
Lifelong Learning for AoI and Energy Tradeoff
Optimization in Satellite-Airborne-Terrestrial Edge

Computing Networks
Y. Wu∗, B. Lorenzo∗, B. Liu+

∗Dept. Electrical and Computer Engineering, University of Massachusetts Amherst, USA
+Department of Computer Science, University of Illinois at Chicago, USA

∗{yinxuanwu, blorenzo}@umass.edu, +liub@uic.edu

Abstract—Satellite-airborne-terrestrial edge computing net-
works (SATECNs) emerge as a global solution for Internet of
Things (IoT) applications in 6G. However, their highly dynamic
nature with uncertain varying topology and network traffic
makes their management and control more challenging. In this
paper, we consider a scenario in which IoT devices, UAVs,
and satellites with different edge computing capabilities make
decisions to balance the freshness of information and energy
consumption. Since SATECNs are highly dynamic and data
freshness optimization requires timely decisions, we present a new
lifelong learning computing resource allocation algorithm (LL-
SATEC) that adapts to the environment by exploiting knowledge
transfer between devices in different layers in SATECNs and
previous experience. Lifelong learning is a promising machine
learning algorithm that learns continuously without requiring a
new training phase and avoids catastrophic forgetting. Our goal
is to find computing resource allocation policies online for IoT
devices, UAVs, and satellites that optimize the overall average
age-of-information and energy trade-off. Numerical results show
that our approach significantly accelerates learning compared
to traditional reinforcement learning algorithms, achieves three
times lower AoI and energy consumption in just a few iterations,
and avoids catastrophic forgetting.

Index Terms—AoI, edge computing, lifelong learning, satellite-
airborne-terrestrial edge computing networks, energy efficiency.

I. INTRODUCTION

SATECNs incorporate multi-tier edge computing to serve
many IoT applications, such as industrial IoT, intelligent
transportation networks, surveillance, control, and environ-
ment monitoring [1]–[3]. In these applications, preserving
the freshness of information is crucial for accurate decision-
making. Smart IoT devices, UAVs, and satellites have edge
computing capabilities and can process data collected from
the environment. Since these devices are powered by batteries,
the data freshness and energy consumption must be jointly
optimized. In terrestrial networks, the data freshness and
energy consumption trade-off have been researched actively
[4]–[6]. Some of these works [5], [6] focus on the partial
integration of UAVs to collect and process IoT data given

This work is partially supported by the US National Science Foundation
under Grant CNS-2008309 and CNS-2225427.

their advantages in terms of fast deployment, low latency, and
processing capacity. In [4], UAV trajectory is optimized to
reduce the communication latency and energy consumption
of IoT devices. However, there has been little work on edge
computing facilitated by SATECNS and its trade-off analysis.
In [7], satellites and UAVs are considered for heterogeneous
traffic offloading. They present a fixed offloading partitioning
to offload ultra-reliable low-latency communications traffic to
the UAVs and the terrestrial link. In contrast, enhanced mobile
broadband traffic is offloaded to the satellite link since it is less
delay-sensitive and needs high data rates.

Machine learning (ML) has been adopted in satellite net-
works for energy management, anti-jamming, and beam-
hopping [8]–[10], among others. Lee et al. [10] jointly opti-
mize the source-satellite-UAV association and the location of
UAVs using a Deep Reinforcement Learning (DRL) algorithm.
However, one major shortcoming in existing ML algorithms is
the lack of capabilities in adapting to dynamic environments
[11]. In fact, existing works on AoI optimization in SATECNs
or UAV-based systems using ML only work under stationary
assumptions [12]. Some progress has been made to make
learning models respond faster to dynamic environments by
transfer learning [13] but still rely on a training phase and thus
suffer catastrophic forgetting. The model must be retrained
for every new task, which is time-consuming and inefficient.
Therefore, dynamic environments need lifelong learning (LL)
to adapt the policies to the new environment, accumulate
knowledge, and learn continuously [14]. A few works adopted
LL in wireless networks [15], [16]. Zhou et al. [15] present a
beamforming adaptation scheme based on LL to optimize the
downlink beamforming in a dynamic environment. Gong et al.
[16] apply LL to learn resource allocation policies in IoT. Our
work extends this model to SATECNs and multi-task learning
in environments with heterogeneous dynamics and devices.

In this paper, we present a lifelong learning computing re-
source allocation algorithm (LL-SATEC) to find the optimum
policy that minimizes the AoI and energy cost in a dynamic
STECNs. We consider a scenario in which IoT devices, UAVs,
and satellites with heterogeneous edge computing capabilities

20
23

 IE
EE

 3
4t

h
A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n
Pe

rs
on

al
, I

nd
oo

r a
nd

 M
ob

ile
 R

ad
io

 C
om

m
un

ic
at

io
ns

 (P
IM

R
C

) |
 9

78
-1

-6
65

4-
64

83
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

PI
M

R
C

56
72

1.
20

23
.1

02
93

84
4

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

face different environments and exploit multi-task learning to
improve performance and accelerate learning. The knowledge
exchange is facilitated using a High Altitude Platform (HAP)
that collects data from the devices and updates their computing
allocation policy. Our results show that our algorithm can
adapt faster to dynamic environments and significantly reduces
the AoI and the cost.

II. SYSTEM MODEL

In section 2, the authors need to clarify the communication
model that is adopted in order to perform the task offloading
which currently is missing from the paper.

We consider the SATECN scenario presented in Fig. 1,
which consists of satellite, airborne, and terrestrial domains.
Each domain has different devices i.e., IoT devices, UAVs, and
satellites, that collect and process data to monitor a dynami-
cally changing environment. After processing the data, devices
can extract meaningful information and take actions (e.g.,
sending a notification, activating an alarm, etc.) that are time-
sensitive. The data generation frequency and the processing
requirements may vary over time due to the dynamics of the
environment. Therefore, the data freshness decreases over time
unless additional CPU resources are allocated. This brings
a tradeoff between the freshness of information and energy
consumption. To assist devices in making CPU allocation
decisions to adapt to the environment, we assume that they
interact with a High Altitude Platform (HAP).

The HAP builds a knowledge base from all collected
information regarding the status of the environment, performs
lifelong learning, and transmits the new policy back to every
device. Examples of applications include Earth monitoring,
surveillance, and transport networks in which data is collected
at different heights and combined at the satellites to extract
useful information.

We assume that IoT devices, UAVs, and satellites generate
data packets independently by observing the environment.
Each of these devices is referred to as a data source nz ∈ Nz

in a domain z, where z = 1 is the terrestrial domain, z = 2 is
airborne domain, and z = 3 is the satellite domain. To capture
the decisions at each time, we divide the continuous time into
discrete time slots of index t. The data packets are modeled as
independent and identically distributed (i.i.d.) across discrete
time slots and follow an arrival rate with Poisson distribution
λnz,i. The data packets generated are of size dnz

(t) and are
stored in each source data buffer of size Bcol

nz
. The data packets

will be scheduled to be processed using their local CPU
on a First Come First Served (FCFS) basis. The processing
time for a data packet ψnz,i = dnz/fnz,i is obtained as a
function of the data size and computing rate fnz,i at each
source nz . We quantify the freshness of the processed data
using the age of information (AoI) [16], which is defined as
the difference between the current time t and the generation
time tg,nz of the latest processed data packet from device nz ,
∆nz (t+ 1) = t− tg,nz . It can be updated as follows

Fig. 1: SATECN scenario.

∆nz (t+ 1) =

{
∆nz

(t) + 1, if bnz
(t+ 1) > 0,

∆nz
(t+ 1)− tg,nz

, if bnz
(t+ 1) = 0,

(1)
where bnz (t+ 1) is the number of CPU cycles required to
process the remaining data packets at the beginning of time
slot t+ 1 obtained as

bnz (t+ 1) = max{bnz (t) + pnz (t)dnz (t)− ϵnz (t), 0}, (2)

where ϵnz
(t) is the number of CPU cycles allocated at the

start of time slot t. The value of ϵnz (t) corresponds to the
CPU frequency fnz,i(t) within time slot t. The energy cost
per time slot is cnz

(t) = αnz
ϵ3nz

(t), where αnz
denotes the

type of chip of node n.

III. PROBLEM FORMULATION

We characterize the AoI and energy tradeoff of the source
nodes in SATECN by a cost function

Cnz
(t) = β∆nz

(t) + (1− β)cnz
(t), (3)

where β ∈ [0, 1] is the tradeoff weighting parameter between
the first term which is the AoI of source nz and the second
one given by its energy cost.

The overall cost minimization problem is formulated as

min
Π

lim
T→∞

1

T

T∑
t=0

N∑
i=1

β∆nz (t) + (1− β)cnz (t)

s.t. (1)− (2),

0 ≤ ϵnz (t) ≤ ϵmax,nz , ∀nz ∈ Nz, (4)

where Π = {Π1, ...,Πnz
, ...,ΠNz

} is the set of computing
allocation policies that indicate the amount of CPU resources
allocated per source nz at each time slot to minimize the cost.
Solving (4) using optimization theory is not feasible since
the dynamics of the environment are unknown. Therefore, to
solve this problem, we adopt lifelong learning and derive a
parameterized computing allocation policy.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

A. Task Definition

We model the non-stationary environments experienced by
source nodes through a series of tasks. We denote by jnz

a task
experienced by source nz in domain z. Each task is a Markov
decision process (MDP). We define the tasks per source node
nz as the tuple ϕjnz

= {lnz , λjnz
, djnz

, αjnz
, ϵjnz

} , where
lnz defines the domain on which node nz is located, λjnz

is
the data arrival rate (bits/s), djnz

is the data size, αjnz
is the

energy consumption factor per CPU cycle of the device nz
and ϵjnz

is the maximum computing capability of the device.
We assume that every source nz experiences i.i.d. environment
changes. Source nodes in the same domain z experience the
same set of tasks. Hence, in the sequel, we drop the index
n for clarity of presentation, and we denote by jz a task j
experienced by any devices in domain z.

B. MDP Framework

Consider Z = 3 domains, each device in domain z ex-
periences a sequence of tasks and takes actions to minimize
the cost function or penalty. We model the computing re-
source allocation problem based on the interaction with the
environment as a Markov Decision Process (MDP) defined by
{X ,Y,P, T, γ}, where X is the set of states, Y is the set of
actions, P denotes the penalty, T is the transition probability,
and γ is the discount factor. Each component is defined as:

1) State: the state space is the set of AoI values and
pending CPU data cycles, X = {xjz (t)} = {∆jz (t), bjz (t)} to
compute the remaining data at the beginning of each time slot
t.

2) Action: the action space Y = {yjz (t)} = {ϵjz (t)} is
the set of possible computation resource allocations, i.e., CPU
cycles, under task j for devices in domain z.

3) Penalty: the penalty is the cost function in (3).
The goal of each agent is to find a policy Π that minimizes

the penalty. We define parameterized policies Π′
j = {πθj |θj ∈

Rd}, where πθj (yjz (t)|xjz (t)) = Pr{yjz (t)|xjz (t), θj}. Each
agent must learn tasks consecutively and maintains an inter-
action history as a result of its interaction with the environ-
ment in the form of trajectories. A task-specific trajectory
δjz = {xjz (t), yjz (t), P (xjz (t), yjz (t))}. The agent ignore
the task tuple (except for the parameters related to the device
type), and thus, we assume a HAP will collect the trajectories
from different devices and infer the tasks from the trajectories.
Besides, the agent has no control over the task order. In
fact, tasks may be interleaved from the same or different
domains, giving the agent the opportunity to revise previous
tasks. In addition, the agent ignores the number of tasks,
their distributions, and the number of domains, and has no
prior information about mapping knowledge between tasks.
Therefore, it has to learn how to transfer knowledge between
task domains to optimize the performance.

C. Problem reformulation

Based on the previous assumptions, we transform the initial
optimization problem to find a parameterized policy that
maximizes the expected average return for all tasks M . For

simplicity, we assume that j is the index of the task from any
domain [14], [16],

max
Π′

lim
M→∞

1

M

M∑
j=1

J (θj) s.t. X ⊂ Rd,Y,P ⊂ R (5)

where J (θj) =
∫
pθj (δ)ℜj(δ)dδ, M =

Z∑
z=1

Mz , Π′ is the

set of parameterized policies for all tasks, pθj (δ) represents
the probability distribution for trajectory δ and ℜj(δ) is the
gain for a given trajectory. In other words, we have:

pθj (δ) = P0 (xj,δ(0))
T∏

t=0

p (xj,δ(t+ 1) | xj,δ(t), yj,δ(t))

πθj (yj,δ(t) | xj,δ(t))

ℜj(δ) =
1

T

T∑
t=0

γt−1
j R (xj(t), yj(t))

where p (xj,δ(t+ 1) | xj,δ(t), yj,δ(t)) is the unknown state
transition probability that maps a state-action pair at time slot
t onto a distribution of states at time slot t+1 in trajectory δ.
We consider using M to represent the set of observed tasks
by the agent. The setM is composed of subsetsMz , each of
which stores tasks originating from the z-th domain.

Conventional RL algorithms can only learn in stationary
environments and thus cannot be applied to solve this problem.
Consequently, a lifelong reinforcement learning algorithm for
SATECNs is proposed to adapt the computation allocation
decisions in a dynamic environment.

IV. LIFELONG LEARNING FOR COMPUTING RESOURCE
ALLOCATION

This section describes our LL algorithm for computing
resource allocation. To enable agents to overcome catastrophic
forgetting and achieve multi-task learning in dynamically
changing STECNs, we developed LL-SATEC based on the
parameterized lifelong learning policy gradient (PG) method
(Natural Actor-critic [17]). PG methods can find the optimal
interaction policy for a single task but are inefficient in non-
stationary environments. Therefore, LL combines knowledge
transfer with PG frameworks.

A. Lifelong Learning Algorithm

In the policy gradient, the action function for each task
j, denoted as yj(t) = f(xj(t), θj), is characterized by a
task-specific parameter vector θj ∈ Rd, where xj(t) ∈ Rd.
We assume that the task parameter vector θj is given by a
linear combination of shared latent model components from
the knowledge base maintained at the HAP, θj = Lsj . This
facilitates knowledge transfer between tasks. In fact, the HAP
stores a library of k latent model components L ∈ Rd×k,
which are shared between tasks. Each task parameter vector
θj can be represented as a linear combination of the columns
of L, based on the weight vector sj ∈ Rk that characterizes
the task. We encourage the weight vectors sj to be sparse

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Implementation Diagram of LL-SATEC Algorithm.

to ensure that each learned model component captures the
maximum reusable knowledge chunk.

We use the trajectory data collected for each task as training
data to optimize the model. The models are encouraged
to share structure while maximizing the average trajectory
expectation return for all tasks. The LL loss function is defined
as [14], [16]

eT(L) =
1

M

M∑
j=1

min
sj

[
−J (Lsj) + η1 ∥sj∥1

]
+ η2∥L∥2F

(6)

where η1 controls the sparsity of sj , the L1 norm of sj approx-
imates the true vector sparsity, and ∥L∥F =

(
tr
(
LL′))1/2

is the Frobenius norm of the library matrix L. To optimize
the expected return of M tasks j, we perform averaging by
dividing by the number of tasks, denoted as 1/M .

To solve the previous equation, we need to evaluate all
tasks, which is not feasible since tasks need to be learned
on the fly. Therefore, we address the explicit dependence on
all previous training data (through the inner summation). To
improve the efficiency, we approximate the loss using the
second-order Taylor expansion of 1

M

∑M
j=1 minsj [−J (θj)]

around θj = θ̂j , where θ̂j is the local solution of function
max
θ̂j

J (θj) . In other words, θ̂j is an optimal predictor

learned only on the trajectories δj for task j. By substituting
the second-order Taylor expansion, we obtain:

êT(L) =
1

M

M∑
j=1

min
sj

[∥∥∥θ̂j −Lsj

∥∥∥2
Hj

+ η1 ∥sj∥1

]
+ η2∥L∥2F

(7)

where Hj represents the Hessian matrix [14] and θ̂j is the
optimal policy parameter that can be obtained using any policy
gradient (PG) algorithm that can provide an estimate of the
Hessian matrix.

We consider computing each of the sj parameters when the
training data for task j is last encountered, and not updating
them when training on other tasks. With the above-mentioned
simplification, sj and L can be updated recursively, as follows:

sj ← argmin
sj

ℓ
(
L, sj , θ̂j ,Hj

)
(8)

L = argmin
L

1

M

M∑
t=0

ℓ
(
L, sj , θ̂j ,Hj

)
+ η2∥L∥2F (9)

ℓ
(
L, sj , θ̂j ,Hj

)
=

∥∥∥θ̂j −Lsi

∥∥∥2
Hj

+ η1 ∥sj∥1 (10)

The LL-SATEC algorithm is described in Algorithm 1.

B. LL-SATEC Implementation Steps

The diagram of our LL-SATEC algorithm is presented in
Fig. 2. The steps are as follows:

1) Initialization: We use random initialization policies for
every device nz per domain z.

2) Trajectory collection: At the beginning of each time slot,
if a device in a domain finds that the environment around it
has changed (the device encounters a different task), it sends
the computed trajectories from the start of the last change in
the environment up to now HAP.

3) Tasks collection: When HAP receives new trajectories, it
determines which devices in which domains these trajectories
come from and whether these trajectories belong to new tasks

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Algorithm Lifelong Reinforcement Learning for
SATECNs
Require: M ← 0, L← zerosdmax, k

1: while some Device n from domain z have Trajectories δ
for Tasks j do

2: δnz
j ← DeviceSendTrajectoriesToHAP()

3: Identify task-specific tuple
ϕjnz

= {lnz
, λjnz

, djnz
, αjnz

, ϵjnz
}

4: if isNewTask(ϕjnz
) then

5: Identify a new task j for Device nz in domain z
6: Add task ϕjnz

to task buffer Mz:
7: Mz ←Mz ∪ {ϕjnz

}
8: Mz ←Mz + 1
9: M ←M + 1

10: else
11: A← A−

(
sjs

⊤
j

)
⊗Hj

12: b← b− vec
(
s⊤j ⊗

(
θ̂
⊤
j Hj

))
13: end if
14:

(
θ̂j ,Hj

)
← HAPsingleTaskLearner

(
δnz
j

)
15: L← reinitializeAllZeroColumns (L)
16: A← A+

(
sjs

⊤
j

)
⊗Hj

17: b← b+ vec
(
s⊤j ⊗

(
θ̂
⊤
j Hj

))
18: L← mat

((
1
MA+ η2Id×k,d×k

)−1 1
M b

)
19: sj ← argminsj

ℓ
(
L, sj , θ̂j ,Hj

)
20: if M < 30 then
21: Πnz

j ← HAPSendPolicyToDevice
(
θ̂j

)
22: else
23: Πnz

j ← HAPSendPolicyToDevice(θj = Lsj)
24: end if
25: end while

or already observed tasks. If there is a new task, it will store
the task data in the corresponding task buffer Mz .

4) Knowledge mining for current task j: The task-specific
knowledge for task j contained in the Hessian matrix Hj will
be computed by the HAP. We use the Natural Actor-critic as
the base learner to compute the policy gradient. One run of
the policy gradient update will be performed.

5) Knowledge base refinement: When the trajectories of task
j come, the knowledge base will be refined according to steps
16-17 in Algorithm 1. If the task j has been observed before,
the outdated knowledge will be deducted before knowledge
base refinement according to steps 11-12.

6) Update model: The parameterized LL-SATEC model will
be updated as in Eq. (8) and (9).

7) Transmission of updated policy: If LL-SATEC model
has observed more than 30 tasks, the HAP will transmit the
policy obtained by the LL-SATEC model back to the device.
Otherwise the HAP will transmit the local solution θ̂j for task
j, as outlined in steps 20-24 of Algorithm 1. The device will
use it as the current policy until a new policy is received from
the HAP.

8) When devices encounter new tasks: If the task buffer
M has accumulated enough observed tasks, LL-SATEC can
use the average of the existing task-specific coefficient vector
s to generate a new policy parameter vector θj from the
knowledge base L to solve the new task j and improve the
initial performance of the agent in the new task.

V. NUMERICAL RESULTS

We have conducted extensive simulations in Matlab to show
the performance of our LL-SATEC algorithm. The simulation
parameters are summarized in Table I. For the IoT domain, we
have followed the settings in [18]. For the airborne domain,
we adopted the settings in [19], and we followed [20] for
the satellite domain. The duration of each time slot is 1
second. First, we generated 30 tasks per domain by varying
the parameters of the tasks (packet size, packet arrival rate,
maximum CPU cycles, power consumption factor of CPU)
within the ranges given in Table I. These parameter ranges
were chosen to ensure the diversity of tasks per domain
and across domains and simulate the dynamic nature of the
environment, which is heterogeneous per domain. Then, we
randomized the order of task arrivals in an iterative manner
and evaluated the capability of LL-SATEC to learn online.

We run the algorithm for 50 trajectories with 50-time steps
each to perform the update. We compared the performance of
our algorithm to the episodic natural-actor critic as the policy
gradient base learner (PG) algorithm. We set the weighted
parameter β = 0.5 in the reward function. To simulate the
high dynamics of the wireless environment, we consider that
the packet arrival rate obeys Poisson distribution when the rate
λnz .

A. Multi-task Learning per Domain

For the IoT domain, we use a CPU frequency between
315MHz and 916MHz. The average number of data packets
received by the IoT device at each time slot λn1

belongs
to [0.1, 5], and the mean number of CPU cycles required to
process the packets is [1×106, 1×107]. For the UAV domain,
the CPU frequency is between 1GHz and 5GHz. The average
number of data packets received by the UAV device at each
time slot λn2

belongs to [0.1, 4], and the mean number of
CPU cycles is [1×109, 1×1010]. For the LEO domain, we use
models with a CPU frequency between 5GHz and 10GHz. The
average number of data packets received by the LEO device
at each time slot λn3 belongs to [0.1, 2], and the mean number
of CPU cycles is [1× 109, 2× 1010].

In Figure 3, we compare the performance gap between
our proposed LL-SATEC and standard PG in every domains,
showing the average performance on all tasks in each domain
as a function of the number of learning iterations. We ran-
domly generate 30 tasks for each domain. In each domain,
the initialization of the LL-SATEC model was stopped once
each LL-SATEC had experienced at least one learning in each
of the 30 tasks.

We evaluate the performance of LL-SATEC on all tasks
using the knowledge base L learned after observing various

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Main parameter settings for simulations

Parameter Description Value / Function
ϵbit The number of cycles each bit of data requires. 1× 105 CPU cycles per bit
λnz The average number of packets arriving device nz in each slot. [0.1, 5]

dnz The average size of each new packet arriving device nz . [1× 101, 2× 105] bits
αn1 The energy cost factor of chip of the IoT device. (due to the chip type of IoT) [1× 10−21, 2× 10−21] J/cycles3

ϵn1 The maximum computing capability of the IoT device n1 in each slot. [3× 106, 8× 106] cycles per slot
Eexe

n1
The energy cost of the IoT device n1. αn1ϵ

3
n1

αn2 The energy cost factor of chip of the UAV. (due to the chip type of the UAV) [1× 10−27, 2× 10−27] J/cycles3

ϵn2 The number of CPU cycles allocated by the UAV n2 in each slot. [1× 109, 5× 109] cycles per slot
Eexe,n2

n1 The energy cost of UAV to serve the IoT device n1. αn2ϵ
3
n2

αn3 The energy cost factor of chip of the satellite. (due to the chip type of the satellite) [1× 10−28, 2× 10−28] J/cycles3

ϵn3 The number of CPU cycles allocated by the satellite n3 in each slot. [5× 109, 1× 1010] cycles per slot
Eexe,n3

n1 The energy cost of satellite to serve the IoT device n1. αn3ϵ
3
n3

(a) Internet of Things (b) Unmanned Aerial Vehicle

(c) Low Earth Orbit Satellites

Fig. 3: The performance of LL-SATEC versus standard PG
per domain in SATEC.

subsets of tasks, i.e., three tasks (10%) to observing all 30
tasks (100%). These experiments evaluate the quality of the
learned knowledge base L on both known and unknown tasks,
showing that performance improves as LL-SATEC learns more
tasks. When a task has not been observed, the nearest task
coefficient is used, and its initialization sj use a zero vector.

The initial performance and convergence speed of LL-
SATEC outperforms standard PG in all task domains. In the
domains of IoT and UAVs, the final performance of LL-
SATEC is even better than that of standard PG. In fact, we
have checked that our algorithm achieves the global optimum,
while the standard PG achieves a local optimum in these cases.
Our algorithm also accelerates the learning of tasks, observed
by faster convergence, by transferring knowledge from other
tasks.

B. Cross-Domain Learning

We study the performance of cross-domain learning by
letting our algorithm face tasks from different domains simul-

Fig. 4: The performance of LL-SATEC versus standard PG
across domains in SATEC.

taneously. Since the computational resources of the devices
at each domain are different, and they experience different
dynamics, the tasks in this setting are more heterogeneous.

We have generated 30 different tasks randomly from each
domain, with each domain generating 10 tasks initially. The
initialization of the model ceases once LL-SATEC has experi-
enced at least one learning instance in each of these 30 tasks
from the three domains.

As shown in Fig. 4, we can observe that the initial per-
formance, convergence speed, and final performance of LL-
SATEC when facing random tasks from the three domains
is still superior to the standard PG, and achieves comparable
performance as when learning independently per domain.

C. Online Learning Across Domains

We compare the performance gap between our proposed
LL-SATEC and the standard PG in online learning of multiple
tasks from any of the three domains. We randomly generate
20 tasks for each domain, resulting in a total of 60 tasks. Then
we randomly divide these 60 tasks into two halves, with 30
tasks used to initialize the LL-SATEC model. The initialization
of the LL-SATEC model ceases once it has experienced at
least one learning instance in each of these 30 tasks as before.
Subsequently, we let both LL-SATEC and the standard PG
encounter the remaining 30 new tasks simultaneously and
independently during each iteration. Each task will last about

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: The performance of LL-SATEC versus standard PG, randomly encountering different new tasks from all three domains.

150 iterations and will not be reencountered by the intelligent
agent until all 30 tasks have been encountered once.

In Fig. 5, we compare LL-SATEC and the standard PG
when encountering random new tasks every 180 iterations.
When LL-SATEC encounters a task it has not observed before,
the nearest task coefficient is used, and its initialization sj
is the average value of sj′ of observed tasks. As shown in
Fig. 5, LL-SATEC accelerates the learning of new tasks by
leveraging experience from previous tasks, exhibiting faster
initial performance and convergence than the standard PG on
all new tasks and avoiding catastrophic forgetting. Our findings
show that the average penalty of LL on all tasks is lower, and
the convergence speed is faster than the standard PG.

VI. CONCLUSION

In this paper, we study computing resource allocation poli-
cies to optimize the overall average age-of-information and
energy efficiency trade-off in SATECNs. To solve this problem
in a dynamic environment, we present a lifelong learning
algorithm (LL-SATEC) for computation resource allocation
in IoT devices, UAVs, and satellites. Our algorithm is able
to adapt to heterogeneous network dynamics and learn new
tasks online by exploiting multi-task learning per domain
and across domains. Numerical results show that LL-SATEC
reduces the AoI and energy cost by 3 times compared with
conventional reinforcement learning algorithms and avoids
catastrophic forgetting.

REFERENCES

[1] B. Wang, Y. Sun, Z. Sun, L. D. Nguyen, and T. Q. Duong, “Uav-
assisted emergency communications in social iot: A dynamic hypergraph
coloring approach,” IEEE Internet of Things Journal, vol. 7, no. 8, pp.
7663–7677, 2020.

[2] H. H. Esmat, B. Lorenzo, and W. Shi, “Towards resilient network slicing
for satellite-terrestrial edge computing iot,” IEEE Internet of Things
Journal, pp. 1–1, 2023.

[3] A. Kak and I. F. Akyildiz, “Designing large-scale constellations for the
internet of space things with cubesats,” IEEE Internet of Things Journal,
vol. 8, no. 3, pp. 1749–1768, 2021.

[4] H. Lee, S. Eom, J. Park, and I. Lee, “Uav-aided secure communications
with cooperative jamming,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 10, pp. 9385–9392, 2018.

[5] L. Liu, A. Wang, G. Sun, and J. Li, “Multi-objective optimization for
improving throughput and energy efficiency in uav-enabled iot,” IEEE
Internet of Things Journal, pp. 1–1, 2022.

[6] S. Eom, H. Lee, J. Park, and I. Lee, “Uav-aided wireless communication
designs with propulsion energy limitations,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 1, pp. 651–662, 2020.

[7] L. Zhang, W. Abderrahim, and B. Shihada, “Heterogeneous traffic
offloading in space-air-ground integrated networks,” IEEE Access, vol. 9,
pp. 165 462–165 475, 2021.

[8] S. G. Glisic and B. Lorenzo, Artificial Intelligence and Quantum
Computing for Advanced Wireless Networks. John Wiley & Sons, 2022.

[9] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 778–
782, 2017.

[10] J.-H. Lee, J. Park, M. Bennis, and Y.-C. Ko, “Integrating leo satellite and
uav relaying via reinforcement learning for non-terrestrial networks,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[11] L. Lei, Y. Yuan, T. X. Vu, S. Chatzinotas, M. Minardi, and J. F. M.
Montoya, “Dynamic-adaptive ai solutions for network slicing manage-
ment in satellite-integrated b5g systems,” IEEE Network, vol. 35, no. 6,
pp. 91–97, 2021.

[12] Z. Zhu, S. Wan, P. Fan, and K. B. Letaief, “Federated multiagent
actor–critic learning for age sensitive mobile-edge computing,” IEEE
Internet of Things Journal, vol. 9, no. 2, pp. 1053–1067, 2022.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[14] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor, “Online multi-task
learning for policy gradient methods,” in International conference on
machine learning. PMLR, 2014, pp. 1206–1214.

[15] H. Zhou, W. Xia, H. Zhao, J. Zhang, Y. Ni, and H. Zhu, “Continual
learning-based fast beamforming adaptation in downlink miso systems,”
IEEE Wireless Communications Letters, vol. 12, no. 1, pp. 36–39, 2023.

[16] Z. Gong, Q. Cui, C. Chaccour, B. Zhou, M. Chen, and W. Saad,
“Lifelong learning for minimizing age of information in internet of
things networks,” in ICC 2021 - IEEE International Conference on
Communications, 2021, pp. 1–6.

[17] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[18] Z. Gong, Q. Cui, C. Chaccour, B. Zhou, M. Chen, and W. Saad,
“Lifelong learning for minimizing age of information in internet of
things networks,” in ICC 2021-IEEE International Conference on Com-
munications. IEEE, 2021, pp. 1–6.

[19] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computation
and communication design for uav-assisted mobile edge computing in
iot,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp.
5505–5516, 2019.

[20] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Transactions on Wireless
Communications, vol. 21, no. 2, pp. 1362–1377, 2021.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on December 15,2024 at 05:45:25 UTC from IEEE Xplore. Restrictions apply.

