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Bayesian Optimization of Environmentally Sustainable
Graphene Inks Produced by Wet Jet Milling

Lindsay E. Chaney, Anton van Beek, Julia R. Downing, Jinrui Zhang, Hengrui Zhang,
Janan Hui, E. Alexander Sorensen, Maryam Khalaj, Jennifer B. Dunn, Wei Chen,
and Mark C. Hersam*

Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to
produce conductive graphene inks for printed electronic applications. Among
LPE methods, wet jet milling (WJM) is an emerging approach that uses
high-speed, turbulent flow to exfoliate graphene nanoplatelets from graphite
in a continuous flow manner. Unlike prior WJM work based on toxic,
high-boiling-point solvents such as n-methyl-2-pyrollidone (NMP), this study
uses the environmentally friendly solvent ethanol and the polymer stabilizer
ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are
employed to guide the exploration of the experimental phase space (namely,
concentrations of graphite and EC in ethanol) in order to identify the Pareto
frontier that simultaneously optimizes three performance criteria (graphene
yield, conversion rate, and film conductivity). This data-driven strategy
identifies vastly different optimal WJM conditions compared to literature
precedent, including an optimal loading of 15 wt% graphite in ethanol
compared to 1 wt% graphite in NMP. These WJM conditions provide
superlative graphene production rates of 3.2 g hr−1 with the resulting
graphene nanoplatelets being suitable for screen-printed
micro-supercapacitors. Finally, life cycle assessment reveals that
ethanol-based WJM graphene exfoliation presents distinct environmental
sustainability advantages for greenhouse gas emissions, fossil fuel
consumption, and toxicity.
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1. Introduction

Emerging technologies such as wearable
devices, point-of-care sensors, and the In-
ternet of Things (IoT) promise to positively
impact societal health, efficiency, and qual-
ity of life.[1–3] The continued proliferation
and improvement of these miniaturized
devices rely on innovative strategies for
manufacturing flexible conductive elec-
trodes and interconnects.[4] Additive manu-
facturing methods, such as gravure, screen,
and inkjet printing, are promising fabri-
cation routes for customizable electronic
devices with micron-scale lateral resolution
and square-meter-scale areal production
capacity. These methods are also more cost-
effective with reduced waste compared to
traditional subtractive manufacturing.[5,6]

Among conductive printable inks, metal
nanoparticles are the most widely em-
ployed functional materials. Although
these inks can produce highly conductive
features after sintering, they suffer from
poor mechanical robustness and high
cost,[7–9] which limit their widespread use
in flexible, mass-produced microdevices. In
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Figure 1. Overview of the wet jet milling system for graphene production. a) Process diagram depicting the continuous flow of graphite dispersion
through the wet jet milling system during operation. b) Schematic of the graphite dispersion flow within the high-pressure collision chamber.

contrast, graphene inks have many advantages over incumbent
metal nanoparticle inks, including improved mechanical flexi-
bility, larger surface-area-to-volume ratio, lower cost, and higher
chemical stability.[10,11] These attributesmake graphene a leading
candidate for flexible, conductive electrodes in energy storage and
sensing platforms.[12]

However, graphene is challenging to produce in a scalable
manner using common 2Dmaterial preparation techniques such
as micromechanical cleavage and chemical vapor deposition.[13]

Conversely, liquid phase exfoliation (LPE) can scalably exfoliate
graphene from graphite via the application of shear forces in suit-
able solvents with production capacities spanning several volu-
metric orders of magnitude.[14] This scalability advantage has po-
sitioned LPE as the most industrially viable option for produc-
ing the sufficiently large quantities of graphene required by the
large market for conductive inks. Moreover, LPE is easily inte-
grated with downstream continuous-flow purification methods
and subsequent patterning.[15,16]

Among LPE methods, wet jet milling (WJM) is one of the
most recently introduced methods for graphene nanoplatelet
production.[17,18] The technique has its origins in the food, cos-
metic, and pharmaceutical industries for particle size reduc-
tion of powders.[19,20] Instead of relying on a grinding medium
(e.g., blades, ball bearings) that may introduce contamination,
WJM is unique in that it achieves size reduction via high-speed
mutual collisions between solvent-suspended particles. During
WJM, the raw dispersion enters a collision chamber where it
is split into two streams that converge and collide at high pres-
sure (Figure 1). Photographs and details of the WJM apparatus
used in this study are provided in Figure S1 (Supporting Infor-
mation). During graphene exfoliation, the impact of the mutual
collisions fractures the graphite particles, and the subsequent
high-speed, turbulent flow exfoliates layers from the graphite. As
discussed in previous WJM reports, the exfoliation mechanism
is similar to microfluidization, in which turbulent flow results
in a dramatic velocity gradient orthogonal to the particle flow
direction.[17,21] This gradient provides sufficient shearing forces
to overcome the binding energy between adjacent graphite layers,
resulting in exfoliated nanoplatelets. The WJM output stream is

collected and subsequently centrifuged to remove unexfoliated
material. The remaining graphene nanoplatelets are finally for-
mulated into inks, which can be deposited via additive manufac-
turing methods to form percolating films. These mechanically
flexible, highly conductive, and customizable graphene-printed
films are typically combined with other electroactive components
to form thin-film electronic devices.
The most notable previous demonstrations of WJM for

graphene processing have employed the solvent n-methyl-2-
pyrrolidone (NMP).[17,18,22] The surface energy of NMP is well-
matched to bulk graphite powder, which promotes effective exfo-
liation andmaintains a stable graphene colloidal dispersion.[23–25]

However, NMP possesses several drawbacks including toxic-
ity, negative environmental impacts, and a tendency to leave
stubborn residues due to its high boiling point. In partic-
ular, sequestered NMP solvent in percolating networks of
graphene flakes hinders electron pathways and lowers electri-
cal performance.[26] While aqueous surfactant dispersions are a
promising alternative, this approach often has inferior colloidal
stability and also suffers from electrically insulating surfactant
residues in percolating thin films. To overcome these limitations,
polymers can be used as stabilizing additives to enable otherwise
mismatched solvent-nanomaterial combinations.[27,28] Among
the stabilizing polymer candidates, ethyl cellulose (EC) has
emerged as the leading option for graphene dispersions based on
environmentally benign alcohol solvents (e.g., ethanol).[29] Not
only does EC promote exfoliation in ethanol to produce high-
stability graphene dispersions without toxic solvents, EC has also
been shown to thermally or photonically decompose into an sp2-
rich char in the presence of graphene, which improves charge
transport in percolating graphene films.[30,31]

Compared to other established methods such as sonication
and shear mixing, WJM is a relative newcomer to the LPE land-
scape. Therefore, an exploration of the broad parameter space for
WJM is necessary to achieve optimal graphene exfoliation, es-
pecially for polymer-based dispersions that have not previously
been pursued for WJM. Toward this end, here we report the opti-
mization of WJM for EC-based graphene exfoliation in ethanol
in an effort to achieve an environmentally friendly route to
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conductive graphene inks. Specifically, a Bayesian optimization
(BO) model is employed to guide the efficient sampling of the
WJM parameter space, resulting in notably high WJM graphene
exfoliation yield and flake quality for printable graphene inks.
While high-throughput combinatorial experiments that create
large quantities of data are appropriate for certain optimization
problems,[32] they are not practical when testing WJM due to the
large quantities of raw materials and time-consuming character-
ization that are required. In contrast, active learning methods
such as BO improve data efficiency by adaptively recommend-
ing sample areas of high interest. Furthermore, BO is tolerant to
relatively high experimental uncertainty, which further reduces
the experimental budget during process optimization. In particu-
lar, by explicitly considering both interpolation and experimental
uncertainty using Gaussian process modeling, BO can correctly
identify the optimal processing parameters with a limited num-
ber of experiments.
Unlike the work reported here, previous LPE optimization

studies have employed a one-variable-at-a-time (OVAT) approach,
which is both experimentally intensive and inefficient.[33–35] Ad-
ditionally, when each variable is optimized in sequence, interde-
pendence between variables is not considered and thus a global
optimum cannot be guaranteed.[36] When considering multiple
input parameters and responses, it becomes unfeasible to visu-
alize the input-output relationships in a multivariable parame-
ter space, thus precluding the ability to make optimal decisions
on where to sample.[37] In contrast, efficient experimental design
through BO can elucidate synergistic relationships between vari-
ables and address competing objectives in an unbiased manner.
The relative importance of each objective may vary depending
on the motives of individual stakeholders, but an impartial rep-
resentation of the tradeoffs can streamline decision-making. For
example, by extracting quantitative tradeoffs between yield, qual-
ity, cost, and environmental impact, the optimal compromise for
all criteria can be reached more efficiently. Overall, a compre-
hensive exploration of the full design space of a promising LPE
method like WJM is essential to realizing its potential as an in-
dustrial graphene production method. Considering the lack of
a published methodology for WJM optimization, we aim to ad-
dress this gap in the literature and provide guidance on efficient
multi-objective optimization, which is crucial for the future of
industrial-scale conductive graphene ink production.
After identifying the optimal WJM initial conditions, we then

use screen printing for a demonstration of the resulting graphene
inks because of its high throughput, compatibility with roll-to-roll
processing, and industrial maturity.[38] Using our optimal exfoli-
ation parameters, we produce high-quality screen-printing inks,
which are then used to print interdigitated electrodes for pla-
nar micro-supercapacitor devices. These screen-printed micro-
supercapacitors exhibit excellent cycling behavior and achieve an
areal capacitance of 513 μF cm−2, which is competitive with state-
of-the-art graphene-based printed devices. Ultimately, by map-
ping LPE input parameters onto relevant property responses,
we elucidate the processing-properties relationships in a mul-
tidimensional design space. With this BO-guided approach, we
find that our optimal WJM graphite loading for EC-stabilized
ethanol dispersions exceeds incumbent approaches based on
NMP by 15-fold. With this expanded design space, we achieve
a graphene production throughput of 3.2 g hr−1 and establish

WJM as a high-efficiency, continuous-flow LPE method. Overall,
this work demonstrates that ethanol-based WJM graphene exfo-
liation presents distinct environmental sustainability advantages
in greenhouse gas emissions, fossil fuel consumption, and toxi-
city for industrial-scale graphene production.

2. Bayesian Optimization

To efficiently determine the optimalWJM process control param-
eters, we employed a statistical framework to sequentially guide
the search of the experimental phase space. In this section, we
introduce the BO statistical models that provide an approxima-
tion of the target properties as a function of the WJM processing
conditions. We then explain how these models can be leveraged
to identify subsequent testing conditions in high-interest areas of
the design space. We first introduce the general BO framework
for an arbitrary multivariable optimization problem and then ap-
ply it specifically to ethanol-based WJM graphene exfoliation.

2.1. General Approach

The adaptive sampling scheme as presented in Figure 2 consists
of five steps. (Step 1) The process begins by initializing a de-
sign of experiments to generate a relatively small number of pro-
cessing conditions that will be tested experimentally (e.g., facto-
rial design,[39] optimal Latin hypercube sampling (OLHS),[40] or
Sobol sequences[41]). In this work, we used OLHS to create an
initial set of unique sampling locations of which somewere repli-
cated (i.e., repeated experiments with the same processing condi-
tions). The advantage of repeated experiments is that they provide
direct insight into experimental uncertainty. When only a subset
of experiments is chosen to be replicated to conserve experimen-
tal resources, then their uniformity over the space of admissi-
ble processing conditions can be achieved by maximizing their
minimum distance.[42] (Step 2) Once identified, this initial set of
processing conditions is experimentally tested, and themeasured
properties are recorded. (Step 3) An approximation of the target
properties as a function of the processing conditions is generated
using a Gaussian process.[43] The advantage of using a Gaussian
process is that it provides a predictive distribution of the target
properties (i.e., mean and variance). In this work, we aim to find
the spatial correlation between the processing conditions and the
graphene properties, and the variance of the predictive distribu-
tion accounts for both the lack of data uncertainty and experimen-
tal uncertainty (more details are provided in the Supporting Infor-
mation). (Step 4) The next batch of experiments is identified by
maximizing an acquisition function.[44,45] The acquisition func-
tion leverages the predictive distribution of untested designs to
systematically balance the need for exploration with exploitation.
In other words, it balances the need to test unexplored regions
in the space of admissible WJM processing conditions with the
need to exploit nearby previously observed high-performing con-
ditions. If a convergence criterion is not yetmet, this new batch of
experiments is tested, and the process is repeated (Steps 2–4). Ex-
amples of convergence criteria can include when the maximum
acquisition function value is below a preset threshold or when a
preset experimental budget has been exhausted.[46] In this work,
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Figure 2. Bayesian optimization scheme. (Step 1) A design of experiments based on OLHS is initialized to generate a small number of processing
conditions for testing. (Step 2) This initial batch of processing conditions is tested via physical experiments using WJM. (Step 3) An approximation of
the target properties as a function of processing conditions is obtained using a Gaussian process. (Step 4) The next batch of experiments is identified by
maximizing an acquisition function. If a convergence criterion is not yet met, this new batch of experiments is tested experimentally, and Steps 2–4 are
repeated as necessary. (Step 5) Once the convergence criterion is met, the current approximation of the target properties is used to identify the optimal
experimental conditions.

we establish an experimental budget of 14 initial samples (includ-
ing five total replicate samples), and three subsequent batches of
five samples each for a total of 29 samples. (Step 5) Once the con-
vergence criterion is met, the current approximation of the target
properties is used to define the optimal experimental conditions.
While adaptive sampling of computer experiments has been

well studied, its extension to physical experiments as demon-
strated here is still a challenging problem. The specific chal-
lenges considered in this paper include i) explicit considera-
tion of the uncertainty in the collected data (i.e., experimental
uncertainty);[47] ii) collection of batches of samples so that exper-
iments can be performed in parallel;[48] and iii) design of testing
conditions that considers multiple objectives associated with ma-
terial properties (e.g., yield, conversion rate, and conductivity). In
the remainder of this section, we introduce our method for ap-
proximating the target properties as a function of the WJM pro-
cessing conditions in addition to explaining how this method is
used to identify the next batch of testing conditions.

2.2. Target Property Approximation and Acquisition Function

The design of the WJM process conditions can be viewed as the
following optimization problem:

x∗ = argmax
x∈

fi (x) (1)

where x = [x1,… , xp] ∈  ⊂ ℝp is a p dimensional vector of
processing conditions that is defined on a space of admissi-
ble conditions  , fi(·) is the ith (i = 1, …, q) unknown target
property, and x* are the optimal processing conditions. To solve
this problem, we must approximate the unknown target prop-
erty fi(·) through statistical inference. By conditioning a Gaus-
sian process[43] on a set of observed responses Y for process-
ing conditions X, we can approximate the target property fi(·) as
Yi(⋅)|X ,Y i ≈  (𝜇̂i(x), ŝ

2
i (x)), where Yi, μi(·) and s2i (⋅) are the ob-

served training responses, themean approximation, and the vari-

ance of the ith response, respectively. While the predictive vari-
ance in Gaussian processes is known to account for the lack of
data uncertainty, they can also account for the experimental un-
certainty through an independent noise term that is added to the
diagonal elements of the covariancematrix.[43] Assuming that the
noise is constant over the space of admissible processing condi-
tions (i.e., the experimental uncertainty is homoscedastic), only
one additional parameter is introduced that needs to be inferred
from the observed data. Consequently, under these assumptions,
we are able to jointly account for the lack of data uncertainty and
the experimental uncertainty when we only have access to a small
number of experiments.
The process centers around leveraging the predictive mean

and variance of the target properties to identify what additional
experiments to perform with the purpose of reducing the num-
ber of costly experiments required to identify the globally optimal
processing conditions. The next processing conditions are iden-
tified through the optimization of an acquisition function 𝛼(x)
using:

xnew = argmax
x∈

𝛼
(
x|𝝁̂, ŝ2) (2)

where 𝝁̂ = {𝜇̂1,… , 𝜇̂q}
T and ŝ2 = {ŝ21,… , ŝ2q}

T . For a single ob-
jective example, a new process condition to test is identified by
maximizing 𝜇̂(⋅) (i.e., 𝛼 (⋅) = 𝜇̂ (⋅)). However, this approach re-
sults in an algorithm that places too much trust in the fidelity
of the initial target property approximation and runs the risk of
getting stuck in a local optimum. Consequently, including the
predictive variance (ŝ2) as a part of the acquisition function helps
to remedy this issue by balancing the optimality of a potential
processing condition with the magnitude of the predictive vari-
ance ŝ2(⋅). While many examples of acquisition functions have
been proposed in the literature (e.g., expected improvement,[49]

knowledge gradient,[50] and predictive entropy search[51]), we
use the modified expected improvement that is appropriate for
noisy experimental data by considering the difference between
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Figure 3. The mean approximations for graphene yield, graphene conversion rate, and graphene film conductivity generated by the Gaussian process
model after each sampling iteration. The initial design of experiment cases (OLHS) are labeled red. Squares indicate experiments with duplicates. The
experiments observed for later batches are colored according to the purple gradient. The black circles are the processing conditions associated with the
Pareto frontier.

prediction uncertainty and data uncertainty.[52] Finally, to be com-
patible with multiple objectives (i.e., yield, conversion rate, and
conductivity), we use the min-max improvement metric. This ap-
proach involves selecting the experimental condition that has the
largest acquisition function value with respect to the input con-
ditions (i.e., the maximummodified expected improvement) but
has the smallest acquisition function value with respect to the
current set of optimal target properties. Importantly, multiple tar-
get properties can be included concurrently as we are optimizing
q = 3 objectives (see Supporting Information for more details).
While the optimization problem in Equation (2) can be used to

find the next processing condition to test, it is often desirable to
identify a batch of experiments in an effort to save time, especially
when experiments can be performed in parallel. To achieve this
aim, we use a preposterior analysis that involves assuming that
the predicted response at a newly identified design of processing
conditions is correct. Subsequently, we can temporarily add this
new observation [xnew, 𝜇̂(xnew)] to the training data set [X, Y].

[47]

This facilitates updating the approximation of the target proper-
ties to identify additional processing conditions without physi-
cally testing them. However, it should be noted that generating
large batches of new experiments without testing runs the risk of
wasting experimental resources. Consequently, we used a batch

size of five to gain a temporal advantage by performing experi-
ments in parallel while limiting the negative consequence of the
preposterior analysis.

3. Optimized Wet Jet Milling Conditions

The goal of this study is to achieve efficient, high-quality
graphene production by establishing the relationship between
relevant exfoliation variables and their property responses. While
the framework presented in the previous section can be gen-
eralized to any multidimensional parameter space, we chose
the following design because it is most relevant to the goals of
electronic-grade graphene production. Specifically, the two input
variables are 1) bulk graphite powder concentration and 2) EC
stabilizer concentration, both in ethanol. Meanwhile, the three
responses are 1) graphene yield, 2) graphene conversion rate, and
3) graphene film conductivity, all three of which are widely re-
ported in LPE literature and are considered standard figures of
merit (FOMs) for graphene production.[17,53,54] Importantly, these
three competing responses cannot be simultaneouslymaximized
without tradeoffs. Thus, it is valuable to identify the Pareto fron-
tier, or the set of conditions for which no condition exists with
improved properties for all three FOMs (i.e., the set of conditions
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Table 1. Optimal conditions were predicted for the three responses.

Graphite loading [wt%] EC loading [wt%]

Yield 15.0 1.7

Conversion rate 11.1 1.3

Conductivity 15.0 1.4

Weighted optimal 15.0 1.5

that are non-dominated). Specifically, yield (mg/mL) is a mea-
sure of total graphenemass produced per volume of solvent. This
metric is most important when targeting solvent waste reduction
and an increase in graphene production throughput. Conversion
rate (%) is the ratio of graphite precursor converted to graphene
during exfoliation, which is important when aiming to reduce
graphite and EC precursor waste. Conversion rate also becomes
crucial when it is unfeasible to begin with a high initial load-
ing of raw materials in the solvent due to poor dispersion sta-
bility. Clearly, maximizing both yield and conversion rate concur-
rently is the ideal pathway toward achieving the largest quantities
of graphene nanoplatelets (i.e., the highest graphene production
throughput). However, these metrics cannot be fully maximized
simultaneously without experiencing tradeoffs. Finally, film con-
ductivity (S/m) is the experimentally measured conductivity of a
percolating graphene film and is an indication of the graphene
quality in printed electronics applications. While extracting flake
population statistics from atomic force microscopy (AFM) im-
ages is another common metric for determining flake quality,
the AFM workflow is time-consuming and impractical for the
short timelines in optimization studies. Moreover, because our
goal is to incorporate graphene nanoplatelets into inks for con-
ductive electrodes, film conductivity is a more suitable quality
metric during process optimization. AFM and other characteriza-
tion techniques are only applied to the final optimized graphene
nanoplatelet sample for confirmation purposes. Ultimately, the
choice and relative importance of the FOMs for any system de-
pends on the target application and manufacturing priorities.

3.1. Bayesian Optimization Results

The mean target property approximations for each of the three
outputs are plotted in Figure 3, and optimal input values are
reported in Table 1. Based on the weighted average of all three
property criteria, the optimal conditions were determined to be
15.0 wt% graphite and 1.5 wt% EC. As expected, it is clear
that more EC must be supplied into the system to maintain
colloidal stability, as evidenced by the universally low proper-
ties at low EC inputs. Another significant takeaway is that yield
(the graphene produced per volume of solvent) is maximized
at the maximum graphite loading, whereas graphene conver-
sion rate (the fraction of graphite converted to graphene) is opti-
mized at moderate graphite loadings. Because the graphite par-
ticles mutually collide to form freshly fractured surfaces that
are more easily exfoliated, an increase in graphite loading re-
sults in more frequent collisions and thus higher conversion.
However, a critical point exists at which excess graphite re-
sults in a decrease in conversion efficiency, which likely results
from destabilization and reaggregation of the colloidal system

as more flakes are exfoliated. Thus, while the concentration of
graphene produced continues to increase at higher graphite load-
ings, the rate of conversion becomes less efficient with excess
graphite.
Furthermore, while all experiments resulted in high film con-

ductivity (>3.5 × 104 S m−1), some significant trends were ob-
served that further elucidate the processing-property relation-
ships in the ethanol-EC system. Higher amounts of EC appear
to be more difficult to thermally remove and lead to suboptimal
film morphology, thus hindering electron transport. While it is
well established that the thermal decomposition of EC results in a
conductive carbon residue, these results indicate that excess EC is
not a completely passive component in the system but can even-
tually compromise final electronic properties in the high concen-
tration limit. Meanwhile, low initial EC loadings result in subop-
timal ink characteristics and flake restacking, which decreases
conductivity.
As discussed previously, the generated response surfaces in

Figure 3 offer a holistic picture of the parameter space, including
quantifiable tradeoffs between different processing conditions.
While various stakeholders may judge the relative value of these
metrics differently (e.g., prioritizing cost versus quality), the full
picture can be used to make more informed decisions. This
comprehensive view demonstrates the power of the generated
target property approximations, as the model fully maps the en-
tire multivariable design space with an input-output relation for
all admissible processing conditions that can then be analyzed.[49]

Figure S2 (Supporting Information) plots the predicted Pareto
frontier within the 3D output space for each iterative stage of the
adaptive sampling process. In multi-objective optimization, the
Pareto frontier represents the sets of conditions with nondom-
inated objectives. The Pareto frontier markedly changes in the
first two batches but settles into a stable location at the end of the
study. This stabilization is further confirmed by quantifying the
expected improvement after each new batch of data (Figure S3,
Supporting Information), which plateaus in the later stages of the
study. This plateauing indicates that the preset condition of four
iterative sampling batches (i.e., 29 total samples) was sufficient
to reach convergence. Other LPE studies using an OVAT frame-
work use similar numbers of experiments to explore a much nar-
rower parameter space,[34,55] highlighting the value of BO in LPE
optimization.
The results of this study also reveal that the optimal inputs for

ethanol-based WJM exfoliation of graphene are markedly differ-
ent than previous reports using other solvent systems.[17,18,22] For
example, Del Rio Castillo et al. and several later demonstrations
performWJM exfoliation with a concentration of 1 wt% graphite
powder in NMP. In contrast, we find an immense advantage in
increasing the graphite loading to 15wt%.While NMP andwater-
surfactant systems likely cannot sustain such high loadings dur-
ing WJM exfoliation, the high loadings permitted by the ethanol-
EC system translate into a significantly enhanced graphene pro-
duction throughput of 3.2 g hr−1. Thus, by optimizing the WJM
process for graphene exfoliation in ethanol, we can surpass the
throughput of incumbent WJM demonstrations. In the follow-
ing sections, we quantify flake quality, printed device perfor-
mance, and environmental impact using the optimized WJM
processing conditions for graphene nanoplatelet production in
ethanol-EC.
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Figure 4. Characterization of graphene nanoplatelets produced by Bayesian optimized wet jet milling in ethanol. a) Histogram compiled from AFM flake
analysis showing the lateral size distribution (n = 174 flakes). Inset: AFM image of a typical exfoliated graphene flake. b) Histogram compiled from AFM
flake analysis showing the flake thickness distribution. Inset: Height profile of the flake shown in the previous inset. c) Raman spectrum of a spin-coated
graphene film. SEM micrographs of d) the top surface and e) the cross-section of a graphene film. f) Change in sheet resistance as a function of the
bending cycle around a rod with a radius of 1.25 mm for screen-printed graphene and silver films.

3.2. Graphene Flake Characterization

Figure 4 summarizes the properties of the graphene
nanoplatelets, which were measured using a suite of char-
acterization techniques. AFM indicates a mean flake thick-
ness of 4.2 nm and a mean flake lateral size of 110 nm
(Figure 4a,b), which are consistent with previous reports of
graphene nanoplatelets produced via LPE methods in the
ethanol-EC system.[6,56,57] The Raman spectrum shows an ID/IG
ratio of 0.27 (Figure 4c), which is also consistent with numerous
reports of LPE-produced graphene nanoplatelets, and indicates
low defect density as well as a nanosheet population rich in sp2-
carbon.[30,33,54] Scanning electron microscopy (SEM) images of
both the top surface and cross-section of the graphene film indi-
cate excellent flakemorphology and dense stacking (Figure 4d,e),
which are important for achieving efficient charge transport and
high electrical conductivity in percolating films.[26] Furthermore,
bending tests were performed to evaluate the suitability of the
screen-printed features to be employed in flexible electronics.
A relatively small 32.8% increase in sheet resistance compared
to the unbent film (R/R0) was recorded after 1000 bending
cycles at a bending radius of 1.25 mm. In contrast, the sheet
resistance increased by 159% when a printed silver nanoparticle
film was subjected to the same bending conditions (Figure 4f).
This factor of five increase in sheet resistance for the silver
print compared to the graphene print demonstrates the superior
mechanical resilience of the high-aspect-ratio graphene flakes
during bending. Overall, these results validate the suitability of
WJM-produced ethanol-EC graphene inks for high-performance
flexible electronics applications.

3.3. Screen-Printed Micro-Supercapacitors

In this section, we fabricate a device platform that utilizes the
superlative electronic properties of the WJM-produced graphene
inks. Micro-supercapacitors are high-power energy storage
devices with long cycle lifetimes that far exceed rechargeable
batteries.[58,59] Graphene is a promising material for supercapac-
itor electrodes due to its high surface area, electrical conductivity,
and mechanical strength.[60,61] After WJM exfoliation and purifi-
cation, the EC-coated graphene nanoplatelets were incorporated
into a high-concentration ink for screen printing using terpineol
as a solvent. Further characterization of the ink, including
thermogravimetric analysis and viscosity measurements, is
included in Figures S4 and S5 (Supporting Information). This
ink was used for high-throughput patterned deposition of
micro-supercapacitor interdigitated electrodes on a polyimide
substrate. After the interdigitated electrodes were screen-printed
and cured, a PVA-H3PO4 gel electrolyte was carefully drop-casted
onto the fingers of the device and dried in the air. A photograph of
the completed micro-supercapacitor device and an optical micro-
graph of the graphene electrodes are provided in Figure 5a. The
device performance was then characterized using cyclic voltam-
metry and galvanostatic charge–discharge measurements. The
printed micro-supercapacitors display excellent cycling behavior
as shown by the near-rectangular cyclic voltammograms and
triangular galvanostatic curves (Figure 5b,c). An areal capaci-
tance of 513 μF cm−2 is achieved at a scan rate of 10 mV s−1

and drops to 315 μF cm−2 at a scan rate of 500 mV s−1. This
performance is competitive with state-of-the-art graphene
micro-supercapacitors[62–64] and indicates the viability of

Small 2024, 20, 2309579 © 2024 The Authors. Small published by Wiley-VCH GmbH2309579 (7 of 11)
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Figure 5. Micro-supercapacitors prepared from the optimized graphene ink. a) Photograph and optical micrograph of screen-printed graphene micro-
supercapacitor electrodes. b) Cyclic voltammograms of the devices at multiple scan rates. c) Galvanostatic charge–discharge curves at multiple current
densities. d) The rate capability of the device as quantified by the calculated capacitance at various scan rates.

using WJM-produced graphene inks for high-quality conductive
electrodes.

4. Life Cycle Assessment

In this section, we quantify the sustainability benefits of scal-
able graphene production using ethanol-based WJM exfoliation.
Figure 6 shows the comparative WJM life cycle assessment
(LCA) results for ethanol-based versus NMP-based graphene
exfoliation.[65,66] The ethanol-based exfoliation values were cal-
culated based on the optimal yield numbers determined in this
study, while the NMP-based exfoliation values were extracted
from the leading literature report by Del Rio Castillo et al.[17]

(Table S1, Supporting Information). Since both cases use the
same exfoliation and centrifugation equipment, the LCA system
boundary for comparison purposes is set at the input of the ex-
foliation process (Figure S6, Supporting Information). The LCA
functional unit is the production of inputs to yield one gram of
exfoliated graphene in dispersion (Table S2, Supporting Informa-
tion). Detailed information for life cycle inventory, environmental
impacts for each material, and a system boundary diagram can
be found in the Supporting Information.
Using cellulosic ethanol rather than NMP as the exfoliation

solvent reduces GHG emissions and fossil fuel energy consump-
tion by 95% and 96%, respectively. Two factors contribute to
these substantial improvements. First, we achieved ≈3.5-fold
higher yield in this study compared to Del Rio Castillo et al.
through our Bayesian optimization of the ethanol-EC exfolia-
tion system. In particular, we found that increasing the graphite

loading drastically improves yield and results in less required
solvent per gram of graphene than NMP (Table S1, Support-
ing Information). Second, NMP is more energy-intensive to
produce than ethanol. Specifically, NMP consumes ≈25 times
more fossil energy and produces ≈12 times more greenhouse
gases per kilogram compared to ethanol (Table S3, Supporting
Information).
Similarly, human toxicity potential, freshwater human toxicity,

and freshwater eco-toxicity are each reduced by an order of mag-
nitude when using ethanol instead of NMP. The toxicity potential
of both solvents is quantified relative to 1 kg 1,4-Dichlorobenzene
(kg 1,4-DCB-eq/kg). The eco-toxicity level (freshwater) and hu-
man toxicity level (freshwater) of ethanol and NMP are based on
USEtox.[66] The unit for human toxicity level (freshwater) is ex-
pressed in comparative toxic units (CTUcancer), which is the es-
timated increase in morbidity of cancer in the total human pop-
ulation, per unit mass of a chemical emitted to freshwater. The
unit for eco-toxicity level (freshwater) is expressed in compara-
tive toxic units (CTUe), which is an estimate of the potentially
affected fraction of species (PAF) integrated over time and vol-
ume, per unit mass of a chemical emitted to freshwater. The
substantial improvement in toxicity risk when replacing NMP
with ethanol is due to eliminating the well-known risks associ-
ated with NMP. A 2022 report by the U.S. Environmental Protec-
tion Agency found NMP to present an unreasonable risk to hu-
man health and recommends that risk management regulations
be taken imminently.[67] Indeed, the EuropeanUnion has already
taken regulatory action by limiting the amount of NMP in con-
sumer products to mitigate toxicity risks.[68] These factors make
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 16136829, 2024, 33, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

ll.202309579 by N
orthw

estern U
niversity Libraries, W

iley O
nline Library on [05/11/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.advancedsciencenews.com
http://www.small-journal.com


www.advancedsciencenews.com www.small-journal.com

Figure 6. Life cycle assessment. A comparison of the WJM LCA results per 1 gram of exfoliated graphene in dispersion for the ethanol-based exfoliation
is presented here versus the incumbent NMP-based exfoliation. The plotted LCA metrics are a) greenhouse gas emissions (GHGs), b) fossil fuel energy,
c) human toxicity potential, d) freshwater human toxicity level, and e) freshwater eco-toxicity level.

clear that replacing NMP with ethanol as an exfoliation solvent is
critical for the sustainable manufacturing of LPE graphene con-
ductive inks. Figure S7 (Supporting Information) presents addi-
tional LCA comparisons.
Additionally, we calculated cradle-to-gate GHG emissions, fos-

sil fuel consumption, and water consumption for producing
one gram of exfoliated graphene in dispersion, which includes
equipment operation for both exfoliation and purification. The
level of electricity consumption for this equipment depends
largely on the percent of the time the air compressor and chiller
operate, which is between 10% and 50% of the total processing
time. We therefore estimate that producing one gram of exfoli-
ated graphite consumes 3.1–15 MJ fossil energy and 1.9–9.5 kg
water in addition to emitting 0.22–1.1 kgCO2-eqGHGs (Table S4,
Supporting Information). Since these energy consumption esti-
mates were obtained from bench-scale operations, it is likely that
economies of scale in industrial production will lead to further
benefits.

5. Conclusion

The rapid growth of the printed electronics industry promises
a future with widespread devices and sensors with clear soci-
etal benefits. In this study, we improved the sustainability of
graphene-based conductive inks by improving wet jet milling for
graphene exfoliation in the benign solvent ethanol. In situations
where experiment costs are nontrivial, data-driven processing de-
sign increases data efficiency, reduces the time required to fully

understand a design space, and ultimately expedites the time to
bring products to market. Specifically, by using Bayesian opti-
mization combined with Gaussian process modeling, we iden-
tified an unprecedented set of optimized exfoliation conditions,
resulting in superlative graphene production rates of 3.2 g hr−1

whilemaintaining state-of-the-art electronic properties including
a percolating film conductivity of 4 × 104 S m−1. Moreover, we
demonstrated that the resulting graphene conductive inks yield
screen-printedmicro-supercapacitor devices with highly compet-
itive performance metrics compared to other graphene devices.
Finally, using life cycle assessment, we quantified the significant
environmental advantages derived from using ethanol in place of
NMP during exfoliation, including an order of magnitude lower
GHG emissions, fossil fuel energy consumption, and toxicity.
Overall, this study demonstrates that a deeper understanding of
the connections between multiple experimental inputs and their
property responses allows efficient identification of processing
parameters to maximize performance, sustainability, and com-
mercial viability.

6. Experimental Section
Wet Jet Milling Optimization Testing: Graphene was exfoliated from

graphite using a Sugino Star Burst Labo (HJP-25005V2) wet jet mill. For
each sample, 750 mL of ethanol (Decon Labs, 200 proof) was mixed
with the appropriate ratio of ethyl cellulose (EC, Sigma Aldrich, 4 cP) and
graphite (Asbury Carbons, Micro-450). The input loadings for each sample

Small 2024, 20, 2309579 © 2024 The Authors. Small published by Wiley-VCH GmbH2309579 (9 of 11)
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were dictated by the BO-guided experimental design. The graphite disper-
sion was then passed through the wet jet mill for a total of ten passes
(15 min). To sediment out unexfoliated graphitic material, the sample was
centrifuged (Beckman Coulter, Avanti J-26 XPI) at an RCF of ≈10 000 g for
30 min, as in previous work.[6] The collected supernatant was then floccu-
lated by adding a 0.04 g mL−1 NaCl solution followed by centrifugation at
≈10 000 g for 7 min. The resulting graphene-EC powder was then rinsed
with deionized water and dried for storage and later used in conductive
ink formulation.

Graphene Characterization: To determine graphene yield (concentra-
tion of the graphene dispersion), optical absorbance spectra were mea-
sured using UV/Vis spectroscopy (Agilent, Cary-5000), where concentra-
tion was extracted according to Beer’s Law. Atomic force microscopy (Asy-
lum Research, Cypher) was used to collect flake images and extract flake
population statistics. AFM samples were prepared by drop-casting diluted
graphene dispersions onto precleaned Si/SiO2 wafers followed by heating
on a hot plate at 350 °C for 30 min. To measure graphene film conductiv-
ity, 20 mg mL−1 of the graphene-EC composite powder was dispersed in
a 1:9 mixture of ethyl lactate:ethanol and spin-coated onto 7 mm × 7 mm
square glass substrates. The films were thermally cured at 350 °C for
30 min in a box furnace. Sheet resistance was measured using a four-
point probe measurement system (Lucas Signatone Resistivity Measure-
ment Stand, S-302-4) and a source meter (Keithley, Model 2400). The
thickness of the sample was measured using a profilometer (Veeco, Dek-
tak 150). Raman spectroscopy (Horiba, Xplora) was performed on the
spin-coated graphene films using a 532 nm laser. Scanning electron mi-
croscopy (Hitachi, SU8030) was performed on the top surface of spin-
coated graphene films. Screen printing was used to form a thicker perco-
lating film of graphene flakes for easier cross-sectional imaging in SEM.
A screen-printing ink composed of 120 mg mL−1 graphene-EC in terpi-
neol (Sigma Aldrich) was formulated and homogenized using a centrifu-
gal mixer (Thinky USA, ARE-310) with ceramic ball bearings for 60 min
at increasing speeds from 500 to 2000 rpm. Films were screen-printed
(Hary Manufacturing Inc., 886 PC DSIV) onto polyimide substrates and
then cured in a box furnace at 350 °C for 30 min.

Bending tests were performed on screen-printed graphene and silver
nanoparticle films on polyimide substrates. The graphene was screen-
printed as described above. The silver ink (Creative Materials, Inc., 125-
13) was screen-printed using the same condition, but the thermal curing
occurred at 180 °C for 5 min according to manufacturer guidelines. The
printed films were bent around a rod with a radius of 1.25 mm for 1000
bending cycles, and four-point probe measurements were taken in tripli-
cate every 200 cycles.

Micro-Supercapacitor Fabrication and Characterization: The graphene
interdigitated micro-supercapacitor electrodes were screen-printed with
the following dimensions: 500 μm wide fingers, 5.5 mm long fin-
gers, 150 μm gaps, 12 total fingers, and overall dimensions of
7.65 mm × 7.65 mm. Afterward, a PVA-containing gel electrolyte was pre-
pared bymixing 0.75 g of PVA (MW89000-98000, Sigma Aldrich) with 0.5 g
of phosphoric acid (85%, Sigma Aldrich) and 4.5 mL of deionized water.
The resulting PVA-H3PO4 gel electrolyte was carefully drop-casted onto
the fingers of the device followed by drying in air. Electrochemical char-
acterization tests, including cyclic voltammetry and galvanostatic charge–
discharge tests, were performed using a potentiostat (BioLogic, VSP).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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