3, 5, 6, 25, 30]. In the IL setting, the actor, i.e.,
the focal vehicle, interacts with various other traic participants (e.g., other vehicles, pedestrians) as well as the
traic environments (e.g., map topology), forming the diverse scenes of the actor-to-X interactions (AXIs). These
AXIs involve the behaviors of car following, l ane changing, cutting in when interacting with other vehicles and
road contexts (e.g., closure and road work), as well as the responses to the presence of pedestrians (e.g., yielding
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at the crosswalks). Understanding and learning such complex AXIs is essential for designing the decision-making
models and simulation of autonomous driving systems.
Despite the recent IL advances [3, 4, 27, 41], existing studies have not accounted for the following two major

designs that are critical for interaction awareness and hierarchical explainability toward an autonomous driving
simulation framework:

(1) How to diferentiate heterogeneous AXIs for generalizing the contextual dependencies: Learning the decision-
making process of AXIs performed by the human drivers hinges on understanding the contextual dependen-
cies between the actor (the focal vehicle) and other traic participants as well as the traic environments.
However, the same human driver maneuver behaviors (e.g., turning or deceleration) may result from
various heterogeneous contexts of AXIs. Existing feature representations such as simple feature vector-
ization [21], 2D rasterization [17, 19], and homogeneous graphs [18] of the actor’s mobility features (e.g.,
motion information) and surrounding contexts (e.g., map information and topology) may not necessarily
diferentiate these AXIs, lowering the generalizability of the IL designs.

(2) How to enable the hierarchical explanation of IL for autonomous driving simulation: In the model simulation
studies, understanding the global and local contexts of the human driver demonstrations hinges on tracing
and dissecting the decisions of the actor. Speciically, responses to the global contexts, i.e., incoming
general traic conditions and map topological information (e.g., road work closure or highway exits),
and those to the local contexts, i.e., the nearby traic participants, can be highly interleaved and lead
to complex AXI outcomes. Transparency requirements for autonomous driving simulation [20, 31] have
established the needs of providing the hierarchical explainability to enable more trustworthy human-vehicle
interactions [20], which, however, remains to be explored further in the IL designs.

To overcome the above-mentioned gaps, we propose HGIL, a novel Heterogeneous Graph-based Imitation
Learning framework for interaction awareness and hierarchical explainability in autonomous driving simulation.
Toward this framework, we have made the following three major contributions:

(a) Heterogeneous Interaction Graph Fusion for AXIs: We have designed a heterogeneous interaction
graph (HIG) representation as the state embeddings of our imitation learning designs, characterizing the
various objects involved in AXIs as the nodes and their interplay as the edges. To infuse the complex AXI
scenes, we have derived within the HIG the sub-graph structures, which account for the heterogeneous
interactions among the actor, other traic participants such as other vehicles and pedestrians in our studies,
and lane topology. This way, HGIL enhances its learnability over the existing IL approaches.

(b) Hierarchically-Explainable IL Designs: Based on the HIG fusion, we have further designed the hier-
archical explanation designs for HGIL, via the local sub-graph attention and global cross-graph attention

within the HIG. The proposed hierarchical explanation designs diferentiate the contextual dependencies
between the local and global observations, yielding the traceability of the decision-making process within
the autonomous driving simulation.

(c) Data-driven Simulation and Explanation Studies: We have conducted extensive experimental studies on
the Argoverse v2 dataset [34] with a total of 40,000 driving scenes to validate the accuracy and explainability
of HGIL in learning and capturing driving behaviors for autonomous driving simulation. Our simulation
results have demonstrated that our HGIL outperforms the other state-of-the-art approaches (including [1, 2,
10, 16, 24]) in terms of various displacement error measures (such as inal displacement error), and achieves
hierarchical explainability (in terms of sparsity and idelity) regarding various AXIs.

The rest of the paper is organized as follows. We irst review the related work in Sec. 2. Then, we present the
HIG representation designs, and the problem formulation of HGIL in Sec. 3. Next, we present the core designs of
our interaction-aware and hierarchically-explainable heterogeneous graph-based imitation learning in Sec. 4.
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This is followed by the results of our experimental studies in Sec. 5, deployment discussion in Sec. 6, and the
conclusion of this paper in Sec. 7.

2 Related Work

We briely review two categories of prior work related to this paper.

2.1 Graph Representations for Motion Modeling

Prior motion modeling and planning studies for autonomous driving [17, 19, 21] considered vectorized feature
encoding, such as 2-D rasterization of the bird’s-eye view (BEV), of the vehicle’s mobility features and surrounding
contexts. However, existing 2-D rasterization, processed by feature convolution [19, 22], may not fully capture
the interplay of the objects with the actor in the complex traic scenes. Therefore, graph neural networks have
recently attracted attention to model the relations of the objects in the traic environments [18, 20, 31]. Jia et
al. [12] and Zhang et al. [39] have considered the graph-based transformers for motion modeling. Zeng et al. [38]
proposed a graph-based approach to incorporate the lane and map topology structures. Deo et al. [8] and Gilles
et al. [9] have formulated a graph traversal problem for the motion modeling process. Tang et al. [31] studied
the neural relation inference to generate the interactive behavior interpretation. Kosaraju et al. [14] implements
graph attention networks based on BycleGAN [42] for multi-modal trajectory forecasting.

In addition, prior graph representation studies [36] often consider post-training andmodel-agnostic approaches
to infer the interactions. Recent studies [5, 16, 38] investigated the interactions among diferent traic participants.
However, these designs often lack proper reasoning for their motion modeling processes and the subsequent
simulation results. These designs often provide limited information about the importance of factors, rather than
revealing detailed interactions.

Unlike these eforts, we have designed within HGIL the heterogeneous interaction graph (HIG) fusion, which
provides the hierarchical characterization and explanation of the interactions and relations of the actor (the focal
vehicle) with diferent types of traic participants of the complex traic scenes. HIG consists of the sub-graph
structures, which accounts for the heterogeneous interactions among the actor, other traic participants, and
lane topology. This way, HGIL yields high learnability in the complex AXI scenes.

2.2 Imitation Learning (IL) for Autonomous Driving Simulation

Deep IL has recently been adopted for autonomous driving simulation and model development to capture the
cost function or policy from the large-scale human driver demonstration data [3, 6, 16, 24, 29, 40]. Compared to
the inverse reinforcement learning (IRL) that is usually expensive to run and diicult to scale [35], generative
adversarial imitation learning (GAIL) [11] generates the policy without capturing the cost function, and is able
to scale in the complex and spacious traic environments. Zhou et al. [41] proposed a feedback synthesizer for
data augmentation in IL to improve the autonomous driving performance in the unobserved environments. Bhat-
tacharyya et al. [4] improved GAIL designs via a parameter sharing mechanism that enhances the generalizability
to complex driving scenes. Lee et al. [15] leverages both positive (from expert) and negative (with collisions)
demonstrations for fast convergence of the IL model.

Unlike the above-mentioned studies, the IL approach in HGIL provides a novel state embedding design based on
HIG, which provides heterogeneous representability and hierarchical explainability. Our data-driven simulation
studies have further corroborated our proposed designs in characterizing and explaining the complex AXIs. In
addition, beyond the results in [27], we have conducted more model and sensitivity studies (e.g., over important
model parameters) and explainability evaluations (based on the metrics of sparsity and idelity) to corroborate
the novel designs of HGIL.
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3 Heterogeneous Interaction Graph Representation and Problem Formulation

We irst present the representation designs of HIG in Sec. 3.1, followed by the important concepts and problem
formulation in Sec. 3.2.

3.1 Heterogeneous Interaction Graph Representation

Toward interaction awareness and hierarchical explainability, we formulate the surrounding contexts of the actor
(focal vehicle) at the �-th timestamp into a heterogeneous interaction graph (HIG). Each HIG consists of multiple
sub-graphs that characterize the actor’s local relations with the surrounding objects in diferent types of AXI
scenes. All the sub-graphs share the node of the actor (the focal vehicle). Speciically, at each timestamp � , HGIL
accounts for the node features of the actor as

V
(f)
� =

[

�
(f)
� , �

(f)
� , �

(f)
� , �

(f)
� ,Δ�

(f)
� ,Δ�

(f)
�

]

∈ R6, (1)

where � (f)
� , � (f)

� , � (f)� , and � (f)
� correspond to the actor’s position coordinates (unit: m), instantaneous speed (unit:

�/�), and heading angle (unit: rad) in the global (earth) coordinate system under the bird’s eye view (BEV).

Δ�
(f)
� = �

(f)
� − �

(f)
�−1 and Δ�

(f)
� = �

(f)
� − �

(f)
�−1, respectively, denote the displacements of the actor w.r.t. the � and �

axes from the preceding timestamp � − 1.
In this prototype study, we take into account the following three types of sub-graphs within the HIG represen-

tation (illustrated in Fig. 1), while our HIG design is general enough to be extended to other types of AXIs given
the availability of other interacting objects. HGIL determines the relations of the actor with other objects through
the local sub-graph and global cross-graph attention mechanisms (detailed in Sec. 4.2).

3.1.1 Actor-to-Vehicle Sub-graph G
(c)
� . We form G

(c)
� by including the actor and the peer vehicles within a range

from the actor as the nodes (25m in our study). For each vehicle � of the � nearest peers observed (� ∈ {1, . . . , �}),
we ind its node feature as

V
(c)
�,� =

[

�
(c)
�,� , �

(c)
�,� , �

(c)
�,� , �

(c)
�,� , �

(c)
�,�

]

∈ R5, (2)

i.e., its global coordinates, speed, heading direction, as well as the distance (unit: m) from the actor. We let

V
(c)
� ∈ R�×5 be the node features of all the � nearest peer vehicles at the timestamp � . Let E

(c)
� ∈ R(�+1)×(�+1) be

the adjacency matrix representing the edges from the actor node to its peer vehicles at the timestamp � , where

the elements in E
(c)
� are initialized as those for the edges between the actor and peer vehicle nodes, and zeros

otherwise.

3.1.2 Actor-to-Pedestrian Sub-graph G
(p)
� . Similar to G

(c)
� , we form G

(p)
� that includes the pedestrians within a

range (25m in our study) from the actor. We ind the corresponding pedestrian node feature � ∈ {1, . . . , �} as

V
(p)
�, � =

[

�
(p)
�, � , �

(p)
�, � , �

(p)
�, � , �

(p)
�, � , �

(p)
�, �

]

∈ R5, (3)

i.e., the global coordinates, velocity, heading direction, and distance of the pedestrian from the actor. We let

V
(p)
� ∈ R�×5 be the node features of all the � nearby pedestrians at the timestamp � . We similarly deine

E
(p)
� ∈ R(�+1)×(�+1) as the adjacency matrix representing the edges from the actor node to the nearby pedestrians,

where the elements in E
(p)
� are initialized as those for the edges between the actor and pedestrian nodes, and

zeros otherwise.

3.1.3 Actor-to-Lane Sub-graph G
(l)
� . To model the interaction between the actor and the map topology (e.g., when

approaching the intersection or exit), we divide the road lane into multiple segments (of length 25.45m each on
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Fig. 1. Illustration of an HIG representation in HGIL.

average), and represent them by the nodes of a series of coordinates in the BEV. For each of the � closest road
segment� ∈ {1, . . . , �} within a range (10m in our study) from the actor, we ind the lane node feature

V
(l)
�,� =

[

�
(l)
�,�, �

(l)
�,�, �

(l),
�,�, �

(l)
�,�

]

∈ R4, (4)

i.e., the global coordinates, distance (unit:m) from the actor, and a binary variable � (l)�,� ∈ {1, 0} indicating whether

the road segment is part of an intersection (� (l)�,� = 1) or not. We let V
(l)
� ∈ R�×4 be the lane node features of all the

� nearby lane segments at the timestamp � . Similar to E
(c)
� and E

(p)
� , we form the adjacency matrix for the nodes of

the actor and the lane, i.e., E
(l)
� ∈ R(�+1)×(�+1) .

Given the above sub-graphs, we denote an HIG at a timestamp � as

G� =

{

G
(c)
� ,G

(p)
� ,G

(l)
�

}

. (5)

3.2 Concepts and Problem Formulation

3.2.1 State. In our IL setting with the ininite horizon, we formulate the state S� of the actor (i.e., the focal vehicle
as the agent) based on the historical HIGs for the past � timestamps, i.e.,

S� = {G�−�,G�−�+1, . . . ,G� } . (6)

Furthermore, without loss of generality, we can account for the focal vehicle as the actor, while the formulation
is general enough to be extended to the multi-agent setting [4, 12].
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3.2.2 Actions and Policy. Given an observed state S� , we aim to determine the decision process as well as the
respective actions A� of the actor that represents the focal vehicle. The IL designs of HGIL will identify the policy
� (·), a function that maps the state S� to its corresponding action A� ,

A� ∼ � (A|S� ). (7)

In this prototype study, HGIL rolls out and generates a series of planned displacements toward the � and � axes,

A� =

[(

Δ�
(f)
(�+1)

,Δ�
(f)
(�+1)

)

, . . . ,
(

Δ�
(f)
(�+�)

,Δ�
(f)
(�+�)

)]

∈ R�×2, (8)

for the future � timestamps.

3.2.3 Problem Definition. Given the above-mentioned states and actions from the human driver demonstration
data, we formulate the generative adversarial imitation learning (GAIL) within HGIL to recover the focal vehicle’s
policy � that can be used to imitate the behaviors of the human drivers by generating A� , given its observed state
S� .
Given the observed state S (say, the historical HIGs in Eq. (6)), the GAIL in HGIL optimizes the actor’s policy

� , such that the resulting actions A of the actor (i.e., series of planned displacements) are indistinguishable

from the expert demonstrations (i.e., human driver demonstration). This can be formalized as inding a Nash
equilibrium [11] within aminimax game between a policy generator network approximating � , and a discriminator
network� , i.e.,

min
�

max
�

ES,A∼� [log(� (S,A))] + ES,A∼�e [log (1 −� (S,A))], (9)

where� represents the policy discriminator network function of the GAIL and �e denotes the policy of the expert
(i.e., human drivers). To further expand the interaction awareness and hierarchical explainability, we design the
state embeddings with HIGs for S (detailed in Sec. 4).

4 Interaction-Aware and Hierarchically-Explainable IL Designs

We irst overview the state-embedding processing in Sec. 4.1, then present the state embeddings with HIGs in
Sec. 4.2, and inally provide the training design in Sec. 4.3.

4.1 Overview of State Embedding Processing

We overview the state embedding processing of HGIL in Fig. 2, which consists of (I) local sub-graph attention
and (II) global cross-graph attention. Speciically, HGIL irst creates the HIGs to represent the actor’s state in the
traic environment at each timestamp. Then, the local sub-graph attention in HGIL updates the node features of
each sub-graph by accounting for the local interactions and relations of the objects involved. Next, HGIL fuses
the resulting node features from the HIGs, and further leverages the global cross-graph attention to quantify
the actor’s interactions in a global context, and generates the state embeddings for policy learning (detailed in
Sec. 4.3).

4.2 State Embeddings with HIGs

4.2.1 Local Sub-graph Atention. The human driver may respond to traic participants and environments with
diferent strategies. In order to capture the interactions between the actor with diferent objects and the resulting
AXI scenes, we design the local sub-graph attention for our IL settings, which helps identify the important
sub-graphs within our HIG that concern the decision-making process of the actor.
(a) Node Feature Embeddings: Given the set of the node features of the actor and all the sub-graphs for the

�-th timestamp,

V� =

{

V
(� )
� ,V

(� )
� ,V

(� )
� ,V

(� )
�

}

, (10)
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Fig. 2. Architecture overview of state embeddings within HGIL, which consists of (I) local sub-graph atention and (II) global

cross-graph atention.

we irst process each node feature in V� with an independent fully-connected (FC) layer with �1 hidden units and
the LeakyReLU activation function, to convert them to the �1-dimensional feature space. This way, we obtain the
set of the node embeddings:

V� =

{

V
(f)
� ,V

(c)
� ,V

(p)
� ,V

(l)
�

}

, (11)

where V
(f)
� ∈ R1×�1 , V

(c)
� ∈ R�×�1 , V

(p)
� ∈ R�×�1 , V

(l)
� ∈ R�×�1 .

Then, we concatenate the actor node feature V
(f)
� with each of the sub-graph node feature embeddings, and

obtain the node features of the sub-graphs.
(b) Graph Convolution: We then process each concatenated feature with a separate graph convolutional (GCN)

layer (with a total of �2 hidden units) to account for the local interaction within each of the sub-graphs, resulting

in the updated node features Q(c)
� ∈ R(�+1)×�2 , Q

(p)
� ∈ R(�+1)×�2 , and Q

(l)
� ∈ R(�+1)×�2 .

For instance, to ind Q
(c)
� , we concatenate the peer vehicles’ node features, V

(c)
� , with the actor node features,

V
(f)
� , i.e.,

V̊
(c)
� =

[

V
(c)
�

�

�

�

�V
(f)
�

]

. (12)

We then further feed it to the GCN layer, i.e.,

Q
(c)
� =

(

D̂(c)
)− 1

2
·
(

E
(c)
� + I

)

·
(

D̂(c)
)− 1

2
· V̊

(c)
� ·W(c) + b(c) , (13)

where D̂(c) ∈ R(�+1)×(�+1) represents the diagonal degree matrix, i.e.,

D̂(c) [�, �] =
︁

�

E
(c)
� [�, �], (14)

where (E(c)
� + I) adds the self-loops to the graph.W(c) ∈ R�2×�2 and b(c) ∈ R�2 represent the trainable weights.

We similarly ind Q
(p)
� ∈ R(�+1)×�2 and Q

(l)
� ∈ R(�+1)×�2 with two separate GCN layers.

(c) Attention Scoring for Sub-graphs: We then quantify the importance of diferent sub-graphs based on the
graph embeddings. Speciically, as illustrated in Fig. 3, we irst concatenate the actor node’s features within the

resulting graph embeddings from the three GCN operations into a vector Q(f)
� , i.e.,

Q
(f)
� =

[

Q
(c)
� [−1, :]

�

�

�

�Q
(p)
� [−1, :]

�

�

�

�Q
(l)
� [−1, :]

]

, (15)

where Q(c)
� [−1, :], Q

(p)
� [−1, :], and Q

(l)
� [−1, :] correspond to the embedded features of the actor node (i.e., the last

row) w.r.t. actor-to-vehicle, actor-to-pedestrian, and actor-to-lane sub-graphs.
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Fig. 3. Illustration of the atention scoring for sub-graphs.

In other words, the vector Q(f)
� ∈ R1×�′

2 (�′
2 = 3�2) aggregates the local context of diferent objects near the

actor, and can be further leveraged to determine and diferentiate the relative importance of the sub-graphs in
the AXIs.
We then feed Q

(f)
� to two FC layers with the �3 hidden units to generate the sub-graph attention scores

�� =
[

�
(c)
� , �

(p)
� , �

(l)
�

]

= �
(

FC

(

�
(

FC(Q
(f)
�

)))

∈ R3, (16)

where � (·) represents the LeakyReLU activation function and � (·) is the Softmax function. Each of the three
elements in �� represents the level of interaction between the actor and each of the sub-graphs.

4.2.2 Global Cross-graph Atention. To capture the human driver decisions in joint response to diferent involved
objects (e.g., other traic participants, map topology) in the global contexts of the traic environments, we have
also designed the global cross-graph attention to capture the global interplay in the AXIs.

Recall that Q(c)
� [−1, :], Q

(p)
� [−1, :], and Q

(l)
� [−1, :] refer to the embedded features of the actor node (i.e., the

last row) w.r.t. the three sub-graphs. We further update the actor node features from Eq. (15) by multiplying the
sub-graph attention scores with the corresponding actor node features (i.e., the last row) in the sub-graphs, i.e.,

Q
(f)
� =

(

�
(c)
� · Q

(c)
� [−1, :]

)

⊕
(

�
(p)
� · Q

(p)
� [−1, :]

)

⊕
(

�
(l)
� · Q

(l)
� [−1, :]

)

,

where ⊕ denotes the element-wise addition operation.
To ind the global cross-graph attention, for each timestamp � , we fuse all the sub-graph nodes and their edges

into a global interaction graph, denoted as G� , that consists of � = 1 + � + � + � nodes in total. We form the

global node feature embeddings of G� by concatenating the updated actor node feature Q
(f)
� with those of all

other nodes, i.e.,

Q� =

[

Q
(f)
�

�

�

�

�Q
(c)
� [1 : �, :]

�

�

�

�Q
(p)
� [1 : �, :]

�

�

�

�Q
(l)
� [1 : �, :]

]

, (17)

where Q� ∈ R�×�2 .
We then model the levels of interactions at the timestamp � , denoted as Γ� ∈ R�×� , across all the nodes in

the global interaction graph G� , where the level of interaction between each pair of nodes is quantiied by the
attention score of

Γ� [�, �] =
exp(�� [�, �])

∑�
�=1 exp(�� [�, �])

, (18)

and �� [�, �] is given by

�� [�, �] ≜ (W�)
⊤ · �

( (

Q� [�, :] ·W�

)
�

�

�

�

(

Q� [ �, :] ·W�

) )

.

Here � (·) represents the LeakyReLU activation function, andW� ∈ R�′
3 (�′

3 = 2�2) andW� ∈ R�3×�3 represent
the trainable parameter matrices.

ACM J. Auton. Transport. Syst.



Toward Heterogeneous Graph-based Imitation Learning for Autonomous Driving Simulation: Interaction Awareness and Hierarchical

Explainability • 9

Then, we generate the weighted node embeddings F� ∈ R�×�3 based on the following linear operation,

F� = Γ� ·W� + b�, (19)

whereW� ∈ R�×�3 and b� ∈ R�3 are trainable parameters.
Recall that each observed state is given by a series of HIGs, i.e., S� = {G�−�,G�−�+1, . . . ,G� }. For the timestamps

from (� − �) to � , HGIL inds the node embeddings of the global interaction graphs G�−� to G� , i.e., F�−� to F� .
We feed the corresponding actor node feature embeddings (i.e., the last row of each F� ) from the � historical
timestamps to the long short-term memory (LSTM) with the LealyReLU activation function. Then, we obtain the
sequence embeddings of the global interaction graphs, i.e.,

H′
� = LSTM

(

[F(�−�) [−1, :], . . . , F� [−1, :]]
)

. (20)

The sequence embeddings from the global interaction graphs are added with the temporal feature embeddings of
the actor node features generated by another LSTM module, i.e.,

H� = H′
� ⊕ LSTM

(

[V
(f)
�−�

, . . . ,V
(f)
� ]

)

, (21)

which forms the inal state embeddings H� ∈ R�4 for the training of HGIL (detailed in Sec. 4.3).

4.3 Training Designs of HGIL

In what follows, we present the training designs of HGIL.

4.3.1 Policy Generator and Discriminator Networks. Fig. 4 illustrates the model training process given the state
embeddings H� . Based on the state embeddings, HGIL provides a policy generator network consisting of FC layers
to approximate and generate the policy � that resembles the decision-making process of the human drivers.
In the meantime, HGIL provides the policy discriminator network� to distinguish the actions performed (i.e.,
trajectories) by the policy generator network against the human driver demonstration data (i.e., expert action
from the demonstration). We show the structures of the two networks in Fig. 5.

Expert Action

State 

Embedding

Generated Actions

Action 

Confidence 

Scores

Policy 

Generator Policy 

Discriminator
Probability

Fig. 4. Illustration of the policy learning designs in HGIL.

(a) The policy generator network takes in the state embeddings of the actor H� , and returns a set of � possible
sequences of displacement actions,

{

Â�,�

}

(� ∈ {1, . . . , � }), through the fully-connected (FC) network. Here we
take into account multiple sequences of displacement actions to accommodate the decision uncertainty of motion
planning in the autonomous driving simulation. To this end, the policy generator network outputs the conidence
score Ĉ� ∈ R� (in terms of probability) for each of {Â�,� }.

(b) The policy discriminator network� aims to discriminate the actions generated from the policy generator as
well as the human driver demonstration (expert).� takes in (i) the policy generator’s output actions (say, Â�,∗ that
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Policy Generator Network

LeakyReLUFC LeakyReLUFC
FC

FC

State 

Embedding

Softmax

Policy Discriminator Network

Concat FC Tanh FC Tanh FC ProbabilitySigmoid

State 

Embedding

Action

Fig. 5. Structures of the policy generator and discriminator networks.

corresponds to the maximum conidence score in Ĉ� ); or (ii) the actual actions A
e
� performed in the human driver

demonstration data. Thus, given the concatenation of input actions (A�,∗ or A
e
� ) as well as state embeddings H� ,�

estimates the probability (i.e., �
( [

H�

�

�

�

�Ae
�

] )

or �
(

[

H� | |Â�

]

)

) that the input action resembles the human driver

demonstration.

4.3.2 Model Training Loss. In order to capture the discrepancy between the generated actions and the human
driver demonstration, we consider the following types of loss within HGIL, i.e., (a) displacement regression loss
ℓ� and (b) conidence cross-entropy loss ℓ� . We integrate them within the training loss of HGIL, i.e., (i) policy
generator network loss L� and (ii) discriminator network loss L� .
(a) Displacement Regression Loss ℓ� : The displacement regression loss ℓ� is given by the mean squared error

(MSE) between the generated sequence of actions (i.e., a series of planned displacements) with the highest score
(probability) in Ĉ� , denoted as Â�,∗, and the actual action in the human driver demonstration, i.e.,

ℓ� ≜
1

�

�︁

�=1

(

Â�,� − A�,�

)2
. (22)

We here leverage ℓ� to generate the state embeddings before the adversarial optimization of the entire network [37].
(b) Conidence Cross-Entropy Loss ℓ� : We deine a one-hot encoding vector as a label for the conidence

scores, B� ∈ R� , to indicate the set of actions among all generated ones that is the closest to the human driver
demonstration. For instance, we denote B� = [0, 1, 0, . . . , 0], if the second set of the generated actions has the least
Euclidean distance from A� in the human driver demonstration. Based on the above, we ind the cross-entropy
loss ℓ� between the generated actions and the human driver demonstrations, i.e.,

ℓ� ≜ −

�︁

�=1

(

B� [�] · log
(

Ĉ� [�]
))

. (23)

Based on the above designs, we have the loss in the policy generator and discriminator networks as follows.
(i) Policy Generator Loss L�: In order to train the policy generator network, we integrate the regression loss ℓ�

and conidence loss ℓ� to account for the discrepancy between the actions performed by the actor and the human
driver demonstration. In the meantime, based on the formulation in Eq. (9), HGIL maximizes the probability

�
(

[

H� | |Â�

]

)

(i.e., minimize 1−�
(

[

H� | |Â�

]

)

) such that the discriminator network cannot discriminate the actions

generated by the generator network from those of the human driver demonstration.
In summary, the policy generator minimizes

L� ≜ �� · ℓ� + �� · ℓ� + �� · log
(

1 −�
(

[

H� | |Â�

]

))

, (24)
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where �� , �� , and �� represent the corresponding weights.
(ii) Policy Discriminator Loss L� : Based on the formulation in Eq. (9), the policy discriminator network further

performs the opposite optimization against the generator, by maximizing

L� ≜ log
(

�
( [

H�

�

�

�

�Ae
�

] ) )

+ log
(

1 −�
(

[

H� | |Â�

]

))

. (25)

Since there is a minimax game between the policy generator and discriminator networks [11], we train them
iteratively based on Eqs. (24) and (25) until convergence.

5 Data-driven Model Emulation Studies

We irst review the imitation learning-based baseline approaches used for performance comparison in Sec. 5.1.
Then, we provide the details of the simulation settings and the network parameters in Sec. 5.2 followed by the
experimental results and data visualization in Sec. 5.3.

5.1 Baseline Approaches

We compare HGIL with the following baseline and state-of-the-art approaches on IL for autonomous driving
simulation.

(1) DualDisc [2]: which implements a spatio-temporal model (along with the conventional long short-term
memory) based on dual-discriminator GAIL.

(2) DualDisc-GRU: which adapts DualDisc [2] based on the gated recurrent unit (GRU) to capture the spatio-
temporal correlations.

(3) DualDisc-BiLSTM: which adapts DualDisc [2] based on the bidirectional long short-termmemory (BiLSTM)
to capture the spatio-temporal correlations.

(4) CGAIL [16, 24]: which adopts and adapts the conditional GAIL for trajectory prediction.
(5) SocialGAN [1, 10]: which integrates the social pooling operation [1] with GAIL.
(6) LaneGCN-GAIL [18]: which implements a graph neural network architecture based on GAIL.
(7) HGAIL [5]: which provides the hierarchical model-based GAIL.
(8) SeqST-GAN [33]: which implement a sequence-to-sequence model based on the recurrent neural networks

and the generative adversarial networks.

5.2 Simulation Setings

5.2.1 Dataset Studied & Performance Metrics. We leverage the large-scale human driver demonstration dataset
Argoverse v2 [34] for our experimental studies. Speciically, we select 35,000 driving scenes for IL training and
5,000 scenes for evaluation.
We evaluate the efectiveness of HGIL and other baselines in learning the human driving behaviors based on

inal displacement error (i.e., distance of the inal generated position from the true position in the demonstration;
denoted as FDE) and average displacement error (i.e., average distance of all locations in the generated and
actual actions; denoted as ADE). We also ind the minimum inal displacement error (minFDE) and the minimum
average displacement error (minADE) that represent the errors of the actions with the lowest FDE/ADE. We also
ind the miss rate (MR) regarding the percentage of all scenes when minFDE is over 2m.

5.2.2 Model Parameter Setings. Unless otherwise stated, we use the following parameters by default. Since the
Argoverse v2 dataset is collected with a 10Hz frequency, we set � = 30 to leverage 3s of historical information to
generate next 3s of actions. Like the prior studies [18, 38], we set � = 6, i.e., 6 sets of candidate actions given an
observed state S� , and estimate their uncertainty based on the conidence score Ĉ� ∈ R6. For the local sub-graph
and global interaction attention components, we use an FC layer with �1 = 64 units to convert the node features.
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Furthermore, we set the number of the hidden units of all the subsequent graph layers to �2 = �3 = 64. We set
the number of the hidden units for the LSTM modules to �4 = 32 to generate the state embeddings. Besides, we
leverage �5 = �6 = 2 FC layers in each of the policy generator and discriminator networks (Fig. 5), and each FC

layer is with 32 hidden units. We set �� = �� = 1 and �� = 0.3 in Eq. (24).

5.2.3 Simulation Environment & Model Training Setup. Our networks are implemented on Pytorch 1.13.1 and
Python 3.8.16. We performed experiments on an HPC server equipped with Linux Ubuntu 18.04.5 LTS, an AMD
Ryzen Threadripper 3960X 24-Core CPU, 4×GeForce RTX 3090 with GDDR5 24GB, and 128GB RAM. With these
settings, the training of our HGIL took an average of 361.3ms per AXI scene (each driving scene lasts for 6s on
average).
HGIL is trained as follows. We irst pre-train the policy generator network with the learning rate decay (from

0.01 to 0.001) for 300 iterations (Adam optimizer is adopted for this). We then train the policy generator and
discriminator networks according to the Eqs. (24) and (25) with a learning rate of 0.001 for 200 iterations. At each
iteration, we sample 1,000 driving scenes from the dataset and train the networks. We note that HGIL is overall
eicient, with a total of 71,473 model parameters, average training time per sample as 5.506ms, and average
inference time per sample as 4.486ms based on our computing platform.

Table 1. Overall performance and evaluation results of all approaches.

Model FDE ADE minFDE minADE MR

HGIL 2.88 1.19 2.43 1.02 23%

DualDisc 3.77 1.83 3.95 1.92 41%
DualDisc-GRU 3.73 1.61 3.13 1.41 42%
DualDisc-BiLSTM 3.69 1.59 2.97 1.37 38%
CGAIL 3.11 1.33 2.71 1.15 28%
SocialGAN 3.07 1.29 2.71 1.18 30%
LaneGCN-GAIL 3.01 1.26 2.60 1.10 27%
HGAIL 3.45 1.42 2.91 1.22 27%
SeqST-GAN 3.54 1.46 3.01 1.25 29%

5.3 Performance Evaluation Results and Case Studies

5.3.1 Overall Performance. We present the overall performance of HGIL in Table 1, and compare HGIL with other
IL-based methods. HGIL is observed to outperform the other baselines in learning the human driving behaviors
in the AXIs. In particular, our HGIL achieves 18.79%, 23.84%, 23.41%, 29.90%, and 42.39% lower in terms of FDE,
ADE, minFDE, minADE, and MR on average compared with the baseline approaches. DualDisc (as well as the
variations of DualDisc-GRU and DualDisc-BiLSTM), CGAIL, SocialGAN, and SeqST-GAN may not account for
the complex AXIs in the traic scenes, and hence lead to lower accuracy as the actor (the focal vehicle) actively
interacts with other traic participants and environments. We can also observe that inclusion of the bidirectional
long short-term memory helps improve the performance compared with the conventional sequence learning for
DualDisc due to enhanced learnability on the spatio-temporal correlations. While LaneGCN-GAIL accounts for
the map topology and HGAIL aims to understand the hierarchy of the interactions, their interaction designs may
not further diferentiate other traic participants and their global and local contexts. Using the local sub-graph
attention and the global cross-graph attention, HGIL achieves better performance in learning the human drivers.
In particular, HGIL has achieved more than 4.32%, 5.56%, 6.54%, 7.27%, and 14.81% performance improvements in
terms of FDE, ADE, minFDE, minADE, and MR compared with LaneGCN-GAIL, demonstrating the efectiveness
of our hierarchical graph designs.

5.3.2 Model Ablation Studies. Table 2 presents the results of our model ablation studies on HGIL that evaluate
the importance of diferent designs. Speciically, we compare the performance of complete HGIL designs with the
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following variations: w/o HIG, w/o the local sub-graph attentions, w/o the global cross-graph attention, and w/o
the edge weights of AXIs.

We can see that the highest performance drop is caused by removing the global cross-graph and local sub-graph
attention mechanisms. This implies the importance of the local sub-graph attention and global cross-graph
attention in learning and capturing the human driving behaviors. In addition, we can also observe that that
relying upon temporal information only without the HIGs degrades the performance. This demonstrates the
necessity of the HIGs for capturing the interactions within the complex traic environment.

Table 2. The results of our ablation studies of HGIL.

Variations FDE ADE minFDE minADE MR

HGIL 2.88 1.19 2.43 1.02 23%

HGIL w/o HIG 3.05 1.32 2.73 1.20 29%
HGIL w/o Local 3.22 1.39 2.82 1.24 30%
HGIL w/o Global 3.83 1.74 3.29 1.52 39%
HGIL w/o Edge Weights 3.59 1.62 3.36 1.53 43%

5.3.3 Sensitivity Studies. We have also evaluated the sensitivity of the important parameters of HGIL. Fig. 6
illustrates our results in terms of FDE; Fig. 6(a) shows the FDE vs. the hidden units for the graph operations in
the local sub-graph attention (denoted as �2). The performance is found to start to decrease after 64 due mainly
to the itting over the complex and potentially noisy traic scenes.

We can observe a similar trend in Figs. 6(b) and 6(c) for the number of the hidden units used in the global
cross-graph attention (denoted as �3) as well as that of the hidden units for the LSTM layers (denoted as �4). So,
we adopt �2 = �3 = 64 and �4 = 32 to balance between the model learnability and generalizability.
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Fig. 6. Model parameter sensitivities in HGIL.

5.3.4 Model Explanationability. We have further conducted explainability studies on HGIL based on measures of
sparsity and idelity [23]. Speciically, we measure the sparsity as the ratio of the number of the graph nodes in
each HIG � that have been identiied as important by HGIL (i.e., with the attention score greater than a certain
threshold of 0.7), denoted as�� , over the total number of nodes in the HIG, �� . The average sparsity of all �
HIGs from all driving scenes is then given by

sparsity ≜
1

�

�︁

�=1

(

1 −
��

��

)

. (26)

This quantiies the explainability of HGIL in diferentiating the interactions.
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In addition, we ind the idelity that characterizes the performance drop when the nodes of the HIGs with high
attention scores (say, above 0.7) are removed. Speciically, we measure the average percentage of drops in terms
of the inal displacement errors (FDEs), i.e.,

idelity ≜
1

�

�︁

�=1

|FDE′� − FDE� |

FDE�
, (27)

where FDE� and FDE
′
� , respectively, represent the inal displacement errors with and without the nodes with high

attention scores. The idelity represents the model explainability in terms of capturing the essential AXIs toward
improved performance.

We illustrate the explanation quantiication results in Fig 7. In terms of sparsity, we evaluate percentage
of graph nodes (in local sub-graph attention and global cross-graph attention) that have been identiied as
important. In terms of idelity, we evaluate the performance of drop of HGIL given removal of nodes in local
sub-graph attention and global cross-graph attention in HIGs. Higher sparsity and idelity indicate a model’s
explainability. Both local sub-graph and global cross-graph attentions (denoted as łlocalž and łglobalž) have high
sparsity and idelity values, indicating that HGIL captures and diferentiates more important nodes for AXIs. We
have also shown the sparsity and idelity values by SuperGAT [13] and AGNN (based on the conventional graph
attention [32]), and HGIL is found to outperform them with higher quantiied explainability. Furthermore, we can
observe that the local sub-graph attention has an even higher idelity value, implying the more importance of the
interactions identiied by the local sug-graph attention that deals with the IL performance.

0.30

0.35

0.40

0.45

0.50

0.55

0.60 0.58

0.44

0.39

0.32

Local Global SuperGAT AGNN

F
id

e
li
ty

 (
%

)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.83

0.86

0.81

0.74

Local Global SuperGAT AGNN

S
p

a
rs

it
y
 (

%
)

Fig. 7. Explainability quantification studies of HGIL and the other two baseline approaches.

5.3.5 Hierarchical Visualization. The learned interactions by the local sub-graph and global cross-graph attentions
are illustrated in Figs. 8 and 9, respectively. Fig. 8 shows the local sub-graph attention where diferent types
of objects in the three sub-graphs are linked with edges of colors representing their weights. We can see from
the highlighted sub-graphs that the behaviors of the actor were mainly resulting from the local contexts at the
lane segments near the intersection. Fig. 9 further visualizes the global cross-graph attention where the actor is
actively interacting with the global contexts where an incoming pedestrian was walking toward the cross-walk
of the intersection. From these two igures, we can further infer HGIL’s capability in interpreting various AXIs
based on our proposed HIG representations.

6 Discussion

We briely discuss the deployment of HGIL in the following three aspects.
• Extension to multi-agent scenarios: In this paper, we focused on one focal vehicle as the agent to forecast

its future trajectories. In addition, these traic participants, say, the pedestrians or the peer vehicles in the
complex AXIs, may vary their mobility or driving styles. Our formulation is general and can be further extended
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Fig. 8. Visualization of local sub-graph atention in AXIs. We illustrate the actor-to-vehicle, actor-to-pedestrian, and actor-to-

lane sub-graphs.
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Fig. 9. Visualization of global cross-graph atention in AXIs.

to a multi-agent setting [4, 12, 16] by simultaneously creating the HIGs for diferent actors of interest at each
timestamp. This will be considered in our future studies.

• Extension to other data or sensing modalities: To prepare the inputs to our HGIL, we leveraged the
situation awareness information [26, 28] about the nearby traic participants, which can be acquired through the
sensors commonly available in the autonomous vehicles (e.g., LiDAR, cameras, or mmWave) [7]. However, our
designs within HGIL are general enough to be extended upon availability of other data or sensing modalities (e.g.,
traic signals).

• Extension to complex deployment scenarios: Our current studies focus on interaction awareness
and hierarchical explainability for autonomous driving simulation. Further extension to practical and complex
deployment scenarios will take into account aspects such as model complexity (e.g., parameter pruning and
model compression) and uncertainty modeling when interacting with various traic elements (e.g., noise in the
perception module). We will explore these in our future work.

7 Conclusion

We have proposed HGIL, a heterogeneous graph-based imitation learning approach for autonomous driving
simulation. We have designed a heterogeneous interaction graph (HIG) representation to provide local and
global representations and awareness of AXIs. HGIL leverages the HIGs to generate the state embeddings, and a
hierarchically-explainable GAIL approach captures the interactions and driving decision-making processes of the
focal vehicle. We have performed extensive data-driven simulation and explanation studies, and demonstrated the
accuracy, interaction awareness, and hierarchical explainability of HGIL in learning and capturing the complex
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AXIs.We have compared HGILwith various baselines and state-of-the-art approaches, and our scheme outperforms
the other methods in terms of displacement errors, sparsity, and idelity.
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