Advances in Mathematics 430 (2023) 109203

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

The graph minor theorem in topological
combinatorics

L))

Check for
updates

Dane Miyata ®, Eric Ramos "

? Department of Mathematics, University of Oregon, Eugene, OR 97408, United
States of America

P Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken,
NJ 07030, United States of America

ARTICLE INFO ABSTRACT
Article history: We study a variety of natural constructions from topological
Received 12 December 2020 combinatorics, including matching complexes as well as other

Received in revised form 12 June
2023

Accepted 23 June 2023

Available online 14 July 2023
Communicated by Ezra Miller

graph complexes, from the perspective of the graph minor
category of [13]. We prove that these complexes must have
universally bounded torsion in their homology across all
graphs of bounded genus. One may think of these results as
arising from an algebraic version of the graph minor theorem
Keywords: of Robertson and Seymour [19,20].

Graph minors © 2023 Elsevier Inc. All rights reserved.
Matching complexes

Topological combinatorics

Representation stability

1. Introduction

We study a category G<, whose objects are finite connected graphs whose first Betti
number, or (combinatorial) genus, is at most g and whose morphisms are built out of
automorphisms, deletions, and contractions. For instance, a single vertex with g loops is
an object of G<4, whereas trees form, by definition, the objects of G<¢. A precise definition

* Corresponding author.
E-mail address: eramos3@stevens.edu (E. Ramos).

https://doi.org/10.1016/j.aim.2023.109203
0001-8708/© 2023 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.aim.2023.109203
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2023.109203&domain=pdf
mailto:eramos3@stevens.edu
https://doi.org/10.1016/j.aim.2023.109203

2 D. Miyata, E. Ramos / Advances in Mathematics 430 (2023) 109203

of these categories will appear in Section 3.1. We then prove finite generations results
about the representation theory of this category and apply these results in topological
combinatorics. In particular we study spaces arising from graphs that behave well with
respect to automorphisms, deletions, and contractions.

Throughout this introduction, a graph will refer to an at most one-dimensional CW
complex that is both connected and finite. We say that a graph G is a minor of a graph
G’ if G can be obtained from G’ by a sequence of edge deletions and contractions. In their
seminal series of papers, Robertson and Seymour proved, among many other things, that
the minor relation is actually a well-quasi-order [19,20]. That is to say, in any infinite
collection of graphs, there must be a pair where one is a minor of the other. In this paper,
we prove a weakened categorical version of the graph minor theorem which we outline
below.

Fix a nonnegative integer g and write G<, for the category whose objects are graphs
of genus at most g, and whose morphisms are what are known as minor morphisms (see
Section 3.1). While the precise definition of a minor morphism is a bit technical, for the
purposes of this introduction you can think of them as maps built out of edge deletions,
contractions, and graph automorphisms. In particular, one has a minor morphism ¢ :
G’ — G if and only if G is a minor of G’. A G°P-module over a Noetherian ring R is then
a covariant functor M : G°? — R-mod. Concretely, a G°P-module may be thought of as
a collection of R-modules {M(G)}q, one for each graph G, such that whenever G is a
minor of G’, one has an induced map M(G) — M(G’"). We say that a G°P-module M
is finitely generated if there is some finite list of graphs {G;}; such that each M(G;) is
a finitely generated R-module and for any graph G, the R-module M (G) is spanned by
the images of the M (G;) under the aforementioned maps induced by the minor relation.

Our first result follows from results of [17] and shows that g%pg—modules satisfy a
Noetherian Property and should be viewed as a weakened categorical version of the
graph minor theorem.

Theorem 1.1. Any submodule of a finitely generated QZZ—module 1s itself finitely gener-
ated.

This weak categorical graph minor theorem translates the combinatorics of well-quasi-
orders present in the original graph minor theorem to an algebraic statement about
submodules of finitely generated modules. While it is the case that the categorical graph
minor theorem is equivalent to the original, it is also presented in a language that is
more amenable to application in topology and algebra. In particular, see [17][16] for
applications of the categorical graph minor theorem to Kazhdan—Lusztig polynomials
of graphical matroids, as well as configuration spaces of graphs. In the following work,
we focus our attention to two topics that are important in topological combinatorics —
simplicial complexes and hyperplane arrangements — in order to illustrate the power of
the categorical graph minor theorem.
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1.1. Homology of the matching complex

For a graph G, a matching of GG is a collection of pairwise non-adjacent edges. The
matching complex M(G) of G is the simplicial complex whose simplices are in bijection
with matchings on G. Matching complexes of complete graphs and complete bipartite
graphs have been studied extensively using a wide variety of techniques including discrete
Morse theory. It is notable, however, that there is relatively little known about the
matching complexes of general graphs. In this work, we aim to fill this gap in the literature
by considering a new perspective on the problem: instead of focusing on M(G) for
some particular graph G, or even for some particular family of graphs, we consider the
matching complexes of all graphs at once.

The key observation that allows us to do this is that whenever G is a minor of G’ there
is a natural way to embed the edges of G into those of G'. Moreover, this embedding
preserves the condition that the edges are disjoint, as any “undoing” of an edge deletion
or contraction can only push things further apart. We therefore obtain simplicial complex
maps M(G) — M(G') whenever G is a minor of G’, which induce maps on homology
H;(M(G)) = H;(M(G")). In particular, for any fixed ¢ > 0, the assignment

G = Hi(M(G))

is a well-defined Q;‘;—module over Z. Using the categorical graph minor theorem, we will
prove the following

Theorem 1.2. The g%pg—module
G — Hiy(M(G))

is finitely generated. In particular, there exists an integer €; 4, depending only on i and
g, such that the torsion part of H;(M(Q)) is annihilated by €, 4, for all graphs G.

Remark 1.3. Having seen a theorem such as Theorem 1.2, it is natural for one to ask
whether one can obtain effective bounds on the items involved. For instance, bounds on
the sizes of the graphs which generate H;(M(G)), or even bounds on the constant €; 4
as a function of g. While there are certain limited cases in which this has been done —
€0 = 1 [4] while €; 4 = 2 for g > 4 [11], for instance — it seems like it will be quite
difficult to do in general. One particular observation that makes the problem somewhat
tractible is that our proof of Theorem 1.1 is partially constructive. What we mean by
this is that the proof proceeds in a way that is very similar to the classical Grobner
basis proof of the Hilbert Basis Theorem. While the tools of computational commutative
algebra are not immediately applicable, it seems plausable that one might be able to
adapt these tools to our setting.
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The statement about torsion in the above theorem should be particularly interesting,
as the torsion appearing the homology of the matching complex has been a subject of
considerable intrigue in recent years [24][9][8].

We also note that, by the very general nature of the weak categorical graph minor
theorem, the conclusions of Theorem 1.2 will remain true when the matching complex is
replaced by a large variety of graph-based complexes, such as those discussed in [7]. See
Section 4.2 for more on this.

1.2. Graphical linear subspace arrangements

Recall that, to any graph G, one may define a linear subspace arrangement induced
by the edge relation of its vertices. We define the complement of this arrangement in
(CHV(E) by Conf(G,C?). More precisely, we have

Conf(G,C%) = {(zv)vev(q) € (CHYVE) | &, # 2y if {v,w} is an edge of G}.

For instance, if G = K, is the complete graph, Conf(G, C?) is the classical configura-
tion space of points in C?. If instead G = K, 5 is the complete bipartite graph, then one
recovers the colored configuration spaces ZN(ﬁ_b as studied by Farb, Wolfson, and Wood
[6]. In this work we will specialize to the family of line graph complements.

Given a graph G, we write £L°(G) to denote the simple graph whose vertices are
indexed by the edges of GG, and whose edges indicate the corresponding edges in G are
non-adjacent. These graphs have been called Kneser graphs by some authors [3], as the
usual Kneser graph K (n,2) is seen to be L(K,).

The same observation made above tells us that whenever G is a minor of G’, one
obtains a graph embedding

LY(G) = LYN(G").
This embedding induces a “forgetful” map
Conf(£¢(G"),C?%) — Conf(L(G),CY),
which when composed with cohomology yields
H(Conf(L£(G),C%) — H*(Conf(L(G),C%)).
Our second theorem therefore can be stated as follows.
Theorem 1.4. For any fixed i,d, g, the assignment
G — H'(Conf(L£(@),C%)

defines a finitely generated G2 -module over Z.
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One observes that the complete bipartite graph K, ; can (essentially) be realized as
the line graph complement of some other graph. In particular, the finite generation result
of Theorem 1.4 can be seen as a generalization of some results in [6] (see Theorem 3.21).

The paper is organized as follows. In Section 2 we outline and expand on the theory
of Grébner categories introduced by Sam and Snowden in [22]. In Section 3 we define
the category G<, and use the results of Section 2 to show that QOS}; has a Noetherian
property. Finally in Section 4 we use the Noetherian property of g;‘; to study spaces in
topological combinatorics arising from graphs.

Remark 1.5. In previous versions of this work, the above results were all stated without
the dependency on the genus parameter g. These earlier versions of this paper were
based on the Categorical Graph Minor Theorem of [13], and worked with the category
of all graphs with minor morphisms. Unfortunately, a gap was found in the proof of the
main theorem of [13], and so for now we can only state our results in the setting where
genus is bounded. That being said, it is still very much the belief of the authors that
the Categorical Graph Minor Theorem is true, and the techniques of this paper would
then imply stronger versions of Theorems 1.2 and 1.4 where the parameter g does not
appear.
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2. Grobner theory of categories

Let C be an essentially small category and k a ring. We define Rep,(C) to be the
category of functors from C to the category of k-modules. A module M € Rep,(C) is
called finitely generated if there exist finitely many objects cq,..., ¢, of C along with
elements v; € M(c¢;) such that, for any object ¢ of C, M(c) is spanned over k by the
images of the elements v; along the maps induced by all possible morphisms ¢; : ¢; — c.
If every submodule of M is finitely generated, then M is said to be Noetherian. If
every finitely generated module is Noetherian, the category Rep, (C) is said to be locally
Noetherian. Sam and Snowden have developed powerful machinery for proving that
module categories are locally Noetherian which we summarize below.

Given an object x of C, let C, be the set of equivalence classes of morphisms out of
x where ¢ € Home(z,y) is equivalent to 1) € Home (z, 2) if there exists an isomorphism
p € Home (y, z) such that p o @ = . The category C satisfies property (G1) for exevery
object = of C there exists a linear order < on C, preserved under post composition.
That is to say, if ¢,1 € Home(z,y) and ¢ < 1, then for any p € Home(y, z), we have
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ho f < hog. There is a natural quasi-order on C, where we say ¢ < v if and only if
there exists a morphism p € Home(y, z) such that p o ¢ = 1. Note, the orders < and <
are independent. We say that C satisfies property (G2) if < is a well quasi-order on C,.
Namely, for any infinite sequence 1, 2, 3, ... of elements of C,, there exists a pair of
indices 7 < j such that ¢; < ;. The category C is Grobner if C is a directed category
and satisfies properties (G1) and (G2).

Let C and D be categories and ¢ : D — C a functor. The functor ® satisfies prop-
erty (F) if for any object x of C there exist finitely many objects y1,...,y, of D and
morphisms ¢; € Home(x, ®(y;)) such that for any object y of D and any morphism
¢ € Home(z, ®(y)), there exists a morphism ¢ € Homp(y;, y) such that ¢ = &(¢) o ¢;.
The category C is quasi-Grobmer if there exists a Grobner category D and a functor
® : D — C satisfying property (F).

Theorem 2.1. [22, Theorem 1.1.3] If C is a quasi-Grdbner category and k is a Noetherian
commutative ring, then Repy(C) is locally Noetherian.

2.1. Modules over algebras over categories

Let C be a category equipped with a functor S : C — FI and let k be a commutative
ring. There is a natural functor from C to k-algebras taking an object ¢ to the polynomial
ring

As(c) = k[z. | e € S(c)].

Equivalently, we can think of Ag € Rep,(C) as a module equipped with a product
As®As — Ag that is both associative and commutative. Let Rep,,(C, S) be the category
of modules over Ag. Formally, an object of Rep,(C, S) is an object M € Rep;(C) along
with a multiplication Ag ® M — M such that the two natural maps As®@AsQ@M — M
coincide. More intuitively, an object M of Repy,(C, S) consists of an Ag(c)-module M(c)
for each object ¢ of C and an A(c)-module map M(c) — M(c¢') for each morphism
¢ : ¢ — ¢, where M(c') is an Ag(c)-module via the ring homomorphism Ag(c) — Ag(c’)
induced by .

A module M € Rep,(C,S) is called finitely generated if there exist finitely many
objects ¢, ..., ¢ of C along with elements v; € M(c¢;) such that, for any object ¢ of C,
M(c) is spanned over Ag(c) by the images of the elements v; along the maps induced by
all possible morphisms ¢; : ¢; — c. If every submodule of M is finitely generated, then M
is said to be Noetherian. If every finitely generated module is Noetherian, the category
Rep,(C,S) is said to be locally Noetherian. Now, we outline some basic facts about
finitely generated modules and Noetherian modules, the proofs of which are completely
standard. Let C be a category, S : C — FI a functor, and k a commutative ring. For
any object ¢ of C, define the principal projective P. € Rep,(C,.S) to be the module that
takes an object ¢’ to the free Ag(c’)-module spanned by the set Home/(¢, ¢'), with maps
defined via composition.
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Lemma 2.2. A module M € Rep,(C, S) is finitely generated if and only if there exists a
surjection

EBP - M
i=1

for some list of (not necessarily distinct) objects c1,...,c, of C.

Proof. Suppose that cy,...,c, are objects of C and v; € M(c;) for all i. These classes
generate M if and only if the map

T
Br., + M
i=1
taking id., € P, (¢;) to v; is surjective. O

Recall from the introduction that a module M € Rep,(C, S) is Noetherian if every
submodule of M is finitely generated.

Lemma 2.3. A module M is Noetherian if and only if every ascending chain of submod-
ules of M eventually stabilizes.

Proof. Suppose that M is Noetherian and (NV; | ¢ € N) is an ascending chain of submod-
ules of M. Let N := |J;cy Vi € M. Since M is Noetherian, N is finitely generated. If
we choose i large enough so that N; contains all of the finitely many generating classes,
then we have NV; = N.

Conversely, suppose that M has a submodule N’ C M that is not finitely generated.
We will define an ascending chain of finitely generated submodules (N; | i € N) as follows.
Let Ny = 0. Once we have defined N;, the fact that A is finitely generated means that
N; € N, so we may choose an object ¢; of C and an element v; € N (c) \ N;(c). Let N;
be the smallest submodule of A containing both A; and v;. This chain of submodules
clearly does not stabilize. O

Lemma 2.4. Suppose that 0 — M’ — M — M"” — 0 is short eract sequence in
Rep,(C,S). Then M is Noetherian if and only if both M’ and M" are Noetherian.

Proof. If M is Noetherian, then M’ is Noetherian by definition. If N/ € M” is a
submodule, let A© C M be the preimage of N in M. Since M is Noetherian, N is
finitely generated, thus so is A’/ by Lemma 2.2.

Conversely, suppose that both M’ and M" are Noetherian, and let (N; | i € N) be
an ascending chain of submodules of M. For each i, let N} := N; N M’ and let N}’ be
the image of NV; in M". Since M’ and M" are both Noetherian, Lemma 2.3 tells us that
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there is an index n such that, for all i > n, N = N/, and N]" = N/} ,. We can then
conclude that N; = N;11 by applying the Five Lemma to the following diagram:

0 > N/ > N; > N/ >0
0 > Ny > N1 > Ny >0

Thus M satisfies the ascending chain condition, and is therefore Noetherian by
Lemma 2.3. O

In the following sections, we build on the work of [22] and define what it means for the
pair (C,S) to be Grobner (resp. quasi-Grobner) and prove the following generalization
of Theorem 2.1.

Theorem 2.5. Let C be a category and S : C — FI a functor. If the pair (C,S) is quasi-
Griobner, then Rep,(C,S) is locally Noetherian for any Noetherian commutative ring
k.

Remark 2.6. Theorem 2.5 is motivated by the work of Nagel and Rémer [15]. Though
they do not make these definitions in the same generality, they essentially prove that
the pair (FI,id) is quasi-Grobner, and they use this result to show that Repy, (FI,id) is
locally Noetherian for any Noetherian commutative ring k. Moreover, they show that if
Sq @ FI — FI is the functor taking a set T' to the set of unordered d-tuples of distinct
elements of T, then the pair (FI, Sy) is quasi-Grobner and the category Repy (FI,id) is
locally Noetherian if and only if d < 1 [15, Proposition 4.8].

Remark 2.7. Note that we have Rep,(C) = Rep,(C, 1), where ) : C — FI is the constant
functor that takes every object of C to the empty set. We will see that the category
C is Grobner (resp. quasi-Grobner) in the sense of [22] if and only if the pair (C,0) is
quasi-Grobner.

2.2. Grébner pairs

Let OI be the category whose objects are totally ordered finite sets and whose mor-
phisms are ordered inclusions, and let ¥ : OI — FI be the functor that forgets the order
on a finite set. Let D be an essentially small category and 7" : D — OI any functor. The
purpose of this section is to define what it means for the pair (D, T) to be Grébuer.

A quartet for the pair (D,T) is a quadruple u = (d,d’, p,m), where d and d' are
objects of D, ¢ : d — d’ is a morphism, and m : T(d') — N is a map of sets. For
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any morphism ¢ : d — d”’ in D, we will write T'(¢) : T(d') — T(d") for the induced
morphism in OI, and we will write

w(ﬂ) = (da d/la'l/} o vamw)a

where m,; is determined by the conditions that m, o T'(1)) = m and my, is identically
zero outside of the image of T'(¢). For any map n : T(d') — N, we will write

ptn=(dd,o,m+n).

If iy = (d,dy, p1,m1) and pg = (d,d), p2,me), we say that p; < po if there exists a
morphism v : d} — dy and a map n : T(d”) — N such that ps = ¥(u1) + n.

Remark 2.8. The motivation for these definitions is that, once we choose a commutative
ring k, the quartet p determines a monomial

™= H ™) e R(d')
aCT(d")

along with an element
by =™ - p € Py(d) € Repy(D, Vo T).
Then p1 < pg if and only if @9 factors through ¢; via a map ¢ and we have

by = 2" P(by,)
for some monomial z™ € A(d}).

We say that p1 and us are equivalent if py < us < py. For each object d of D, let
IDT| denote the poset of equivalence classes of quartets with first coordinate d. Given
a quartet p = (d,d’,p,m), we will write [u] to denote its equivalence class in [DT|. A
well-order < of |[DZ] is called admissible if, given two quartets p1 = (d,d’, 1, m1) and
pa = (d,d’, o2, my) with the same source and target along with a morphism ¢ : d' — d”
and a map n : T(d”) — N, we have

(1] < (2] = [(p1) +n] < [W(u2) +n).

We say that the pair (D, T) satisfies property (G1) if, for every object d of D, the
poset |D?| admits an admissible well-order. A poset P is said to be Noetherian if, for
any sequence (p; | ¢ € N) in P, there exist natural numbers ¢ < j such that p; < p;. We
say that the pair (D, T) satisfies property (G2) if, for every object d of D, the poset |DJ|
is Noetherian. The category D is said to be directed if, for any object d of D, the only
morphism from d to d is the identity. We call the pair (D, A) Grobner if D is directed
and (D, A) satisfies properties (G1) and (G2).
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Remark 2.9. Property (G1) for the pair (D, () is equivalent to property (G1) for D as
defined in [22, Section 1.1], and similarly property (G2) for the pair (D, ) is equivalent
to property (G2) for D. Thus a directed category D is Grobner in the sense of [22] if and
only if the pair (D, ) is Grébner.

The following Proposition says that the functor 7' does not add anything interesting
to property (G1). In other words, the distinction between a Grobuner category and a
Grobner pair lies entirely in the property (G2).

Proposition 2.10. The pair (D,T) satisfies property (G1) if and only if the pair (D, ()
satisfies property (G1).

Proof. If < is an admissible order of D7, then restriction to quartets with m = 0 gives
an admissible order of |DY)|. Conversely, if we have an admissible order of |DY|, we can
compare the classes of two quartets py = (d,d},v1,m1) and pe = (d,db, a2, ms) for
(D,T) by first comparing the classes of the quartets (d,d, ¢1,0) and (d,d5, ¢2,0) for
(D, ) and then, if they are equal, breaking the tie by comparing m and ms lexicograph-
ically. O

2.3. Grobner bases

Let D be an essentially small category and T : D — OI a functor such that the pair
(D, T) is Grobner, and choose an admissible well-order < of |D7| for each object d of D
as in the definition of property (G1). For any pair of objects d and d’ in D, let Q4,4 be
the set of quartets of the form u = (d,d’, p,m). The fact that D is directed implies that
the natural map from Qg 4 to |D(7;| is injective, thus Qg 4 is well-ordered by <.

Fix a commutative ring k, so that we may define the representation category
Rep, (D, ¥ o T). For any nonzero element

p o= Y Mbu € Pad),

HEQ g, a7

we define the leading quartet LQ(p) to be the maximal p with respect to the well-order
< such that the coefficient \, € k is nonzero. If 4 = LQ(p), we define the leading term
LT(p) := Apub, € Pa(d’) and the leading coefficient £°(p) := A, € k.

Lemma 2.11. Suppose we have a morphism ¢ : d' — d’, a map n : T(d') - N, and an
element 0 # p € Pq(d'). Then

LT(z"¢(p)) = «" (LT (p)).

Proof. This is precisely the definition of admissibility of the well-order <. O
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Given a submodule A C P4, we define a subset
LQW) == {[LQ(p)] | 0 # p € N(d)} C [Dg].
For each object d’ of D, we define
LT(NV)(d') := {0} U{LT(p) | 0 #p € N(d') C Pa(d)}.
For each quartet p = (d,d’, o, m), we define the ideal
LN, 1) = {0} U{L(p) | 0 # p € N(d') and LQ(p) = p} C k-

Lemma 2.11 implies that LT(N) C P, is a submodule and that we have an inclusion of
ideals LN, p2) C LN, 1) whenever [p1] < [p2].

Suppose we are given a finite set B = {(d},p1),...,(d.,p,)} of pairs with 0 # p; €
N (d}) for all i. We say that B is a Grobner basis for AV if the module LT(N) is generated
by the classes LT(p;) for 1 <i <.

Lemma 2.12. If B is a Grébner basis for N, then B generates N.

Proof. If not, choose an element p € N'(d’') that is not in the submodule generated by
B, and choose it in such a way that the leading quartet LQ(p) is minimal with respect
to the admissible well-order on |DY|. Since B is a Grobner basis, we may choose an
index 4, a morphism ¢ : d; — d’, a function n : T(d’) — N, and a scalar A € k such
that LT (p) = Az"(LT(p;)). By Lemma 2.11, this is equal to LT (Az"¢(p;)). But then
p — Az™(p;) is not in the submodule generated by B and has a leading quartet strictly
smaller than LQ(p), which gives a contradiction. O

Proposition 2.13. Suppose that the ring k is Noetherian. For every object d of D, the
principal projective Pyq € Repy (D, ¥ o T') is Noetherian.

Proof. By Lemma 2.12, it is sufficient to show that every submodule N/ C Py has a
Grébner basis. By property (G2), the set LQ(N) C |DZ| has only finitely many minimal
elements with respect to the partial order. Choose finitely many quartets pi,..., 1,
representing these minimal classes, and write u; = (d, d}, p;,m;). For each i, the fact
that k is Noetherian implies that the ideal £¢(N,u;) is generated by finitely many
elements

AL ek
For each j < s;, choose an element 0 # p? € N'(d}) with LT(p]) = AJb,,,, and let

Bi={(d,p])[1<i<r, 1<j<s}.
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We claim that B is a Grobner bases for N.

Let 0 # p € N(d') be given; we will show that LT(p) is in the submodule of Py
generated by the classes LT(pg). Let v := LQ(p). By definition of the quartets 1, . .., t,
there exists an index ¢ such that [u;] < [v]. That means that we can choose a morphism
¥ :d; - d and a map n: T(d") — N such that v = ¢(p;) + n. Since [p;] < [v], we have
LE(N,v) C LN, u;), and therefore there exist elements ¢}, ..., (" € k such that

LEp) = A+ -+ (AT
Then

LT (p) = L(p)by
= (GIA A+ G )by )0
= 2" (G by, -+ GNID)
— 2™ (CLLT(p!) + -+ + ¢ LT ("))

is in the submodule of Py generated by the classes LT(p?). O

Corollary 2.14. Let D be an essentially small category, T : D — OI a functor, and k
a Noetherian commutative ring. If the pair (D, T) is Grobner, then Rep,(D, ¥ o T) is
locally Noetherian.

Proof. Suppose that M € Rep, (D, ¥ o T') if finitely generated. By Lemma 2.2, M is a
quotient of a direct sum of principal projectives. Proposition 2.13 tells us that each of
these principal projectives is Noetherian, and Lemma 2.4 then tells us that the same is
true of M. O

2.4. Quasi-Grébner pairs

Let ® : D — C be a functor. Following Sam and Snowden [22, Definition 3.2.1], we
say that ® has property (F) if, for any object ¢ of C, there exist finitely many objects
dy,...,d, of D along with morphisms ¢; : ¢ — ®(d;) such that, for any object d of D
and any morphism 1 : ¢ = ®(d), there exists an ¢ and a morphism p : d; — d such that
1 = ®(p) o ;. Given a functor S : C — FI, we say that the pair (C,.S) is quasi-Grobner
if there exists a Grobner pair (D, T') and an essentially surjective functor ® : D — C with
property (F) such that S o ® is naturally isomorphic to ¥ o T

Remark 2.15. The pair (C, () is quasi-Grobner if and only if the category C is quasi-
Grobner in the sense of [22].

Let ®: D — C and S : C — FI be any functors. For any commutative ring k, we have
an exact functor ®* : Rep,(C, S) — Rep, (D, So®) that takes a module M € Rep,(C, S)
to
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"M := Mo ® € Rep,(D, S o).

Proposition 2.16. Let ® : D — C be a functor with property F, let S : C — FI be any
functor, and let k be a commutative ring. If M € Rep,(C,S) is finitely generated, then
®* M € Rep, (D, S o ®@) is finitely generated.

Proof. Since M is finitely generated, Lemma 2.2 tells us that M is a quotient of a direct
sum of principal projectives. Since ®* is exact, ®* M is a quotient of a direct sum of
pullbacks of principal projectives. Thus, it is sufficient to show that, for any object ¢ of
C, ®*P,. is finitely generated. Choose finitely many objects d,...,d, of D along with
morphisms ¢; : ¢ = ®(d;) as in the definition of property (F). Consider the maps

Pdi — (I)*,PCP(dI) — (I)*Pc;

where the first map is induced by ® and the second is induced by ¢;. Property (F) says
precisely that the direct sum map

PP, — 2P

i=1

is surjective, which implies that ®*P, is finitely generated. O

Proof of Theorem 2.5. Let (C, S) be quasi-Grobner pair. That means that there exists a
Grobner pair (D, T), an essentially surjective functor ® : D — C with property (F), and
a natural isomorphism ¥ o7 = S o ®. Fix a commutative ring k, a finitely generated
module M € Rep,(C, S), and a submodule N' C M. We need to prove that A is finitely
generated, as well.

Proposition 2.16 tells us that ®*M € Rep(D,S o &) ~ Rep, (D, ¥ o T) is finitely
generated, and Corollary 2.14 then implies that ®*A C ®* M is also finitely generated.
Choose a generating set consisting of objects dy, . .., d, of D and elements v; € ®*N(d;).
This means that, for any object d of D, ®*N (d) is spanned over A(d) by the images of
the elements v; along the maps induced by all possible morphisms ¢; : d = d;. This is
equivalent to saying the N'(®(d)) is spanned over A(®(d)) by the images of the elements
v; € N(®(d;)) along the maps induced by all morphisms ®(yp;) : ®(d) — ®(d;). Since
is essentially surjective, this means that A is finitely generated. O

3. Graphs

We define the category G<, and use the results of Section 2 to prove Noetherianity
results about the representation theory of this category.
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3.1. Defining the graph categories

A directed graph is a quadruple (V, A, h,t), where V and A are finite sets (vertices
and arrows), and h and ¢ are each maps from A to V (head and tail). A graph is a
quintuple (V, A, h,t,0), where (V, A, h,t) is a directed graph and o is a fixed-point-free
involution of A with the property that h =too. If (V, A, h,t,0) is a graph, elements of
the quotient A/c are called edges. Given a directed graph D = (V| A, h,t), we define the
underlying graph D = (V, A, h,t,0), where A = A x {#1}, h(a,1) = h(a) = t(a,—1),
t(a,1) = t(a) = h(a,—1), and o acts by toggling the second factor. We will usually
suppress h and ¢ from the notation and simply write (V, A4, o) for a graph.

Remark 3.1. This might seem to be an unnecessarily complicated definition of a graph.
For example, one might try defining a graph to consist of a vertex set, and edge set, and
a map from edges to unordered pairs of vertices. However, we want a graph with a loop
to have a nontrivial automorphism that reverses the orientation of the loop. It is difficult
to formalize this with the unordered pair definition.

If G =(V,A,o0) is a graph and v,v" € V, a walk in G from v to v’ is a finite sequence
(a1,...,a,) of arrows with t(a1) = v, h(a,) = v, and h(a;) = t(a;+1) for all 1 <4 < n.
A path in G from v to v’ is a walk from v to v’ of minimal length. We say that G is
connected if there exists at least one path between any pair of vertices, and we say that
G is a forest if there exists at most one path between any pair of vertices. A nonempty
connected forest is called a tree.

Let G = (V,A,0) and G' = (V', A’,0’) be graphs. A minor morphism from G to G’
is a map

e:VUAUY =V UA U {x}
satisfying the following properties:

o p(*) = *.

o For every vertex v € V, p(v) € V'.

o For every arrow a € A, poo(a) = o’ o p(a) where ¢’ acts trivially on V' U {x}.
o For every arrow o’ € A’; there exists a unique arrow a € A with p(a) = a'.

o If p(a) € A, then poh(a) =h' op(a) and pot(a) =t op(a).

o If p(a) € V, then poh(a) = p(a) = pot(a).

e For every v' € V', p~1(v') consists of the edges and vertices of a tree.

The edges that map to vertices are called contracted edges and the edges that map to
+ are called deleted edges. Note that the second condition and third conditions imply
that the edges of G that are neither deleted nor contracted map bijectively to the edges
of G’. In particular, ¢ induces an injection ¢* : A’/o’ — A/o.
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Remark 3.2. If G and G’ are connected graphs, then a minor morphism ¢ : G — G’
is determined by its restriction to the set of arrows of G. (Connectedness is necessary
because the graph with two vertices and no arrows has a nontrivial automorphism swap-
ping the vertices.) However, it is convenient to define ¢ on the whole set V U A U {*} so
that minor morphisms can be composed simply by composing functions. Note that ¢ is
not determined by the map on edges ¢*. To see this, consider the example where G has
two vertices and two parallel edges between them, and G’ consists of a single vertex with
no edges. There are two minor morphisms from G to G’, corresponding to the choice of
which edge is deleted and which edge is contracted.

Let G denote the category whose objects are nonempty connected graphs and whose
morphisms are minor morphisms.

Conjecture 3.3. The category G°P is quasi-Grobner.

Remark 3.4. The Grobner cover of G°P should be the category ODP of directed graphs
whose arrows are ordered with opposite minor morphisms that preserve the order of
arrows. That is if ¢ : (VA h,t) — (V/,A,R/,¢') is a minor morphism of directed
graphs whose arrows are ordered, then we also require that whenever a] < a} in A’
then p*(a}) < ¢*(a}) in A. However, to prove that OD°P satisfies property (G2) one
would need a stronger version of Robertson and Seymour’s labeled graph minor theorem
[20, p. 1.7] where the order of the labels on edges is preserved in the above sense. If
Conjecture 3.3 is proven, then all of the results in Section 4 can be upgraded from
statements about graphs with genus at most g to statements about all graphs with no
restriction on genus.

In light of Remark 3.4, we restrict our attention to a family of full subcategories of
G°P. The combinatorial genus of a graph G = (V, A, 0) is |A/o| — |V |+ 1. For any g > 0,
let G<4 be the full subcategory of G whose objects are non-empty connected graphs of
genus at most g.

Theorem 3.5. For any positive integer g, g°<1; is quasi-Grébner.

The proof of Theorem 3.5 relies on the work in [17] which we summarize here.

A rooted tree is a pair (T, v) where T is a tree and v is a vertex of T called the root.
There is a natural partial order on the vertex set of rooted tree where w < v if and only
if the unique path from w to the root passes through u. A direct descendant of a vertex
w is a vertex covered by w with respect to this partial order. A planar rooted tree is a
rooted tree equipped with a linear order on the set of direct descendants of each vertex.
Note that this gives a depth first linear order on the set of vertices.

Let L be a finite set. An L-labeled planar rooted tree is a triple (T, v, ¢) where (T, v)
is a rooted tree and ¢ is a function from the set of vertices of T to L.
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In a nonempty connected graph G, a spanning tree for GG is a subgraph that is a
tree and contains all vertices of G. Now, for each genus g, fix once and for all a graph
R, with one vertex and g loops. Define a rigidified graph of genus g to be a quadruple
(G,T,v,7) where G is a graph of genus g, (T,v) is a planar rooted spanning tree of G,
and 7 : G — Ry is a minor morphism where the contracted edges are exactly the edges of
T. Note that rigidified graphs come equipped with a linear order on the vertices coming
from their planar rooted spanning trees. A morphism of rigidified graphs (G, T,v,7) —
(G",T',v',7") between rigidified graphs of genus g is a minor morphism ¢ : G — G’ that
restricts to a minor morphism 7" — T’ such that ¢(v) = v/, and if w’ < «’ under linear
order on vertices of G’, then the smallest vertex in the preimage of w’ comes before the
smallest vertex in the preimage on «' under the linear order on the vertices of G. Note
that a minor morphism between graphs of the same genus necessarily has no deleted
edges.

Let RG, be the category whose objects are rigidified graphs of genus g and whose
morphisms are minor morphisms of rigidified graphs of genus g. Let Rg‘;f’g denote the
category whose objects are rigidified graphs of genus at most g and whose morphisms
are minor morphisms of rigidified graphs between graphs of the same genus. One can
think of RGZ, as a kind of disjoint union of the finitely many categories RG}" for h < g.

Theorem 3.6 ([17]). For any g > 0, the category RG," is Grébner.
Corollary 3.7. For any g > 0, the category RGZ, is Grébner.

Proof. It is clear from the definitions that RGZ satisfies properties (G1) and (G2) since
RG;? satisfies both properties for each of the finitely many h < g. O

Note that there is a forgetful functor
Py RO, = G,

which sends a rigidified graph to its underlying graph and a minor morphism of rigidified
graphs to the underlying minor morphism of graphs.

Lemma 3.8. The functor ®<, satisfies property (F).

Proof. This proof is similar to the proof of [17, Lemma 3.11]. The fact that ®<, is
essentially surjective is clear as every graph can be given a rigidified graph structure.

Let G be a graph of genus h < g with exactly n edges. To show ®<, has property
(F), we need to produce a finite collection (G;, T;, v;, 7;) of Rigidified graphs of genus at
most g along with minor morphisms ¢; : G; — G such that, given any rigidified graph
(G, T'",v',7") and minor morphism ¢ : G’ — G, there exists an index i and a morphism
of rigidified graphs p: (G',T',v',7") — (G4, T;, v, 7)) with ¢ = ¢; 0 P<4(p).
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Consider all possible rigidified graphs with at most n + 29 — h edges and genus at
least h and at most g. For each isomorphism class of such rigidified graph, choose a
representative (G”,T",v"”,7"") and add it to our collection (G;,T;, v;, 7;) as many times
as there are minor morphisms G” — G. Then, take our collection of minor morphisms
;i so that for each i, every possible minor morphism G; — G appears in our collection.
Note, there are only finitely many isomorphism classes of rigidified graphs with at most
n+ 2k — h in RG;” and for such a rigidified graph there are only finitely many minor
morphisms from the underlying graph to G. Thus our collection of rigidified graphs and
minor morphisms is indeed finite.

Now, fix a rigidified graph (G',T’,v’,7’) with genus k where h < k < g and a minor
morphism ¢ : G’ — G. Let E’ be the set of edges that are contracted under . In a
morphism of rigidified graphs, we are only allowed to contract edges in the designated
spanning tree. Thus, let p be the morphism of rigidified graphs p : (G, T',v',7") —
(G"/(E'NT"), T'/(E'NT"),v’,7") corresponding to contracting the edges of E'NT”. Clearly
¢ factors through ®<4(p). All that we must verify is that (G'/(E'NT"), T’ /(E'NT"), v, )
is a member of our collection. In otherwords, we must show that G’'/(E’ N'T’) has at
most n+2g — h edges. Let n’ be the number of edges of G’. Since deleting an edge lowers
the genus of the graph by 1, we know that under ¢, exactly k — h edges are deleted.
Thus, n’ =n+ k — h + |E’| or equivalently,

|E'|=n"—(n+k—h).
Furthermore, we know that the number of edges in T” is equal to n’ — k. Thus,
|E'NT'|>n"—(n+k—h)—k=n"—n—2k+h.
This implies that the number of edges in G'/(E’ NT") is at most
n—m-n—-2k+h)=n+2k+h
which is no more than n 4+ 2g + h since k < g. O
3.2. Edge functors

Recall that given a minor morphism of graphs ¢ : (V, A,0) = (V’/, A’,¢’), we get an
inclusion of edge sets ¢* : A’/o’ — A/o. Thus, we have an edge functor

E: gg‘; — FI
taking a graph G to its set of edges. Similarly, the edges of a rigidified graph are totally

ordered and given minor morphism of rigidified graphs, the pullback inclusion on edge
sets preserves this order. This gives an ordered edge functor
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Q: RGP — Ol

taking a rigidified graph to its ordered set of edges. Recall from Section 2.2 that W :
OI — FT1 is the forgetful functor that sends an ordered set to its underlying (unordered)
set.

Lemma 3.9. ¥ o Q and E o @<, are naturally isomorphic functors Rg%pg — FL
Proof. This is clear from the definitions of the functors. O
Theorem 3.10. The pair (Rg%pg,Q) is Grébner.

To prove Theorem 3.10 we will need a labeled version of a planar rooted tree. This is
a slightly more general version of the notion of an S-labeled planar rooted tree in [17].
Let L be a set equipped with a well quasi order <. An L-labeled planar rooted tree is
a triple (T, v,£) where (T,v) is a planar rooted tree and ¢ is a function from the set of
vertices of T' to L. An L-labeled minor morphism of planar rooted trees or L-labeled
minor morphism (7,v,¢) — (T7,v',¢) is a minor morphism ¢ : (T,v) — (T',v') of
rigidified graphs of genus 0 (note planar rooted trees are exactly the rigidified graphs
of genus 0) such that ¢/(w’) < ¢/(max ¢~ (w’)) where max ¢~!(w’) is the first vertex in
the preimage of w’ under ¢ with respect to the natural depth first order on the vertices
of T. Let PT 1 denote the category whose objects are L-labeled planar rooted trees and
whose morphisms are L-labeled minor morphisms. For a fixed L-labeled planar rooted
tree (T,v,¢), we may give a quasi ordered < to the L-labeled minor morphisms into
(T, v,¢). Namely, if ¢ : (T",v",¢') = (T,v,£) and " : (T",0" ") = (T,v,{) are L-
labeled minor morphisms, then ¢ < ¢” if and only if there exists an L-labeled minor
morphism ¢ : (T, 0", £") — (T",v',£') such that ¢ = ¢’ 0 tp. Let [(PT ") (10,0 | denote
the poset of equivalence classes of L-labeled minor morphisms into (T, v,¢) under this
quasi order.

Lemma 3.11. Let L be a well quasi ordered set. We partially order the isomorphism
classes of L-labeled planar rooted trees where [(T',v', )] < [(T,v,?)] if and only if there
is a minor morphism of L-labeled planar rooted trees (T, v,0) — (T', 0", ¢').

Corollary 3.12. Let L be a well quasi ordered set. Fix an L-labeled planar rooted tree
(T,v,£). The poset |(PT ") (r,v,0)| is a well partial order.

Remark 3.13. Note that the notion of L-labeled planar rooted tree and L-labeled minor
morphism are slight generalizations of the notions of an S-labeled planar rooted tree
and an S-labeled contraction defined in [17] where the set of labels was an (unordered)
finite set. Nevertheless, Lemma 3.11 and Corollary 3.12 are analogues of and have nearly
identical proofs to [17, Theorem 3.6] and [17, Corollary 3.7] respectively. Thus, we omit
their proofs here.
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Recall from Section 2.2 that a quartet 4 = (R, R', ¢, m) for the pair (L|,<, RG,", OF)
consists of two rigidified graphs of genus at most g, R = (G, T,v,7), R' = (G, T",v',7'),
a minor morphism of rigidified graphs ¢ : " — R, and a map of sets m from the edges of
R’ to N. We should think of m as assigning to each edge of R’ a natural number. For any
fixed rigidified graph R, We also have a quasi order on quartets whose first coordinate is
R where (R, R',¢',m’) < (R, R",¢"”,m"”) if there exists a minor morphism of rigidified
graphs ¢ : R” — R’ such that ¢ = ¢’ 09 and if €’ is an edge in R', m/(e') < m" (¢*(€’))
where ¢* is the natural inclusion of the edges of R’ to the edges of R”. Denote the
corresponding poset of equivalence classes under this quasi order by \(Rg%pg)gE |

Fix a rigidified graph R = (G, T, v, 7) with genus h < g. Now for a suitable choice of L,
we wish to encode each quartet with first coordinate R as an L-labeled planar rooted tree
so that the poset [(RGZ )3 | is equivalent to the poset |(PT ") (10| where (T,v) is the
planar rooted tree of R and / is some suitable label. To this end, let L = (NU{%})?" x N.
The order on (N U %) comes from the usual order on N along with setting x to be
incomparable to all elements of N. Then, the order on L is the usual order on the
cartesian product of posets.

Given a quartet of the form (R, R, ¢, m), where R’ = (G',T’,v', ") the corresponding
L-labeled planar rooted tree will be of the form (77, v, £') for some labeling ¢'. Note that
R’ must also have genus h since we only have morphisms of rigidified graphs between
rigidified graphs of the same genus. Thus, R’ has h extra edges not in T”. The planar
rooted structure of (77,v’) gives an orientation and ordering to these h extra edges (we
orient them from smaller to larger vertex and then order them by the order on their
terminating vertex). Call these extra edges €],...,e},. For each 1 < i < h, let wj,_; be
the vertex at which e; originates and let w}; be the vertex at which e; terminates. Then
for each vertex w’ of T, and each 1 < j < 2h, define the jth coordinate of ¢'(w’) to
be m(e}) if w > w; and % otherwise. Then for each edge ¢’ in T", if w’ is the vertex
of ¢’ further from the root, set the last coordinate of w’ to m(e’). Finally set the last
coordinate of #'(v’) to 0. The intuition behind this labeling is that the first 2h coordinates
encode the location and weights given by m for the h edges not in 7”. The last coordinate
encodes the weights given by m of the edges in T”. Finally, let £ be the fixed labeling of
(T, v) corresponding to the quartet (R, R,Idg,0).

Lemma 3.14. Let (R, R’,o,m) be a quartet and (T',v',¢') be the corresponding L-
labeled planar rooted tree as defined above. Then ¢ induces an L-labeled morphism
YL (Tl,U/agl) — (T,’U,g).

Proof. One simply uses a nearly identical argument to the one given in the proof of
Lemma [17, Lemma 3.8]. O

Lemma 3.15. Let ¢/ = (R, R',¢’,m’) and p/ = (R, R",¢",m") be quartets with corre-
sponding L-labeled planar rooted trees (I",v',¢') and (T",v",¢") and define ¢ and ¢/
as in Lemma 3.14. Then p/ < p" if and only if ¢, < @} in |[(PTE) (1,00
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Proof. Note that x4/ < p’ means there exists a minor morphism of rigidified graphs
1 : R — R’ such that ¢ = ¢’ ot and for any edge €’ of R', m/(e/) < m” (¢*(e’)). Using
a nearly identical argument to that given in the proof of [17, Lemma 3.8] we see that such
a minor morphism 1 is equivalent to an L-labeled minor morphism of L-labeled planar
rooted trees ¢y, : (T”,v",¢") — (T",v',¢') such that ¢/ = ¢} o1r. This is equivalent to
saying ¢, < ¢7. O

proof of Theorem 3.10. That the pair (RGZ,, () satisfies property (G1) follows from
Corollary 3.7 and Proposition 2.10. The fact that (RGZ,, OF) satisfies property (G2)
follows from Lemma 3.15 and Corollary 3.12. O

Theorem 3.16. The pair (G2, E) is quasi Grébner

Proof. This follows from Lemmas 3.8 and 3.9. O
3.3. Finite generation

Theorems 3.5 and 3.16 tell us that the categories of representations Repk(ggpg) and
Repk(gg;, E) are locally Noetherian. That is, every submodule of any finitely generated
module of either of these categories, is itself finitely generated.

The properties of finitely generated G°P-modules fall into two broad categories: global
and local. Global properties are those which universally bound or otherwise restrict
algebraic behaviors present in the constituent modules M (G). Local properties, on the
other hand, are those that can be observed when one limits their attention to the modules
M(G), where G ranges within certain natural families of graphs. We note that the study
of the category G°P and its representations is still fairly new, and thus the following list
should by no means seen as exhaustive. We believe that future study into understanding
the inner mechanisms of finitely generated G°P-modules is a very interesting direction
for future research.

To begin, we have the following, which is essentially just a reformulation of the defi-
nition of finite generation.

Theorem 3.17. Let M be a finitely generated Q%Z Then there exists a non-negative integer
N such that for all graphs G one has

M(G) = COlimg/<G M(G,),
where the colimit ranges over all proper minors G' of G that have no more than N edges.

One may view this theorem as stating that given a finitely generated g%pg—module M,
the presentation of M (G) becomes standardized once G has sufficiently many edges. Our
next result relates with how fast g;‘;-modules can grow. For the following statement, we
write e(G) for the number of edges of G, and v(G) for the number of vertices.
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Theorem 3.18. Let M be a finitely generated g%‘;-module over a field k, and assume that
the generators of M have no more than N edges, for some non-negative integers N.
Then there exists a polynomial P € Q|x,y] of degree at most N such that,

dimy M(G) < 7(G)P(e(G),v(G)),
where T7(G) is the number of spanning trees of G.

Proof. For simplicity during this proof, write g(G) = e(G) — v(G) + 1. It will suffice to
prove the theorem in the case where M is the principal projective module Pg/, for some
fixed graph G’. In this case, for any graph G, the dimension of M (G) is precisely the
number of minor morphisms from G to G’. Any such morphism, up to an automorphism
of G/, can be determined in the following way: First one picks a spanning tree of G in
which all of the contractions will take place. One then chooses g(G’) edges not to delete
outside of this spanning tree, and e(G') — g(G’) edges to not contract within the spanning
tree. Therefore,

e 16) @176 (160 ()

This then implies,
dimy M(G) < | Aut(G)|7(G)g(G)*“) (v(G) — 1))
as desired. O

Remark 3.19. The bound of Theorem 3.18 is an improvement of a bound found in [17],
and can be seen to be sharp. Consider the principal projective module P,, over the graph
with no edges. In this case, a minor morphism from a graph G to the graph e is precisely
determined by a choice of spanning tree for G. In particular,

dimg Ps(G) = 7(G)

The example of the dimension growth of P, is also notable, as it illustrates just how
complicated computing the dimensions in finitely generated gogpg—modules can be. In
other words, while one can in principal compute dimg(Ps(G)) for any graph G using,
for instance, the Matrix Tree Theorem, this is fairly non-trivial counting. Moreover, P,
is the simplest of the principal projective modules, and this is not even to mention the
kinds of behaviors present in the dimensions of the submodules of principal projective
modules. It is for this reason, as we shall see, that it is often times more mathematically
fruitful to consider what we call the local properties of G2 -modules.

Our final global property of finitely generated gg;—modules relates with the kinds of
torsion that can appear in the modules M (G).
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Theorem 3.20. Let M be a finitely generated g%pg—module over Z. Then there exists a
non-negative integer € such that for all graphs G of genus at most g, the torsion part of
M(G) has exponent at most €.

Proof. If t € M(G) is a torsion element, then for any minor morphism ¢ : G’ — G,
the induced map M(G) — M(G') must send ¢ to a torsion element. Thus, we have a

%I;-submodule T of M, where T sends a graph G to the torsion part of M(G). By
assumption M (G) is finitely generated, so Theorem 1.1 tells us that 7' is also finitely
generated, by say the graphs G, ..., G,. We may take € to be the least common multiple
of the annihilators of T'(G1),...,T(Gy). O

Moving on, we next consider two local consequences of finite generation. Our first
such result describes the growth of the modules associated to families of graphs obtained
through sprouting and subdividing.

Theorem 3.21 (Corollaries 4.5 and 4.7, [17]). Let M be a finitely generated Q%‘;—module
over a field k, and let G be a fized graph, with a distinguished collection of vertices
V1,..., U, and edges e1, ..., es. We write GO-") for the graph obtained from G by
attaching n; leaves to the vertexr vi, and Gy, . m,) for the graph obtained from G
by subdividing the edge ej, m; times. Then there exist polynomials Py(n1,...,n,) and
Py(my,...,mg) such that

dimg M (G ")) = Py(ny, ... ny)

dimk M(G(mhm,ms)) = Pg(ml, ce ,ms),
for all vectors (n1,...,n,) and (my,...,ms) whose each component is sufficiently large.

Through subdivision one can, for instance, study M (G) as G ranges within the cycle
graphs. This approach was particularly useful in the case of Kazhdan-Lusztig polynomials
of graphical matroids (see [17]). Later, we will relate a space considered by Farb Wolfson
and Wood to sprouting on the two vertices of a single edge.

Our final local property relates with restriction to the family of trees. Recall that
a Dyck-path is a properly nested set of parentheses. Equivalently, it is a word in the
symbols 1 and —1 such that all partial sums beginning from the start of the word are
never negative. To each Dyck-path w, one may associate a (rooted and planar) tree
as follows: reading w from left to right, draw a new edge going upward each time a
left parenthesis is read, while you backtrack down the nearest edge whenever a right
parenthesis is read. For instance, the Dyck-path (()()) is associated to the tree that
looks like the letter Y. Importantly, this association is not one-to-one — For instance,
000 is also associated to the graph that looks like the letter Y — though every tree
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arises in this way.! We write T'(w) for the tree associated to the Dyck-path w. We also
write r(w) for the number of left parenthesis in the Dyck-path w — i.e. half of its length.

Theorem 3.22 (Theorem 1, [18]). Let M be a finitely generated Gi*-module over a field
k. Then the generating function

HDy(t) == dimy (M (T (w)))t"™),

where the right hand sum is over all Dyck-paths, is algebraic.

If M is the module that assigns the field k£ to every graph, then the above theorem
specializes to say that the generating function for the number of Dyck-paths is algebraic.
In other words, the generating function of the Catalan numbers is algebraic. This is a
very well known fact about these numbers.

4. Applications to topological combinatorics

Throughout this section, let g > 0 be a fixed integer. In this section, we present a
number of applications of the representation theory of QZP; to topological combinatorics.

4.1. The matching complex

Now, we introduce matching complexes of graphs and show that for any 4, the map
assigning to each graph G with genus at most g the ith homology group of its matching
complex forms a finitely generated G2°-module.

For a graph G, a matching on G is a subset S C E(G) of non-loop edges such that
no two edges in S share a vertex. Note that any subset of a matching is also a matching
and the empty set, &, is a matching. Thus, the collection of matchings on G forms a
simplicial complex M(G) whose vertices are the edges of G, which we call the matching
complex on G.

The topology of matching complexes on the complete graphs K, and the complete
bipartite graphs K, ,, have been well studied. Much of what is known about the topology
of these complexes is outlined in [25] and [7]. We outline a few notable results on these
complexes below.

It was shown by Bjérner, Lovasz, Vreéica, and Zivaljevié in [1] that, for n > 2, M(K},)
is v, — 1 connected and, for 1 <m <n, M(K,, ) i vpm — 1 connected where

1 1
vV, = {n;— J—landum,n:min{m, {%J}—l

1 Note however that the association is one-to-one if we instead consider rooted trees with a cyclic order
on the edges moving away from the root for every vertex.



24 D. Miyata, E. Ramos / Advances in Mathematics 430 (2023) 109203

Later, this was result was strengthened by Shareshian and Wachs, who showed that the
vp-skeleton of M(K,,) is shellable [24] and Ziegler, who showed that the v, ,,,-skeleton
of M(K ) is shellable.

Remark 4.1. In view of our main Theorem 4.3, the above results may seem a bit concern-
ing. Indeed, finite generation would be meaningless if it was known that the module was
eventually — i.e. perhaps for all graphs with sufficiently many edges — constantly zero!
To see that this is not the case, consider the tree GG,,, which has two vertices of degree
n+ 1, connected to each other by a single edge. In this case the matching complex of G,,
is seen to be one dimensional. Indeed, it is precisely the disjoint union of the complete
bipartite graph K, , and a single point. This particular topological space only has non-
trivial homology in degrees 0 and 1, where it is isomorphic to a free group of ranks 2
and n? — 2n + 1, respectively. Similar examples can be constructed to show that, in any
homological degree, the homology of the matching complex is not eventually constantly
Zero.

The rational homology of these complexes is known due to the work of Bouc [2] and
Friedman and Hanlon [5]. However, much is still unknown regarding the torsion in the
integral homology of these complexes. Shareshian and Wachs show that the homology
of M(K,,) exhibits 3-torsion for sufficiently large n and the homology of M(K,, ) also
contains 3-torsion for certain (but infinitely many) values of m and n [24]. Later, Jonsson
showed that 5-torsion in present in the homology of M(K,,) for sufficiently large n and
found that there are elements of order 5, order 7, order 11, and order 13 appearing in the
homology of M(K,,) for varying values of n [8]. For graphs other than K,, and K, n,
not much is known about the topology of their matching complex.

There is also a natural generalization of the matching complex. Note, that for a graph
G, and any subset F' C E(G), we have the induced the subgraph G of G. Namely, G
is the graph with V(Gr) = V(G) and E(GFr) = F. Thus, F is a matching on G if and
only if each vertex of G has degree at most 1. More generally, for any integer d > 1 we
can consider subsets F' C E(G) such that each vertex of Gr has degree at most d. Call
such a subset a d-matching of G. Note that the collection of all d-matchings on G forms
a simplicial complex which we will denote M (G). In particular, M;(G) = M(G), the
matching complex.

In the case where G is a forest, Singh showed that M4(G) is either contractible or
homotopy equivalent to a wedge of spheres [21]. For d > 2, Jonsson showed that if n is
sufficiently large, then there exist certain values of d depending on n, where the homology
of M4(K,) contains 3-torsion [10].

In this paper, we approach the problem of studying the homology of M4(G) for
general graphs G in a completely new way, by realizing the map sending a graph G to
the homology of M4(G) as a finitely generated G2 -module.

To do this, we will need a particular G2° -module. Let Mg be the G2¥ -module which
assigns to each graph G the free R-module with basis indexed by the edges of G. For
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each minor morphism ¢ : G — G’, the natural inclusion ¢* : E(G') — E(G) gives us a
natural inclusion Mg(¢) : Mgp(G') — Mg(G). We will call Mg, the edge module. This
g%pg—module satisfies the following very important property.

Lemma 4.2. For any i, the ith tensor power of the edge module, Mgi, is a finitely gen-
erated G -module.

Proof. For any graph G, M]?i(G) has basis given by i-tuples of edges of G. Let G be a
graph with strictly more than ¢ edges. Then for any tuple (eq,...,e;) of edges of G, one
may find an edge e of G that is not among the e;. By contracting e, or deleting it in the
case where e is a loop, one obtains a minor morphism ¢ : G — G’. It is clear that the
tuple (eq,...,e;) will be in the image of the map induced by . In other words, Mgi is
generated by graphs with at most ¢ edges, of which there are only finitely many up to
isomorphism in g;‘;. O

Theorem 4.3. For any i > 0 and any d > 1, H;(My(=);Z) is a finitely generated QOSI;—
module.

Proof. For this proof, we are working with Z-coefficients, though we will suppress this
from the notation.

First, we argue that H;(Mg(—)) is in fact a G2 -module. Recall that given a minor
morphism ¢ : G — G’, we have an induced inclusion on edge sets ¢* : E(G') — E(G)
sending an edge in G’ to the unique edge in its preimage under . Now, let F' C E(G'). If
some vertex v € V(@) were incident to more than d edges in ¢*(F’), then p(v) € V(G')
would be incident to more than d edges in F’. Thus, if F’ is a d-matching on G’, then
©*(F") is a d-matching on G. We may therefore, consider ¢* as a function

¢* : {d-matchings on G’} — {d-matchings on G}.

Furthermore, this map is compatible with taking boundaries of simplices and so we get
a chain map

po 1 Co(Ma(G")) = Co(Ma(G))

where C¢(M4(G)) denotes the simplicial chain complex of M4(G). This induces a map
H;(M4(G") = H;(My4(G)). The above construction is compatible with taking compo-
sitions of minor morphisms and so indeed H;(Mg(—)) is a G2 -module.

To see that it is finitely generated, note that following the above construction, for any
i, Ci(Ma(—)) also forms a G -module and H;(Mq4(—)) is a subquotient of C;(Ma(—)).
Because C;(Mg(—)) is a submodule of A\* Mg, the ith wedge power of the edge module,
and \' Mg is a quotient of ME', we see that H;(My(—)) is a subquotient of Mg’
By Lemma 4.2, M2" is a finitely generated G2"-module and so Theorem 1.1 tells us
H;(Mg(—)) is itself finitely generated. O
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This theorem leads to an immediate corollary regarding the torsion that can appear in
the homology which says that for fixed ¢ and d, there is some uniform maximum torsion
that can appear in H;(M4(G)) as G ranges over all graphs of genus at most g.

Corollary 4.4. For any i > 0 and any d > 1, there exists a positive integer €; 4,4 such
that, for any graph G with genus at most g, the torsion part of H;(Mgy(—)) is annihilated
by €i,.d-

Proof. This follows immediately from the previous theorem as well as Theorem 3.20. O
4.2. Other graph complexes

The matching complex of a graph is just one example of a simplicial complex on
the edges of a graph. More generally, one can consider what is called a monotone graph
property. This is a collection P of graphs, closed under isomorphisms, such that if G € P
and G’ is another graph with V(G’) = V(G) and E(G’) C E(G), then G’ € P. In other
words, P is closed under edge deletions. Note that, for any graph G, we obtain a simplicial
complex Ap(G) on the edges of G where the n-simplices of Ap(G) correspond to graphs
G' € P with V(G') = V(@), E(G") C E(G), and |E(G")| = n + 1. Intuitively if we
identify a graph in P with its set of edges, the n-simplices are just sets of n + 1 edges of
G in P. See [7] for a comprehensive reference on graph complexes. In particular [7, Table
7.1] gives a list of monotone graph properties and what is known about the homotopy
type of their corresponding simplicial complexes.

Recall that a minor morphism ¢ : G — G’ induces an inclusion ¢* : E(G") — E(G).
Suppose that P is a monotone graph property with the extra condition that, if ¢ : G — G’
is a minor morphism and H' is a simplex in Ap(G’) (that is, H € P, V(H') = V(G’), and
E(H') C E(G")), then the subgraph of G induced by the image ¢*(E(H')) is also in P.
Call such a P a g%pg-monotone graph property. In rough terms, a g%‘;—monotone graph
property is a monotone graph property that is also preserved under “uncontracting”
edges. Note that by construction, if P is a Q%pg—monotone graph property, then for any
minor morphism ¢ : G — G’, the n-simplices of Ap(G’) naturally include in the n-
simplices of Ap(G). This observation and the argument used in the proof of Theorem 4.3
yields the following result.

Proposition 4.5. Let P be a goj;—monotone graph property. For any i, the assignment of G
to the ith simplicial homology group H;(Ap(G)) forms a finitely generated on;—module,

Thus, for any Q%I;—monotone graph property, one would obtain an analogous result to
Corollary 4.4 about the torsion that can appear in the ith homology group of Ap(G) as
G ranges over all graphs with genus at most g.
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4.3. Commutative algebra of graph complezes

Famously, the study of simplicial complexes is, in a formal sense, dual to the commuta-
tive algebra of square-free monomial ideals through the Stanley-Reisner correspondence.
We consider this perspective in this section. Fix a field K. Recall that our edge functor
E: G& — FI gives rise to another functor Ap from G2 to K-algebras where

Ap(G) = K[z | e € E(G)].

In [15], Nagel and Rémer show there are uniform bounds on the degrees for nonva-
nishing graded Betti numbers for certain families of ideals that form modules over a
particular FI-algebra. Using similar techniques, we start by describing some of the ho-
mological algebra for Ag-modules and prove analogous results about the graded Betti
numbers for families of ideals forming modules over the edge algebra Ag.

Lemma 4.6. For any finitely generated Ag-module M there exists a projective resolution
Fo of M by finitely generated Ag-modules.

Proof. By Lemma 2.2, since M is finitely generated, there exists graphs G1,...,G, and
a surjection

n

@P&E%M

=1

where Pg, is the principal projective module at G; as defined in Section 2.1. Let Fj =
@, Pélf. The kernel K of this surjection must be finitely generated by Theorem 3.10
and so again, we may find finitely many graphs Hy, ..., H,, such that there is a surjection

m
P ryr - K.
i=1
[§ 1= . —.oontinuing 1n 1S Tasnion, we pul € entire projective resolution
Let F ™ | P#”. Continuing in this fashi build the enti jecti luti

Foof M. O

Given two finitely generated Ag-modules, M and N, we may take their tensor product
over A by taking the pointwise tensor product. This gives an Ag-module M ® 4, N.
Explicitly, for any graph G,

(M ®@a, N)(G) = M(G) @4y N(G),

where the morphisms are defined in the obvious way. Now, take a projective resolution F,
of M as in Lemma 4.6. Tensoring this resolution with N gives a chain complex Fe®4, N
of Agp modules. We define Tor;(M, N) to be the Ag-module where
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Tor; (M, N)(G) = Hi(Fo(G) @ a5(c) N(G)).

For each G, Ap(G) is a graded K-algebra, where z, is in degree 1 for each e € E(G).
A graded Ag-module M is an Ag-module such that each M(G) is a graded Ag(G)-
module and for any minor morphism ¢ : G — G’, the image under M () of the degree
i part of M(G"), denoted M (G');, is contained in M (G);.

Remark 4.7. Given a finitely generated graded Ag-module M, we may upgrade the
surjection of Lemma 4.6 to a surjection of graded Ag-modules in the following way.
Suppose M is generated by the elements my,...,m, where for each i, m; € M(G;).
We may assume that each m; is a homogeneous element of M(G;) of degree d;. Then,
for each i, we give a grading to the principal projective Ag-module Pé‘f the grading
where b, € Péf (@) is homogeneous of degree d; for any graph G, and minor morphism
¢ : G — G;. Then, the morphism of Ag-modules

n

@ PP - M

=1

that sends big, to m; is a surjection of graded A g-modules. With this fact, we see that the
projective resolution of Lemma 4.6 may, in fact, be upgraded to a projective resulotion
of graded Ag-modules.

Let I be the Ag-submodule of Ag itself where I5(G) is the ideal (xz.|e € E(G)) C
Ag(G) for each graph G. Call Ig the edge ideal of Ag. Then, K4, = Ag/Ig is the
graded A g-module taking each graph to the base field K in degree 0, where all morphisms
are the identity and for each graph G, monomials of Ag(G) act by zero, and elements
of K C Ag(G) act by multiplication.

Lemma 4.8. If M is a finitely generated graded Ag-module, then Tor;(M, K 4,) is also
a finitely generated graded Ags-module for all i.

Proof. Let F, be a projective resolution of M where each term is finitely generated as in
Lemma 4.6. By Remark 4.7 we may assume F, is a projective resolution by graded Ag-
modules. For each i, F; ® K 4,, is isomorphic as an Ag-module to the module F;/IgF;
taking a graph G to the Ag(G)-module F;(G)/Ig(G)F;(G). Thus, Tor;(M,K 4,) is a
subquotient of a finitely generated Ag-module and is thus, finitely generated by Theo-
rem 3.10. 0O

Given a finitely generated graded Ag-module M, a graph G, and integers i,a > 0,
the ith graded Betti number of M in degree a with respect to G is defined to be

G (M) := dimg (Tor;(M, K 4,)(G))q.

i,a
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Theorem 4.9. Let M be a finitely generated graded Ag-module and fix i > 0. Then, there
exists an integer n; such that for any graph G,
lGa(M) =0 forall a>n,.

Proof. By Lemma 4.8, we know that T; = Tor;(M, K 4,) is a finitely generated Ag
module. Therefore, we can find a finite list ¢1,...,t¢, where t; € M(G;) for some (not
necessarily distinct) graphs Gy, ..., G,, such that for any graph G, T;(G) is generated
by the images of the ¢; under maps induced by minor morphisms G; — G. Moreover, we
may assume that each ¢; is homogeneous of degree d;. Then, define n; := max{d;}7_,.
We know that BZGG(M) = dimg (T3(G)), is the number of generators of degree a in a
minimal homogeneous generating set of T;(G) (see for instance [14, Lemma 1.32]). Thus,
since the images of the t; under maps induced by minor morphisms G; — G contain a
minimal homogeneous generating set of T;(G), if @ > n;, we must have Bfa(M )=0. O

For any fixed graph G, we can consider Ag(G) = K[z.|e € E(G)] as an NF(%)_graded

(@) which has a 1 in the e coordinate and 0’s

K-algebra where z, is in degree v, € N
elsewhere. We call this grading the edge-grading on Ag(G). If M is a graded Ag-module
such that for each graph G, M(G) is in fact an N¥(@_graded Ag(G)-module, we call
M an edge-graded Ag-module. Note that K 4, is an edge-graded Ag-module where
K 4, (G) is concentrated in degree 0 € NE(G) Thus, if M is an edge-graded Ag-module,
this induces an edge-graded Ag-module structure on Tor; (M, K 4,,) for any i.

Now, given an edge-graded Ag-module M, a graph G, an integer i > 0, and a €
NZ(&)  we can consider the i** edge-graded Betti number of M (GQ) in degree a denoted

Bi.a(M(G)) where
Bia(M(G)) = dimg (Tor;(M, K 4,)(G))a-
Let sum(a) denote the sum of the entries of a. We see that

BE(M) =Y BialM(G)).

sum(a)=a
By Theorem 4.9, we have the following immediate result.

Corollary 4.10. Let M be a finitely generated edge-graded Ag-module and fiz i > 0. Then,
there exists an integer n; such that for any graph G,

Bia(M(G)) =0 whenever sum(a) > n,.

Let us now consider the case where M is a finitely generated edge-graded Ag-module
such that for each graph G, M (G) is a square free monomial ideal of Ag(G) = K[xz.|e €
E(Q)]. In this case, using the Stanely-Reisner construction, one can associate to M (G) a
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simplicial complex Aps(G) on the set E(G). Namely, the simplices of Ay (G) are given
by squarefree monomials of Ag(G) not contained in M(G). Now, let us identify each
subset ¢ C E(G) with its indicator vector in N¥() so that each such subset of E(Q)
corresponds to a squarefree degree in the edge-grading of Ag(G). The commutative
algebra of M(G) is intimately linked with the topology and combinatorics of Aps(G).
See [23] for an in-depth treatment of this relationship. In particular, there is a nice
relationship between the edge-graded Betti numbers of M (G) and the simplicial complex
A (G) due to Hochster (see [14, Corollary 5.12]).

Theorem 4.11 (Hochster’s formula). The nonzero Betti numbers of M(G) lie only in
square free degrees, namely degrees corresponding to subsets o C E(G). Furthermore,

Bio(M(G)) = dimg H 772 (Ap (6o K)
where Ay (G|, = {7 € Ap(G) | T C o}
Hochster’s formula together with Corollary 4.10 gives the following.

Corollary 4.12. Fix i > 0. There exists an integer n; such that for any graph G, if
o C E(G) with |o| > n;, then

dimg H'1772(Ay(G)|o; K) = 0.

As an application of the above results, we first define a specific Ag-module which will
be denoted Iz.. For a graph G, the edge ideal of G is the ideal I C K[z,|v € V(G)]
generated by monomials z,2,, where v and w are connected by an edge in E(G). Given a
graph G, define the line graph of G denoted £(G) to be the simple graph whose vertices
are the edges of G and two vertices of £(G) are adjacent if and only if they share a
vertex in G. Then, define the complement line graph of G, denoted L¢(G), to be the
complement of £L(G). Namely, the vertices of L°(G) are the edges of G and two vertices
of L°(G) are adjacent if and only if they do not share a vertex in G.

Example 4.13. If G is the star graph - i.e. the tree with one vertex of degree n and all other
vertices of degree 1 - then £¢(@) is immediately seen to be a disjoint collection of points.
On the other hand, if G is the complete graph K, then £°(G) is the Kneser graph
K(n,2). indeed, certain authors refer to line graph complements as being generalized
Kneser graphs for this reason [3].

Now, let Izc be the Ag-module taking a graph G to the edge ideal of L¢(G). We see
that

I;c(G) = (zexysle, f € E(G) don’t share a vertex) C Ag(Q).



D. Miyata, E. Ramos / Advances in Mathematics 430 (2023) 109203 31

Indeed, Iz-(G) is a square free monomial ideal of Ag(G). Furthermore, if ¢ : G — G’
is a minor morphism, and e, f € E(G) don’t share a vertex, then ¢*(e), p*(f) € E(G’)
don’t share a vertex so Iz does, in fact, give an Ag-module of square free monomial
ideals.

To see that I, is a finitely generated Ag-module, note that it is a submodule of
the edge ideal Ig. We see Iy is finitely generated by the graphs Gy and Gs, where G
consists of two vertices and a single edge connecting them and the graph G consists of
a single vertex and a loop at that vertex. This is because for any graph G and any edge
e € E(G), we can find a minor morphism G — G; for some ¢ € {1,2} such that e gets
sent to the single edge in G;. Thus, the Noetherian property in Theorem 3.10 tells us
that I.c is a finitely generated Ag-module.

Applying Corollary 4.10 for any fixed i, we immediately get the existence of a bound
on the degrees of the nonzero edge-graded Betti numbers 3; a(Iz¢(G)) that is uniform
as (G ranges over all graphs. Moreover, Corollary 4.12 tells us about the cohomology of
some subcomplexes of the simplicial complexes Aj,. (G) as G ranges over all graphs. We
note that Ay..(G) is precisely the flag complex - or clique complex - of the line graph
L(G).

4.4. Linear subspace arrangements of line graph complements

In this section we study the cohomology of a certain family of hyperplane arrangement
complements. In particular, we prove a finite generation result that recovers and expands
upon similar results present in [6].

Let G = (V, E) be a graph, let d be a positive integer, and let K be either C or R.
For each e € E, if v,w € V are the endpoints of e, let W, C (Kd)v be the subspace

W, ={z e (K" |z, —x, =0}

The collection of all W, as e ranges over the edges of G is a subspace arrangement called
the graphical arrangement of G denoted 7 (G). In the case where d = 1, each W, is
a hyperplane of K. In general, W, is a codimension d subspace of (K%)V. Now, let
Conf(G, K%) = (K%Y — &/(G) be the space obtained by removing the subspaces of
7 (@). In the case where G is the complete graph K,,, Conf(G, K¢) is the usual ordered
configuration space of m points in K.

To each graph G, instead of assigning to it the space Conf(G, K?), we will assign to
it the space Conf(L¢(G), K%). We see that if ¢ : G — G’ is a minor morphism, then the
inclusion ¢* : E(G') — E(G) is an inclusion V(£(G')) — V(L(G)). Thus, ¢* induces
a natural projection

71 (KY)VE©@) Ly (gayVEE))

Furthermore, ¢* preserves pairs of edges that do not share a vertex. Namely, if e/, e}, €
E(G’") do not share a vertex, then p*(e}) and ¢*(e}) do not share a vertex. This obser-
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vation yields a natural inclusion E(L(G’)) — E(L(G)). Thus, if 2 € Conf(L(G), K9),
then @(x) € Conf(L¢(G), K?) so P restricts to a map

Conf(L(G"), K%) — Conf(L(G), K9).

The construction of the above map is functorial with respect to compositions of minor
morphisms. Thus, we have a functor from G to the category of topological spaces sending
a graph G to Conf(L¢(G), K?). Then, taking the cohomology ring with Z coefficients,
gives a functor gg{; to the category of abelian groups.

Theorem 4.14. For any i, the functor H'(Conf(L(—),C?); Z) from G, to the category
of abelian groups taking a graph G to H'(Conf(L¢(G),C%);Z) is a finitely generated
G2» -module.

Proof. For a graph G, we know that Conf(£¢(G), K¢) is the complement of a subspace
arrangement where each subspace has real codimension r where r = d when K = R
and r = 2d — 1 when K = C. In [12, Corollary 5.6], de Loungueville and Schultz give
a presentation for the cohomology ring of the complement of a subspace arrangement
over R where each subspace has the same codimension. This result tells says that the
cohomology ring H*(Conf(L¢(G), K?);Z) has the following presentation:

H*(Conf(L(G), K); Z) = N*ZFE (@) /1
when 7 is even and
H*(Conf(L%(G),K%);Z) = Sym* ZPF (&) /1

when 7 is odd. Moreover, if e € E(L°(G)), then under this isomorphism e €
H"™ 1 (Conf(L£(G), K%)). If r is even, I is generated by

k
> (—1)elej s bhinner,)ejo A NE N Mgy,
=0

and if r is odd, I is generated by

k
e? and Z(—l)le(ejl, ey €his e B )€y e €y e €y
=0

for all e € E(L(G)) and all sets {eq,,...,€q,} C F(L(G)) that form a cycle. Here,
€(€jys---18€j,,...,€x,) is a sign coming from a choice of orientation on the ambient real
vector space.

We know cycles of L°(G) correspond to sets of edges {f1,..., fk} C F(G) such that
fi and f;+1 do not share a vertex and f; and f; do not share a vertex. Given a minor
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morphism ¢ : G — G, the inclusion ¢* : E(G') — E(G) preserves pairs of edges
that don’t share a vertex, and so the induced map E(L¢(G’)) — E(L(G)) sends cycles
to cycles. Furthermore, the inclusion ¢* : E(G’) — E(G) gives an inclusion of the
ambient real vector space for Conf(E(G’), K¢) into the ambient real vector space for
Conf(E(G), K?) which in particular, allows us to pick compatible orientations on these
ambient vector spaces. Thus, the presentation for H*(Conf(L£¢(G)), C%); Z) is compatible
minor morphisms. Thus, we see that for each i, H* (Conf(L(—), C?); Z) as G -module,

is a quotient of the 7th tensor power of ZE(£(G)),
Ti7EL(=)

Finally, we notice that ZZ(£°(=)) is the submodule of the second tensor power of the
edge module M;J@Z, where ZF(£(G) generated by elements of the form e; ® e; where
ei,e; € E(G) do not share a vertex. Thus, by Theorem 1.1, we have the desired result. O

Remark 4.15. If d = 1, Conf(L¢(G), K) is the complement of a hyperplane arrangement
in K. When K = C, H*(Conf(L¢(G), K)) is just the Orlik-Solomon algebra of the com-
plex hyperplane arrangement where the generators live in degree 1. If d > 1, the above
presentation shows that H*(Conf(L£¢(G), K%)) is still isomorphic to the aforementioned
Orlik-Solomon algebra, only now the generators live in degree 2d — 1. When K = R,
H*(Conf(L(G), K)) is the Cordovil algebra of the real hyperplane arrangement. If d
is odd, then H*(Conf(L(G), K%)) is isomorphic to H*(Conf(L*(G), K)), only now the
generators live in degree d — 1.

Example 4.16. Let a,b > 1 and let G be the graph with two vertices of degrees a + 1
and b+ 1, respectively, connected to one another by a single edge. Put another way, G is
two copies of star graphs, of degrees a and b, glued together by an edge. Then L¢(G) is
easily seen to be a complete bipartite graph K, ;, disjoint union a point. Then we have

Conf(L£(G),C%) = 2P, (C?) x C?

where ZN(lDer((Cd) are the colored configuration spaces considered by Farb Wolfson and
Wood in [6], with D being the vertices of the complete bipartite graph colored in the
obvious way. Observe moreover that the graph G can be seen as an edge with a and b
leaves sprouted on its two vertices, respectively. Therefore, Theorem 3.21 implies that
our result can be seen as a generalization of the stabilization phenomena observed by [6].
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