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In this paper we look at the families of random walks arising 
from FI-graphs. One may think of these objects as families 
of nested graphs, each equipped with a natural action by a 
symmetric group Sn, such that these actions are compatible 
and transitive. Families of graphs of this form were introduced 
by the authors in [9], while a systematic study of random 
walks on these families were considered in [10]. In the present 
work, we illustrate that these random walks never exhibit the 
so-called product condition, and therefore also never display 
total variation cutoff as defined by Aldous and Diaconis 
[1]. In particular, we provide a large family of algebro-
combinatorially motivated examples of collections of Markov 
chains which satisfy some well-known algebraic heuristics for 
cutoff, while not actually having the property.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

In the paper [10], the authors considered random walks on a new kind of algebro-
combinatorial objects: FI-graphs. Formally speaking, an FI-graph is a functor from the 
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category of finite sets with injections to the category of (finite) graphs and graph homo-
morphisms. More concretely, one may think of an FI-graph as a family of nested graphs 
{Gn}, each equipped with an action of the symmetric group Sn, which is compatible 
with the inclusions Gn ⊆ Gn+1. Examples of these objects include the complete graphs 
Kn, the Kneser graphs KG(n, r), and the Johnson graphs J(n, r). They also include 
more exotic examples such as the graph of commuting transpositions on Sn, as well 
as the graph of possible vertex colorings of a fixed graph. We will usually denote an 
FI-graph by G•. See Section 6 for some other examples.

In the prequel work [10], the authors briefly noted the fact that the family of simple 
random walks on FI-graphs might not exhibit cutoff, in the sense of Aldous and Diaconis 
[1] (see Definition 2.7). In brief, we say that a family of Markov chains {X(n)

t }n≥0 exhibits 
a cutoff so long as the time taken for them to move from being slightly mixed to very 
close to mixed is small compared to the time taken to achieve either of these things, for 
large enough n. Cutoff is seen to appear in many natural families of Markov chains, and 
has been a very active field of study since its inception in [1,4,6].

In Diaconis’s treatment [4], he notes that in many known cases where the cutoff phe-
nomena appears, there are certain algebraic restrictions on the spectrum of the chain. 
One such restriction, for instance, is that the second biggest eigenvalue has multiplicity 
that grows in n. Diaconis is then led to conjecture that this behavior is a necessary con-
dition for cutoff [4]. Diaconis also notes in that work that the cutoff phenomenon seems 
considerably more likely in situations where the chain has an abundance of symmetry.

From the perspective of FI-graphs, if one were hoping to prove the appearance of the 
cutoff phenomenon, it would therefore seem most beneficial to limit oneself to situations
wherein symmetry is most apparent. In this work we will look at the class of transitive
FI-graphs. We say that an FI-graph G• is transitive whenever the action of Sn on Gn

is vertex-transitive for all n ≫ 0. All three of the examples of FI-graphs given in the 
first paragraph are transitive. It is a fact (see Proposition 4.4) that the second biggest 
eigenvalue of a transitive FI-graph has multiplicity which grows like a non-constant poly-
nomial in n. The main result of this paper is that, despite the aforementioned heuristics 
for cutoff, random walks on transitive FI-graphs cannot display the phenomenon.

Theorem A. Let G• be a transitive FI-graph. Then the family of simple random walks 
on the graphs Gn do not exhibit cutoff (see Definition 2.7).

In his recent work [5], Lacoin constructed infinite families of Markov chains that do 
not have cutoff, despite satisfying the strong heuristic of the product condition (see 
Definition 2.9). In this paper, we will show that our families of Markov chains can never 
satisfy the product condition. Therefore, one can think of this work as being parallel to 
Lacoin’s work, though our examples violate different heuristics.

In summary, the purpose of this paper is to display the following: There exist many 
algebro-combinatorially defined collections of graphs {Gn}n≥0 such that the family of 
simple random walks on these graphs:
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1. does not exhibit cutoff, or even the product condition;
2. is transitive, in that for each n there is a vertex-transitive action of Sn on Gn which 

preserves the probability measure;
3. satisfies the Diaconis eigenvalue heuristic [4] for cutoff, in that the multiplicity of the 

second biggest eigenvalue of the transition matrix for the Markov chain is growing 
to ∞ with n.

We will see in the proof of the main theorem that there is a very strong sense in which 
transitive FI-graphs are too symmetric to exhibit cutoff. This will be made precise in 
what follows.

Acknowledgments
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2. Background

In this section, we cover the majority of the background required to understand the 
results of this paper. Much of the exposition here is based on the prequel paper [10].

2.1. Mixing times

We begin by briefly reviewing the theory of mixing times for Markov chains. Following 
this, we will spend some time recalling the notion of cutoff for families of Markov chains. 
All of what follows can be found in any standard text on the subject, such as [7].

Definition 2.1. Let X be a finite set. Then a Markov chain on X is a family of random 
variables {Xt}∞t=0 such that for all t ≥ 0, and all (t + 1)–tuples (x0, . . . , xt) ∈ X t+1,

1. P (Xt = xt | Xt−1 = xt−1, . . . , X0 = x0) = P (Xt = xt | Xt−1 = xt−1), and
2. P (Xt = xt | Xt−1 = xt−1) = P (Xt−1 = xt | Xt−2 = xt−1).

The information necessary to define a Markov chain is the state space X and the 
collection of transition probabilities — the probabilities of moving from any state to any 
other. These probabilities are collected in the transition matrix, whose (i, j)–entry is the 
probability of moving from state i to state j in a single step. If a, b ∈ X are such that 
P (a, b) > 0, then we say that b is a neighbor of a.

We say that a Markov chain {Xt}t on X is connected or irreducible if for any pair of 
states x, y ∈ X there is some t > 0 such that
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P t(x, y) > 0

The matrix P is independent of the choice of initial distribution P (x) := P (X0 = x). 
We will usually interpret a choice of initial distribution as a row vector in RX whose 
coordinates sum to 1. A stationary distribution of a Markov chain is a choice of initial 
distribution π having the property that π · P = π.

Finally, we say that a Markov chain is transitive if there is a transitive action by some 
group G on the state space X , such that for all g in G, and all x, y ∈ X , P (x, y) =
P (gx, gy).

Theorem 2.2 (Proposition 1.14 and Corollary 1.17 of [7]). Let (Xt, P ) be a connected 
Markov chain on a state space X . Then there exists a unique distribution π such that 
π · P = π.

Remark 2.3. It is easily verifiable that if Xt is a transitive Markov chain with a unique 
stationary distribution, then that stationary distribution is uniform.

Ultimately, the fundamental theorem of mixing times of Markov chains is that, with 
certain mild conditions, they eventually approach their stationary distribution. In order 
to talk about Markov chains approaching their stationary distributions, we will need to 
be able to measure the distance between distributions. For the work in this paper, we 
will follow the convention of using what is essentially the L1 distance.

Definition 2.4. If µ and ν are two probability distributions on a set X , then the total 
variation distance between µ and ν is the maximum value of µ(A) − ν(A) over all events 
A ⊆ X . Equivalently (for the finite chains we will consider), it is equal to the sum

∑

x∈X

1
2 |µ(x) − ν(x)| .

Theorem 2.1 (Theorem 4.9 of [7]). Let P be a Markov chain which is irreducible and 
aperiodic, with stationary distribution π. Then there exist constants α ∈ (0, 1) and C > 0
so that for any starting state and any time t, the distance of the distribution after t steps 
of P from the stationary distribution π is at most Cαt.

This theorem requires that the Markov chain in question be aperiodic — that it is 
not the case that all paths from a state to itself have length a multiple of any non-trivial 
period.

Definition 2.5. Let P be an irreducible and aperiodic Markov chain on the state space X , 
and ϵ be any positive constant. The mixing time tmix(ϵ) is the smallest time so that for 
any starting state x ∈ X , the distribution after tmix(ϵ) steps is within ϵ of the stationary 
distribution π. We also write tmix := tmix(1/4).
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Remark 2.2. Given a family of Markov chains indexed by n, we will sometimes want to 
say things like ‘These chains mix in a single step’, or ‘These chains mix in five steps’. 
Statements like these should be understood to mean that for any ϵ, there exists N so 
that for all n > N , the claimed bound is true of tmix(ϵ).

In this paper, our Markov chains will take the form of random walks on (finite) graphs. 
For us, graphs will always be connected.

Definition 2.6. If (Xt, P ) is a connected Markov chain on a state space X with stationary 
distribution π, then we say (Xt, P ) is reversible if for all x, y ∈ X

π(x)P (x, y) = π(y)P (y, x).

Throughout this paper, we will assume that all Markov chains are irreducible, aperi-
odic, and reversible.

2.2. Cutoff

In this section, we outline the notion of cutoff first introduced by Aldous and Diaconis 
[1]. We also take the time to discus a variety of heuristics for when families are expected 
to exhibit a cutoff. This will be relevant later (Section 6) when we construct examples 
which violate these heuristics.

Definition 2.7. Let {X(n)
t }n≥0 be a family of irreducible, aperiodic Markov chains. For 

each n ≥ 0 and ϵ ∈ (0, 1) we write tmix(ϵ)(n) for the mixing time of X(n)
t . We say that 

the family mixes in eventually constant time if for all ϵ ∈ (0, 1), tmix(ϵ)(n) is O(1). We 
say that {X(n)

t }n≥0 exhibits cutoff if it does not mix in eventually constant time, and 
for all ϵ ∈ (0, 1),

lim
n→∞

tmix(ϵ)(n)/tmix(1 − ϵ)(n) = 1. (2.3)

Intuitively, a family of Markov chains exhibits cutoff when the time between tmix(1 −ϵ)
and tmix(ϵ) is small compared to both of these quantities, for large enough n. When 
graphing total variation distance as a function of time, this describes a sudden drop 
from 1 − ϵ to ϵ. Note that the usual definition of cutoff does not exclude chains with 
constant mixing time. For our purposes, chains with constant mixing time are not very 
interesting — for instance, random walks on larger and larger complete graphs mix in a 
single step, so we exclude them and prove results about cutoff in chains not of this kind. 
See Remark 2.10 for an instance where this is necessary.

Cutoff was introduced by Aldous and Diaconis in [1]. They were later expanded upon 
in an article of Diaconis [4]. Since these original works, there has been an explosion of 
activity on the subject, propelled in part by the following contrast: cutoff is a natural 
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condition that seems to hold for many classical examples of Markov chains (see [7, 
Chapter 18], and the references therein), and yet it is also exceptionally hard to prove 
in almost every case of interest. While there are some general criteria for proving cutoff 
[2], the field has largely relied on more ad-hoc methods.

That being said, there are some heuristics which are generally believed to be good 
indicators of cutoff, though all are known to not necessarily imply cutoff. Interestingly, 
two of the most frequently used heuristics involve algebraic properties of the family.

Definition 2.8. Recall that for a Markov chain Xt, one has an associated transition matrix 
P . Assuming that Xt is irreducible, it is a fact that the largest eigenvalue of P is 1. We 
write λ for the second largest eigenvalue of P in absolute value. The relaxation time, trel
of the Markov chain is the quotient

trel := 1
1 − λ

Proposition 2.9 ([7], Proposition 18.4). Let {X(n)
t }n≥0 be a family of aperiodic, con-

nected, reversible Markov chains. Writing t(n)
mix and t(n)

rel for the mixing and relaxation 
times of X(n)

t , respectively, then

t(n)
rel = o(t(n)

mix) (2.4)

whenever {X(n)
t }n≥0 exhibits cutoff.

Remark 2.10. Note that this proposition is dependent on our assumption that the family 
eventually mixes in non-constant time. Indeed, consider the simple random walk on the 
complete graph Kn. In this case, tmix(ϵ)(n) = 1 for all n ≫ 0 and all ϵ ∈ (0, 1). In 
particular, this family satisfies the required limit (2.3). On the other hand, one easily 
computes that t(n)

rel = n−1
n−2 ̸= o(1).

The condition (2.4) is significant enough, that we give it a name.

Definition 2.11. We say that a family of Markov chains {X(n)
t }n≥0 satisfies the product 

condition, if (2.4) holds.

The product condition is generally seen as a strong indicator that the family in ques-
tion exhibits cutoff. For instance, it is known that these conditions are equivalent for 
random walks on weighted trees [2]. Also, in their seminal work, Basu, Hermon, and 
Peres examine a hitting-time condition that, when paired with the product condition, is 
equivalent to cutoff [2]. That being said, however, the product condition is not equiva-
lent to cutoff (see the examples in [7, Chapter 18], due to Aldous and Pak). The main 
result of this work will show that random walks on so-called transitive FI-graphs (see 
Section 2.3) never satisfy the product condition. One of the main tools we use to prove 
this is the following well known pair of bounds (see [7, Theorems 12.4 and 12.5])
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Theorem 2.12. Let P be the transition matrix of a reversible, irreducible Markov chain 
with state space X and stationary distribution π. Writing πmin = minx∈X π(x), we have

(trel − 1) log( 1
2ϵ ) ≤ tmix(ϵ) ≤ trel log( 1

ϵπmin
)

A second heuristic is due to Diaconis [4], and considers the multiplicity of the eigen-
value λ. Diaconis notes that if {X(n)

t }n≥0 is a family of irreducible, aperiodic Markov 
chains, then cutoff seems to be caused by an abundance in the multiplicity of the second 
largest eigenvalue λ(n). Namely, whenever the function

n )→ multiplicity of λ(n)

goes to infinity with n, one should expect that the corresponding family of Markov chains 
exhibits cutoff.

In the present work, we will consider random walks in certain families of highly sym-
metric graphs. Our main result will show that these walks never exhibit the product 
condition. On the other hand, it will be shown that these walks always do satisfy the 
multiplicity heuristic of Diaconis, making it particularly interesting that cutoff is not 
present.

2.3. FI-sets and relations

In this section we review the theory of FI-sets and relations first explored by the 
authors and Speyer in [11]. This theory was heavily inspired by, and ultimately rests on 
the shoulders of, the theory of representation stability [3].

Definition 2.13. We write FI to denote the category whose objects are the sets [n] =
{1, . . . , n}, and whose morphisms are injective maps of sets. An FI–set is a functor Z•
from FI to the category of finite sets. If Z• is a FI–set, and n is a non-negative integer, 
we write Zn for its evaluation at [n]. If f : [n] ↪→ [m] is an injection of sets, then we 
write Z(f) for the map induced by Z•.

An FI-subset, or just a subset, of an FI-set Z• is an FI-set Y• for which there exists 
a natural transformation Y• → Z• such that Yn ↪→ Zn is an injection for all n ≥ 0.

While the above definition might appear somewhat abstract, one thing we hope to 
impress upon the reader is that one can think about these objects in quite concrete 
terms. To see this, first observe that for each n, Zn carries the natural structure of an 
Sn-set, induced from the endomorphisms of FI. With this in mind, one may therefore 
think of an FI-set Z• as a sequence of Sn-sets Zn, which are compatible with one another 
according to the actions of the morphisms of FI.

As one might expect, it is in the best interest of the theory to restrict our attention to 
a particular class of “well-behaved” FI-sets. To this end we have the following definition.
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Definition 2.14. An FI–set Z• is said to be finitely generated in degree ≤ d, if for all 
n ≥ d, one has

Zn+1 =
⋃

f

Z(f)(Zn)

where the union is over all injections f : [n] ↪→ [n + 1].

The proof of the following theorem can be found in [11].

Theorem 2.15 ([11], Theorem A). Let Z• denote an FI-set which is finitely generated 
in degree ≤ d. Then there exists a finite collection of integers mi ≤ d, and subgroups 
Hi ⊆ Smi , such that, for n sufficiently large, we have an isomorphism

Zn
∼=⊔

i

Sn/(Hi × Sn−mi)

as sets with an action of Sn.

In the paper [11], where FI-sets were first examined, it is argued that many natu-
rally occurring examples of FI-sets come equipped with a collection of Sn-equivariant 
relations. To be more precise, one has the following definition.

Definition 2.16. Let Z• and Y• denote two FI-sets. Then the product Z•×Y• carries the 
structure of an FI-set in a natural way. A relation between Z• and Y• is a subset R• of 
Z• × Y•. If Z• = Y•, then we say that R• is a relation on Z•

Given a relation R• between Z• and Y• we obtain a family of Sn-linear maps

rn : RZn → RYn

where RZn is the R-linearization of the set Zn, and similarly for RYn. Properties of these 
maps were a major focus of [11]. In this work, they will naturally arise as probability 
transition matrices of certain families of Markov chains.

It is a fact, proven in [11], that any relation between two finitely generated FI-sets 
is itself finitely generated. It can be proven from this that, if Z• is a finitely generated 
FI-set, then the number of Sn-orbits of pairs (x, y) ∈ Zn×Zn is eventually independent 
of n (see [11]). Perhaps the most notable classes of examples of FI-set relations arise in 
the theory of FI-graphs.

In [9], the authors defined what they called FI-graphs, functors from FI to the category 
of graphs and graph homomorphisms. In this case, one may think of an FI-graph as 
an FI-set of vertices paired with a symmetric relation dictating how these vertices are 
connected through edges. One should note in this case that the associated linear maps 
rn are what one would usually call the adjacency matrices of the corresponding graphs.
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Remark 2.17. Recall that, in this paper, a graph is connected by definition.

Some examples of FI-graphs include the complete graphs Kn, whose vertices are the 
set [n], and whose associated relation is comprised of all pairs (i, j) with i ̸= j, and the 
Kneser graphs KG(n, r), whose vertices are given by r-element subsets of n and whose 
associated relation is comprised of all pairs (A, B) such that A ∩B = ∅. We will see other 
examples of FI-graphs throughout the work (Section 6).

For the remainder of this paper, the primary objects of study will be finitely generated 
FI-graphs and, more specifically, simple random walks on these objects. In the prequel 
paper [10], a theory is developed for what the authors call models of random walks on 
FI-graphs. This more general theory includes things such as lazy modifications of the 
simple walk. Going forward we limit our exposition to simple random walks, though 
everything we prove will work in the more general setting.

The following theorem follows from [11, Corollary C].

Theorem 2.18 ([11], Corollary C). Let G• denote a finitely generated FI-graph, with 
vertex FI-set V• and edge relation E•. Write Pn for the transition matrix of the simple 
random walk on Gn. Then,

1. the number of distinct eigenvalues of Pn is independent of n for n ≫ 0;
2. there exists a finite list {fi} of functions which are algebraic over Q(n) and real 

valued, for which {fi(n)} is the complete list of eigenvalues of Pn for n ≫ 0;
3. for any fi as in the previous part, the function

n )→ the algebraic multiplicity of fi(n) as an eigenvalue of Pn

agrees with a polynomial for n ≫ 0.

In the next section we will relate the conclusions of this theorem with the Diaconis 
cutoff heuristic.

3. Rational transitions between Markov chains

In this section we introduce the concept of a rational transition between Markov 
chains. Intuitively, these are circumstances where one imagines going from one Markov 
chain on a state space X to another by deforming the transition matrix by rational 
functions.

Definition 3.1. Let X be a finite set, and let (Xt, P ) and (Yt, Q) be two Markov chains 
on X . Then a rational transition from (Xt, P ) to (Yt, Q) is a family of Markov chains 
{(X(n)

t , P (n))}n≥0 such that:

1. P (n) is a matrix with coefficients in the field of rational functions R(n);
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2. P (0) = P , and limn→∞ P (n) exists and agrees with Q.

Example 3.2. Let p, q ∈ (0, 1), and let X = {x, y}. Then we have two Markov chains on 

X given by P =
(

p 1 − p
1 − p p

)
, and Q =

(
q 1 − q

1 − q q

)
. Then one possible rational 

transition between P and Q is the family of Markov chains with transition matrices given 
by

P (n) =
( 1

n+1p + n
n+1q

1
n+1 (1 − p) + n

n+1 (1 − q)
1

n+1 (1 − p) + n
n+1 (1 − q) 1

n+1p + n
n+1q

)

In this paper, rational transitions between Markov chains will naturally arise in the 
context of orbit walks associated to FI-graphs.

For our purposes, it will be important to ask the question how do various statistics 
such as relaxation time and mixing time vary during a rational transition? The first of 
these quantities can be answered through simple linear algebra.

Proposition 3.3. Let {(X(n)
t , P (n))}n≥0 be a rational transition between two Markov 

chains on a state space X . Then, for n ≫ 0, the function,

n )→ t(n)
rel

agrees with a function which is algebraic over the field R(n).

Proof. The matrix P (n) is a |X | × |X | square matrix over the field R(n). It follows 
that the eigenvalues of P (n) are algebraic over R(n), as they satisfy the characteristic 
polynomial of P (n). Note that by assumption our Markov chains are reversible, so we 
may also assume that these eigenvalues are real valued. We denote these eigenvalues by 
λ(n) in what follows.

It remains to argue that maxλ ̸=1{|λ(n)|} is algebraic for n ≫ 0. Indeed, if λ(n) is 
algebraic with real values, then it only assumes the value 0 finitely many times. In 
particular, for n ≫ 0, λ(n) is of fixed sign. Therefore, |λ(n)| is in agreement with an 
algebraic function (i.e. either λ(n) or −λ(n)) for n ≫ 0. A similar argument then implies 
that the maximum maxλ ̸=1{|λ(n)|} is uniquely achieved by a single |λ(n)| for n ≫ 0, as 
the difference of two algebraic functions is still algebraic. This completes the proof. !

Resolving the eventual behavior of the mixing time tmix(ϵ)(n) is a bit more subtle to 
contend with. Considering that our concern is mostly in its behavior in the large n limit, 
we will rely on a hitting time approximation due to Peres and Sousi [8].

Definition 3.4. Let (Xt, P ) denote a Markov chain on a state space X , with stationary 
distribution π. Then for α ∈ (0, 1/2), the α-large-set hitting time is the quantity,
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thit(α) = max
A⊆X ,x∈X,π(A)≥α

Ex[τA]

where Ex[τA] is the expected time for the Markov chain to enter the set A, conditional 
on it beginning at X0 = x.

Intuitively, one should not expect the Markov chain to have mixed before it is able to 
hit big sets. Remarkably, however, there is a sense in which the converse is true as well. 
This is summarized in the following theorem.

Theorem 3.5 (Peres and Sousi, [8]). Let (Xt, P ) be a Markov chain on a state space X . 
Then for all α ∈ (0, 1/4), there exist constants cα, c′α such that,

cαthit(α) ≤ tmix ≤ c′αthit(α).

Importantly, cα and c′α depend only on α, and not P or X .

Remark 3.6. Once again, reversibility of (Xt, P ) is critical for the above theorem.

Theorem 3.5 can be thought of as saying that α-large-set hitting times are essentially 
the same as mixing times. The extra information that the constants cα and c′α do not 
depend on the process itself will allow us to use these inequalities in entire families of 
Markov chains. In particular, it will allow us to resolve the question of the kinds of 
growth that mixing times of rational transitions can attain.

Theorem 3.7. Let {(X(n)
t , P (n)}n≥0 be a rational transition between Markov chains on a 

state space X . Then the function

n )→ t(n)
mix

is Θ(f(n)), where f(n) ∈ R(n). That is to say, there exists f(n) ∈ R(n) as well as 
constants β, γ such that for all n ≫ 0

γf(n) ≤ t(n)
mix ≤ βf(n).

Proof. By Theorem 3.5, it will suffice to find some α ∈ (0, 1/2) such that t(n)
hit(α) is a 

rational function for n ≫ 0. Indeed, we will show this is the case for all α ∈ (0, 1/2).
We will first show that, for any x ∈ X and A ⊆ X , the function

n )→ E(n)
x [τA]

is in agreement with a rational function for all n ≥ 0. To see this, let V be the R(n)-
vector-space with basis in bijection with those elements of X not in A. Then by the usual 
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first-step recursion satisfied by hitting times, we find Ex[τA] to be the x-coordinate of 
the vector Q ∈ V , defined by the matrix equation

(I − P (n)|V )Q = 1

where 1 is the vector 
∑

y/∈A y. The matrix I − P (n) is generally not invertible, however 
the minor consisting of only those rows and columns corresponding to elements not in 
A is invertible. In particular, Q is unique and well-defined. This concludes the proof of 
our first claim.

Moving on, we first recall that,

t(n)
hit(α) = max

A⊆X ,x∈X,π(n)(A)≥α
Ex[τA].

Observe that the set S(n)
α := {A ⊆ X | π(n)(A) ≥ α} is independent of n whenever 

n ≫ 0, as π(n) is an element of an R(n) vector space. Just as we argued in the proof of 
Proposition 3.3, it follows from the previous paragraphs and our observation about S(n)

α

that the maximum of the set

{E(n)
x [τA] | x ∈ X , A ∈ S(n)

α }

is achieved by a choice of A and x which is unchanging in n, whenever n ≫ 0. This 
concludes the proof. !

4. Walks on transitive FI-graphs

In this section, we discuss useful properties held by what we call transitive FI-graphs. 
This leads into the next section wherein we conclude by proving our main theorem.

Definition 4.1. Let G• be a finitely generated FI-graph with vertex FI-set V• and edge 
relation E•. We say that G• is transitive if, for all n ≫ 0, the action of Sn on Vn is 
transitive.

Examples of transitive FI-graphs include the complete graphs Kn, and the Kneser 
graphs K(n, r). We will see many more examples later (Section 6).

Proposition 4.2. Let G• be a transitive FI-graph. Then for n ≫ 0, Gn is not bipartite. 
In particular, the simple random walk on Gn is aperiodic for n ≫ 0.

Proof. We prove this proposition using the spectral characterization of connected bipar-
tite graphs. Let G be a graph, and assume adjacency matrix of G has distinct eigenvalues

λ1 > λ2 > . . . > λm
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Then G is bipartite if and only if, for each i, λi = −λm−i+1, and the multiplicity of λi

is equal to that of λm−i+1.
Because our graphs are connected, this implies that if Gn is bipartite then both λ1

and λm appear with multiplicity 1. In our setting, the action of the symmetric group 
commutes with the adjacency matrix and therefore the eigenspaces also carry an action 
of the symmetric group. This shows that the eigenspaces of λ1 and λm must either 
be isomorphic to the trivial representation or the sign representation. Representation 
stability theory implies that the sign representation cannot appear for n ≫ 0 [3], while 
transitivity implies that there cannot be more than one copy of the trivial representation. 
This shows that Gn cannot be bipartite. !

Remark 4.3. To adapt the above proof to cases of more general models of random walks 
on FI-graphs, one simply notes that if a random walk is periodic with period d, then 
the d-step walk is aperiodic and reducible. This would imply that spectrum of the d-step 
walk has multiple eigenvalues of multiplicity 1, whence the above argument leads to a 
contradiction.

The above proposition is useful, as it allows us to essentially ignore possible issues 
with periodicity. Our second result is more related to the heuristics of Diaconis. In 
particular, we will find that the second largest eigenvalue of a transitive FI-graph must 
grow non-trivially with n. Note the similarity in the style of proofs between the following 
proposition and the previous one.

Proposition 4.4. Let G• be a transitive FI-graph, and let Pn denote the transition matrix 
of the simple random walk on Gn. If λ(n) is the second largest eigenvalue of Pn, then 
the multiplicity of λ(n) agrees with a non-constant polynomial in n for n ≫ 0.

Proof. The main theorem of [11] implies that the multiplicity of λ(n) eventually agrees 
with a polynomial in n. It therefore remains to argue that this polynomial is non-
constant. Because the eigenspaces of Pn carry an action by the symmetric group, we 
know that the irreducible constituents that appear must obey the restrictions imposed by 
representation stability. In particular, the only way that the dimension of this eigenspace 
is constant is if it decomposed into a sum of trivial representations. Because our sym-
metric group action is transitive, and because the consequently unique copy of the trivial 
representation is being occupied by the eigenspace for the eigenvalue 1, it follows that 
the dimension must be growing. !

We next turn our attention to the orbit graphs associated to a transitive FI-graph.

Definition 4.5. Let G• denote a transitive FI-graph, and for some m ≫ 0, fix a vertex 
x ∈ Gm, for each n ≥ m, we write x(n) ∈ V (Gn) to denote the image of x under the 
map induced by the standard inclusion ι : [m] ↪→ [n]. Then the x-roofed orbit graph Gx

n

associated to Gn is the graph whose vertices are indexed by Sn-orbits of pairs of vertices 
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of the form [y, x(n)]. Two orbits [y, x(n)], and [z, x(n)] are connected by an edge if and 
only if there exists (z′, x(n)) ∈ [z, x(n)] such that z′ is adjacent to y. Note that, from 
the discussions of Section 2.3, the graph Gx

n is eventually independent of n. We define a 
random walk on Gx

n by the transition rule

P x
n ([y, x(n)], [z, x(n)]) =

∑

[z′,x(n)]=[z,x(n)]
Pn(y, z′),

where Pn(y′, z) is the transition rule for the simple random walk on Gn. Hence-forth we 
will refer to this random process as the orbit walk of G•.

An alternative description of the orbit walk of G• is given in terms of the decomposi-
tion of the vertex set given by Theorem 2.15. In particular, the elements of V (Gn) may 
be written as equivalence classes of permutations [σ] ∈ Sn/H × Sn−m, where H ≤ Sm

and m ≥ 0. It is easily seen that the classes [σ] are in bijection with ordered tuples 
(Sα1 , . . . , Sαr), where the αi are the H-orbits of [m], and the Sαi ⊆ [n] are disjoint with ∑

i |Si| = m. Indeed, for an H-orbit αi, one has Sαi = σ(αi). We call the Sαi the labels
of the associated vertex. With regards to this description, an orbit of pairs of two vertices 
[x, y] can then be described by indicating how much overlap exists in the labels of x and 
y, respectively.

In particular, having fixed our vertex x as in the definition of the orbit graph, the 
vertices of Gx

n can be thought of as indicating how different the labels of the corresponding 
vertex are from those of x(n).

We now take the time to record the following important proposition.

Proposition 4.6. Let G• denote a transitive FI-graph, and let m ≫ 0 be so large that 
Gx

n is unchanging for all n ≥ m. Then the family of Markov chains {(X(n)
t , P x

n )}n≥m

is a rational transition between P x
m and a Markov chain whose stationary distribution is 

given by

π∞([y, x(n)]) =
{

0 if y and x(n) have any overlap in their labels
1 if y and x(n) have totally disjoint labels.

Proof. The first claim will follow once we know that P x
n ∈ R(n). This was proven in [10]. 

For the second claim, we note that the proportion of vertices which share no labels with 
x(n) is approaching 1 as n → ∞. !

5. The proof of the main theorem

We begin by making explicit the relationship between the mixing times of a model 
of a random walk on a transitive FI-graph, and the mixing times of the associated orbit 
graph.
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Theorem 5.1. Let G• denote a transitive FI-graph, and let m ≫ 0 be so large that Gx
n

is unchanging for all n ≥ m. If we write tmix(ϵ)(n) for the mixing time for the sim-
ple random walk on Gn, and tmix(ϵ)(n)

x for the mixing time for the orbit walk, then 
tmix(ϵ)(n)

x = tmix(ϵ)(n).

Proof. Write π(n) and π(n)
x for the stationary distributions of the simple random walk 

on Gn and the orbit walk, respectively.
We first note, for any y ∈ Vn,

π(n)
x ([y, x(n)]) =

∑

[y′,x(n)]=[y,x(n)]
π(n)(y′) = |[y, x(n)]| · π(n)(y),

as the stationary distribution is uniform for transitive chains. On the other hand, for 
any y ∈ Vn,

(P x
n )t([x(n), x(n)], [y, x(n)]) =

∑

[y′,x(n)]=[y,x(n)]
P t
n(x(n), y′) = |[y, x(n)]| · P t

n(x(n), y),

as the condition that [y, x(n)] = [y′, x(n)] implies that there is a permutation σ that 
sends y to y′ while fixing x(n) and therefore P t

n(x(n), y′) = P t
n(σx(n), σy′) = P t

n(x(n), y). 
Putting these two together we obtain,

∑

[y,x(n)]
|π(n)

x ([y, x(n)]) − (P x
n )t([x(n), x(n)], [y, x(n)])|

=
∑

[y,x(n)]

(
|[y, x(n)]| · |π(n)(y) − P t

n(x(n), y)|
)

=
∑

y

|π(n)(y) − P t
n(x(n), y)|

Because the simple random walk on G• is transitive, its total variation distance to 
stationary can be calculated with respect to any starting position. It follows that the 
total variation distance between P t

n and π(n) is no larger than the distance between 
(P x

n )t and π(n)
x . In particular, tmix(ϵ)(n)

x ≥ tmix(ϵ)(n). On the other hand, the orbit chain 
is clearly a projection of the simple random walk, whence tmix(ϵ)(n)

x ≤ tmix(ϵ)(n) from 
well known facts about projection chains. !

We are now ready to prove Theorem A. We will then conclude the paper by providing 
a collection of examples of transitive FI-graphs.

Proof of Theorem A. For the remainder of this proof, fix a transitive FI-graph G•, as 
well as the associated orbit graph Gx

• . We will show that the family of simple random 
walks on G• do not satisfy the product condition.
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Theorem 5.1 tells us that the mixing time of the simple random walk on Gn t(n)
mix equals 

that of the associated orbit walk. It now follows from Proposition 4.6 and Theorem 3.7
that t(n)

mix is Θ(f(n)), where f(n) is some rational function. In particular, the quotient 
t(n)
mix
t(n)
rel

is Θ of a algebraic function according to Theorem 2.18. On the other hand, adapting 

Theorem 2.12 to our setting we see that

t(n)
mix

t(n)
rel

≤ log(4|Gn|),

where |Gn| is the number of vertices in Gn. In particular, as the number of vertices of 
a finitely generated FI-graph grows as a polynomial in n, we see that t

(n)
mix
t(n)
rel

is bounded 

from above by something that is Θ of log(n). We finish this proof by showing that this 
bound implies that t

(n)
mix
t(n)
rel

is not limiting to infinity, whence the product condition fails.

Write A(n) for the algebraic function that describes the end behavior of t(n)
mix
t(n)
rel

, and 

assume for contradiction that limn→∞ A(n) = ∞. By definition, we can find polynomials 
p0(n), . . . , pr(n) such that

pr(n)Ar(n) + . . . + p1(n)A(n) + p0(n) = 0.

Let pj denote a polynomial with highest degree among the pi, and assume that j is the 
largest such index with this property. Then we have,

pr(n)Ar(n) + . . . + p1(n)A(n) + p0(n) = pj(n)Aj(n)

⎛

⎝1 +
∑

i̸=j

pi
pj

Ai−j

⎞

⎠ = 0

Taking the limit as n → ∞,

lim
n→∞

pj(n)Aj(n)

⎛

⎝1 +
∑

i̸=j

pi(n)
pj(n)A

i−j(n)

⎞

⎠ = lim
n→∞

pj(n)Aj(n)

⎛

⎝1 +
∑

k ̸=j

pk(n)
pj(n)A

k−j(n)

⎞

⎠,

where the latter sum is over all indices k such that deg(pk) = deg(pj). This follows from 
the fact that A is O(log(n)), whence it and all of its powers limit to zero when divided 
by n. By assumption we have that k < j and therefore,

0 = lim
n→∞

pj(n)Aj(n)

⎛

⎝1 +
∑

k ̸=j

pk(n)
pj(n)A

k−j(n)

⎞

⎠ = lim
n→∞

pj(n)Aj(n) = ∞,

where we have (twice) used the fact that limn→∞ A(n) = ∞. This is our desired contra-
diction. !
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6. Examples of random walks

In this section, we give some examples of random walks on transitive FI-graphs. In 
all cases, tuples contain elements of {1, 2, . . . , n} without repetition.

Example 6.1. States are unordered pairs and a step is to replace both numbers with any 
others.

Example 6.2. States are triples and a step is to replace a random entry with any unused 
number.

Example 6.3. States are triples and a step is to either randomly permute the labels, or 
replace the last one with any unused number.

Example 6.4. States are k–tuples and a step is to shift all entries either one place to the 
left or one place to the right, deleting the entry on that end and introducing a new one 
at random at the other.

Walks such as these have constant mixing time, because what needs to happen for 
them to be mixed can be described without reference to n — the first mixes in a single 
step, the second after all three coordinates have been chosen at least once each, the third 
once each initial label has been moved into the last position and then replaced, and the 
last once either ‘left’ or ‘right’ has been chosen k more times than the other. This non-
dependence on n should feel like a very FI-flavored property, and it relies on the fact 
that any graph of this kind has a description in terms of tuples of labels where adjacency 
depends only on which labels are equal or unequal to which other labels, never on what 
those labels actually are (see the classification theorem of [11] and further discussion 
in [10]). That is, whenever a random walk step introduces a new label, it is only as “a 
random new label”, never specifying which label to use.

It is also possible to produce walks with mixing time longer than constant, by intro-
ducing multiple orbits of edges.

Example 6.5. States are pairs and a step is to replace the first entry with probability 1
n

or the second with probability n−1
n .

Example 6.6. States are triples and a step is to replace the first entry with probability 
1
n or the second and third with probability n−1

n .

Example 6.7. States are triples and a step is to either randomly permute the labels with 
probability n−1

n , or replace the last one with any unused number, with probability 1
n .

In these three examples, the necessary conditions for mixing are still phrased without 
any dependence on n — in all cases, they are that we must wait until all labels have 
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been replaced — but the time for this is now linear in n, and similar constructions could 
produce mixing times of any higher power of n. While this dependence on n may appear 
artificial, it can at least arise naturally from the construction of a simple random walk 
— for instance, Example 6.6 is essentially a simple random walk on the graph where the 
triple {a, b, c} is connected to each {x, b, c} and each {a, y, z} — there are just about n
times as many edges of the second kind as of the first.

Indeed, by the classification theorem of [11], any simple random walk on a transitive 
FI-graph is of the forms described here — the state space is k–tuples, perhaps with some 
identification, and moves involve reordering entries of the tuple and/or replacing some 
with random other elements. Because we are working with simple random walks, any 
reordering move implies that the reverse move is also possible and equally likely.
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