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Urban drainage systems face increased floods and combined sewer overflows due to climate change and
population growth. To manage these hazards, cities are seeking stormwater digital twins that integrate sensor
data with hydraulic models for real-time response. However, these efforts are complicated by unreliable sensor
data, imperfect hydrologic models, and inaccurate rainfall forecasts. To address these issues, we introduce a
stormwater digital twin system that uses online data assimilation to estimate stormwater depths and discharges
under sensor and model uncertainty. We first derive a novel state estimation scheme based on Extended Kalman
Filtering that fuses sensor data into a hydraulic model while simultaneously detecting and removing faulty
measurements. The system’s accuracy is evaluated through a long-term deployment in Austin’s flood-prone
Waller Creek watershed. The digital twin model demonstrates enhanced accuracy in estimating stormwater
depths at ungauged locations and delivers more accurate near-term forecasts. Moreover, it effectively identifies
and removes sensor faults from streaming data, achieving a Receiver Operating Characteristic Area Under the
Curve (ROC AUC) of over 0.99 and significantly reducing the potential for false flood alarms. This study
provides a complete software implementation, offering water managers a reliable framework for real-time
monitoring, rapid flood response, predictive maintenance, and active control of sewer systems.
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1. Introduction

Cities face increasing stormwater challenges due to rapid urbaniza-
tion, climate change, and aging infrastructure (Kerkez et al., 2016). As
impermeable surfaces grow, less water is absorbed, leading to greater
stormwater runoff. When drainage systems are overwhelmed by heavy
rainfall, urban flooding occurs, causing water to accumulate in streets
and low-lying areas (Committee on Urban Flooding in the United States,
Program on Risk, Events, Policy and Global Affairs, Water Science
and Technology Board, Division on Earth and Life Studies, & National
Academies of Sciences, Engineering, and Medicine, 2019). Aging in-
frastructure further worsens the issue, as outdated systems struggle to
handle rising demands and extreme weather events. At the same time,
pollutants from stormwater runoff, such as nutrients and sediments,
degrade aquatic habitats (Booth & Jackson, 1997; Walsh et al., 2005).
Combined sewer overflows (CSOs) release pathogens into natural water
bodies when storm runoff overwhelms sewer pipes that carry human
waste (U.S. Environmental Protection Agency, 2004). These issues are
expected to worsen with more severe storms and increasing impervious
land cover due to urbanization (Vorosmarty, McIntyre, Gessner, Dud-
geon, Prusevich, Green, Glidden, Bunn, Sullivan, Liermann, & Davies,

2010). Effective stormwater management is critical, but current static
design practices struggle to keep up with these stressors (Kerkez et al.,
2016).

To address these problems, water managers are seeking digital
twins of stormwater systems that provide timely and accurate infor-
mation on hazards like flooding and enable more effective real-time
response (Pedersen, Borup, Brink-Kjeer, Christiansen, & Mikkelsen,
2021a; Sarni, White, Webb, Cross, & Glotzbach, 2019; Valverde-Pérez,
Johnson, Warff, Lumley, Torfs, Nopens, & Townley, 2021). A digital
twin refers to a dynamic virtual representation of an actual physical sys-
tem for real-time monitoring, decision support, and control (Rasheed,
San, & Kvamsdal, 2020; VanDerHorn & Mahadevan, 2021). Enabled
by advances in low-power sensing and wireless communications, dig-
ital twins combine online sensor data with hydraulic models to pro-
vide a real-time picture of stormwater dynamics (Pedersen et al.,
2021a). These systems promise real-time flood warnings at the street
scale (Edmondson et al., 2018; Ford & Wolf, 2020; Kazuhiko & At-
sushi, 2018), pre-emptive detection of sewer blockages (Edmondson
et al.,, 2018; Owen, 2023), and active control of valves and gates
to prevent CSOs (Montestruque & Lemmon, 2015; Tabuchi, Blanchet,
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& Rocher, 2020; Tao et al., 2020; Valverde-Pérez et al., 2021). By
enabling targeted and adaptive stormwater management, these systems
address flooding and pollution while reducing the need for expensive
infrastructure expansions (Sarni et al., 2019).

However, despite the promotion of digital twins in the stormwater
sector, their real-world capabilities remain under-researched. Little
published information exists on their design and construction, and
few studies have examined the hardware, software, or mathematical
techniques needed to build a robust and reliable digital twin sys-
tem (Pedersen et al., 2021a). Moreover, few studies have assessed their
performance under real-world uncertainty. Poor sensor data quality
is a persistent concern (Owen, 2023; Pedersen et al., 2021a), and it
is unclear if existing digital twin models can detect hazards with the
certainty needed for real-time response. Therefore, research is needed
to understand how digital twin systems can provide actionable informa-
tion under real-world conditions where model and sensor uncertainty
are significant. This study aims to build and evaluate a complete
digital twin for an urban watershed, integrating a physically-based
hydrologic-hydraulic model, continuous rainfall forecasts, real-time
stream gauge data, and online data assimilation. This study is the first
to apply online data assimilation using a Threshold Extended Kalman
Filter, which integrates sensor data into a hydraulic model to improve
accuracy while concurrently performing anomaly detection to identify
and reject sensor faults.

2. Background and previous work
2.1. Offline stormwater modeling

Stormwater models have historically been used for infrastructure
planning, such as sizing pipes and reservoirs to mitigate floods and
reduce pollutant loads (Butler, Digman, Makropoulos, & Davies, 2018).
Water managers use a combination of (i) hydrologic models to predict
infiltration and runoff, (ii) hydraulic models to route runoff through
the drainage network, and (iii) water quality models to track contami-
nants (Bedient, Huber, Vieux, et al., 2008; Zoppou, 2001). Engineers
use computer models such as the EPA’s Storm Water Management
Model (SWMM), the Hydrologic Engineering Center’s Hydrologic Mod-
eling System and River Analysis System (HEC-HMS/RAS), and MIKE
URBAN to simulate design storms and plan facilities that prevent
flooding and meet water quality goals. However, after these models
are implemented continuous monitoring is rare, and model valida-
tion is generally limited to sparse and infrequent manual measure-
ments (Blecken, Hunt, Al-Rubaei, Viklander, & Lord, 2017). Changing
site conditions due to land use, climate patterns, or poor maintenance
cause stormwater facilities to underperform (Rosenberg et al., 2010). In
certain cases, interventions aimed at improving flood control and water
quality may worsen these problems (Criss & Shock, 2001; Emerson,
Welty, & Traver, 2005). Without continuous monitoring, these issues
often go undetected until negative impacts occur (Blecken et al., 2017;
Wright & Marchese, 2017).

2.2. Continuous monitoring

Recognizing the need for more continuous data, many cities are
now seeking real-time monitoring systems to characterize the inter-
nal dynamics of their urban drainage systems (Kerkez et al., 2016;
Webber, Fletcher, Farmani, Butler, & Melville-Shreeve, 2022). These
developments are enabled by recent advances in wireless technologies,
low-power sensing, and embedded systems that have accompanied the
Internet of Things (IoT) (Kerkez et al., 2016). While stream gage net-
works have long been used to assess flood risks and promote restoration
of aquatic ecosystems (Eberts, Woodside, Landers, & Wagner, 2019),
these new advances are enabling monitoring at finer spatial and tem-
poral scales than have been achievable in the past. Low-cost sensors
such as submersible pressure transducers, ultrasonic depth sensors,
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and radar-based velocimeters are enabling cost-effective monitoring
of stormwater conditions not only in major waterways, but also in
smaller tributaries and storm sewers (Khan et al., 2021; Panagopoulos,
Papadopoulos, Poulis, Nikiforakis, & Dimitriou, 2021). These dense
networks provide new capabilities, such as monitoring of floods at
individual roadways (Silverman, Brain, Branco, sai venkat Challagonda,
Choi, Fischman, Graziano, Hénaff, Mydlarz, Rothman, & Toledo-Crow,
2022) and detecting sewer blockages (See, Horoshenkov, abd alhmeed,
Hu, & Tait, 2011).

2.3. Online modeling

Alongside continuous monitoring, recent years have seen the devel-
opment of online models that simulate urban drainage dynamics. These
models are updated with continuous input data, ensuring that the simu-
lations reflect current conditions. This ongoing update process supports
rapid response to storm events and enhances decision-making during
hazards such as floods and combined sewer overflows. Efforts have
focused on large river basins using software like HEC-HMS, HEC-RAS,
the Hydrologic Engineering Center’s Real Time Simulation (HEC-RTS),
and EPA SWMM. Che and Mays (2015) integrate HEC-RAS/HEC-HMS
for optimizing river-reservoir releases during floods; (Teal & Allan,
2017) develop a flood warning system for the San Diego River using
HEC-RTS; Zeng, Yuan, Liang, and Li (2021) implement WEB-SWMM
in China for real-time urban stormwater management. Other studies
offer custom frameworks for early warning systems (Ming, Liang, Xia,
Li, & Fowler, 2020; Wang et al., 2022; Xu et al., 2017). While many
implementations exist, online models typically include hydraulic and
hydrologic models with real-time rainfall inputs and web platforms to
estimate discharges and water depths. However, existing efforts often
focus on ‘open-loop’ models that do not incorporate field-deployed
sensors, making it difficult to verify model accuracy and complicating
decision-making for emergency managers.

2.4. Digital twins

Combining advances in wireless sensing and online modeling, water
managers are increasingly seeking digital twins to track stormwater
dynamics by integrating process models with sensor data. A digital twin
is a real-time virtual representation of a physical system applied in vari-
ous fields like manufacturing, healthcare, and urban planning (Rasheed
et al.,, 2020; VanDerHorn & Mahadevan, 2021). While a universal
definition is elusive, digital twins typically combine online modeling,
real-time measurements, and 2D/3D visualizations to provide operators
with up-to-date status information on critical systems (Park & You,
2023). Moreover, these models continuously evolve and learn from new
data and experiences, enhancing their predictive accuracy over time.

For stormwater management, most of the literature on digital twins
have focused on combining online hydraulic models with real-time
sensor data to deliver actionable information to water managers. These
stormwater digital twins have been used as a basis for real-time con-
trol operations—for instance, controlling water levels in inland wa-
terways to prevent flooding and ensure channel navigability (Ranjbar
et al, 2024), or controlling stormwater inflows to water resource
recovery facilities (Lumley, Polesel et al., 2024; Lumley, Wanninger
et al., 2024). Many existing implementations use proprietary soft-
ware (Lumley, Wanninger et al., 2024) or simplified hydraulic mod-
els (Ranjbar et al., 2024). Bartos and Kerkez (Bartos & Kerkez, 2021)
introduced PipeDream, a stormwater digital twin model that combines
a physically-based hydraulic solver with a data assimilation approach
to track depths and flows in urban drainage systems. By combining
models and measured data, water infrastructure digital twins help
detect and localize anomaly events (Wu et al., 2023), and estimate
system states at unmonitored locations (Bartos & Kerkez, 2021). Thus,
digital twins support informed decision-making, enabling timely alerts
and control systems to reduce the risk of flooding (Sadler, Goodall,
Behl, Bowes, & Morsy, 2020), pollution loads (Oh & Bartos, 2023;
Zhang, Cai, & Wang, 2018), and sewage overflows (Botturi et al., 2020).
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Fig. 1. Types of sensor faults collected from low-cost ultrasonic depth sensors.

2.5. Uncertainties in simulation and monitoring

While sensor networks and online models enhance real-time ob-
servability of urban drainage systems, they are subject to inherent
uncertainties that impact decision support and emergency response,
including poor data quality and uncertain process models (Oberascher,
Rauch, & Sitzenfrei, 2022; Weil, Bibri, Longchamp, Golay, & Alahi,
2023). This section explores these uncertainties and outlines strategies
to improve accuracy and reliability in modeling and monitoring.

Model uncertainty. Stormwater models are subject to uncertainties in
input data (e.g., precipitation forecasts), model parameters (e.g., soil
characteristics), and imperfect mathematical descriptions of physical
reality (Butts, Payne, Kristensen, & Madsen, 2004; Freni, Mannina,
& Viviani, 2009). These factors can lead to inaccurate forecasts of
discharges and water depths that negatively impact decision-making.
Urban flood forecasting with stormwater models is particularly chal-
lenging due to the need for accurate rainfall forecasts at fine spatio-
temporal resolutions and the complex interactions between runoff and
infrastructure (Hapuarachchi, Wang, & Pagano, 2011). There is a no-
table lack of models capable of reliably forecasting flash floods in urban
areas (Hapuarachchi et al., 2011).

Measurement uncertainty. Despite advances in low-cost sensing devices,
measurement errors remain a challenge. Low-cost sensors often re-
port faulty measurements due to factors such as installation location,
wind conditions, and obstructions like vegetation and water surface
turbulence (Pereira, de Carvalho, Mendes, & Formiga, 2022; Schmidt
& Kerkez, 2023). Fig. 1 demonstrates sensor faults from two ultrasonic
water depth sensors examined in this study, exhibiting multiple types
of faults, including outliers and spikes (Ni et al., 2009). These faults
pose a significant challenge for urban flood monitoring because the
rising limb of a flood wave often resembles a sensor spike, making it
difficult to distinguish between faults and true flood events in real time.
Without proper quality control, sensor-based flood warning systems
may disseminate false alarms, complicating real-time response.

2.5.1. Strategies for mitigating simulation uncertainties

To address uncertainties in stormwater models, researchers have
refined strategies focusing on global model calibration, validation,
and data assimilation (Moradkhani & Sorooshian, 2008). Data assim-
ilation methods like Particle Filtering (Xu et al., 2017), Extended
Kalman Filtering (EKF) (Bartos & Kerkez, 2021), Ensemble Kalman
Filtering (EnKF) (Baumann, egh Ravn, & Schaum, 2022), and mixed
variational-Monte Carlo data assimilation (Ercolani & Castelli, 2017)
integrate real-time observational data to improve prediction accuracy.
These strategies improve the accuracy of estimated water depths and

discharges but depend on accurate observational data. Existing data
assimilation studies utilize mainly synthetic or pre-processed data, with
only a few studies applying these techniques in real-world scenarios
where significant sensor data uncertainty is present (Liu, Weerts, Clark,
Franssen, Kumar, Moradkhani, Seo, Schwanenberg, Smith, van Dijk,
van Velzen, He, Lee, Noh, Rakovec, & Restrepo, 2012). However, real-
world sensor data is subject to faults and biases that compromise direct
application of data assimilation. As a result, the ability of digital twin
models to accurately estimate stormwater depths and discharges under
real-world conditions remains largely unknown.

2.5.2. Data quality control for reducing measurement uncertainty

Automated quality assurance and quality control (QAQC) is essen-
tial for the application of real-time environmental sensor data (Campbell
et al.,, 2013). Anomaly detection methods for sensor data fall into
three categories: (i) data-driven approaches that rely on patterns in
data, including supervised and unsupervised methods; (ii) knowledge-
based approaches that use domain knowledge and predefined rules to
identify anomalies; and (iii) model-based approaches that flag anomalies
when observed data deviate from models, and offer the advantage of
improved interpretability (Chandola, Banerjee, & Kumar, 2009; Huang,
Yang, Wang, Xu, & Lu, 2021; Khalastchi, Kalech, Kaminka, & Lin,
2015).

Recent stormwater monitoring studies have focused on data-driven
approaches, like modified Z-scores (Bae & Ji, 2019) and Support Vec-
tor Machines (SVMs) (Schmidt & Kerkez, 2023) for outlier detection.
However, few have examined model-based approaches due to the lack
of software models that are capable of real-time state estimation. Our
study addresses this gap by using EKF to dynamically remove anomalies
in real-time and update modeling results.

2.6. Study objectives

This study focuses on developing and evaluating a functioning real-
world digital twin for an urban watershed. The study is divided into
two key phases:

Development. In this phase, we propose and implement a stormwa-
ter digital twin architecture by integrating (i) a wireless sensor net-
work, (ii) a physically-based hydrologic-hydraulic model, and (iii)
online data assimilation. The data assimilation process employs model-
based anomaly detection using a threshold EKF to remove real-time
anomalies, ensuring that only valid sensor data is assimilated into the
model.

Evaluation. In this phase, we assess the system’s performance in (i) de-
tecting and rejecting sensor faults, (ii) improving water level estimates
at ungauged locations, and (iii) enhancing water level forecasts.
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Fig. 2. Conceptual diagram of digital twin model for stormwater.

3. Methodology

The proposed stormwater digital twin system integrates a wireless
sensor network, an online hydrologic-hydraulic model, and a data
assimilation framework to monitor hydraulic states (depths and flows)
in urban drainage networks (see Fig. 2). The following sections de-
tail: (i) deployment of the sensor network in an urban watershed,
(ii) design and implementation of the real-time hydrologic-hydraulic
model, (iii) development of a data assimilation scheme using threshold-
based Extended Kalman Filtering, and (iv) the comprehensive software
architecture of the digital twin model.

3.1. Wireless sensor network

3.1.1. Waller creek watershed

This study focuses on the Waller Creek watershed in Austin, TX.
The Waller Creek watershed is a heavily urbanized catchment approx-
imately 14.5 km? in area that drains from north Austin into the Lower
Colorado River (City of Austin Watershed Protection, 2016). Due to a
lack of cohesive land development planning, Waller Creek suffers from
severe water quality, erosion, and flooding problems (City of Austin
Watershed Protection, 2016), ranking among the worst areas in the
city for both localized (pluvial) flooding and riverine (fluvial) flooding.
To characterize the potential for real-time flood detection, we focus
on four sites located near bridges and low-lying roadways near the
mainstem of Waller Creek that are prone to flash floods.

3.1.2. Wireless sensor network architecture

A wireless sensor network is deployed in the Waller Creek watershed
to collect real-time depth measurements along the channel mainstem.
Each sensor node features a Maxbotix MB7384 ultrasonic sensor and
a Particle Boron microcontroller with a cell module for 3G/4G LTE
communication. The system is powered by a Tenergy Li-ion 3.7 V
battery supplemented by a solar panel and managed by a SparkFun
Sunny Buddy charger to ensure continuous operation. Sensor nodes
transmit data via HTTPS POST requests to an Amazon EC2 cloud server,
where data is stored using the InfluxDB time-series database. Water
level measurements are calculated by subtracting the distance between
the sensor and the channel bottom from the ultrasonic readings and are
then visualized as continuously updated time-series using the Grafana
platform (see Fig. 1).

3.1.3. Wireless sensor network deployment

This study focuses on the Waller Creek watershed in Austin, TX (City
of Austin Watershed Protection, 2016). Four wireless sensor nodes (N1,
N2, N3, and N4) are deployed near a flood-prone confluence. The
sensor nodes in Fig. 3 uses ultrasonic depth sensors to collect water
level data every 15 min.

3.2. Stormwater digital twin model

A digital twin model of the urban watershed and stormwater system
is constructed to simulate stormwater dynamics in real-time and track
the current state of the stormwater system. The digital twin model con-
sists of (i) a hydrologic model that uses precipitation data to compute
runoff into the channel network, (ii) a hydraulic model based on the
Saint-Venant equations that routes surface runoff through the channel
and pipe network to estimate flood depths, and (iii) a sensor data
assimilation scheme based on Extended Kalman Filtering.

3.2.1. Input data

Inputs to the hydrologic model include precipitation data from
rain gauges near 23rd Street in the Waller Creek watershed (Fig. 3),
reported every 15 min by the City of Austin, and minute-by-minute
forecasts from the tomorrow.io API for the upcoming hour. Rain
gauge data simulate current and past runoff, while forecasts predict
future runoff (Tomorrow.io Weather API, 2023).

3.2.2. Hydrology model

A parsimonious hydrologic model is developed to compute runoff
into the channel and pipe network using the Soil Conservation Service
(SCS) Curve Number (CN) method (NRCS, 2004), with calibrated curve
numbers provided by the City of Austin. The SCS-CN method estimates
precipitation excess (runoff) for storms with durations under 24 h using
a conceptual relationship between runoff and moisture storage in the
soil:

(P-1,7
P,=—" "% forP>1I 1
T PoIy+s 7 =
= 1000 10 (2)
CN,
_ Pimp 3
CN.=CN, +( 150 (98-CN,) (3)
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where P, is accumulated precipitation excess at time t, P is accumulated
rainfall depth at time t, S is the potential maximum soil moisture
retention, I, is the initial abstractions, CN, is composite runoff curve
number, CN,, is previous runoff curve number, P,,, is the percent of
connected impervious areas.

The conventional SCS-CN method is designed for event-based sim-
ulations only, and has no mechanism to allow drying of soil after
infiltration occurs. To enable continuous simulation, we modify the
SCS-CN method to allow moisture to leave the soil over time via
evaporation or baseflow using a decay parameter (Algorithm 1). Within
this scheme, P, is rainfall at time t, D is decay rate, L is loss, P, is ac-
cumulated precipitation excess at time t-1, and P,,. is the accumulated
precipitation excess at time t.

After computing infiltration and excess precipitation using the SCS-
CN method, the direct runoff hydrograph for overland flow is ob-
tained through discrete convolution of the precipitation excess with
a unit hydrograph, representing the travel time distribution of the
watershed (Feldman, 2000).

Algorithm 1: Continuous SCS-CN algorithm
Input: P,P,,CN,D

Output: P,

t1

S « 1000/CN — 10

1, <028

while t < n do
P<P+P

L« Px(l-D)
if P — L <0 then
| L<0

end

P—~P-L

if P < I, then

| P,<0

else

| P, < (P-0285)?2/(P+08S)
end
Pinc(_Pe_Ppre+L
P, <P,

pre

end

3.2.3. Hydraulic model

Overland flow generated by the hydrologic model is routed into a
physically-based hydraulic model, which computes the discharges and
water depths in the pipe and channel network. The hydraulic model
of the urban drainage system is implemented using the PipeDream

solver (Bartos & Kerkez, 2021), which solves the Saint-Venant equa-
tions for unsteady flow in conduits and open channels using a
staggered-grid implicit discretization scheme (Ji, 1998).

IA 00 _
o " ox dm “)
0 9 oh _

E+E(Qu)+gA<a—S0+Sf+SL>—O (5)

Where Q is the flow rate, A is the cross-sectional area of flow, u
is the average velocity, & is the pressure hydraulic head above the
bottom of the conduit, x is distance, ¢ is time, g;, is the exogenous
flow input per unit length, and S,, S, and S, represent the conduit
bottom slope, friction head loss slope, and local head loss slope (due to
contractions and expansions), respectively. The Saint-Venant equations
represent the full physical dynamics of 1D unsteady flow, with Eq. (4)
incorporating conservation of mass and Eq. (5) incorporating conserva-
tion of momentum. The solver thus models the complex hydrodynamics
of urban drainage systems, including backwater effects and surcharged
flow. For the hydraulic solver, parameters such as channel connectivity,
geometry, and roughness are specified based on data from a HEC-RAS
model previously developed and calibrated by the City of Austin for
flood modeling.

3.3. Data assimilation

We select the PipeDream solver for the hydraulic model due to its
state-space representation of system dynamics, which facilitates data
assimilation via Extended Kalman Filtering (EKF). EKF combines a
physically-based process model with measured data to generate up-
dated posterior estimates of system states (Kalman, 1960). The Saint-
Venant equations are linearized at each timestep and transformed into
a state-space representation, enabling direct application of the EKF for
sensor data assimilation (Bartos & Kerkez, 2021). Here, x, is the state
vector of junction heads at time k, A, is the state transition matrix,
B, is the input transition matrix, u, is the input vector, w,_, is system
noise at time k — 1, z, is the observation data from sensor, H is the
observation matrix, and v, is measurement noise.

X = A X + B +wy (6)
2, = Hx; + vy, @)

By fusing the real-time sensor data, the minimum mean-squared error
estimator of the state, %, can be estimated recursively in two steps.
First, the predict step projects the state vector (Eq. (8)) and error
covariance matrix (Eq. (9)) forward in time using the state-space model.

Rppk—1 = ARy i k=1 + Bruy ®
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Py—t = A Pi_yir A + W ©)

where W is the covariance matrix of the process noise w,_; and
Pe_yjj—1 = ElCeo1 = Rpmppe-1) (X1 — fck,”k,l)r] is the error covariance
matrix at time k—1. Next, the update step corrects the estimated state by
combining the current prediction with a measurement from the sensors.

Vi =2z — H¥ (10)
Ly =Py H (HPy_ H + vyt an

where §, is Kalman innovation or measurement pre-fit residual, L,
is the Kalman gain, Py_; is the prior covariance matrix. V' is the
covariance matrix of the measurement noise v,. The posterior state and
covariance matrix at the next time step are given by (Eq. (12)) and
(Eq. (13)), respectively:

Rk = Rige—1 + LY (12)
P =U = L H) Py 13)

3.4. Anomaly detection

To handle non-Gaussian sensor errors, we discard measurements
with residuals (§,) exceeding a user-specified threshold (»):

iy >n (14)

During the Kalman filter’s update phase, if the innovation is within
the threshold, it refines the state estimate using the Kalman gain,
resulting in the posterior state estimate (fik|k) (Mu & Yuen, 2015). If
the innovation exceeds the threshold, the update step is skipped, and
the hydraulic state at the next time step is determined based on the
prediction step, utilizing the hydraulic model (Eq. (8)).

3.5. Software architecture for real-time implementation

Fig. 4 shows the software architecture of the digital twin model, de-
tailing the integration between the sensor network and the stormwater
model:

+ Rainfall Input: Simulates every 15 min using current rain gauge
data (RG[t — t*]) and forecasted rainfall data (F[r + 1]).

» Hydrologic Model: Calculates runoff for each sub-basin based on
the rainfall input using the continuous SCS-CN method and then
routes overland flow into channels via discrete convolution with
sub-basin specific unit hydrographs.

» Hydraulic Model: Simulates water levels and flows in the chan-
nel and pipe network using the PipeDream hydraulic solver.

» Sensor System: Collects and stores real-time water levels and
then passes these data to the digital twin model.

+ Data Assimilation: Excludes sensor measurements outside the in-
novation threshold and merges valid data with model predictions
using EKF.

+ Applications: Provides updated water levels for monitoring, stor-
age, or API access.

3.6. Evaluation methods

The stormwater digital twin model is evaluated on its ability to (i)
reject outliers in raw sensor data and (ii) accurately estimate depths and
flows at ungauged locations. These two tests represent important use
cases for water managers, who desire real-time observability of depths
and flows for flood management but are frequently limited by uncertain
models and sparse and poor quality sensor data.

3.6.1. Anomaly rejection performance

The evaluation of anomaly rejection performance is conducted by
analyzing the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC). The ROC curve visually represents the perfor-
mance of the binary classifier model across various threshold values
by plotting the true positive rate (TPR) against the false positive rate
(FPR) at each threshold.

TPR= —1P  ppr=_FP _
TP+ FN FP+TN

(15)

Where T P is the number of true positives, TN is the number of true
negatives, F P is the number of false positives, and FN is the number
of false negatives. AUC offers a comprehensive measure of performance
across all conceivable classification thresholds (Bradley, 1997). In this
paper, we utilize AUC metric to assess the classifier’s performance
in distinguishing sensor faults from true high-water events. The as-
sessment involves a comparison between Extended Kalman Filtering
(EKF) and other common anomaly detection algorithms. These anomaly
detection approaches include conventional statistical techniques like
Z-scores, as well as unsupervised machine learning approaches like Ro-
bust Random Cut Forest (RRCF), K-Nearest Neighbors (KNN), One-class
SVM, and Spectral Residual Detector (SRD).

3.6.2. Model performance

A holdout assessment is performed to evaluate the digital twin
model’s performance at predicting water levels at ungauged locations.
Taking Sensors 3 and 4 as the two holdout sites, we use EKF to fuse
data from Sensors 1 and 2 into the model and then quantify the extent
to which the performance at sensor sites 3 and 4 is improved. We
assess the digital twin model’s performance using the Kling-Gupta
Efficiency (KGE), a widely adopted metric in hydrologic research for
model evaluation (Knoben, Freer, & Woods, 2019). The KGE quantifies
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Fig. 5. Visualization of simulated and observed depth for Sensor 4 location.

model performance by calculating the Euclidean distance based on bias,
standard deviation, and correlation coordinates, as outlined below:

KGE=1-V(r—12+@—- 12+ - 1)2 (16)

where, r is the Pearson correlation coefficient, measuring the rela-
tionship between the simulated and observed data, « = o,/0, and
B = u,/u,. o, and o, as the standard deviations of the simulated
and observed data, respectively, u, and yu, as the means of and the
corresponding data sets. While the Pearson correlation gauges the
linear relationship between observed and simulated values, the KGE
provides a comprehensive evaluation by capturing patterns, variability,
and averages.

4. Results

The digital twin model excels in both rejecting sensor faults and
improving stormwater model accuracy. Fig. 5 compares the digital
twin model (bottom panel, red) with raw sensor data (light gray) and
the base model without data assimilation (blue) for storms occurring
in January and February 2023. Here, the digital twin model refers
to the hydraulic-hydrologic model with data assimilation, while the
base model refers to the same model without data assimilation. First,
while the raw sensor data exhibits multiple faults that would otherwise
register as false alarms, the digital twin model filters these outliers, pro-
ducing continuous estimates of the water depth in the creek. Moreover,
while the base model tends to overpredict peak depths, the digital twin
model rejects these overestimates by incorporating the depth sensor
data into the final estimate. In general, the digital twin output mediates
between the model estimates and sensor measurements, producing an
output that is consistent with both data sources. To complete an hourly
simulation, the base model requires roughly 0.26 s, while the digital
twin model requires 1.14 s (on an AWS t3.small EC2 instance), meaning
that the system is capable of comfortably running in real-time for
our watershed test case. The following sections discuss sensor fault
rejection (Section 4.1), model accuracy improvement (Section 4.2), and
model forecast improvement (Section 4.3) in greater detail.

4.1. Real-time sensor anomaly rejection

The performance of model-based anomaly detection is assessed
using sensor measurements from June 27, 2022, to May 20, 2023. Over
several storm events, the ultrasonic sensors reported multiple sensor
faults: 38 for Sensor 1; 1097 for Sensor 2; 0 for Sensor 3; and 87
for Sensor 4 (see Fig. 6a). Anomalies in the collected data arise from

reflected or attenuated ultrasonic signals caused by obstacles such as
tree branches and surface water turbulence. These sensor faults appear
as anomalously high water levels at depth positions ranging between 2
and 4 [m].

The proposed anomaly detection method based on EKF successfully
distinguishes sensor faults from true high-water events in all cases
considered. Fig. 6a illustrates the output of the digital twin model
(red) in comparison with raw sensor measurements (gray). Here, it
can be seen that EKF successfully rejects nearly all sensor faults while
also correctly admitting true hydrograph peaks. The digital twin model
with EKF exhibits markedly better detection of sensor faults than
competing anomaly detection algorithms. Fig. 6b shows ROC curves for
the EKF-based anomaly detection (red) compared to other unsupervised
anomaly detection algorithms across the three sites with sensor faults.
Here, it can be seen that EKF-based anomaly detection obtains nearly
perfect fault classification performance, achieving a True Positive Rate
of 100% while simultaneously obtaining a False Positive Rate close
to 0%. By contrast, competing unsupervised methods often struggle
to perform better than random chance (as indicated by the diagonal
dashed line on the ROC curves). Table 1 reports AUC values, which
quantify binary classification performance for all anomaly detection
methods at all sensor sites. The proposed EKF-based anomaly detection
method achieves an AUC of 0.99 on average (with 1.0 representing
perfect classification performance), while competing methods range
from a high of 0.748 (Z-Score) to a low of 0.565 (KNN). These results
hold when using either gage precipitation or forecasted precipitation
as inputs to the digital twin model (see SI Section S2.1). Overall,
EKF demonstrates remarkable efficacy in detecting anomalies, espe-
cially when these anomalies resemble hydrograph peaks, substantially
outperforming other unsupervised methods.

4.2. Improving real-time simulation accuracy

Model performance is evaluated using KGE for both the base and
digital twin models, using both forecasted and gauge-recorded precip-
itation data. For the digital twin model, sensor data is assimilated at
sites 1 and 2, and performance is assessed at sites 3 and 4. Overall,
data assimilation via EKF significantly improves model performance,
even at ungauged locations.

In Fig. 7, the base model without data assimilation yields KGE
values of 0.683 and 0.633 (relative to a perfect KGE of 1.0) when uti-
lizing gauged (left) and forecasted (right) rainfall inputs, respectively.
Especially during simulations involving forecasted precipitation, the
basic model consistently predicts higher water depth values compared
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Table 1
AUC values for different anomaly detection methods.
Sensor Rainfall EKF Zscore SRD One-class SVM KNN RRCF
1 Gauge 0.99 0.61 0.56 0.53 0.39 0.32
2 Gauge 1.00 0.60 0.44 0.55 0.35 0.39
4 Gauge 0.99 0.92 0.62 0.84 0.77 0.88
2 Forecast 0.99 0.86 0.65 0.62 0.75 0.72
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Fig. 6. (a) Sensor fault detection and (b) ROC comparison under gage precipitation.

to sensor measurements. This divergence is attributed to the model’s
tendency to overestimate rainfall. For instance, for observed depth val-
ues of 0.25 [m], the model simulation results under forecasted rainfall
span from roughly 0.25 to 0.7 [m] (Fig. 7, right). In contrast, the digital
twin model outperforms in prediction, achieving a KGE of 0.784 and
(c) 0.786 for gauged rainfall and forecast rainfall, respectively. Figure
S6 offers additional perspective on the KGE evaluation, presenting
simulation outcomes and observational data at Sensor 3, which is
closer to the data assimilation point. Here, the digital twin model also
shows improved accuracy over the base model—especially under the
forecasted rainfall input where the KGE improves from 0.817 (base
model) to 0.886 (digital twin model). Overall, the digital twin model
enhances the accuracy of monitoring water depth in the watershed,
both at gauged and ungauged locations.

4.3. Improving streamflow forecast accuracy

The digital twin stormwater model enhances the accuracy of near-
future stream stage forecasts by improving estimates of current hy-
draulic states with data assimilation and improving the prediction
of subsequent stormwater depths by routing forecasted precipitation.
Fig. 8 demonstrates forecasted depth estimates produced by the digital
twin model (red) compared to the base stormwater model without
data assimilation (blue). Initially, the digital twin model calculates
runoff using aggregated precipitation data that includes rain gauge
measurements up to the present (6 pm, May 13th, 2023), along with
future forecasts (from 6 pm, May 13th, 2023 to 12 am, May 20, 2023).
Next, it assimilates measurements from Sensor 1 up to the present time
(6 pm, May 13th, 2023), thereby pushing the simulated state of the
system closer to the ground truth. As a result, the digital twin model
demonstrates improved alignment with Sensor 1 observations over the
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forecast horizon (approximately 12 h ahead) compared to the base
model using forecasted precipitation alone.

5. Discussion

This study evaluates the practical application of stormwater digital
twin models for data quality control, monitoring, and prediction of
stormwater depths and discharges within urban drainage systems. With
respect to data quality control, the digital twin model reinforced by
the Extended Kalman Filter demonstrates exceptional performance,
outperforming alternative unsupervised methods. This superiority is
evident in ROC curve analysis, where EKF consistently achieves an AUC
exceeding 0.99. The remarkable AUC persists when using both rain
gauge and forecasted precipitation data to force the hydrologic model,
underscoring the model’s robustness across diverse inputs. Model-based
state estimation outperforms competing unsupervised anomaly detec-
tion methods because it incorporates information about the underlying
physical system, including expected rainfall inputs. By contrast, sta-
tistical and machine learning-based methods must detect anomalies
using sensor measurements alone, making it difficult to distinguish
hydrograph peaks from sensor faults, especially in a real-time context.
The model-based state estimation approach also requires no training
aside from basic model calibration, which is standard practice in hy-
drologic and hydraulic engineering. As such, this approach can readily
be applied to any watershed for which a hydrologic-hydraulic model
is available.

Regarding monitoring accuracy, the digital twin model significantly
enhances estimation of stormwater depths and flows, evidenced by
improved KGE values under both gauge and forecasted precipitation.
Integrating state estimates into the model also significantly improves
forecasting accuracy in the near future by improving estimates of the
initial system state at the start of the forecast horizon. The 3D visualiza-
tion in Fig. 9 illustrates the proposed digital twin model integrated into
a real-time user interface, providing water managers with improved
estimates of stormwater depths by incorporating sensor measurements
and rejecting sensor faults. When combined with real-time data visual-
ization capabilities, the proposed digital twin model promises to enable
real-time monitoring and forecasting of stormwater depths, facilitating
more effective watershed management.

Unlike earlier studies on digital twins, which have primarily focused
on conceptual reviews (Pedersen, Borup, Brink-Kjer, Christiansen, &
Mikkelsen, 2021b), the development of real-time 3D visualization plat-
forms (Park & You, 2023), and the creation of software or frameworks
for implementation (Bartos & Kerkez, 2021; Ranjbar et al., 2024), this
study offers a novel approach for addressing both the modeling and
measurement uncertainties that complicate real-time management of
stormwater systems. By constructing a fully-operational stormwater
digital twin and evaluating our system against real-world storm events,
we find that our proposed approach is effective at delivering reliable
estimates of stream depth and reducing the potential for false flood
alarms. With respect to sensor fault detection, previous research has
typically used data-driven methods like modified Z-scores (Bae & Ji,
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Fig. 9. 3D visualization of water level monitoring in Waller Creek.

2019) and Support Vector Machines (SVMs) (Schmidt & Kerkez, 2023)
for online data quality control. In contrast, this study employs a model-
based approach that first filters out sensor faults through online quality
control and then refines estimates of depth and discharge using data
assimilation. This strategy not only improves system interpretability
but also enhances accuracy, providing a more dependable solution for
real-time stormwater management.

While this study focuses on real-time flood monitoring, future re-
search should expand our digital twin model to enable improved water
quality management, given that water quality challenges in urban
drainage systems are on par with flooding concerns for many cities. By
coupling the proposed digital twin model with a contaminant transport
solver like PipeDream-WQ (Kim & Bartos, 2023), future research may
explore the potential for real-time tracking of contaminants like sed-
iments or nutrients that impair downstream water quality. Using the
method described in our paper, this coupled model has the potential
to automatically detect anomalies in water quality data that may
indicate algal blooms, fish kills, or unauthorized washoff of sediments.
Moreover, the real-time and forecasted simulation capabilities of the
stormwater digital twin model may be further extended to encompass
active control strategies (Oh & Bartos, 2023), thus enabling the im-
plementation of smart stormwater systems that use dynamic actuation
of valves, gates, and pumps to halt combined sewer overflows and
improve water quality.

Although this study provides guidelines for implementation of a
complete stormwater digital twin system, several social challenges
remain. Designing, installing, and maintaining stormwater digital twin
models requires a diverse set of technical skills, necessitating teams
with expertise in construction, software development, and embed-
ded electronics. Consequently, cross-disciplinary misunderstandings
can hinder effective collaboration (Broo, Bravo-Haro, & Schooling,
2022). Moreover, stormwater digital twin systems involve high initial
investment costs, including wireless sensor networks and advanced
computing systems for real-time modeling, with substantial ongoing
operational and maintenance expenses (Ferré-Bigorra, Casals, & Gan-
golells, 2022). These factors make it challenging to promote and adopt
such systems, especially within local government agencies. Finally,
addressing cybersecurity concerns is crucial for effective stormwater
management and active control (Lee, Kim, & Seo, 2019). Navigating
these challenges is key to realizing the benefits of stormwater digital
twin models and their integration into public infrastructure.

6. Conclusions

This study evaluates an end-to-end digital twin system for managing
urban drainage hazards. By integrating a wireless sensor network, an

10

online hydrologic-hydraulic model, and data assimilation, the system
demonstrates excellent performance in data quality control, prediction
of stormwater depths at ungauged locations, and improved near-term
forecasts. The digital twin model effectively identifies and removes
outliers, surpassing unsupervised methods in sensor fault detection.
It also improves stream depth estimates and forecast accuracy by
continuously correcting stormwater depth states. This framework en-
ables effective flood alerts, timely emergency response, and real-time
control of urban drainage infrastructure, mitigating hazards like sewer
overflows. To pave the way for these future developments, this study
contributes practical tools—including a full software implementation—
to bridge the gap between digital twin concepts and on-the-ground
implementation for resilient and sustainable urban watersheds.
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