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Robust Network Anomaly Detection with K-Nearest
Neighbors (KNN) Enhanced Digital Twins

Peprah Obed Adjei, Sumit Kumar Tetarave, Caroline John, Madlyn Manneh, and Parthasarathi Pattnayak

Abstract—Modern network security remains a critical concern
in the digital landscape due to evolving cyber threats and increas-
ingly sophisticated attack vectors such as Advanced Persistent
Threats and Zero-Day Vulnerabilities. Leveraging advanced tech-
nologies such as artificial intelligence (AI) and machine learning
(ML) can enhance threat detection capabilities and improve
incident response times when detecting and mitigating network
security threats. On the other hand, an imbalanced dataset of
network traffic in AI/ML models presents several challenges and
can significantly impact the performance and effectiveness of
the models to predict attacks. Our research aims to amplify
the robustness of the imbalanced network traffic dataset to
fit the analysis and adaptability of KNN-based Digital Twins
dedicated to network anomaly detection. This paper capitalizes
on the remarkable performance of the model, characterized by
impeccable precision, recall, and F1-score, as indicated by the
classification report with 99% accuracy. The confusion matrix
further highlights the model’s performance using the proposed
robustness dataset, showing a minimal False Positive Rate (FPR)
compared to similar works in the literature.

Index Terms—Network Anomaly Detection; K-Nearest neigh-
bors; Digital Twins; Robustness; Adaptability.

I. INTRODUCTION

In an age where the digital realm intertwines seamlessly
with the physical, “Digital Twins” emerges as a beacon of
technological innovation. A digital twin is a virtual represen-
tation of a real-world system or thing, breathing life into data
and ushering in a new era of understanding, monitoring, and
optimizing real-world entities [1]. Digital Twins’ applications
span various domains, offering transformative insights and
capabilities. Digital Twins act as a dynamic lens in network
management, enabling us to peer into the intricate web of
interconnected devices, data flows, and protocols. They are
not just replicas but sentient observers, change catalysts, and
network integrity guardians [2].

Let us contemplate a situation where an Internet Service
Provider (ISP) implements Digital Twins to mirror its ex-
pansive network infrastructure. These Digital Twins serve
as vigilant sentinels, mirroring network nodes, devices, and
the ebb and flow of data. By meticulously modeling and
analyzing their digital counterparts, ISPs gain the foresight
to preemptively identify congestion points, optimize routing,
and enhance Quality of Service (QoS). The applications extend
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even further, delving into the realm of cybersecurity. Digital
Twins become watchful protectors, embodying the network’s
normal behavior. They are the front line defenders, swiftly
detecting and mitigating deviations, such as Distributed Denial
of Service (DDoS) attacks.

Network anomalies are enigmatic deviations from the ex-
pected norm of network behavior. These deviations mani-
fest in various forms, including unexpected surges in data
traffic, aberrant bandwidth consumption, unauthorized access
attempts, or erratic patterns in the transmission of network
packets. For example, a sudden increase in data transfer
rates during non-peak hours could indicate the beginning of
a potential Distributed Denial of Service (DDoS) attack. In
contrast, a consistent decrease in data transmission rates might
suggest an underlying network issue [3].

These diverse and intricate anomalies pose a formidable
challenge to network administrators and cybersecurity profes-
sionals. The ability to swiftly detect, analyze, and mitigate
anomalies is paramount for safeguarding network integrity and
mitigating potential threats. Thus, the overarching objective
is to imbue Digital Twins with the intelligence to identify
and respond effectively to these anomalies, thereby ensuring
the steadfastness and security of network infrastructures [4].
Intriguingly, the fusion of Digital Twins with the power of
machine learning, particularly K-nearest neighbors (KNN),
ushers in a new frontier of network management [5].

This research explores the complexities of network anoma-
lies, clarifying how they appear and the resulting outcomes.
We explore this symbiotic relationship with a specific focus on
harnessing KNN for network anomaly detection. In doing so,
we aim to fortify the resilience and adaptability of Digital
Twins in identifying and responding to network anomalies
with precision on balanced and imbalanced network traffic
datasets. The database used for this research was obtained from
UNSW-NB15 Dataset ([6], [7]). It consists of 49 attributes,
including network source IP (srcip), source byte (sbyte), attack
categories (attack_cat), service, stat, and 135 protocols (proto)
such udp, tcp, arp, cbt, nvp, ipv6-opts, etc. The evaluation
shows that our balanced dataset mechanism’s performance in
identifying anomalies was enhanced significantly compared to
existing ones [18].

The rest of the paper is organized as follows. Section II
focuses on notable research in the relevant field. Section III
explains the methods for acquiring the required findings along-
side the model and proposed technique. Section IV presents
the results and examines the proposed methodology. The
conclusion of the research is presented in Section V, which
also outlines the direction for future research.
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II. LITERATURE REVIEW

In recent years, anomaly detection has become a vital area
of research in various applications. Several machine learning
algorithms have gained prominence in this context [8] and
highlighted the prevalence of specific algorithms frequently
employed for anomaly detection. These techniques include
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), and Random Forests (RF).

However, it is essential to acknowledge that adopting
complex models rooted in Deep Learning (DL) architectures
and ANN comes with inherent challenges. These challenges
primarily revolve around the necessity for extensive training
datasets, as emphasized by [9]. Additionally, models built upon
such frameworks tend to exhibit low physical interoperability
of their parameters, which can hinder their practical utility
in specific applications. Consequently, alternative algorithms
have been explored to address these challenges and enhance
the effectiveness of anomaly detection. Of these choices,
Random Forests (RF), One-Class Support Vector Machines
(OCSVM), and Kernel Principal Component Analysis (KPCA)
have established themselves as reputable and successful tech-
niques [10]. Authors in [11] introduced an ML-based Digital
Twin (DT) as a pivotal tool for efficiently managing real-
world networks. This innovative approach enables network
operators to design optimization solutions, troubleshoot net-
work issues, perform simulations, and plan improvements
effectively. The key to its effectiveness lies in utilizing deep
learning techniques for modeling the DT. These techniques
consider various network parameters, including traffic patterns,
network topology, routing strategies, and scheduling policies.
Consequently, the DT generates valuable performance metrics
such as network utilization, latency, and packet loss. The itera-
tive feedback process established between the DT and network
optimization tools further enhances network configuration to
meet network operator requirements, ensuring optimal network
performance.

Despite their many advantages, these features also make
DTs potential targets for security breaches. Unauthorized
access to DTs can lead to misuse, a scenario referred to as the
abuse case of DT [12]. Attackers can exploit their deep under-
standing of physical processes and devices accessible through
DTs. This exploitation typically involves a two-stage strategy:
first, manipulating DTs into a malicious state—altering the
key data acquisition and dissemination processes, and then
using this compromised state to manipulate the underlying
physical system’s behavior covertly. The reverse strategy,
targeting Cyber-Physical Systems (CPS) to attack DTs, is also
possible. For instance, the evolution of specialized malware
tailored for Industrial Control Systems (ICS) indicates that
adversaries possess in-depth knowledge of physical industrial
processes [13]. With this understanding, attackers can infer
and construct their knowledge about DTs, potentially leading
to cascading failures.

The authors of ([14], [15]) have introduced the CPS
digital-twin framework to overcome the cascading failures.
This framework automatically empowers users to generate
digital twins from CPS specifications, often represented as

Automation ML-based engineering artifacts. These digital
twins operate within a virtual environment. They can function
independently of their physical counterparts, such as testing
or closely emulating their program states to virtually replicate
actual CPS behavior on the logic and network layers, primarily
for monitoring purposes [16]. Moreover, the authors have
emphasized that the digital twin concept offers numerous
security-enhancing possibilities.

In the paper [17], the authors present a digital twin modal
using KNN and MSVM machine learning algorithms. KNN
achieved an accuracy of 86%. Moreover, authors in [18]
implemented an ensemble intrusion detection technique for
protecting the network traffic with 98.97% accuracy over
HTTPS data sources. This method has a low false positive rate
(FPR) of 2.58%. Our focus in this paper is to develop Intrusion
Detection Systems (IDSs) to harness KNN features to improve
accuracy and provide a mechanism to build a robust, balanced
dataset that increases the effectiveness of identifying malicious
links.

III. PROPOSED METHODOLOGY

We aim to construct a Digital Twin system capable of repli-
cating network instances and promptly identifying deviations
or anomalies by leveraging KNN in conjunction with our
proposed data balancing method. This proactive approach will
be pivotal in ensuring the continual enhancement of network
security, aligning with the primary goal of our proposed work.
Fig. 1 shows the proposed flow to accomplish the proposed
objectives.
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Fig. 1. Our proposed Workflow

A. Data Collection

We use the UNSW-NB15 dataset [6, 7], collected by the
IXIA PerfectStorm tool in the Cyber Range Lab, USA. It
covers various network-related characteristics, such as source
and destination IP addresses, protocol types, attack categories,
origin and destination byte counts, source and destination port
numbers, connection state tracking, duration, and numerous
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other pertinent variables. It comprises 49 distinct features, each
providing specific network information. It is further enriched
by a substantial volume of data instances, totaling 700,000
records that are a hybrid of the modern normal and abnormal
network traffic in the form of packets.

B. Data Pre-processing and Cleaning

The data preparation process was initiated by selecting
a dataset aligned with the network environment we aimed
to model. During the initial examination, we noticed the
presence of empty cells, particularly within the attack_cat
feature. These blank cells corresponded to instances where
no network attacks were detected. To ensure uniformity and
facilitate our analysis, we replaced these empty cells with the
label no_attacks. This attack_cat column plays a pivotal role
in our study, as it directly reflects the collective impact of
observed network behaviors and serves as the basis for label
assignment. We use binary encoding to label the absence of
an attack with 0, while a label of I signifies the presence of
a network attack.

C. Data Transformation

Converting categorical data into a format suitable for ma-
chine learning analysis is fundamental to ensuring that our
models can effectively interpret and leverage categorical infor-
mation. We applied one-hot encoding to the dataset, targeting
the categorical columns proto, state, and service. One-hot
encoding transforms these categorical features into a series of
binary (0 or 1) columns, each representing a unique category.
This transformation enables our machine learning algorithms
to comprehend and process the categorical attributes to make
accurate and meaningful predictions.

Further, we utilized Min-Max scaling, a fundamental pre-
processing technique that guarantees that the numerical feature
values are confined within a standardized range, typically from
0 to I, the columns that have been encoded using one-hot
encoding. This prevents features with large numeric fields from
influencing the analysis. We chose Min-Max scaling to provide
uniformity in feature scales, which is crucial for machine
learning algorithms like K-nearest neighbors (KNN).

This uniformity ensures all features contribute proportion-
ally to our proposed K-nearest neighbors (KNN) DT model.
We selectively applied Min-Max scaling to specific columns
such as duration (dur), source bytes sbyte, destination bytes
dbyte, and others. These columns were chosen based on their
relevance to model creation. Columns with heterogeneous data
or the potential to introduce bias (proto, state, and service)
were excluded.

D. Data Balancing

Balancing of Data is a methodology employed in machine
learning to rectify class imbalance within datasets. This im-
balance manifests when certain classes within a classification
problem exhibit fewer instances than others. Given the marked
imbalance within the dataset employed for this research, it
is deemed prudent to contemplate the creation of a balanced

dataset derived from the original one. Upon scrutiny of the
original dataset, the following observations were made con-
cerning the label attribute consisting of anomaly (A) and not-
anomaly (NA).

o Total number of 0’s (Not anomaly) = 677,786

« Total number of 1’s (Anomaly) = 22,215

We proposed a balancing method to balance the target vari-
able, which has been compared with an existing method called
the Synthetic Minority Over-sampling Technique (SMOTE).
To obtain a balanced set, an equal number of Anomaly and
Not Anomaly entries is required. In our case, since they are
not equal; we took an equal number of Not Anomaly (677,786
- 655,571 = 22,215) to match the 22,215 entries of Anomaly.

L -1

Z {NA()+]€,NA1+]€7....,NA‘A|_1+]§}+€

i=0
(1
where k = i * |A| and the value of ¢ has been ignored in this
study.

NAS =

E. Data Shuffling

Data shuffling is performed on each reduced 44,430 records
of the balanced split dataset as follows:

BalancedDataset; = suf fle(AU NAS;). 2)

where each NAS; is generated by Eq. 1. Further, each split
BalancedDataset; is divided into an 80:20 ratio for the
training and testing datasets, which gives appropriate training
data for the small subsets of a UNSW-NB 15 dataset in our
proposed method.

F. Model Fitting

The K-nearest Neighbour (k-NN) algorithm represents a
non-parametric, supervised machine learning approach for
tasks such as sample classification and regression. This so-
phisticated classifier evaluates the likeness between newly
acquired data vectors and existing dataset entries. During its
training phase, k-NN meticulously stores pertinent dataset
information. Subsequently, when fresh data becomes available,
the algorithm adeptly categorizes it into the most fitting
category, closely aligning with the established dataset. The
pivotal k parameter signifies the number of cases from the test
or validation dataset that closely resemble a specific set of
circumstances. The algorithm relies on the Euclidean distance
measure to assess the similarity between data pairs. This
method of proximity calculation proves instrumental in making
informed categorization decisions based on the underlying
dataset’s intrinsic patterns.

The proposed KNN DT model learns from the training
data, which consists of our selected numerical features, such
as dur, sbyte, dbyte, and their corresponding labels. The
training process enables our model to identify patterns and
relationships within the data. The outcomes demonstrate the
stability and accuracy with which our suggested model can
identify network instances, hence augmenting the security of
network systems.
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IV. MODEL EVALUATION

The proposed model is evaluated on the Synthetic Minority
Over-sampling Technique (SMOTE) and compared with our
proposed balanced datasets. SMOTE synthesizes the imbal-
anced data into a balanced one. As a result, it balanced the
dataset after generating 22,215 anomalies into 677,786 to
match with no anomaly entries. We found the accuracy of
this synthesized dataset is 71.79%. However, our proposed
balanced dataset method outperforms with 99.05% accuracy
and 1.44% FPR.

Fig. 2 shows the values obtained for the confusion
matrix after evaluating the proposed DT model on a
split BalancedDataset;, where i is a random dataset in
(0,1,...,([INAJ/|A|| — 1). True positive (TP) represents the
cases where our models accurately recognized and correctly
identified anomalies. TP value of our proposed model on a
balanced dataset is 4,435 out of 8,886 test dataset records,
whereas correctly recognized non-anomalies (TN) is 4385.
Type-I error occurs when our models mistakenly identify non-
anomalies as anomalies. In this scenario, the Digital Twin
model generates 49 false alarms, whereas incorrectly classify-
ing (Type-II error) non-anomalous instances as anomalous are
15.

2x2 Confusion Matrix (Averaged)

4000
3500
° 49 50
3000
2500
- 2000
- 1500
7 » - 1000
- 500
0 1

Predicted

Actual

Fig. 2. Details of the confusion Matrix

Fig. 3 shows the average results of 10 datasets out of
30 (= ([|INA]|/]A]] — 1) to outline the evaluation of the
proposed model. On average, the TP values of our proposed
model on ten different balanced datasets are 4,420.70, whereas
correctly recognized anomalies (TN) are 4381.40. The Digital
Twin models, on average, generated 64.30 false alarms (False
Positive) in this scenario, incorrectly classifying 19.60 anoma-
lous instances as non-anomalous, whereas the proposed model
missed an average of 15.08 anomalies (False Negative).

Sn. TP FP FN ™ Accuracy |Test Dataset

4379 106 40 4361 0.98 8886

4373 112 a7 4354 0.98 8886
4448 37 10 4391 0.99 8886

1

2

3

4 4390 95 19 4382 0.99 8886
5 4376 109 28 4373 0.98 8886
6

7

8

9

4423 62 9 4392 0.99 8886

4379 106 40 4361 0.98 8886
4469 16 1 4400 1 8886

4485 0 1 4400 1 8886

10 4485 0 1 4400 1 8886

Average 4420.70 64.30 19.60 4381.40 0.99

Fig. 3. Evaluation Report of the proposed DT model on ten different balanced
datasets

Fig. 4 shows the values of precision, recall, and F1-score of
the non-anomaly situation. Precision is the ratio of correctly

predicted positive values among a model’s total number of
positive predictions (TP / (TP + FP)). This metric quantifies
the proportion of correctly predicted positive instances among
all positive predictions. In our study, the average is 1.00 for no
anomaly detected and 0.99 for abnormality detected precisely.
A high precision indicates that the models have a low rate of
false positives.

Recall, also called sensitivity, represents the ratio of true
positive predictions to the total number of positive instances
in the dataset (TP / (TP + FN)). It quantifies the accuracy
in identifying actual positive instances as positive. In our
analysis, the average equals 0.99 for both anomaly and no
anomaly detected. A high recall value signifies the models’
proficiency in identifying positive instances. Finally, the F1-
score is the harmonic mean of precision and recall to visualize
their combined effect on the proposed model. It balances
precision and recall and is helpful to find a balance between
false positives and false negatives. The report shows 0.99 on
average for both anomalies and no anomaly detection.

No - Anomaly Detected

Fig. 4. Graphical view of No-Anomaly Detection

Moreover, Fig 4 reflects how the models meticulously cap-
tured normal situations with good precision growth. This is one
of the benefits of using a balanced dataset in model creation.
KNN exhibits excellent performance when given a balanced
input dataset to train since it relies on the distance between
vector points to build its analogy. Fig. 5 shows the range of
precision from 0.97 to 1. We observe a usual situation of KNN
models struggling to identify anomalies precisely. Since this
research’s primary objective is the proactive identification of
anomalies within a data stream using the DT models, precision
from the onset might face some challenges.

Anomaly Detected

Fig. 5. Anomaly Detection in the proposed DT model

A. Evaluation using AUROC Curve

Fig. 6 describes the Receiver Operating Characteristics. An
Area Under the Receiver Operating Characteristic (AUROC)
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score of 1.00 indicates that the Digital Twin (DT) model’s
performance in distinguishing between anomalies (attacks) and
non-anomalies (non-attacks) is perfect. It means that the model
has achieved a flawless balance between true positives and
false positives, as well as true negatives and false negatives.

Receiver Operating Characteristic (ROC) Curve

\,
\,

True Positive Rate
\,

e ROC Curve (AUC = 1.00)

00 02 04 06 o8 10
False Positive Rate

Fig. 6. ROC curve for the proposed DT model

The previously presented confusion matrix and classification
report demonstrates the DT model’s remarkable ability to
accurately differentiate between anomalies and non-anomalies.
The precision, recall, and F1-score values for both classes (0
and 1) were notably high, signifying a low occurrence of false
positives and false negatives. Consequently, the ROC curve,
which visualizes the trade-off between true positive rate and
false positive rate, demonstrates a curve that hugs the top-left
corner of the plot, ultimately leading to an AUROC score of
1.00.

Further, the Precision-Recall curve is a crucial evaluation
tool for our Digital Twin (DT) model in the context of anomaly
detection. Fig. 7 shows the Precision-recall of the Digital Twin
model. This diagram illustrates the balance between precision
and recall across different decision thresholds, offering valu-
able insights into the model’s performance. Precision, in this
context, measures the accuracy of the DT model’s positive
predictions, specifically the ratio of true positive predictions
(correctly identified anomalies) to all instances classified as
anomalies. Recall quantifies the DT model’s ability to identify
all actual anomalies correctly, represented as the ratio of true
positive predictions to all actual anomalies.

Precision-Recall Curve

0.8

°
o

Precision

Precision-Recall Curve (AP = 0.95)

0.0 0.2 0.4 0.6 08 1.0
Recall

Fig. 7. The Precision-Recall Curve of the proposed DT model

The Precision-Recall curve is essential because it allows us
to assess our model’s performance under different levels of
anomaly detection strictness. It helps us balance minimizing
false alarms (improving precision) and ensuring that actual
anomalies are not missed (improving recall). The Area Under

the Precision-Recall Curve (AP) is a singular metric that
encapsulates the model’s overall performance across a range of
thresholds. In our case, an AP of 0.95 is highly commendable.
It signifies that the DT model consistently achieves high
precision while maintaining strong recall, even when adjusting
the decision threshold.

In practical terms, a high AP score like 0.95 means that
the DT model is exceptionally effective at identifying network
anomalies with a low rate of false positives. It is precious in
network security, as it indicates that the model can accurately
pinpoint security threats while minimizing unnecessary alerts.
We identified anomalies using key terminologies such as
Receiver, Destination, and Source.

e Receiver: The designation is applied when neither the
Source nor the Destination can be conclusively identified
as the primary contributor to an anomaly. When neither
the srcip value (source IP address) nor the dstip value
(destination IP address) surpasses predetermined thresh-
olds (0.6 and 0.8, respectively), the location is marked as
Receiver. Tt indicates that the anomaly is not explicitly
linked to the data source or destination but is considered
an anomaly at an intermediate point within our dataset
or network.

e Source: It is invoked when the srcip value (source IP
address) exceeds a specific threshold (e.g., 0.6). It sug-
gests that the anomaly is related to the source of the
data point, typically where data originates. If srcip_value
exceeds the defined threshold, the location is attributed
as Source. It signifies that the anomaly arises from the
source IP address, representing its association with the
data’s point of origin.

e Destination: It is employed when the dstip value (des-
tination IP address) surpasses a certain threshold (e.g.,
0.8). It indicates that the anomaly is associated with the
destination of the data point, where data is received or
directed. If dstip_value surpasses the predefined thresh-
old, the location is denoted as Destination. It implies that
the anomaly is linked to the destination IP address, in-
dicating its association with the data’s intended endpoint
or destination.

These location attributions serve as critical indicators, aiding
us in understanding the origins of anomalies—whether they
manifest at the source, destination, or intermediary points
within the dataset. They augment the depth and specificity
of our research, facilitating a more thorough examination of
the spatial dimensions of unusual behavior within our dataset.

Fig. 8 depicts the code snippet used for the exercise. The
proposed DT model was tested over sample data to identify
anomalies. When it was limited to index 15, it could detect
anomalies at that index and label it as /, clarifying the details
of the classification report where the anomaly is class 1
(Fig. 9).

V. CONCLUSION

The KNN-based Digital Twin model showcases remark-
able performance, accurately discerning non-anomalies while
preserving a favorable trade-off between precision and recall
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import numpy as np

#feature names

feature_names =

index_to_detect = 15

# Extr

xtracting the data point at chosen index
data_point = X_test_numeric.iloc[index_to_detect:index_to_detect + 1]
# Using the KNN Digital Twin model to predict i
anomaly_prediction =

f it's an anomaly
knn_classifier_numeric.predict(data_point)

# Determining whether it's r to the source, destina
srcip_value = data_point.iloc[@, feature_names.index(’

dstip_value = data_point.iloc[@, feature_names.index(
dsport_value = data_point.iloc[0, feature_names.index(’dsport’)]

on the features

if srcip_value > 0.6:
location = 'Source’
elif dstip_value > 0.8
location = 'Destination’
else:
location = 'Receiver’

# Prin
print(
print(
print(

aly Detected at Index {index_to_detect}:")
n: {location}")
Prediction Label: {anomaly_prediction}")

Fig. 8. Details of the code used to detect anomaly at index 15

Anomaly Detected at Index 15:
Location: Receiver
Anomaly Prediction Label: [1]

Fig. 9. Results of the anomaly detected by the proposed DT model

for anomalies. The model’s high accuracy and robust F1
scores underscore its reliability in anomaly detection. Fur-
thermore, the AUROC score of 1.00 signifies the proposed
model’s exceptional ability to make precise predictions with
minimal declassifications, achieving an optimal equilibrium
between sensitivity and specificity. It emphasizes the model’s
unwavering capacity to differentiate normal network behavior
from potential security threats. Moreover, it has an accuracy
of 99.05% with its impressive AP score of 0.95, which is
comparatively higher than the accuracy of existing works (that
is 86% [17] and 98.97% [18]). The Precision-Recall curve
underscores the model’s effectiveness in achieving precision
and recall. It positions it as a potent asset for network anomaly
detection, significantly enhancing overall network security.
Our next goal is to implement the proposed ML-based DT
model into a live network to predict and detect anomalies in
real-time.
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