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We study a variety of natural constructions from topological 
combinatorics, including matching complexes as well as other 
graph complexes, from the perspective of the graph minor 
category of [13]. We prove that these complexes must have 
universally bounded torsion in their homology across all 
graphs of bounded genus. One may think of these results as 
arising from an algebraic version of the graph minor theorem 
of Robertson and Seymour [19,20].
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1. Introduction

We study a category G≤g whose objects are finite connected graphs whose first Betti 
number, or (combinatorial) genus, is at most g and whose morphisms are built out of 
automorphisms, deletions, and contractions. For instance, a single vertex with g loops is 
an object of G≤g, whereas trees form, by definition, the objects of G≤0. A precise definition 
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of these categories will appear in Section 3.1. We then prove finite generations results 
about the representation theory of this category and apply these results in topological 
combinatorics. In particular we study spaces arising from graphs that behave well with 
respect to automorphisms, deletions, and contractions.

Throughout this introduction, a graph will refer to an at most one-dimensional CW 
complex that is both connected and finite. We say that a graph G is a minor of a graph 
G′ if G can be obtained from G′ by a sequence of edge deletions and contractions. In their 
seminal series of papers, Robertson and Seymour proved, among many other things, that 
the minor relation is actually a well-quasi-order [19,20]. That is to say, in any infinite 
collection of graphs, there must be a pair where one is a minor of the other. In this paper, 
we prove a weakened categorical version of the graph minor theorem which we outline 
below.

Fix a nonnegative integer g and write G≤g for the category whose objects are graphs 
of genus at most g, and whose morphisms are what are known as minor morphisms (see 
Section 3.1). While the precise definition of a minor morphism is a bit technical, for the 
purposes of this introduction you can think of them as maps built out of edge deletions, 
contractions, and graph automorphisms. In particular, one has a minor morphism ϕ :
G′ → G if and only if G is a minor of G′. A Gop-module over a Noetherian ring R is then 
a covariant functor M : Gop → R-mod. Concretely, a Gop-module may be thought of as 
a collection of R-modules {M(G)}G, one for each graph G, such that whenever G is a 
minor of G′, one has an induced map M(G) → M(G′). We say that a Gop-module M
is finitely generated if there is some finite list of graphs {Gi}i such that each M(Gi) is 
a finitely generated R-module and for any graph G, the R-module M(G) is spanned by 
the images of the M(Gi) under the aforementioned maps induced by the minor relation.

Our first result follows from results of [17] and shows that Gop
≤g-modules satisfy a

Noetherian Property and should be viewed as a weakened categorical version of the 
graph minor theorem.

Theorem 1.1. Any submodule of a finitely generated Gop
≤g-module is itself finitely gener-

ated.

This weak categorical graph minor theorem translates the combinatorics of well-quasi-
orders present in the original graph minor theorem to an algebraic statement about 
submodules of finitely generated modules. While it is the case that the categorical graph 
minor theorem is equivalent to the original, it is also presented in a language that is 
more amenable to application in topology and algebra. In particular, see [17][16] for 
applications of the categorical graph minor theorem to Kazhdan–Lusztig polynomials 
of graphical matroids, as well as configuration spaces of graphs. In the following work, 
we focus our attention to two topics that are important in topological combinatorics – 
simplicial complexes and hyperplane arrangements – in order to illustrate the power of 
the categorical graph minor theorem.
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1.1. Homology of the matching complex

For a graph G, a matching of G is a collection of pairwise non-adjacent edges. The
matching complex M(G) of G is the simplicial complex whose simplices are in bijection 
with matchings on G. Matching complexes of complete graphs and complete bipartite 
graphs have been studied extensively using a wide variety of techniques including discrete 
Morse theory. It is notable, however, that there is relatively little known about the 
matching complexes of general graphs. In this work, we aim to fill this gap in the literature 
by considering a new perspective on the problem: instead of focusing on M(G) for 
some particular graph G, or even for some particular family of graphs, we consider the 
matching complexes of all graphs at once.

The key observation that allows us to do this is that whenever G is a minor of G′ there 
is a natural way to embed the edges of G into those of G′. Moreover, this embedding 
preserves the condition that the edges are disjoint, as any “undoing” of an edge deletion 
or contraction can only push things further apart. We therefore obtain simplicial complex 
maps M(G) → M(G′) whenever G is a minor of G′, which induce maps on homology 
Hi(M(G)) → Hi(M(G′)). In particular, for any fixed i ≥ 0, the assignment

G #→ Hi(M(G))

is a well-defined Gop
≤g-module over Z. Using the categorical graph minor theorem, we will 

prove the following

Theorem 1.2. The Gop
≤g-module

G #→ Hi(M(G))

is finitely generated. In particular, there exists an integer ϵi,g, depending only on i and 
g, such that the torsion part of Hi(M(G)) is annihilated by ϵi,g, for all graphs G.

Remark 1.3. Having seen a theorem such as Theorem 1.2, it is natural for one to ask 
whether one can obtain effective bounds on the items involved. For instance, bounds on 
the sizes of the graphs which generate Hi(M(G)), or even bounds on the constant ϵi,g
as a function of g. While there are certain limited cases in which this has been done – 
ϵi,0 = 1 [4] while ϵ1,g = 2 for g ≥ 4 [11], for instance – it seems like it will be quite 
difficult to do in general. One particular observation that makes the problem somewhat 
tractible is that our proof of Theorem 1.1 is partially constructive. What we mean by 
this is that the proof proceeds in a way that is very similar to the classical Gröbner 
basis proof of the Hilbert Basis Theorem. While the tools of computational commutative 
algebra are not immediately applicable, it seems plausable that one might be able to 
adapt these tools to our setting.
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The statement about torsion in the above theorem should be particularly interesting, 
as the torsion appearing the homology of the matching complex has been a subject of 
considerable intrigue in recent years [24][9][8].

We also note that, by the very general nature of the weak categorical graph minor 
theorem, the conclusions of Theorem 1.2 will remain true when the matching complex is 
replaced by a large variety of graph-based complexes, such as those discussed in [7]. See 
Section 4.2 for more on this.

1.2. Graphical linear subspace arrangements

Recall that, to any graph G, one may define a linear subspace arrangement induced 
by the edge relation of its vertices. We define the complement of this arrangement in 
(Cd)V (G) by Conf(G, Cd). More precisely, we have

Conf(G,Cd) = {(xv)v∈V (G) ∈ (Cd)V (G) | xv ̸= xw if {v, w} is an edge of G}.

For instance, if G = Kn is the complete graph, Conf(G, Cd) is the classical configura-
tion space of points in Cd. If instead G = Ka,b is the complete bipartite graph, then one 
recovers the colored configuration spaces Z̃D

a+b as studied by Farb, Wolfson, and Wood 
[6]. In this work we will specialize to the family of line graph complements.

Given a graph G, we write Lc(G) to denote the simple graph whose vertices are 
indexed by the edges of G, and whose edges indicate the corresponding edges in G are 
non-adjacent. These graphs have been called Kneser graphs by some authors [3], as the 
usual Kneser graph K(n, 2) is seen to be Lc(Kn).

The same observation made above tells us that whenever G is a minor of G′, one 
obtains a graph embedding

Lc(G) ↪→ Lc(G′).

This embedding induces a “forgetful” map

Conf(Lc(G′),Cd) → Conf(Lc(G),Cd),

which when composed with cohomology yields

Hi(Conf(Lc(G),Cd)) → Hi(Conf(Lc(G′),Cd)).

Our second theorem therefore can be stated as follows.

Theorem 1.4. For any fixed i, d, g, the assignment

G #→ Hi(Conf(Lc(G),Cd))

defines a finitely generated Gop
≤g-module over Z.
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One observes that the complete bipartite graph Ka,b can (essentially) be realized as 
the line graph complement of some other graph. In particular, the finite generation result 
of Theorem 1.4 can be seen as a generalization of some results in [6] (see Theorem 3.21).

The paper is organized as follows. In Section 2 we outline and expand on the theory 
of Gröbner categories introduced by Sam and Snowden in [22]. In Section 3 we define 
the category G≤g and use the results of Section 2 to show that Gop

≤g has a Noetherian 
property. Finally in Section 4 we use the Noetherian property of Gop

≤g to study spaces in 
topological combinatorics arising from graphs.

Remark 1.5. In previous versions of this work, the above results were all stated without 
the dependency on the genus parameter g. These earlier versions of this paper were 
based on the Categorical Graph Minor Theorem of [13], and worked with the category 
of all graphs with minor morphisms. Unfortunately, a gap was found in the proof of the 
main theorem of [13], and so for now we can only state our results in the setting where 
genus is bounded. That being said, it is still very much the belief of the authors that 
the Categorical Graph Minor Theorem is true, and the techniques of this paper would 
then imply stronger versions of Theorems 1.2 and 1.4 where the parameter g does not 
appear.
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2. Gröbner theory of categories

Let C be an essentially small category and k a ring. We define Repk(C) to be the 
category of functors from C to the category of k-modules. A module M ∈ Repk(C) is 
called finitely generated if there exist finitely many objects c1, . . . , cr of C along with 
elements vi ∈ M(ci) such that, for any object c of C, M(c) is spanned over k by the 
images of the elements vi along the maps induced by all possible morphisms ϕi : ci → c. 
If every submodule of M is finitely generated, then M is said to be Noetherian. If 
every finitely generated module is Noetherian, the category Repk(C) is said to be locally 
Noetherian. Sam and Snowden have developed powerful machinery for proving that 
module categories are locally Noetherian which we summarize below.

Given an object x of C, let Cx be the set of equivalence classes of morphisms out of 
x where ϕ ∈ HomC(x, y) is equivalent to ψ ∈ HomC(x, z) if there exists an isomorphism 
ρ ∈ HomC(y, z) such that ρ ◦ ϕ = ψ. The category C satisfies property (G1) for exevery 
object x of C there exists a linear order ≺ on Cx preserved under post composition. 
That is to say, if ϕ, ψ ∈ HomC(x, y) and ϕ ≺ ψ, then for any ρ ∈ HomC(y, z), we have 
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h ◦ f ≺ h ◦ g. There is a natural quasi-order on Cx where we say ϕ ≤ ψ if and only if 
there exists a morphism ρ ∈ HomC(y, z) such that ρ ◦ ϕ = ψ. Note, the orders ≤ and ≺
are independent. We say that C satisfies property (G2) if ≤ is a well quasi-order on Cx. 
Namely, for any infinite sequence ϕ1, ϕ2, ϕ3, . . . of elements of Cx, there exists a pair of 
indices i < j such that ϕi ≤ ϕj . The category C is Gröbner if C is a directed category 
and satisfies properties (G1) and (G2).

Let C and D be categories and Φ : D → C a functor. The functor Φ satisfies prop-
erty (F) if for any object x of C there exist finitely many objects y1, . . . , yn of D and 
morphisms ϕi ∈ HomC(x, Φ(yi)) such that for any object y of D and any morphism 
ϕ ∈ HomC(x, Φ(y)), there exists a morphism ψ ∈ HomD(yi, y) such that ϕ = Φ(ψ) ◦ ϕi. 
The category C is quasi-Gröbner if there exists a Gröbner category D and a functor 
Φ : D → C satisfying property (F).

Theorem 2.1. [22, Theorem 1.1.3] If C is a quasi-Gröbner category and k is a Noetherian 
commutative ring, then Repk(C) is locally Noetherian.

2.1. Modules over algebras over categories

Let C be a category equipped with a functor S : C → FI and let k be a commutative 
ring. There is a natural functor from C to k-algebras taking an object c to the polynomial 
ring

AS(c) := k[xe | e ∈ S(c)].

Equivalently, we can think of AS ∈ Repk(C) as a module equipped with a product 
AS⊗AS → AS that is both associative and commutative. Let Repk(C, S) be the category 
of modules over AS. Formally, an object of Repk(C, S) is an object M ∈ Repk(C) along 
with a multiplication AS⊗M → M such that the two natural maps AS⊗AS⊗M → M
coincide. More intuitively, an object M of Repk(C, S) consists of an AS(c)-module M(c)
for each object c of C and an A(c)-module map M(c) → M(c′) for each morphism 
ϕ : c → c′, where M(c′) is an AS(c)-module via the ring homomorphism AS(c) → AS(c′)
induced by ϕ.

A module M ∈ Repk(C, S) is called finitely generated if there exist finitely many 
objects c1, . . . , cr of C along with elements vi ∈ M(ci) such that, for any object c of C, 
M(c) is spanned over AS(c) by the images of the elements vi along the maps induced by 
all possible morphisms ϕi : ci → c. If every submodule of M is finitely generated, then M
is said to be Noetherian. If every finitely generated module is Noetherian, the category 
Repk(C, S) is said to be locally Noetherian. Now, we outline some basic facts about 
finitely generated modules and Noetherian modules, the proofs of which are completely 
standard. Let C be a category, S : C → FI a functor, and k a commutative ring. For 
any object c of C, define the principal projective Pc ∈ Repk(C, S) to be the module that 
takes an object c′ to the free AS(c′)-module spanned by the set HomC(c, c′), with maps 
defined via composition.
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Lemma 2.2. A module M ∈ Repk(C, S) is finitely generated if and only if there exists a 
surjection

r⊕

i=1
Pci ! M

for some list of (not necessarily distinct) objects c1, . . . , cr of C.

Proof. Suppose that c1, . . . , cr are objects of C and vi ∈ M(ci) for all i. These classes 
generate M if and only if the map

r⊕

i=1
Pci → M

taking idci ∈ Pci(ci) to vi is surjective. !

Recall from the introduction that a module M ∈ Repk(C, S) is Noetherian if every 
submodule of M is finitely generated.

Lemma 2.3. A module M is Noetherian if and only if every ascending chain of submod-
ules of M eventually stabilizes.

Proof. Suppose that M is Noetherian and (Ni | i ∈ N) is an ascending chain of submod-
ules of M. Let N :=

⋃
i∈N Ni ⊂ M. Since M is Noetherian, N is finitely generated. If 

we choose i large enough so that Ni contains all of the finitely many generating classes, 
then we have Ni = N .

Conversely, suppose that M has a submodule N ⊂ M that is not finitely generated. 
We will define an ascending chain of finitely generated submodules (Ni | i ∈ N) as follows. 
Let N0 = 0. Once we have defined Ni, the fact that Ni is finitely generated means that 
Ni ! N , so we may choose an object ci of C and an element vi ∈ N (c) \ Ni(c). Let Ni

be the smallest submodule of N containing both Ni and vi. This chain of submodules 
clearly does not stabilize. !

Lemma 2.4. Suppose that 0 → M′ → M → M′′ → 0 is short exact sequence in 
Repk(C, S). Then M is Noetherian if and only if both M′ and M′′ are Noetherian.

Proof. If M is Noetherian, then M′ is Noetherian by definition. If N ′′ ⊂ M′′ is a 
submodule, let N ⊂ M be the preimage of N ′′ in M. Since M is Noetherian, N is 
finitely generated, thus so is N ′′ by Lemma 2.2.

Conversely, suppose that both M′ and M′′ are Noetherian, and let (Ni | i ∈ N) be 
an ascending chain of submodules of M. For each i, let N ′

i := Ni ∩M′ and let N ′′
i be 

the image of Ni in M′′. Since M′ and M′′ are both Noetherian, Lemma 2.3 tells us that 
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there is an index n such that, for all i > n, N ′
i = N ′

i+1 and N ′′
i = N ′′

i+1. We can then 
conclude that Ni = Ni+1 by applying the Five Lemma to the following diagram:

0 N ′
i Ni N ′′

i 0

0 N ′
i+1 Ni+1 N ′′

i+1 0

= =

Thus M satisfies the ascending chain condition, and is therefore Noetherian by 
Lemma 2.3. !

In the following sections, we build on the work of [22] and define what it means for the 
pair (C, S) to be Gröbner (resp. quasi-Gröbner) and prove the following generalization 
of Theorem 2.1.

Theorem 2.5. Let C be a category and S : C → FI a functor. If the pair (C, S) is quasi-
Gröbner, then Repk(C, S) is locally Noetherian for any Noetherian commutative ring 
k.

Remark 2.6. Theorem 2.5 is motivated by the work of Nagel and Römer [15]. Though 
they do not make these definitions in the same generality, they essentially prove that 
the pair (FI, id) is quasi-Gröbner, and they use this result to show that Repk(FI, id) is 
locally Noetherian for any Noetherian commutative ring k. Moreover, they show that if 
Sd : FI → FI is the functor taking a set T to the set of unordered d-tuples of distinct 
elements of T , then the pair (FI, Sd) is quasi-Gröbner and the category Repk(FI, id) is 
locally Noetherian if and only if d ≤ 1 [15, Proposition 4.8].

Remark 2.7. Note that we have Repk(C) = Repk(C, ∅), where ∅ : C → FI is the constant 
functor that takes every object of C to the empty set. We will see that the category 
C is Gröbner (resp. quasi-Gröbner) in the sense of [22] if and only if the pair (C, ∅) is 
quasi-Gröbner.

2.2. Gröbner pairs

Let OI be the category whose objects are totally ordered finite sets and whose mor-
phisms are ordered inclusions, and let Ψ : OI → FI be the functor that forgets the order 
on a finite set. Let D be an essentially small category and T : D → OI any functor. The 
purpose of this section is to define what it means for the pair (D, T ) to be Gröbner.

A quartet for the pair (D, T ) is a quadruple µ = (d, d′, ϕ, m), where d and d′ are 
objects of D, ϕ : d → d′ is a morphism, and m : T (d′) → N is a map of sets. For 
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any morphism ψ : d′ → d′′ in D, we will write T (ψ) : T (d′) → T (d′′) for the induced 
morphism in OI, and we will write

ψ(µ) := (d, d′′,ψ ◦ ϕ,mψ),

where mψ is determined by the conditions that mψ ◦ T (ψ) = m and mψ is identically 
zero outside of the image of T (ψ). For any map n : T (d′) → N, we will write

µ + n := (d, d′,ϕ,m + n).

If µ1 = (d, d′1, ϕ1, m1) and µ2 = (d, d′2, ϕ2, m2), we say that µ1 ≤ µ2 if there exists a 
morphism ψ : d′1 → d′2 and a map n : T (d′′) → N such that µ2 = ψ(µ1) + n.

Remark 2.8. The motivation for these definitions is that, once we choose a commutative 
ring k, the quartet µ determines a monomial

xm :=
∏

a∈T (d′)
xm(a)
a ∈ R(d′)

along with an element

bµ := xm · ϕ ∈ Pd(d′) ∈ Repk(D,Ψ ◦ T ).

Then µ1 ≤ µ2 if and only if ϕ2 factors through ϕ1 via a map ψ and we have

bµ2 = xnψ(bµ1)

for some monomial xn ∈ A(d′2).

We say that µ1 and µ2 are equivalent if µ1 ≤ µ2 ≤ µ1. For each object d of D, let 
|DT

d | denote the poset of equivalence classes of quartets with first coordinate d. Given 
a quartet µ = (d, d′, ϕ, m), we will write [µ] to denote its equivalence class in |DT

d |. A 
well-order ≺ of |DT

d | is called admissible if, given two quartets µ1 = (d, d′, ϕ1, m1) and 
µ2 = (d, d′, ϕ2, m2) with the same source and target along with a morphism ψ : d′ → d′′

and a map n : T (d′′) → N, we have

[µ1] ≺ [µ2] =⇒ [ψ(µ1) + n] ≺ [ψ(µ2) + n].

We say that the pair (D, T ) satisfies property (G1) if, for every object d of D, the 
poset |DT

d | admits an admissible well-order. A poset P is said to be Noetherian if, for 
any sequence (pi | i ∈ N) in P , there exist natural numbers i < j such that pi ≤ pj . We 
say that the pair (D, T ) satisfies property (G2) if, for every object d of D, the poset |DT

d |
is Noetherian. The category D is said to be directed if, for any object d of D, the only 
morphism from d to d is the identity. We call the pair (D, A) Gröbner if D is directed 
and (D, A) satisfies properties (G1) and (G2).
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Remark 2.9. Property (G1) for the pair (D, ∅) is equivalent to property (G1) for D as 
defined in [22, Section 1.1], and similarly property (G2) for the pair (D, ∅) is equivalent 
to property (G2) for D. Thus a directed category D is Gröbner in the sense of [22] if and 
only if the pair (D, ∅) is Gröbner.

The following Proposition says that the functor T does not add anything interesting 
to property (G1). In other words, the distinction between a Gröbner category and a 
Gröbner pair lies entirely in the property (G2).

Proposition 2.10. The pair (D, T ) satisfies property (G1) if and only if the pair (D, ∅)
satisfies property (G1).

Proof. If ≺ is an admissible order of |DT
d |, then restriction to quartets with m = 0 gives 

an admissible order of |D∅
d|. Conversely, if we have an admissible order of |D∅

d|, we can 
compare the classes of two quartets µ1 = (d, d′1, ϕ1, m1) and µ2 = (d, d′2, ϕ2, m2) for 
(D, T ) by first comparing the classes of the quartets (d, d′1, ϕ1, 0) and (d, d′2, ϕ2, 0) for 
(D, ∅) and then, if they are equal, breaking the tie by comparing m1 and m2 lexicograph-
ically. !

2.3. Gröbner bases

Let D be an essentially small category and T : D → OI a functor such that the pair 
(D, T ) is Gröbner, and choose an admissible well-order ≺ of |DT

d | for each object d of D
as in the definition of property (G1). For any pair of objects d and d′ in D, let Qd,d′ be 
the set of quartets of the form µ = (d, d′, ϕ, m). The fact that D is directed implies that 
the natural map from Qd,d′ to |DT

d | is injective, thus Qd,d′ is well-ordered by ≺.
Fix a commutative ring k, so that we may define the representation category 

Repk(D, Ψ ◦ T ). For any nonzero element

p =
∑

µ∈Qd,d′

λµbµ ∈ Pd(d′),

we define the leading quartet LQ(p) to be the maximal µ with respect to the well-order 
≺ such that the coefficient λµ ∈ k is nonzero. If µ = LQ(p), we define the leading term
LT(p) := λµbµ ∈ Pd(d′) and the leading coefficient Lc(p) := λµ ∈ k.

Lemma 2.11. Suppose we have a morphism ψ : d′ → d′′, a map n : T (d′) → N, and an 
element 0 ̸= p ∈ Pd(d′). Then

LT(xnψ(p)) = xnψ(LT(p)).

Proof. This is precisely the definition of admissibility of the well-order ≺. !
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Given a submodule N ⊂ Pd, we define a subset

LQ(N ) :=
{
[LQ(p)]

∣∣ 0 ̸= p ∈ N (d′)
}
⊂ |DT

d |.

For each object d′ of D, we define

LT(N )(d′) := {0} ∪ {LT(p) | 0 ̸= p ∈ N (d′) ⊂ Pd(d′)} .

For each quartet µ = (d, d′, ϕ, m), we define the ideal

Lc(N , µ) := {0} ∪ {Lc(p) | 0 ̸= p ∈ N (d′) and LQ(p) = µ} ⊂ k.

Lemma 2.11 implies that LT(N ) ⊂ Pd is a submodule and that we have an inclusion of 
ideals Lc(N , µ2) ⊂ Lc(N , µ1) whenever [µ1] ≤ [µ2].

Suppose we are given a finite set B = {(d′1, p1), . . . , (d′r, pr)} of pairs with 0 ̸= pi ∈
N (d′i) for all i. We say that B is a Gröbner basis for N if the module LT(N ) is generated 
by the classes LT(pi) for 1 ≤ i ≤ r.

Lemma 2.12. If B is a Gröbner basis for N , then B generates N .

Proof. If not, choose an element p ∈ N (d′) that is not in the submodule generated by 
B, and choose it in such a way that the leading quartet LQ(p) is minimal with respect 
to the admissible well-order on |DT

d |. Since B is a Gröbner basis, we may choose an 
index i, a morphism ψ : d′i → d′, a function n : T (d′) → N, and a scalar λ ∈ k such 
that LT(p) = λxnψ(LT(pi)). By Lemma 2.11, this is equal to LT(λxnψ(pi)). But then 
p − λxnψ(pi) is not in the submodule generated by B and has a leading quartet strictly 
smaller than LQ(p), which gives a contradiction. !

Proposition 2.13. Suppose that the ring k is Noetherian. For every object d of D, the 
principal projective Pd ∈ Repk(D, Ψ ◦ T ) is Noetherian.

Proof. By Lemma 2.12, it is sufficient to show that every submodule N ⊂ Pd has a 
Gröbner basis. By property (G2), the set LQ(N ) ⊂ |DT

d | has only finitely many minimal 
elements with respect to the partial order. Choose finitely many quartets µ1, . . . , µr

representing these minimal classes, and write µi = (d, d′i, ϕi, mi). For each i, the fact 
that k is Noetherian implies that the ideal Lc(N , µi) is generated by finitely many 
elements

λ1
i , . . . ,λ

si
i ∈ k.

For each j ≤ si, choose an element 0 ̸= pji ∈ N (d′i) with LT(pji ) = λj
i bµi , and let

B := {(d′i, pji ) | 1 ≤ i ≤ r, 1 ≤ j ≤ si}.
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We claim that B is a Gröbner bases for N .
Let 0 ̸= p ∈ N (d′) be given; we will show that LT(p) is in the submodule of Pd

generated by the classes LT(pji ). Let ν := LQ(p). By definition of the quartets µ1, . . . , µr, 
there exists an index i such that [µi] ≤ [ν]. That means that we can choose a morphism 
ψ : d′i → d′ and a map n : T (d′) → N such that ν = ψ(µi) + n. Since [µi] ≤ [ν], we have 
Lc(N , ν) ⊂ Lc(N , µi), and therefore there exist elements ζ1

i , . . . , ζ
si
i ∈ k such that

Lc(p) = ζ1
i λ

1
i + · · · + ζsii λsi

i .

Then

LT(p) = Lc(p)bν
= (ζ1

i λ
1
i + · · · + ζsii λsi

i )bψ(µi)+n

= xnψ(ζ1
i λ

j
i bµi + · · · + ζsii λj

i bµi)
= xnψ

(
ζ1
i LT(p1

i ) + · · · + ζsii LT(psii )
)

is in the submodule of Pd generated by the classes LT(pji ). !

Corollary 2.14. Let D be an essentially small category, T : D → OI a functor, and k
a Noetherian commutative ring. If the pair (D, T ) is Gröbner, then Repk(D, Ψ ◦ T ) is 
locally Noetherian.

Proof. Suppose that M ∈ Repk(D, Ψ ◦ T ) if finitely generated. By Lemma 2.2, M is a 
quotient of a direct sum of principal projectives. Proposition 2.13 tells us that each of 
these principal projectives is Noetherian, and Lemma 2.4 then tells us that the same is 
true of M. !

2.4. Quasi-Gröbner pairs

Let Φ : D → C be a functor. Following Sam and Snowden [22, Definition 3.2.1], we 
say that Φ has property (F) if, for any object c of C, there exist finitely many objects 
d1, . . . , dr of D along with morphisms ϕi : c → Φ(di) such that, for any object d of D
and any morphism ψ : c → Φ(d), there exists an i and a morphism ρ : di → d such that 
ψ = Φ(ρ) ◦ ϕi. Given a functor S : C → FI, we say that the pair (C, S) is quasi-Gröbner
if there exists a Gröbner pair (D, T ) and an essentially surjective functor Φ : D → C with 
property (F) such that S ◦ Φ is naturally isomorphic to Ψ ◦ T .

Remark 2.15. The pair (C, ∅) is quasi-Gröbner if and only if the category C is quasi-
Gröbner in the sense of [22].

Let Φ : D → C and S : C → FI be any functors. For any commutative ring k, we have 
an exact functor Φ∗ : Repk(C, S) → Repk(D, S ◦Φ) that takes a module M ∈ Repk(C, S)
to
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Φ∗M := M ◦ Φ ∈ Repk(D, S ◦ Φ).

Proposition 2.16. Let Φ : D → C be a functor with property F , let S : C → FI be any 
functor, and let k be a commutative ring. If M ∈ Repk(C, S) is finitely generated, then 
Φ∗M ∈ Repk(D, S ◦ Φ) is finitely generated.

Proof. Since M is finitely generated, Lemma 2.2 tells us that M is a quotient of a direct 
sum of principal projectives. Since Φ∗ is exact, Φ∗M is a quotient of a direct sum of 
pullbacks of principal projectives. Thus, it is sufficient to show that, for any object c of 
C, Φ∗Pc is finitely generated. Choose finitely many objects d1, . . . , dr of D along with 
morphisms ϕi : c → Φ(di) as in the definition of property (F). Consider the maps

Pdi → Φ∗PΦ(di) → Φ∗Pc,

where the first map is induced by Φ and the second is induced by ϕi. Property (F) says 
precisely that the direct sum map

r⊕

i=1
Pdi → Φ∗Pc

is surjective, which implies that Φ∗Pc is finitely generated. !

Proof of Theorem 2.5. Let (C, S) be quasi-Gröbner pair. That means that there exists a 
Gröbner pair (D, T ), an essentially surjective functor Φ : D → C with property (F), and 
a natural isomorphism Ψ ◦ T ∼= S ◦ Φ. Fix a commutative ring k, a finitely generated 
module M ∈ Repk(C, S), and a submodule N ⊂ M. We need to prove that N is finitely 
generated, as well.

Proposition 2.16 tells us that Φ∗M ∈ Repk(D, S ◦ Φ) ≃ Repk(D, Ψ ◦ T ) is finitely 
generated, and Corollary 2.14 then implies that Φ∗N ⊂ Φ∗M is also finitely generated. 
Choose a generating set consisting of objects d1, . . . , dr of D and elements vi ∈ Φ∗N (di). 
This means that, for any object d of D, Φ∗N (d) is spanned over A(d) by the images of 
the elements vi along the maps induced by all possible morphisms ϕi : d → di. This is 
equivalent to saying the N (Φ(d)) is spanned over A(Φ(d)) by the images of the elements 
vi ∈ N (Φ(di)) along the maps induced by all morphisms Φ(ϕi) : Φ(d) → Φ(di). Since Φ
is essentially surjective, this means that N is finitely generated. !

3. Graphs

We define the category G≤g and use the results of Section 2 to prove Noetherianity 
results about the representation theory of this category.
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3.1. Defining the graph categories

A directed graph is a quadruple (V, A, h, t), where V and A are finite sets (vertices 
and arrows), and h and t are each maps from A to V (head and tail). A graph is a 
quintuple (V, A, h, t, σ), where (V, A, h, t) is a directed graph and σ is a fixed-point-free 
involution of A with the property that h = t ◦ σ. If (V, A, h, t, σ) is a graph, elements of 
the quotient A/σ are called edges. Given a directed graph D = (V, A, h, t), we define the
underlying graph D̄ = (V, Ā, h, t, σ), where Ā = A × {±1}, h(a, 1) = h(a) = t(a, −1), 
t(a, 1) = t(a) = h(a, −1), and σ acts by toggling the second factor. We will usually 
suppress h and t from the notation and simply write (V, A, σ) for a graph.

Remark 3.1. This might seem to be an unnecessarily complicated definition of a graph. 
For example, one might try defining a graph to consist of a vertex set, and edge set, and 
a map from edges to unordered pairs of vertices. However, we want a graph with a loop 
to have a nontrivial automorphism that reverses the orientation of the loop. It is difficult 
to formalize this with the unordered pair definition.

If G = (V, A, σ) is a graph and v, v′ ∈ V , a walk in G from v to v′ is a finite sequence 
(a1, . . . , an) of arrows with t(a1) = v, h(an) = v′, and h(ai) = t(ai+1) for all 1 ≤ i < n. 
A path in G from v to v′ is a walk from v to v′ of minimal length. We say that G is
connected if there exists at least one path between any pair of vertices, and we say that 
G is a forest if there exists at most one path between any pair of vertices. A nonempty 
connected forest is called a tree.

Let G = (V, A, σ) and G′ = (V ′, A′, σ′) be graphs. A minor morphism from G to G′

is a map

ϕ : V ⊔A ⊔ {⋆} → V ′ ⊔A′ ⊔ {⋆}

satisfying the following properties:

• ϕ(⋆) = ⋆.
• For every vertex v ∈ V , ϕ(v) ∈ V ′.
• For every arrow a ∈ A, ϕ ◦ σ(a) = σ′ ◦ ϕ(a) where σ′ acts trivially on V ′ ⊔ {⋆}.
• For every arrow a′ ∈ A′, there exists a unique arrow a ∈ A with ϕ(a) = a′.
• If ϕ(a) ∈ A, then ϕ ◦ h(a) = h′ ◦ ϕ(a) and ϕ ◦ t(a) = t′ ◦ ϕ(a).
• If ϕ(a) ∈ V , then ϕ ◦ h(a) = ϕ(a) = ϕ ◦ t(a).
• For every v′ ∈ V ′, ϕ−1(v′) consists of the edges and vertices of a tree.

The edges that map to vertices are called contracted edges and the edges that map to 
⋆ are called deleted edges. Note that the second condition and third conditions imply 
that the edges of G that are neither deleted nor contracted map bijectively to the edges 
of G′. In particular, ϕ induces an injection ϕ∗ : A′/σ′ → A/σ.
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Remark 3.2. If G and G′ are connected graphs, then a minor morphism ϕ : G → G′

is determined by its restriction to the set of arrows of G. (Connectedness is necessary 
because the graph with two vertices and no arrows has a nontrivial automorphism swap-
ping the vertices.) However, it is convenient to define ϕ on the whole set V ⊔A ⊔ {⋆} so 
that minor morphisms can be composed simply by composing functions. Note that ϕ is 
not determined by the map on edges ϕ∗. To see this, consider the example where G has 
two vertices and two parallel edges between them, and G′ consists of a single vertex with 
no edges. There are two minor morphisms from G to G′, corresponding to the choice of 
which edge is deleted and which edge is contracted.

Let G denote the category whose objects are nonempty connected graphs and whose 
morphisms are minor morphisms.

Conjecture 3.3. The category Gop is quasi-Gröbner.

Remark 3.4. The Gröbner cover of Gop should be the category ODop of directed graphs 
whose arrows are ordered with opposite minor morphisms that preserve the order of 
arrows. That is if ϕ : (V, A, h, t) → (V ′, A′, h′, t′) is a minor morphism of directed 
graphs whose arrows are ordered, then we also require that whenever a′1 ≤ a′2 in A′, 
then ϕ∗(a′1) ≤ ϕ∗(a′2) in A. However, to prove that ODop satisfies property (G2) one 
would need a stronger version of Robertson and Seymour’s labeled graph minor theorem 
[20, p. 1.7] where the order of the labels on edges is preserved in the above sense. If 
Conjecture 3.3 is proven, then all of the results in Section 4 can be upgraded from 
statements about graphs with genus at most g to statements about all graphs with no 
restriction on genus.

In light of Remark 3.4, we restrict our attention to a family of full subcategories of 
Gop. The combinatorial genus of a graph G = (V, A, σ) is |A/σ| − |V | +1. For any g ≥ 0, 
let G≤g be the full subcategory of G whose objects are non-empty connected graphs of 
genus at most g.

Theorem 3.5. For any positive integer g, Gop
≤g is quasi-Gröbner.

The proof of Theorem 3.5 relies on the work in [17] which we summarize here.
A rooted tree is a pair (T, v) where T is a tree and v is a vertex of T called the root. 

There is a natural partial order on the vertex set of rooted tree where w ≤ u if and only 
if the unique path from w to the root passes through u. A direct descendant of a vertex 
w is a vertex covered by w with respect to this partial order. A planar rooted tree is a 
rooted tree equipped with a linear order on the set of direct descendants of each vertex. 
Note that this gives a depth first linear order on the set of vertices.

Let L be a finite set. An L-labeled planar rooted tree is a triple (T, v, ℓ) where (T, v)
is a rooted tree and ℓ is a function from the set of vertices of T to L.
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In a nonempty connected graph G, a spanning tree for G is a subgraph that is a 
tree and contains all vertices of G. Now, for each genus g, fix once and for all a graph 
Rg with one vertex and g loops. Define a rigidified graph of genus g to be a quadruple 
(G, T, v, τ) where G is a graph of genus g, (T, v) is a planar rooted spanning tree of G, 
and τ : G → Rg is a minor morphism where the contracted edges are exactly the edges of 
T . Note that rigidified graphs come equipped with a linear order on the vertices coming 
from their planar rooted spanning trees. A morphism of rigidified graphs (G, T, v, τ) →
(G′, T ′, v′, τ ′) between rigidified graphs of genus g is a minor morphism ϕ : G → G′ that 
restricts to a minor morphism T → T ′ such that ϕ(v) = v′, and if w′ ≤ u′ under linear 
order on vertices of G′, then the smallest vertex in the preimage of w′ comes before the 
smallest vertex in the preimage on u′ under the linear order on the vertices of G. Note 
that a minor morphism between graphs of the same genus necessarily has no deleted 
edges.

Let RGg be the category whose objects are rigidified graphs of genus g and whose 
morphisms are minor morphisms of rigidified graphs of genus g. Let RGop

≤g denote the 
category whose objects are rigidified graphs of genus at most g and whose morphisms 
are minor morphisms of rigidified graphs between graphs of the same genus. One can 
think of RGop

≤g as a kind of disjoint union of the finitely many categories RGop
h for h ≤ g.

Theorem 3.6 ([17]). For any g ≥ 0, the category RGop
g is Gröbner.

Corollary 3.7. For any g ≥ 0, the category RGop
≤g is Gröbner.

Proof. It is clear from the definitions that RGop
≤g satisfies properties (G1) and (G2) since 

RGop
h satisfies both properties for each of the finitely many h ≤ g. !

Note that there is a forgetful functor

Φ≤g : RGop
≤g → Gop

≤g

which sends a rigidified graph to its underlying graph and a minor morphism of rigidified 
graphs to the underlying minor morphism of graphs.

Lemma 3.8. The functor Φ≤g satisfies property (F).

Proof. This proof is similar to the proof of [17, Lemma 3.11]. The fact that Φ≤g is 
essentially surjective is clear as every graph can be given a rigidified graph structure.

Let G be a graph of genus h ≤ g with exactly n edges. To show Φ≤g has property 
(F), we need to produce a finite collection (Gi, Ti, vi, τi) of Rigidified graphs of genus at 
most g along with minor morphisms ϕi : Gi → G such that, given any rigidified graph 
(G′, T ′, v′, τ ′) and minor morphism ϕ : G′ → G, there exists an index i and a morphism 
of rigidified graphs ρ : (G′, T ′, v′, τ ′) → (Gi, Ti, vi, τi) with ϕ = ϕi ◦ Φ≤g(ρ).
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Consider all possible rigidified graphs with at most n + 2g − h edges and genus at 
least h and at most g. For each isomorphism class of such rigidified graph, choose a 
representative (G′′, T ′′, v′′, τ ′′) and add it to our collection (Gi, Ti, vi, τi) as many times 
as there are minor morphisms G′′ → G. Then, take our collection of minor morphisms 
ϕi so that for each i, every possible minor morphism Gi → G appears in our collection. 
Note, there are only finitely many isomorphism classes of rigidified graphs with at most 
n + 2k − h in RGop

h and for such a rigidified graph there are only finitely many minor 
morphisms from the underlying graph to G. Thus our collection of rigidified graphs and 
minor morphisms is indeed finite.

Now, fix a rigidified graph (G′, T ′, v′, τ ′) with genus k where h ≤ k ≤ g and a minor 
morphism ϕ : G′ → G. Let E′ be the set of edges that are contracted under ϕ. In a 
morphism of rigidified graphs, we are only allowed to contract edges in the designated 
spanning tree. Thus, let ρ be the morphism of rigidified graphs ρ : (G′, T ′, v′, τ ′) →
(G′/(E′∩T ′), T ′/(E′∩T ′), v′, τ ′) corresponding to contracting the edges of E′∩T ′. Clearly 
ϕ factors through Φ≤g(ρ). All that we must verify is that (G′/(E′∩T ′), T ′/(E′∩T ′), v′, τ ′)
is a member of our collection. In otherwords, we must show that G′/(E′ ∩ T ′) has at 
most n +2g−h edges. Let n′ be the number of edges of G′. Since deleting an edge lowers 
the genus of the graph by 1, we know that under ϕ, exactly k − h edges are deleted. 
Thus, n′ = n + k − h + |E′| or equivalently,

|E′| = n′ − (n + k − h).

Furthermore, we know that the number of edges in T ′ is equal to n′ − k. Thus,

|E′ ∩ T ′| ≥ n′ − (n + k − h) − k = n′ − n− 2k + h.

This implies that the number of edges in G′/(E′ ∩ T ′) is at most

n′ − (n′ − n− 2k + h) = n + 2k + h

which is no more than n + 2g + h since k ≤ g. !

3.2. Edge functors

Recall that given a minor morphism of graphs ϕ : (V, A, σ) → (V ′, A′, σ′), we get an 
inclusion of edge sets ϕ∗ : A′/σ′ → A/σ. Thus, we have an edge functor

E : Gop
≤g → FI

taking a graph G to its set of edges. Similarly, the edges of a rigidified graph are totally 
ordered and given minor morphism of rigidified graphs, the pullback inclusion on edge 
sets preserves this order. This gives an ordered edge functor
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Ω : RGop
≤g → OI

taking a rigidified graph to its ordered set of edges. Recall from Section 2.2 that Ψ :
OI → FI is the forgetful functor that sends an ordered set to its underlying (unordered) 
set.

Lemma 3.9. Ψ ◦ Ω and E ◦ Φ≤g are naturally isomorphic functors RGop
≤g → FI.

Proof. This is clear from the definitions of the functors. !

Theorem 3.10. The pair (RGop
≤g, Ω) is Gröbner.

To prove Theorem 3.10 we will need a labeled version of a planar rooted tree. This is 
a slightly more general version of the notion of an S-labeled planar rooted tree in [17]. 
Let L be a set equipped with a well quasi order ≤. An L-labeled planar rooted tree is 
a triple (T, v, ℓ) where (T, v) is a planar rooted tree and ℓ is a function from the set of 
vertices of T to L. An L-labeled minor morphism of planar rooted trees or L-labeled 
minor morphism (T, v, ℓ) → (T ′, v′, ℓ′) is a minor morphism ϕ : (T, v) → (T ′, v′) of 
rigidified graphs of genus 0 (note planar rooted trees are exactly the rigidified graphs 
of genus 0) such that ℓ′(w′) ≤ ℓ′(maxϕ−1(w′)) where maxϕ−1(w′) is the first vertex in 
the preimage of w′ under ϕ with respect to the natural depth first order on the vertices 
of T . Let PT L denote the category whose objects are L-labeled planar rooted trees and 
whose morphisms are L-labeled minor morphisms. For a fixed L-labeled planar rooted 
tree (T, v, ℓ), we may give a quasi ordered ≤ to the L-labeled minor morphisms into 
(T, v, ℓ). Namely, if ϕ′ : (T ′, v′, ℓ′) → (T, v, ℓ) and ϕ′′ : (T ′′, v′′, ℓ′′) → (T, v, ℓ) are L-
labeled minor morphisms, then ϕ ≤ ϕ′′ if and only if there exists an L-labeled minor 
morphism ϕ : (T ′′, v′′, ℓ′′) → (T ′, v′, ℓ′) such that ϕ′′ = ϕ′ ◦ψ. Let |(PT op

L )(T,v,ℓ)| denote 
the poset of equivalence classes of L-labeled minor morphisms into (T, v, ℓ) under this 
quasi order.

Lemma 3.11. Let L be a well quasi ordered set. We partially order the isomorphism 
classes of L-labeled planar rooted trees where [(T ′, v′, ℓ′)] ≤ [(T, v, ℓ)] if and only if there 
is a minor morphism of L-labeled planar rooted trees (T, v, ℓ) → (T ′, v′, ℓ′).

Corollary 3.12. Let L be a well quasi ordered set. Fix an L-labeled planar rooted tree 
(T, v, ℓ). The poset |(PT op

L )(T,v,ℓ)| is a well partial order.

Remark 3.13. Note that the notion of L-labeled planar rooted tree and L-labeled minor 
morphism are slight generalizations of the notions of an S-labeled planar rooted tree 
and an S-labeled contraction defined in [17] where the set of labels was an (unordered) 
finite set. Nevertheless, Lemma 3.11 and Corollary 3.12 are analogues of and have nearly 
identical proofs to [17, Theorem 3.6] and [17, Corollary 3.7] respectively. Thus, we omit 
their proofs here.
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Recall from Section 2.2 that a quartet µ = (R, R′, ϕ, m) for the pair (⊔h≤g RGop
h , OE)

consists of two rigidified graphs of genus at most g, R = (G, T, v, τ), R′ = (G′, T ′, v′, τ ′), 
a minor morphism of rigidified graphs ϕ : R′ → R, and a map of sets m from the edges of 
R′ to N. We should think of m as assigning to each edge of R′ a natural number. For any 
fixed rigidified graph R, We also have a quasi order on quartets whose first coordinate is 
R where (R, R′, ϕ′, m′) ≤ (R, R′′, ϕ′′, m′′) if there exists a minor morphism of rigidified 
graphs ψ : R′′ → R′ such that ϕ′′ = ϕ′ ◦ψ and if e′ is an edge in R′, m′(e′) ≤ m′′(ϕ∗(e′))
where ϕ∗ is the natural inclusion of the edges of R′ to the edges of R′′. Denote the 
corresponding poset of equivalence classes under this quasi order by |(RGop

≤g)OE
R |.

Fix a rigidified graph R = (G, T, v, τ) with genus h ≤ g. Now for a suitable choice of L, 
we wish to encode each quartet with first coordinate R as an L-labeled planar rooted tree 
so that the poset |(RGop

≤g)OE
R | is equivalent to the poset |(PT op

L )(T,v,ℓ)| where (T, v) is the 
planar rooted tree of R and ℓ is some suitable label. To this end, let L = (N∪{⋆})2h×N. 
The order on (N ∪ ⋆) comes from the usual order on N along with setting ⋆ to be 
incomparable to all elements of N. Then, the order on L is the usual order on the 
cartesian product of posets.

Given a quartet of the form (R, R′, ϕ, m), where R′ = (G′, T ′, v′, τ ′) the corresponding 
L-labeled planar rooted tree will be of the form (T ′, v′, ℓ′) for some labeling ℓ′. Note that 
R′ must also have genus h since we only have morphisms of rigidified graphs between 
rigidified graphs of the same genus. Thus, R′ has h extra edges not in T ′. The planar 
rooted structure of (T ′, v′) gives an orientation and ordering to these h extra edges (we 
orient them from smaller to larger vertex and then order them by the order on their 
terminating vertex). Call these extra edges e′1, . . . , e′h. For each 1 ≤ i ≤ h, let w′

2i−1 be 
the vertex at which ei originates and let w′

2i be the vertex at which ei terminates. Then 
for each vertex w′ of T ′, and each 1 ≤ j ≤ 2h, define the jth coordinate of ℓ′(w′) to 
be m(e′j) if w ≥ wj and ⋆ otherwise. Then for each edge e′ in T ′, if w′ is the vertex 
of e′ further from the root, set the last coordinate of w′ to m(e′). Finally set the last 
coordinate of ℓ′(v′) to 0. The intuition behind this labeling is that the first 2h coordinates 
encode the location and weights given by m for the h edges not in T ′. The last coordinate 
encodes the weights given by m of the edges in T ′. Finally, let ℓ be the fixed labeling of 
(T, v) corresponding to the quartet (R, R, IdR, 0).

Lemma 3.14. Let (R, R′, ϕ, m) be a quartet and (T ′, v′, ℓ′) be the corresponding L-
labeled planar rooted tree as defined above. Then ϕ induces an L-labeled morphism 
ϕL : (T ′, v′, ℓ′) → (T, v, ℓ).

Proof. One simply uses a nearly identical argument to the one given in the proof of 
Lemma [17, Lemma 3.8]. !

Lemma 3.15. Let µ′ = (R, R′, ϕ′, m′) and µ′′ = (R, R′′, ϕ′′, m′′) be quartets with corre-
sponding L-labeled planar rooted trees (T ′, v′, ℓ′) and (T ′′, v′′, ℓ′′) and define ϕ′

L and ϕ′′
L

as in Lemma 3.14. Then µ′ ≤ µ′′ if and only if ϕ′
L ≤ ϕ′′

L in |(PT op
L )(T,v,ℓ)|
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Proof. Note that µ′ ≤ µ′′ means there exists a minor morphism of rigidified graphs 
ψ : R′′ → R′ such that ϕ′′ = ϕ′ ◦ψ and for any edge e′ of R′, m′(e′) ≤ m′′(ψ∗(e′)). Using 
a nearly identical argument to that given in the proof of [17, Lemma 3.8] we see that such 
a minor morphism ψ is equivalent to an L-labeled minor morphism of L-labeled planar 
rooted trees ψL : (T ′′, v′′, ℓ′′) → (T ′, v′, ℓ′) such that ϕ′′

L = ϕ′
L ◦ψL. This is equivalent to 

saying ϕ′
L ≤ ϕ′′

L. !

proof of Theorem 3.10. That the pair (RGop
≤g, Ω) satisfies property (G1) follows from 

Corollary 3.7 and Proposition 2.10. The fact that (RGop
≤g, OE) satisfies property (G2) 

follows from Lemma 3.15 and Corollary 3.12. !

Theorem 3.16. The pair (Gop
≤g, E) is quasi Gröbner

Proof. This follows from Lemmas 3.8 and 3.9. !

3.3. Finite generation

Theorems 3.5 and 3.16 tell us that the categories of representations Repk(Gop
≤g) and 

Repk(Gop
≤g, E) are locally Noetherian. That is, every submodule of any finitely generated 

module of either of these categories, is itself finitely generated.
The properties of finitely generated Gop-modules fall into two broad categories: global 

and local. Global properties are those which universally bound or otherwise restrict 
algebraic behaviors present in the constituent modules M(G). Local properties, on the 
other hand, are those that can be observed when one limits their attention to the modules 
M(G), where G ranges within certain natural families of graphs. We note that the study 
of the category Gop and its representations is still fairly new, and thus the following list 
should by no means seen as exhaustive. We believe that future study into understanding 
the inner mechanisms of finitely generated Gop-modules is a very interesting direction 
for future research.

To begin, we have the following, which is essentially just a reformulation of the defi-
nition of finite generation.

Theorem 3.17. Let M be a finitely generated Gop
≤g Then there exists a non-negative integer 

N such that for all graphs G one has

M(G) = colimG′<G M(G′),

where the colimit ranges over all proper minors G′ of G that have no more than N edges.

One may view this theorem as stating that given a finitely generated Gop
≤g-module M , 

the presentation of M(G) becomes standardized once G has sufficiently many edges. Our 
next result relates with how fast Gop

≤g-modules can grow. For the following statement, we 
write e(G) for the number of edges of G, and v(G) for the number of vertices.
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Theorem 3.18. Let M be a finitely generated Gop
≤g-module over a field k, and assume that 

the generators of M have no more than N edges, for some non-negative integers N . 
Then there exists a polynomial P ∈ Q[x, y] of degree at most N such that,

dimk M(G) ≤ τ(G)P (e(G), v(G)),

where τ(G) is the number of spanning trees of G.

Proof. For simplicity during this proof, write g(G) = e(G) − v(G) + 1. It will suffice to 
prove the theorem in the case where M is the principal projective module PG′ , for some 
fixed graph G′. In this case, for any graph G, the dimension of M(G) is precisely the 
number of minor morphisms from G to G′. Any such morphism, up to an automorphism 
of G′, can be determined in the following way: First one picks a spanning tree of G in 
which all of the contractions will take place. One then chooses g(G′) edges not to delete 
outside of this spanning tree, and e(G′) −g(G′) edges to not contract within the spanning 
tree. Therefore,

dimk M(G) ≤ |Aut(G′)|τ(G)
(
g(G)
g(G′)

)(
v(G) − 1

e(G′) − g(G′)

)
.

This then implies,

dimk M(G) ≤ |Aut(G′)|τ(G)g(G)g(G′)(v(G) − 1)e(G′)−g(G′)

as desired. !

Remark 3.19. The bound of Theorem 3.18 is an improvement of a bound found in [17], 
and can be seen to be sharp. Consider the principal projective module P•, over the graph 
with no edges. In this case, a minor morphism from a graph G to the graph • is precisely 
determined by a choice of spanning tree for G. In particular,

dimk P•(G) = τ(G)

The example of the dimension growth of P• is also notable, as it illustrates just how 
complicated computing the dimensions in finitely generated Gop

≤g-modules can be. In 
other words, while one can in principal compute dimk(P•(G)) for any graph G using, 
for instance, the Matrix Tree Theorem, this is fairly non-trivial counting. Moreover, P•
is the simplest of the principal projective modules, and this is not even to mention the 
kinds of behaviors present in the dimensions of the submodules of principal projective 
modules. It is for this reason, as we shall see, that it is often times more mathematically 
fruitful to consider what we call the local properties of Gop

≤g-modules.

Our final global property of finitely generated Gop
≤g-modules relates with the kinds of 

torsion that can appear in the modules M(G).
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Theorem 3.20. Let M be a finitely generated Gop
≤g-module over Z. Then there exists a 

non-negative integer ϵ such that for all graphs G of genus at most g, the torsion part of 
M(G) has exponent at most ϵ.

Proof. If t ∈ M(G) is a torsion element, then for any minor morphism ϕ : G′ → G, 
the induced map M(G) → M(G′) must send t to a torsion element. Thus, we have a 
Gop
≤g-submodule T of M , where T sends a graph G to the torsion part of M(G). By 

assumption M(G) is finitely generated, so Theorem 1.1 tells us that T is also finitely 
generated, by say the graphs G1, . . . , Gn. We may take ϵ to be the least common multiple 
of the annihilators of T (G1), . . . , T (Gn). !

Moving on, we next consider two local consequences of finite generation. Our first 
such result describes the growth of the modules associated to families of graphs obtained 
through sprouting and subdividing.

Theorem 3.21 (Corollaries 4.5 and 4.7, [17]). Let M be a finitely generated Gop
≤g-module 

over a field k, and let G be a fixed graph, with a distinguished collection of vertices 
v1, . . . , vr, and edges e1, . . . , es. We write G(n1,...,nr) for the graph obtained from G by 
attaching ni leaves to the vertex vi, and G(m1,...,ms) for the graph obtained from G
by subdividing the edge ej, mj times. Then there exist polynomials P1(n1, . . . , nr) and 
P2(m1, . . . , ms) such that

dimk M(G(n1,...,nr)) = P1(n1, . . . , nr)

dimk M(G(m1,...,ms)) = P2(m1, . . . ,ms),

for all vectors (n1, . . . , nr) and (m1, . . . , ms) whose each component is sufficiently large.

Through subdivision one can, for instance, study M(G) as G ranges within the cycle 
graphs. This approach was particularly useful in the case of Kazhdan-Lusztig polynomials 
of graphical matroids (see [17]). Later, we will relate a space considered by Farb Wolfson 
and Wood to sprouting on the two vertices of a single edge.

Our final local property relates with restriction to the family of trees. Recall that 
a Dyck-path is a properly nested set of parentheses. Equivalently, it is a word in the 
symbols 1 and −1 such that all partial sums beginning from the start of the word are 
never negative. To each Dyck-path w, one may associate a (rooted and planar) tree 
as follows: reading w from left to right, draw a new edge going upward each time a 
left parenthesis is read, while you backtrack down the nearest edge whenever a right 
parenthesis is read. For instance, the Dyck-path (()()) is associated to the tree that 
looks like the letter Y . Importantly, this association is not one-to-one – For instance, 
()()() is also associated to the graph that looks like the letter Y – though every tree 
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arises in this way.1 We write T (w) for the tree associated to the Dyck-path w. We also 
write r(w) for the number of left parenthesis in the Dyck-path w – i.e. half of its length.

Theorem 3.22 (Theorem 1, [18]). Let M be a finitely generated Gop
0 -module over a field 

k. Then the generating function

HDM (t) :=
∑

w

dimk(M(T (w)))tr(w),

where the right hand sum is over all Dyck-paths, is algebraic.

If M is the module that assigns the field k to every graph, then the above theorem 
specializes to say that the generating function for the number of Dyck-paths is algebraic. 
In other words, the generating function of the Catalan numbers is algebraic. This is a 
very well known fact about these numbers.

4. Applications to topological combinatorics

Throughout this section, let g ≥ 0 be a fixed integer. In this section, we present a 
number of applications of the representation theory of Gop

≤g to topological combinatorics.

4.1. The matching complex

Now, we introduce matching complexes of graphs and show that for any i, the map 
assigning to each graph G with genus at most g the ith homology group of its matching 
complex forms a finitely generated Gop

≤g-module.
For a graph G, a matching on G is a subset S ⊂ E(G) of non-loop edges such that 

no two edges in S share a vertex. Note that any subset of a matching is also a matching 
and the empty set, ∅, is a matching. Thus, the collection of matchings on G forms a 
simplicial complex M(G) whose vertices are the edges of G, which we call the matching 
complex on G.

The topology of matching complexes on the complete graphs Kn and the complete 
bipartite graphs Km,n have been well studied. Much of what is known about the topology 
of these complexes is outlined in [25] and [7]. We outline a few notable results on these 
complexes below.

It was shown by Björner, Lovász, Vrećica, and Živaljević in [1] that, for n ≥ 2, M(Kn)
is νn − 1 connected and, for 1 ≤ m ≤ n, M(Km,n) is νn,m − 1 connected where

νn =
⌊
n + 1

3

⌋
− 1 and νm,n = min

{
m,

⌊
m + n + 1

3

⌋}
− 1.

1 Note however that the association is one-to-one if we instead consider rooted trees with a cyclic order 
on the edges moving away from the root for every vertex.
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Later, this was result was strengthened by Shareshian and Wachs, who showed that the 
νn-skeleton of M(Kn) is shellable [24] and Ziegler, who showed that the νn,m-skeleton 
of M(Km,n) is shellable.

Remark 4.1. In view of our main Theorem 4.3, the above results may seem a bit concern-
ing. Indeed, finite generation would be meaningless if it was known that the module was 
eventually — i.e. perhaps for all graphs with sufficiently many edges — constantly zero! 
To see that this is not the case, consider the tree Gn, which has two vertices of degree 
n +1, connected to each other by a single edge. In this case the matching complex of Gn

is seen to be one dimensional. Indeed, it is precisely the disjoint union of the complete 
bipartite graph Kn,n and a single point. This particular topological space only has non-
trivial homology in degrees 0 and 1, where it is isomorphic to a free group of ranks 2 
and n2 − 2n + 1, respectively. Similar examples can be constructed to show that, in any 
homological degree, the homology of the matching complex is not eventually constantly 
zero.

The rational homology of these complexes is known due to the work of Bouc [2] and 
Friedman and Hanlon [5]. However, much is still unknown regarding the torsion in the 
integral homology of these complexes. Shareshian and Wachs show that the homology 
of M(Kn) exhibits 3-torsion for sufficiently large n and the homology of M(Km,n) also 
contains 3-torsion for certain (but infinitely many) values of m and n [24]. Later, Jonsson 
showed that 5-torsion in present in the homology of M(Kn) for sufficiently large n and 
found that there are elements of order 5, order 7, order 11, and order 13 appearing in the 
homology of M(Kn) for varying values of n [8]. For graphs other than Kn and Km,n, 
not much is known about the topology of their matching complex.

There is also a natural generalization of the matching complex. Note, that for a graph 
G, and any subset F ⊂ E(G), we have the induced the subgraph GF of G. Namely, GF

is the graph with V (GF ) = V (G) and E(GF ) = F . Thus, F is a matching on G if and 
only if each vertex of GF has degree at most 1. More generally, for any integer d ≥ 1 we 
can consider subsets F ⊂ E(G) such that each vertex of GF has degree at most d. Call 
such a subset a d-matching of G. Note that the collection of all d-matchings on G forms 
a simplicial complex which we will denote Md(G). In particular, M1(G) = M(G), the 
matching complex.

In the case where G is a forest, Singh showed that Md(G) is either contractible or 
homotopy equivalent to a wedge of spheres [21]. For d ≥ 2, Jonsson showed that if n is 
sufficiently large, then there exist certain values of d depending on n, where the homology 
of Md(Kn) contains 3-torsion [10].

In this paper, we approach the problem of studying the homology of Md(G) for 
general graphs G in a completely new way, by realizing the map sending a graph G to 
the homology of Md(G) as a finitely generated Gop

≤g-module.
To do this, we will need a particular Gop

≤g-module. Let ME be the Gop
≤g-module which 

assigns to each graph G the free R-module with basis indexed by the edges of G. For 
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each minor morphism ϕ : G → G′, the natural inclusion ϕ∗ : E(G′) → E(G) gives us a 
natural inclusion ME(ϕ) : ME(G′) → ME(G). We will call ME , the edge module. This 
Gop
≤g-module satisfies the following very important property.

Lemma 4.2. For any i, the ith tensor power of the edge module, M⊗i
E , is a finitely gen-

erated Gop
≤g-module.

Proof. For any graph G, M⊗i
E (G) has basis given by i-tuples of edges of G. Let G be a 

graph with strictly more than i edges. Then for any tuple (e1, . . . , ei) of edges of G, one 
may find an edge e of G that is not among the ej . By contracting e, or deleting it in the 
case where e is a loop, one obtains a minor morphism ϕ : G → G′. It is clear that the 
tuple (e1, . . . , ei) will be in the image of the map induced by ϕ. In other words, M⊗i

E is 
generated by graphs with at most i edges, of which there are only finitely many up to 
isomorphism in Gop

≤g. !

Theorem 4.3. For any i ≥ 0 and any d ≥ 1, Hi(Md(−); Z) is a finitely generated Gop
≤g-

module.

Proof. For this proof, we are working with Z-coefficients, though we will suppress this 
from the notation.

First, we argue that Hi(Md(−)) is in fact a Gop
≤g-module. Recall that given a minor 

morphism ϕ : G → G′, we have an induced inclusion on edge sets ϕ∗ : E(G′) → E(G)
sending an edge in G′ to the unique edge in its preimage under ϕ. Now, let F ′ ⊂ E(G′). If 
some vertex v ∈ V (G) were incident to more than d edges in ϕ∗(F ′), then ϕ(v) ∈ V (G′)
would be incident to more than d edges in F ′. Thus, if F ′ is a d-matching on G′, then 
ϕ∗(F ′) is a d-matching on G. We may therefore, consider ϕ∗ as a function

ϕ∗ : {d-matchings on G′} → {d-matchings on G}.

Furthermore, this map is compatible with taking boundaries of simplices and so we get 
a chain map

ϕ• : C•(Md(G′)) → C•(Md(G))

where C•(Md(G)) denotes the simplicial chain complex of Md(G). This induces a map 
Hi(Md(G′)) → Hi(Md(G)). The above construction is compatible with taking compo-
sitions of minor morphisms and so indeed Hi(Md(−)) is a Gop

≤g-module.
To see that it is finitely generated, note that following the above construction, for any 

i, Ci(Md(−)) also forms a Gop
≤g-module and Hi(Md(−)) is a subquotient of Ci(Md(−)). 

Because Ci(Md(−)) is a submodule of 
∧i ME , the ith wedge power of the edge module, 

and 
∧i ME is a quotient of M⊗i

E , we see that Hi(Md(−)) is a subquotient of M⊗i
E . 

By Lemma 4.2, M⊗i
E is a finitely generated Gop

≤g-module and so Theorem 1.1 tells us 
Hi(Md(−)) is itself finitely generated. !
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This theorem leads to an immediate corollary regarding the torsion that can appear in 
the homology which says that for fixed i and d, there is some uniform maximum torsion 
that can appear in Hi(Md(G)) as G ranges over all graphs of genus at most g.

Corollary 4.4. For any i ≥ 0 and any d ≥ 1, there exists a positive integer ϵi,d,g such 
that, for any graph G with genus at most g, the torsion part of Hi(Md(−)) is annihilated 
by ϵi,d.

Proof. This follows immediately from the previous theorem as well as Theorem 3.20. !

4.2. Other graph complexes

The matching complex of a graph is just one example of a simplicial complex on 
the edges of a graph. More generally, one can consider what is called a monotone graph 
property. This is a collection P of graphs, closed under isomorphisms, such that if G ∈ P
and G′ is another graph with V (G′) = V (G) and E(G′) ⊂ E(G), then G′ ∈ P. In other 
words, P is closed under edge deletions. Note that, for any graph G, we obtain a simplicial 
complex ∆P(G) on the edges of G where the n-simplices of ∆P(G) correspond to graphs 
G′ ∈ P with V (G′) = V (G), E(G′) ⊂ E(G), and |E(G′)| = n + 1. Intuitively if we 
identify a graph in P with its set of edges, the n-simplices are just sets of n + 1 edges of 
G in P. See [7] for a comprehensive reference on graph complexes. In particular [7, Table 
7.1] gives a list of monotone graph properties and what is known about the homotopy 
type of their corresponding simplicial complexes.

Recall that a minor morphism ϕ : G → G′ induces an inclusion ϕ∗ : E(G′) → E(G). 
Suppose that P is a monotone graph property with the extra condition that, if ϕ : G → G′

is a minor morphism and H ′ is a simplex in ∆P(G′) (that is, H ′ ∈ P, V (H ′) = V (G′), and 
E(H ′) ⊂ E(G′)), then the subgraph of G induced by the image ϕ∗(E(H ′)) is also in P. 
Call such a P a Gop

≤g-monotone graph property. In rough terms, a Gop
≤g-monotone graph 

property is a monotone graph property that is also preserved under “uncontracting” 
edges. Note that by construction, if P is a Gop

≤g-monotone graph property, then for any 
minor morphism ϕ : G → G′, the n-simplices of ∆P(G′) naturally include in the n-
simplices of ∆P(G). This observation and the argument used in the proof of Theorem 4.3
yields the following result.

Proposition 4.5. Let P be a Gop
≤g-monotone graph property. For any i, the assignment of G

to the ith simplicial homology group Hi(∆P(G)) forms a finitely generated Gop
≤g-module.

Thus, for any Gop
≤g-monotone graph property, one would obtain an analogous result to 

Corollary 4.4 about the torsion that can appear in the ith homology group of ∆P(G) as 
G ranges over all graphs with genus at most g.
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4.3. Commutative algebra of graph complexes

Famously, the study of simplicial complexes is, in a formal sense, dual to the commuta-
tive algebra of square-free monomial ideals through the Stanley-Reisner correspondence. 
We consider this perspective in this section. Fix a field K. Recall that our edge functor 
E : Gop

≤g → FI gives rise to another functor AE from Gop
≤g to K-algebras where

AE(G) = K[xe | e ∈ E(G)].

In [15], Nagel and Römer show there are uniform bounds on the degrees for nonva-
nishing graded Betti numbers for certain families of ideals that form modules over a 
particular FI-algebra. Using similar techniques, we start by describing some of the ho-
mological algebra for AE-modules and prove analogous results about the graded Betti 
numbers for families of ideals forming modules over the edge algebra AE.

Lemma 4.6. For any finitely generated AE-module M there exists a projective resolution 
F• of M by finitely generated AE-modules.

Proof. By Lemma 2.2, since M is finitely generated, there exists graphs G1, . . . , Gn and 
a surjection

n⊕

i=1
PAE
Gi

→ M

where PGi is the principal projective module at Gi as defined in Section 2.1. Let F0 =⊕n
i=1 P

AE
Gi

. The kernel K of this surjection must be finitely generated by Theorem 3.10
and so again, we may find finitely many graphs H1, . . . , Hm such that there is a surjection

m⊕

i=1
PAE
Hi

→ K.

Let F1 =
⊕m

i=1 P
AE
Hi

. Continuing in this fashion, we build the entire projective resolution 
F• of M . !

Given two finitely generated AE-modules, M and N , we may take their tensor product 
over AE by taking the pointwise tensor product. This gives an AE-module M ⊗AE N . 
Explicitly, for any graph G,

(M ⊗AE N)(G) = M(G) ⊗AE(G) N(G),

where the morphisms are defined in the obvious way. Now, take a projective resolution F•
of M as in Lemma 4.6. Tensoring this resolution with N gives a chain complex F•⊗AE N

of AE modules. We define Tori(M, N) to be the AE-module where
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Tori(M,N)(G) = Hi(F•(G) ⊗AE(G) N(G)).

For each G, AE(G) is a graded K-algebra, where xe is in degree 1 for each e ∈ E(G). 
A graded AE-module M is an AE-module such that each M(G) is a graded AE(G)-
module and for any minor morphism ϕ : G → G′, the image under M(ϕ) of the degree 
i part of M(G′), denoted M(G′)i, is contained in M(G)i.

Remark 4.7. Given a finitely generated graded AE-module M , we may upgrade the 
surjection of Lemma 4.6 to a surjection of graded AE-modules in the following way. 
Suppose M is generated by the elements m1, . . . , mn where for each i, mi ∈ M(Gi). 
We may assume that each mi is a homogeneous element of M(Gi) of degree di. Then, 
for each i, we give a grading to the principal projective AE-module PAE

Gi
the grading 

where bϕ ∈ PAE
Gi

(G) is homogeneous of degree di for any graph G, and minor morphism 
ϕ : G → Gi. Then, the morphism of AE-modules

n⊕

i=1
PAE
Gi

→ M

that sends bidi to mi is a surjection of graded AE-modules. With this fact, we see that the 
projective resolution of Lemma 4.6 may, in fact, be upgraded to a projective resulotion 
of graded AE-modules.

Let IE be the AE-submodule of AE itself where IE(G) is the ideal ⟨xe|e ∈ E(G)⟩ ⊂
AE(G) for each graph G. Call IE the edge ideal of AE . Then, KAE = AE/IE is the 
graded AE-module taking each graph to the base field K in degree 0, where all morphisms 
are the identity and for each graph G, monomials of AE(G) act by zero, and elements 
of K ⊂ AE(G) act by multiplication.

Lemma 4.8. If M is a finitely generated graded AE-module, then Tori(M, KAE ) is also 
a finitely generated graded AS-module for all i.

Proof. Let F• be a projective resolution of M where each term is finitely generated as in 
Lemma 4.6. By Remark 4.7 we may assume F• is a projective resolution by graded AE-
modules. For each i, Fi ⊗KAE is isomorphic as an AE-module to the module Fi/IEFi

taking a graph G to the AE(G)-module Fi(G)/IE(G)Fi(G). Thus, Tori(M, KAE ) is a 
subquotient of a finitely generated AE-module and is thus, finitely generated by Theo-
rem 3.10. !

Given a finitely generated graded AE-module M , a graph G, and integers i, a ≥ 0, 
the ith graded Betti number of M in degree a with respect to G is defined to be

βG
i,a(M) := dimK(Tori(M,KAE )(G))a.
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Theorem 4.9. Let M be a finitely generated graded AE-module and fix i ≥ 0. Then, there 
exists an integer ni such that for any graph G,

βG
i,a(M) = 0 for all a > ni.

Proof. By Lemma 4.8, we know that Ti = Tori(M, KAE ) is a finitely generated AE

module. Therefore, we can find a finite list t1, . . . , tn where tj ∈ M(Gj) for some (not 
necessarily distinct) graphs G1, . . . , Gn, such that for any graph G, Ti(G) is generated 
by the images of the tj under maps induced by minor morphisms Gj → G. Moreover, we 
may assume that each tj is homogeneous of degree dj . Then, define ni := max{dj}nj=1. 
We know that βG

i,a(M) = dimK(Ti(G))a is the number of generators of degree a in a 
minimal homogeneous generating set of Ti(G) (see for instance [14, Lemma 1.32]). Thus, 
since the images of the tj under maps induced by minor morphisms Gj → G contain a 
minimal homogeneous generating set of Ti(G), if a > ni, we must have βG

i,a(M) = 0. !

For any fixed graph G, we can consider AE(G) = K[xe|e ∈ E(G)] as an NE(G)-graded 
K-algebra where xe is in degree ve ∈ NE(G) which has a 1 in the e coordinate and 0’s 
elsewhere. We call this grading the edge-grading on AE(G). If M is a graded AE-module 
such that for each graph G, M(G) is in fact an NE(G)-graded AE(G)-module, we call 
M an edge-graded AE-module. Note that KAE is an edge-graded AE-module where 
KAE (G) is concentrated in degree 0 ∈ NE(G). Thus, if M is an edge-graded AE-module, 
this induces an edge-graded AE-module structure on Tori(M, KAE ) for any i.

Now, given an edge-graded AE-module M , a graph G, an integer i ≥ 0, and a ∈
NE(G), we can consider the ith edge-graded Betti number of M(G) in degree a denoted 
βi,a(M(G)) where

βi,a(M(G)) = dimK(Tori(M,KAE )(G))a.

Let sum(a) denote the sum of the entries of a. We see that

βG
i,a(M) =

∑

sum(a)=a

βi,a(M(G)).

By Theorem 4.9, we have the following immediate result.

Corollary 4.10. Let M be a finitely generated edge-graded AE-module and fix i ≥ 0. Then, 
there exists an integer ni such that for any graph G,

βi,a(M(G)) = 0 whenever sum(a) > ni.

Let us now consider the case where M is a finitely generated edge-graded AE-module 
such that for each graph G, M(G) is a square free monomial ideal of AE(G) = K[xe|e ∈
E(G)]. In this case, using the Stanely-Reisner construction, one can associate to M(G) a 
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simplicial complex ∆M (G) on the set E(G). Namely, the simplices of ∆M (G) are given 
by squarefree monomials of AE(G) not contained in M(G). Now, let us identify each 
subset σ ⊆ E(G) with its indicator vector in NE(G) so that each such subset of E(G)
corresponds to a squarefree degree in the edge-grading of AE(G). The commutative 
algebra of M(G) is intimately linked with the topology and combinatorics of ∆M(G). 
See [23] for an in-depth treatment of this relationship. In particular, there is a nice 
relationship between the edge-graded Betti numbers of M(G) and the simplicial complex 
∆M (G) due to Hochster (see [14, Corollary 5.12]).

Theorem 4.11 (Hochster’s formula). The nonzero Betti numbers of M(G) lie only in 
square free degrees, namely degrees corresponding to subsets σ ⊂ E(G). Furthermore,

βi,σ(M(G)) = dimK H̃ |σ|−i−2(∆M (G)|σ;K)

where ∆M (G)|σ = {τ ∈ ∆M (G) | τ ⊆ σ}.

Hochster’s formula together with Corollary 4.10 gives the following.

Corollary 4.12. Fix i ≥ 0. There exists an integer ni such that for any graph G, if 
σ ⊆ E(G) with |σ| > ni, then

dimK H̃ |σ|−i−2(∆M (G)|σ;K) = 0.

As an application of the above results, we first define a specific AE-module which will 
be denoted ILc . For a graph G, the edge ideal of G is the ideal I ⊆ K[xv|v ∈ V (G)]
generated by monomials xvxw where v and w are connected by an edge in E(G). Given a 
graph G, define the line graph of G denoted L(G) to be the simple graph whose vertices 
are the edges of G and two vertices of L(G) are adjacent if and only if they share a 
vertex in G. Then, define the complement line graph of G, denoted Lc(G), to be the 
complement of L(G). Namely, the vertices of Lc(G) are the edges of G and two vertices 
of Lc(G) are adjacent if and only if they do not share a vertex in G.

Example 4.13. If G is the star graph - i.e. the tree with one vertex of degree n and all other 
vertices of degree 1 - then Lc(G) is immediately seen to be a disjoint collection of points. 
On the other hand, if G is the complete graph Kn, then Lc(G) is the Kneser graph 
K(n, 2). indeed, certain authors refer to line graph complements as being generalized 
Kneser graphs for this reason [3].

Now, let ILc be the AE-module taking a graph G to the edge ideal of Lc(G). We see 
that

ILc(G) = ⟨xexf |e, f ∈ E(G) don’t share a vertex⟩ ⊆ AE(G).
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Indeed, ILc(G) is a square free monomial ideal of AE(G). Furthermore, if ϕ : G → G′

is a minor morphism, and e, f ∈ E(G) don’t share a vertex, then ϕ∗(e), ϕ∗(f) ∈ E(G′)
don’t share a vertex so ILc does, in fact, give an AE-module of square free monomial 
ideals.

To see that ILc is a finitely generated AE-module, note that it is a submodule of 
the edge ideal IE . We see IE is finitely generated by the graphs G1 and G2, where G1
consists of two vertices and a single edge connecting them and the graph G2 consists of 
a single vertex and a loop at that vertex. This is because for any graph G and any edge 
e ∈ E(G), we can find a minor morphism G → Gi for some i ∈ {1, 2} such that e gets 
sent to the single edge in Gi. Thus, the Noetherian property in Theorem 3.10 tells us 
that ILc is a finitely generated AE-module.

Applying Corollary 4.10 for any fixed i, we immediately get the existence of a bound 
on the degrees of the nonzero edge-graded Betti numbers βi,a(ILc(G)) that is uniform 
as G ranges over all graphs. Moreover, Corollary 4.12 tells us about the cohomology of 
some subcomplexes of the simplicial complexes ∆ILc (G) as G ranges over all graphs. We 
note that ∆ILc (G) is precisely the flag complex - or clique complex - of the line graph 
L(G).

4.4. Linear subspace arrangements of line graph complements

In this section we study the cohomology of a certain family of hyperplane arrangement 
complements. In particular, we prove a finite generation result that recovers and expands 
upon similar results present in [6].

Let G = (V, E) be a graph, let d be a positive integer, and let K be either C or R. 
For each e ∈ E, if v, w ∈ V are the endpoints of e, let We ⊂ (Kd)V be the subspace

We = {x ∈ (Kd)V |xv − xw = 0}.

The collection of all We as e ranges over the edges of G is a subspace arrangement called 
the graphical arrangement of G denoted A (G). In the case where d = 1, each We is 
a hyperplane of KV . In general, We is a codimension d subspace of (Kd)V . Now, let 
Conf(G, Kd) = (Kd)V − A (G) be the space obtained by removing the subspaces of 
A (G). In the case where G is the complete graph Km, Conf(G, Kd) is the usual ordered 
configuration space of m points in Kd.

To each graph G, instead of assigning to it the space Conf(G, Kd), we will assign to 
it the space Conf(Lc(G), Kd). We see that if ϕ : G → G′ is a minor morphism, then the 
inclusion ϕ∗ : E(G′) → E(G) is an inclusion V (Lc(G′)) → V (Lc(G)). Thus, ϕ∗ induces 
a natural projection

ϕ : (Kd)V (Lc(G)) → (Kd)V (Lc(G′))

Furthermore, ϕ∗ preserves pairs of edges that do not share a vertex. Namely, if e′1, e′2 ∈
E(G′) do not share a vertex, then ϕ∗(e′1) and ϕ∗(e′2) do not share a vertex. This obser-
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vation yields a natural inclusion E(Lc(G′)) → E(Lc(G)). Thus, if x ∈ Conf(Lc(G), Kd), 
then ϕ(x) ∈ Conf(Lc(G), Kd) so ϕ restricts to a map

Conf(Lc(G′),Kd) → Conf(Lc(G),Kd).

The construction of the above map is functorial with respect to compositions of minor 
morphisms. Thus, we have a functor from G to the category of topological spaces sending 
a graph G to Conf(Lc(G), Kd). Then, taking the cohomology ring with Z coefficients, 
gives a functor Gop

≤g to the category of abelian groups.

Theorem 4.14. For any i, the functor Hi(Conf(Lc(−), Cd); Z) from Gop
≤g to the category 

of abelian groups taking a graph G to Hi(Conf(Lc(G), Cd); Z) is a finitely generated 
Gop
≤g-module.

Proof. For a graph G, we know that Conf(Lc(G), Kd) is the complement of a subspace 
arrangement where each subspace has real codimension r where r = d when K = R
and r = 2d − 1 when K = C. In [12, Corollary 5.6], de Loungueville and Schultz give 
a presentation for the cohomology ring of the complement of a subspace arrangement 
over R where each subspace has the same codimension. This result tells says that the 
cohomology ring H∗(Conf(Lc(G), Kd); Z) has the following presentation:

H∗(Conf(Lc(G),Kd);Z) ∼= ∧∗ZE(Lc(G))/I

when r is even and

H∗(Conf(Lc(G),Kd);Z) ∼= Sym∗ ZE(Lc(G))/I

when r is odd. Moreover, if e ∈ E(Lc(G)), then under this isomorphism e ∈
Hr−1(Conf(Lc(G), Kd)). If r is even, I is generated by

k∑

i=0
(−1)iϵ(ej1 , . . . , êji , . . . , eki)ej0 ∧ · · · ∧ êji ∧ · · · ∧ ejk

and if r is odd, I is generated by

e2 and
k∑

i=0
(−1)iϵ(ej1 , . . . , êji , . . . , eki)ej0 . . . êji . . . ejk

for all e ∈ E(Lc(G)) and all sets {ea0 , . . . , eak} ⊂ E(Lc(G)) that form a cycle. Here, 
ϵ(ej1 , . . . , ̂eji , . . . , eki) is a sign coming from a choice of orientation on the ambient real 
vector space.

We know cycles of Lc(G) correspond to sets of edges {f1, . . . , fk} ⊂ E(G) such that 
fi and fi+1 do not share a vertex and f1 and fk do not share a vertex. Given a minor 
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morphism ϕ : G → G′, the inclusion ϕ∗ : E(G′) → E(G) preserves pairs of edges 
that don’t share a vertex, and so the induced map E(Lc(G′)) → E(Lc(G)) sends cycles 
to cycles. Furthermore, the inclusion ϕ∗ : E(G′) → E(G) gives an inclusion of the 
ambient real vector space for Conf(E(G′), Kd) into the ambient real vector space for 
Conf(E(G), Kd) which in particular, allows us to pick compatible orientations on these 
ambient vector spaces. Thus, the presentation for H∗(Conf(Lc(G)), Cd); Z) is compatible 
minor morphisms. Thus, we see that for each i, Hir(Conf(Lc(−), Cd); Z) as Gop

≤g-module, 
is a quotient of the ith tensor power of ZE(Lc(G)),

T iZE(Lc(−)).

Finally, we notice that ZE(Lc(−)) is the submodule of the second tensor power of the 
edge module M⊗2

E , where ZE(Lc(G)) generated by elements of the form ei ⊗ ej where 
ei, ej ∈ E(G) do not share a vertex. Thus, by Theorem 1.1, we have the desired result. !

Remark 4.15. If d = 1, Conf(Lc(G), K) is the complement of a hyperplane arrangement 
in KV . When K = C, H∗(Conf(Lc(G), K)) is just the Orlik-Solomon algebra of the com-
plex hyperplane arrangement where the generators live in degree 1. If d > 1, the above 
presentation shows that H∗(Conf(Lc(G), Kd)) is still isomorphic to the aforementioned 
Orlik-Solomon algebra, only now the generators live in degree 2d − 1. When K = R, 
H∗(Conf(Lc(G), K)) is the Cordovil algebra of the real hyperplane arrangement. If d
is odd, then H∗(Conf(Lc(G), Kd)) is isomorphic to H∗(Conf(Lc(G), K)), only now the 
generators live in degree d − 1.

Example 4.16. Let a, b ≥ 1 and let G be the graph with two vertices of degrees a + 1
and b +1, respectively, connected to one another by a single edge. Put another way, G is 
two copies of star graphs, of degrees a and b, glued together by an edge. Then Lc(G) is 
easily seen to be a complete bipartite graph Ka,b, disjoint union a point. Then we have

Conf(Lc(G),Cd) = Z̃D
a+b(Cd) ×Cd

where Z̃D
a+b(Cd) are the colored configuration spaces considered by Farb Wolfson and 

Wood in [6], with D being the vertices of the complete bipartite graph colored in the 
obvious way. Observe moreover that the graph G can be seen as an edge with a and b
leaves sprouted on its two vertices, respectively. Therefore, Theorem 3.21 implies that 
our result can be seen as a generalization of the stabilization phenomena observed by [6].
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