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Vascular plants are diverse and a major component of terrestrial ecosystems, yet their geo-
graphic distributions remain incomplete. Here, I present a global database of vascular plant
distributions by integrating species distribution models calibrated to species’ dispersal
ability and natural habitats to predict native range maps for 201,681 vascular plant species
into unsurveyed areas. Using these maps, I uncover unique patterns of native vascular plant
diversity, endemism, and phylogenetic diversity revealing hotspots in underdocumented
biodiversity-rich regions. These hotspots, based on detailed species-level maps, show a
pronounced latitudinal gradient, strongly supporting the theory of increasing diversity
toward the equator. I trained random forest models to extrapolate diversity patterns under
unbiased global sampling and identify overlaps with modeled estimations but unveiled
cryptic hotspots that were not captured by modeled estimations. Only 29% to 36% of
extrapolated plant hotspots are inside protected areas, leaving more than 60% outside
and vulnerable. However, the unprotected hotspots harbor species with unique attributes
that make them good candidates for conservation prioritization.

biodiversity hotspots | species distribution models | protected areas | vascular plant diversity |
machine learning

Vascular plants are a very diverse taxonomic group comprising about 340,000 species
worldwide (1-3). They occur across all types of biomes, from rainforests to savannas,
providing key ecosystem services upon which terrestrial life and human civilization depend
(4). These services include provisioning (e.g., food and medicines), regulation of ecosystem
processes (e.g., trophic regulation and water purification), cultural (firewood and orna-
mental), and supporting services (e.g., primary productivity), yet identifying concentra-
tions of vascular plant species, endemism, and evolutionary diversity at a global scale rest
largely on coarse-grained estimations (5, 6). Consequently, the underlying processes and
principles governing vascular plant diversity at finer scales, which requires an accurate
knowledge of the locations of species’ geographic distributions, remain unknown at a
global scale. Accurate knowledge of vascular plant geographic distributions is key for
prioritizing conservation efforts and mitigating loss of species and their functions in the
face of profound human impact on the planet (5).

The surge in the availability of vascular plant diversity data from heterogeneous sources
has led to their compilation into major data hubs such as the Global Biodiversity Information
Facility (7) that can facilitate macroecological analyses (8—12). These datasets are often
available as point occurrences of where a species has been documented as present based on
a voucher specimen in a herbarium or sighting in the field without linkage to tangible
physical material (13). However, both voucher and observation records suffer from sampling
biases and coverage gaps (14-16). Floristically rich regions like the Neotropics, Afrotropics,
and Southeast Asia are particularly undersampled (14, 15, 17). These sampling biases and
coverage gaps can lead to spurious ecological inferences (14, 15, 17) such as underestimation
of true diversity (18) and potentially compromise effective conservation prioritization (19).
Determining whether such coverage gaps and sampling biases reflect true absence or sam-
pling artifact is challenging (20). Consequently, our understanding of fundamental bioge-
ographic patterns such as latitudinal diversity gradients (21) or identifying global priority
areas for conservation (such as biodiversity hotspots) relies largely on the distributions of
well-studied animal groups (e.g., tetrapods).

Species distribution models (SDM) can predict vascular plant occurrences in unsampled
areas (22) but often rely on biased occurrence records, leading to underestimates of true native
diversity. The native range of a species is a fundamental unit of biological diversity that under-
pins our understanding of a species’ natural habitat (23) but remains unknown for most
vascular plant species across the globe. Nonetheless, vascular plants are known to associate
with well-studied groups such as birds, mammals, amphibians, and reptiles (i.e., tetrapods),
whose geographic sampling is less biased and may offer more accurate insights into native
biodiversity. Furthermore, machine learning approaches can improve SDM predictions because
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Fig. 1. Hypothesis for predicting native vascular plant diversity from modeled estimates based on current sampling. Species distribution models often rely
on biased occurrence records, leading to underestimates of true native diversity. By incorporating the current sampling density alongside unbiased data (e.g.,
tetrapod distribution), habitat characteristics, and climate, it is possible to train machine learning models on the modeled estimates to improve predictions of
true native vascular plant diversity despite current underestimates due to sampling biases and coverage gaps.

of their ability to deal with complex relationships between occurrences
of poorly sampled groups like vascular plants, environmental factors,
and evolutionary history that might present major challenges for
conventional statistical models (24, 25). Therefore, I hypothesize that
by training machine learning models on the modeled estimates as a
function of plant sampling density, habitat characteristics, climate,
alongside knowledge of tetrapod diversity whose geographic sampling
is less biased (26, 27), it is possible to enhance the prediction of true
native vascular plant diversity and potentially uncover hidden vascular
plant diversity (Fig. 1). This information can guide future targeted
biodiversity collecting (28). However, previous application of machine
learning models to predict vascular plant diversity focused on specific
taxonomic groups [e.g., Bromeliaceae; (29)] or are based on the com-
pilation of regional checklists and floras aggregated to artificial and
large administrative units such as countries (3, 30-32). While these
approaches have provided insights into broad-scale patterns (30,
32-36), they assume that the ecological processes determining the
native range of a vascular plant species within a given artificial admin-
istrative unit are similar across communities, precluding finer-scale
ecological processes that determine a species’ native range. A global
analysis that addresses these limitations could reveal links between
species’ ecological preferences, shared evolutionary history, and poten-
tally irreplaceable ecological and functional traits (37-39). Finally,
integrating these approaches can be useful for identifying potential
sites in need of conservation prioritization such as assessing the effec-
tiveness of existing protected areas in capturing important vascular
plant diversity hotspots.

Here, I address these knowledge gaps using an integrative work-
flow. I combine occurrence records, alpha hull polygons, species
dispersal capacity, natural habitat, and environmental variables
within a framework of species distribution modeling (S Appendix,
Fig. S1) to generate estimates of species-level native distributions
for 201,681 vascular plant species at a spatial grain of 5-arc min
(~9 km at the equator). I stacked these modeled individual distri-
butions to address three questions: 1) What are the key patterns of
modeled vascular plant diversity? 2) How effectively can a random
forest machine learning model validate these patterns and uncover
potential refuges of hidden vascular plant diversity? 3) How effective
are the existing protected areas in capturing important vascular plant
diversity hotspots in need of conservation efforts?

Results and Discussion

Global Distributions of Native Vascular Plant Diversity and
Endemism. Using predictive models and global environmental
data layers (S Appendix, Fig. S1), I generated species-level native
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range maps for 201,681 vascular plant species. The models showed
high performance across the test statistics (S Appendix, Fig. S2),
underscoring the reliability of the predictions as indicators of
potential vascular plant distributions. I found areas of high
vascular plant species richness clustered across the globe including
Southern Mexico, Mesoamerica, Amazon, Andes, Atlantic Forest,
West and Central Africa, Eastern Arc, Cape Floristic Region,
Madagascar, Hengduan-Himalaya, Indo-Malay, and Southeast
and Southwest Australasia (Fig. 2). Importantly, the areas
richest in native species richness also coincide with areas of high
phylogenetic diversity (Fig. 2), which is in line with previous
findings of strong correlation between phylogenetic diversity and
species richness (40, 41). Additionally, I found a clear latitudinal
gradient for both species richness and phylogenetic diversity, with
higher richness and phylogenetic diversity near the equator, which
gradually decreases at higher latitudes (Fig. 2). These patterns
parallel those observed in tetrapods (Fisher’s z = 0.31 for species
richness and 0.32 vs. 0.35, for phylogenetic diversity) (Fig. 2 and
SI Appendix, Fig. S3), albeit my maps show a slightly broader
band of latitudinal diversity gradient compared with previous
studies (21, 28) probably due to the limitations of my range
polygon approach to modeling species distributions rather than
biased point records which could result in underestimated range.
While ecological theories explaining latitudinal diversity gradients
have been empirically quantified for tetrapods (21) and recently
for ants (28), comparable data for vascular plants were lacking
until now. This finding for vascular plants based on detailed
and quantitative species-level maps, strongly supports the classic
theory of increasing diversity toward the tropics. An evaluation of
the top areas of high species richness and phylogenetic diversity—
hotspots, defined as the top 10% richest pixels of these metrics—
reveals overlap with tetrapod hotspots (SI Appendix, Fig. S4) in
some regions like Mesoamerica, Amazon, Central Africa, and
Indo-Malay. However, correlations between vascular plants and
tetrapods are slightly lower than those within tetrapod groups
(Pearson’s 7: plants vs. tetrapods mean = 0.72 for species richness
and 0.77 for phylogenetic diversity; tetrapods vs. tetrapods =
0.83 for both species richness and phylogenetic diversity;
P < 0.0001, ST Appendix, Fig. S4 and Table S1). Nonetheless,
the global overlap between vascular plants vs. tetrapods (7= 0.72)
still indicates a high level of congruence that is consistent with
the global spatial congruence of ants with tetrapods (28). These
findings suggest that biogeographic patterns and conservation
efforts focused on well sampled tetrapod groups can likely capture
global vascular plant diversity but with some local variations.
Notably, unique vascular plant hotspots are identified in Chaco
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Fig. 2. Geographical patterns of native vascular plant diversity (n = 201,681 species) in relation to terrestrial tetrapods. left panel, Overall diversity patterns
of species richness, phylogenetic diversity, weighted endemism, and phylogenetic endemism produced at 20 km x 20 km resolution and stacked into unique
layers. Pixel values were binned into 10 quantiles to generate the color palette, noting that the scale differs between panels. Spatial evenness or clustering
was calculated using Moran'’s / spatial autocorrelation with values of 1 indicating clustered patterns and 0 dispersed patterns. middle panel, Latitudinal plots of
diversity patterns of each metric across 100 km latitudinal bins for plants (in red) and tetrapods (gray) along with effect size (Fisher's z) of the slope of latitudinal
diversity gradient. right panel, Hotspots (diversity centers) defined as the top 10% of highest-ranking pixels for each metric, i.e., 90th percentile values, for species
richness, phylogenetic diversity, weighted endemism, and phylogenetic endemism for plants (in red) in comparison to tetrapod hotspots (dark gray). All maps

are projected under the Wagner IV projection. Significance codes: ***P < 0.001.

and the Cerrado savannas, Democratic Republic of Congo, and
Yunnan, which do not align with tetrapod hotspots (Fig. 2).
This pattern could be due to differences in relationships between
vascular plants and climates from those of tetrapods.

Second, I analyzed patterns of species-weighted and phyloge-
netic endemism, which quantify the presence of rare species and
geographically unique evolutionary lineages (38). I found that
regions of high weighted and phylogenetic endemism are more
dispersed (Moran’s /: 0.095 and 0.11, both P <« 0.0001) and
distributed in several key areas: Americas, Afrotropics, Mediter-
ranean, Himalaya and Southeast Asia, Australasia, and Oceania
(Fig. 2). Areas of vascular plant endemism showed moderate cor-
relation with endemism hotspots of tetrapods (Pearson’s 7 = 0.55
t0 0.57, P < 0.0001, ST Appendix, Fig. S4). However, this corre-
lation is generally weaker than within tetrapod groups themselves

PNAS 2024 Vol.121 No.34 2319989121

(81 Appendix, Fig. S4 and Table S1). Notably, several of the regions
harboring unique hotspots of vascular plant weighted and phy-
logenetic endemism do not coincide with endemism hotspots of
tetrapods (Fig. 2). These findings indicate complex ecological pro-
cesses and habitat diversity that may have evolved in these areas
over time.

My modeled estimates incorporate dispersal limitation in a
phylogenetic context, minimizing unrealistic predictions from
unconstrained dispersal assumptions. Additionally, unlike stand-
ard workflows that rely on biased occurrence data, my approach
defines a final training area that reflects the likely dispersal capa-
bilities of the species and captures its natural habitat based on
ecoregions. This avoids limitations associated with arbitrary spatial
extents used in standard workflows, leading to more accurate dis-

tribution predictions (S Appendix, Fig. S5).

https://doi.org/10.1073/pnas.2319989121

30f8


http://www.pnas.org/lookup/doi/10.1073/pnas.2319989121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319989121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319989121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2319989121#supplementary-materials

Downloaded from https://www.pnas.org by STANFORD UNIVERSITY on August 12, 2024 from IP address 171.66.12.50.

4 0f 8

ﬂnodened
/  estimations
[ 0.09%

43.06%

Extrapolations
56.85%

/ Modelled\
[ estimations
LoT02e%

/

53.09%

Extrapolations
46.65%

@ued
[ estimations

[ T0.29% \

/

36.28%

Extrapolations

63.42%

—

/ Modelled\
[ estimations
[ 0.28% |

42.37%

Extrapolations
57.35%

Fig. 3. Comparison of modeled estimates of vascular plant diversity hotspots based on current sampling vs. machine learning extrapolations assuming a
globally unbiased sampling. Overlap of vascular plant diversity hotspots extrapolated by a machine learning random forest model under a scenario of globally
unbiased sampling in comparison to modeled estimates based on current sampling for (A) species richness, (B) phylogenetic diversity, (C) weighted endemism,
and (D) phylogenetic endemism. Refuge areas (in teal) represent unique hotspots predicted by random forest machine learning under a universally high global
sampling but which do not fall into hotspots based on current sampling. The maps are projected under the Wagner IV projection.

Validation with Machine Learning Random Forest Model Extrap-
olations. I tested my modeled estimates for the effects of sampling
biases common in vascular plant occurrence records (S7 Appendix,
Fig. S6) by training a random forest model to extrapolate vascular
plant diversity patterns under a globally unbiased vascular plant
sampling and as a function of tetrapod diversity alongside climatic
variables and habitat characteristics. I assessed model accuracy
using 5-fold spatial block cross-validation (42) by systematically

https://doi.org/10.1073/pnas.2319989121

dividing the data into spatial blocks using predefined floristic
realms of the world (43). 1 identified optimal hyperparameters
that minimize the root-mean-square error (RMSE) or “mtry,” by
tuning from 1 to 10, resulting in mtry = 4 for all diversity metrics
except phylogenetic diversity with mtry = 5 (SI Appendix, Fig. S7).
These settings were used to train the final models and generate
extrapolated values per pixel. Assuming a globally high sampling
in the future, I predict that 36% to 53% of diversity hotspots
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will be robust to sampling effects. However, I uncover previously
undetected hotspots of species richness and phylogenetic diversity
that represent an increase of 47% to 63% assuming globally high
sampling in the future. These undetected hotspots of species
richness and phylogenetic diversity are located in southern United
States, Sonora-Chihuahua and Yucatan Mexico, Mato Grosso
Brazil, Paraguay, Central and Southeast Argentina, West Africa,
Central Africa, Horn of Africa, Southern Angola, and Northern
Namibia, Eastern Cape, India, Myanmar-Thailand-Malaysia,
Sumatra, Kalimantan, and Southeast Australia (Fig. 3). Similarly,
undetected hotspots of species and phylogenetic endemism are
predicted in biodiversity-rich but currently undersampled regions
including central South America, Central Africa, and Southeast
Asia (Fig. 3). These findings are consistent with the correlation of
continuous diversity values for each metric (S/ Appendix, Table S1)
where the correlation of modeled estimates versus extrapolated
(without accounting for tetrapod diversity) are consistently higher
than correlations of modeled estimates versus extrapolated (with
high sampling and accounting for tetrapod diversity). These
findings highlight the model’s ability to capture potentially hidden
vascular plant diversity, highlighting potential future diversity
centers based on current sampling limitations.

Protection Levels of Hotspots Inside and Outside Protected
Areas. Although protected areas are essential for conserving
biodiversity, there are concerns that the success of the current
network of protected areas may be biased toward certain locations
rather than achieving conservation priorities (44). I tested this
assumption by comparing predicted locations of plant hotspots
(both modeled estimations and random forest extrapolations)
within protected areas to their counterparts outside protected
areas. This comparison provides insights into potential biases in the
current protected area network and informs future conservation
strategies. For hotspots based on modeled estimations, I found that
species richness and phylogenetic diversity share equal protection
levels with only 35% of hotspots cells intersecting with protected
areas (Fig. 4). However, metrics of endemism including weighted
and phylogenetic endemism are proportionally better protected,
with 42% of these hotspots falling within protected areas (Fig. 4).
These well-protected endemism hotspots tend to overlap larger
reserves such as the Parima Tapirapeco in Venezuela, Area De
Protegio Ambiental Ferndo Dias in Brazil, and Ngadju Indigenous
Protected Area in Australia. This highlights the importance of these
large protected areas for safeguarding unique evolutionary lineages.
For extrapolated hotspots, protection levels yielded substantially
fewer hotspot cells (29% to 36%) falling inside protected areas,
leaving more than 60% outside and vulnerable. This means that
the random forest machine learning extrapolations, while effective
at uncovering hidden vascular plant diversity, can also reveal
potential gaps in our protected area network. Although the random
forest approach validates the modeled estimates in some regions,
I found that large swathes of hidden vascular plant diversity in
Bolivia, Brazil, Democratic Republic of Congo, Eastern China,
South Africa, and Papua New Guinea are potentially located in
places not covered by the current network of protected areas.
These low protection levels may have arisen from ignorance of
plant geographic distributions (17), supporting previous studies
(28, 45-47) that protected areas do not maximize the protection
of biodiversity. This finding suggests a critical need to expand
protected areas or implement stricter conservation measures
in these regions to safeguard these undiscovered hotspots of
vascular plant diversity. These regions may represent previously
overlooked centers of endemism or areas with unique ecological
conditions that harbor a high diversity of vascular plant species.

PNAS 2024 Vol.121 No.34 2319989121

The unprotected hotspots highlighted in this study could guide
efforts to expand the existing protected areas to achieve the United
Nation’s Kunming-Montreal Global Biodiversity Framework
of expanding coverage of terrestrial protected areas and other
conservation areas to 30% by 2030 (48).

The tendency of a species to be included inside or outside pro-
tected areas may depend on its evolutionary history (49, 50),
intrinsic life history traits, or extinction risk (44). For example,
reserves may be designed such that they may be biased toward
organisms that are larger or appealing (51) or as response to bio-
diversity loss (44, 52). I tested these assumptions by assessing the
impact of protected areas on common intrinsic functional traits
(such as plant height and seed size), evolutionary history (evolu-
tionary distinctiveness), and extinction risk (defined as degree of
threat facing a species with data derived from published dataset
of machine learning predictions of conservation status for over
150,000 land plant species) (53), for each diversity metric inside
and outside protected areas. For modeled estimations, I found
that protected hotspots predominantly harbor species with both
higher extinction risk (Cohen’s & = 0.40 to 0.70, P < 0.01) and
larger stature (Cohen’s 4 = 0.12 to 0.24, P < 0.01; Fig. 5). This
means that protected hotspots may offer some conservation ben-
efits by preserving vascular plants particularly those at elevated
risk of extinction, consistent with the finding that protected areas
slow down species declines (52). However, it could also indicate
a bias in conservation decisions toward forested areas (54—56), as
seen in certain parts of the USA (54). This suggests the need for
future protected areas to better represent all ecosystems, not just
those currently well protected, such as forests. Importantly, I iden-
tified greater evolutionary distinctiveness prevalent in unprotected
hotspots of weighted endemism (Cohen’s 4 = -0.15, P < 0.01).
Evolutionary distinctiveness refers to species with fewer or no close
living relatives (57). These species represent unique lineages on
the tree of life and their loss would imply the disappearance of
entire evolutionary branches. The fact that these irreplaceable
species are found more prevalently in unprotected areas indicates
the urgency for additional conservation efforts in these hotspots.
Alternatively, this finding could also reflect a bias in habitat selec-
tion for protected areas, favoring places with plants commonly
used for human sustenance and livelihoods (58) over those har-
boring evolutionarily distinct lineages including basal monocots
like Stylochaeton, Amorphophallus, and Pseudohydrosme or the
monotypic Eremosyne genus endemic to Western Australia.
Similarly, for random forest extrapolations, while protected hot-
spots harbor larger statured and threatened species (Fig. 5), only
evolutionary distinctiveness remained significant and effective in
unprotected hotspots (Cohen’s 4 = -0.27, P < 0.01; Fig. 5). This
suggests that evolutionarily rare phylogenetic branches of the vas-
cular plant tree of life are still outside and vulnerable and thus
could be included in the global priority map for the expansion of
protected areas.

Analyses of plant diversity and endemism patterns as well as their
overlap with conservation areas are not new and have been explored
at continental scales previously (59—61). However, this study applies
these methods at a global scale with a high number of plant species
(>200,000 species), allowing me to uncover unique patterns of native
vascular plant diversity that would not be possible at a continental
scale and how their relationships agree with tetrapods in some
regions and differ in certain regions. By training a machine learning
model constructed from random forest, I uncover previously unno-
ticed cryptic hotspots, providing a promising opportunity for future
conservation efforts. These hidden refuges, especially in South
America, tropical Africa, and Southeast Asia, could serve as targets
for future vascular plant collecting and conservation of both species
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Fig. 4. Coverage of hotspots within and outside protected areas. Protection levels for hotspots inside and outside current networks of protected areas for species
richness, phylogenetic diversity, weighted endemism, and phylogenetic endemism, based on modeled estimations (Left panel) and random forest extrapolations
(Right panel). The maps are projected under Wagner IV projection (code “+proj=wag4").

and phylogenetic diversity. Furthermore, the evaluation of protec-
tion levels within and outside of protected areas raises concerns about
the vulnerability of critical biodiversity centers in need of conserva-
tion, highlighting the need to expand the coverage of existing
reserves and national parks, to align with global conservation goals,
such as the Kunming-Montreal Global Biodiversity Framework. It
is worth noting that majority of extrapolated hotspots lie outside
protected areas, underscoring the effectiveness of random forest
machine learning in uncovering hidden vascular plant diversity,
while also revealing potential gaps in our protected area network.
Finally, I highlight the importance of considering the evolutionary
history and intrinsic traits of vascular plant species when designing
protected areas. While some traits, like plant height and extinction
risk, are better preserved within protected hotspots, evolutionary
distinctiveness remains more prevalent outside protected areas,
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emphasizing the urgency of enhancing conservation efforts in these
areas. The detailed species-level native range maps presented here
could greatly enhance research into the mechanisms structuring and
maintaining vascular plant diversity across ecological scales.

Materials and Methods

I obtained vascular plant occurrence data from Global Biodiversity Information
Facility. These were thoroughly cleaned to remove errors and reflect species’
known native ranges as defined by the World Checklist of Vascular Plants (3).
The cleaned data were then used to generate alpha hull polygons which were
cropped to land areas and finetuned by clipping them using the polygons of
vascular plantfamilies (62, 63). Using occurrence data derived from systematic
sampling of the alpha hull polygons, | modeled species distributions as a func-
tion of environmental conditions and plant sampling intensity as background
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Fig. 5. Coverage of species-level attributes within protected and unprotected diversity hotspots of vascular plants. Differences in species attributes (functional
traits, evolutionary distinctiveness, and extinction risk) for diversity hotspots were based on modeled estimations (left) and random forest extrapolations (right)
computed using t test followed by Cohen’s d with 1000 bootstrap replicates to estimate effect size. Values of Cohen's d range from 0 (no effect) to +1 or -1 (large
effect), with positive values (above the dashed 0 line) indicating that the attribute is higher in protected hotspots, whereas negative values (below the zero line)
indicate the opposite. The error bars indicate 95% Cl, and the statistical significance of the t test is indicated with asterisks (P < 0.01).

points. The models were calibrated to species' realized niche defined using
species-specific dispersal rates fitted using a phylogeographic Spherical
Brownian Motion (64, 65). The data analysis was performed in four steps:
1) I calculated key vascular plant diversity patterns including species richness,
phylogenetic diversity, weighted endemism, and phylogenetic endemism,
2) I tested my modeled estimates for the effects of sampling biases common
in plant occurrence records by training a random forest model to extrapolate
my modeled estimates under a globally unbiased plant sampling. 3) I con-
ducted spatially corrected correlations between plant diversity patterns and
those of the different tetrapod classes for each metric. 4) | compared predicted
locations of plant hotspots (both modeled estimations and random forest
extrapolations) within protected areas to their counterparts outside protected
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