2024 International Symposium on Secure and Private Execution Environment Design (SEED) | 979-8-3315-0565-3/24/$31.00 ©2024 |IEEE | DOI: 10.1109/SEED61283.2024.00019

2024 International Symposium on Secure and Private Execution Environment Design (SEED)

SSE: Security Service Engines to Scale Enclave
Parallelism for System Interactive Applications

Jared Nye, Usman Ali, and Omer Khan
{jared.nye, usman.ali, khan}@uconn.edu
University of Connecticut, Storrs, CT, USA

Abstract—Secure processor technologies leveraging enclaves as
their architectural security primitive are frequently deployed
in cloud environments. However, enclave-based systems incur
performance penalties due to architectural limitations arising
from costly enclave exits that are incurred to interact with
system-level software. Exitless calling aims to improve enclave-
based performance by spawning additional responder threads
alongside the enclave threads to execute system calls on their
behalf, obviating costly enclave exits. However, the responder
threads in exitless must use self-governed timers to operate truly
asynchronously to the enclave threads to uphold security isolation
guarantees. These self-governed timers induce polling stalls
that degrade performance when enclave and responder threads
saturate the available cores in the system. This paper addresses
the polling challenge in exitless by introducing Security Service
Engines (SSE) to offload responder threads using dedicated on-
chip or off-chip hardware resources. Evaluations show that for
highly interactive workloads, SSE-equipped secure multicores
achieve performance scaling at par with a baseline system that
implements no security primitives.

1. INTRODUCTION

Cloud computing offers a compelling alternative to costly
on-site computing, but requires remote clients to rely on
third-party cloud providers to process their code and data
[1]. This reliance on untrusted third parties raises security
concerns addressed in part by the deployment of secure
processor technologies in cloud computing infrastructures [2].
Prevailing secure processor technologies such as Intel Software
Guard Extensions (SGX) [2] and AMD Secure Encrypted
Virtualization (SEV) [3], as well as upcoming technologies
such as RISC-V Keystone [4] and Arm Confidential Compute
Architecture (CCA) [5], are fundamentally similar in that they
attempt to implement isolation property for software security by
leveraging the enclave as their essential architectural security
primitive. Enclaves provide isolated execution environments
protected from co-resident user- and system-level software.
They enable additional security features, such as physical
memory confidentiality, integrity, authentication, and remote
attestation. Consequently, enclaves are a staple of secure
processor technologies, and processors incorporating enclave-
based execution have remained prevalent across academia [6]-
[9] and industry [10].

Enclaves offer enhanced security but introduce performance
overheads intrinsic to their architectural implementations. For
example, on each enclave memory access, memory encryption
and integrity checking overheads are incurred to enforce the
integrity and confidentiality of enclave memory. Since system-

level software is not allowed to execute inside enclaves, any
time an application requires system-level software service,
an enclave exit must be performed that incurs an additional
overhead due to core serialization, state purging, and security
checks. To illustrate how frequently applications that are
commonly used to characterize enclave performance [11]-
[14] interact with system-level software, we measure their
interactivity. An 8-core SGX-enabled Intel machine is used
to measure the number of per-core interactions per second.
SGX and SEV consider the operating system (OS) and virtual
machine monitor (VMM) to be untrusted, and thus incur enclave
exits upon each system call and hypercall, respectively. For a
4 server and 4 client thread configuration, each core incurred
an average of 128,716 system calls and 56,024 hypercalls per
second, with similar numbers reported for overall interactivity
in [11]. This leads to frequent enclave exits for system calls
in SGX and hypercalls in SEV, thus making enclave-based
processing expensive.

To mitigate these costly enclave exits, an exitless calling is
introduced that avoids enclave exits while upholding isolation
guarantees between the untrusted system-level software and
enclave [11], [12]. Exitless avoids enclave exits through the
utilization of an asynchronous calling mechanism which spawns
two types of threads: (i) workers that execute application code
inside enclaves and (ii) responders that execute system calls
(or hypercalls) on behalf of enclaves [11], [12]. However,
the challenge for exitless calling is that when worker threads
saturate the available cores in a system, the additional responder
threads incur polling-induced stalls due to their asynchronous
execution [11], [12], [15]. This performance limitation has
been quantified extensively in literature [11], [12], [15], [16]
and leads to limited adoption of enclave-based execution.

Prior works [17], [18] improve exitless by pinning worker-
responder thread pairs on the same cores and introducing
hardware support for lightweight context switching between
them. However, they do not fundamentally address the security-
centric polling limitations of exitless. In this paper, we make a
key observation that if worker and responder threads execute on
their dedicated hardware resources, then one can fundamentally
address the polling problem of exitless. This observation can be
realized using the inherent heterogeneity available in existing
architectures, or through added offload hardware. We propose
Security Service Engines (SSE) that offer each enclave core
a dedicated hardware context to offload responder threads.
In our execution model, each enclave core maps application

979-8-3315-0565-3/24/$31.00 ©2024 IEEE 84
DOI 10.1109/SEED61283.2024.00019
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

worker threads, but at any given time the corresponding SSE
engine serves to operate in parallel and asynchronously. The
lightweight SSE engines provide dedicated hardware for the
responder threads. Furthermore, when exitless calling is not
beneficial, the programmable SSE engines can be utilized for
other offload services.

SSE mitigates the performance bottlenecks of exitless
execution for highly interactive applications that effectively
utilize the available cores in a multicore processor. Thus, with
responders executing exclusively on SSE engines, workers
operate uninterrupted and exploit parallelism. Additionally,
polling stalls and context switches are avoided, and costly
memory overheads are no longer incurred. To demonstrate
the performance benefits of SSE, we evaluate web server and
database management workloads representative of applications
commonly used to characterize enclave performance. The
performance evaluation is done using the MIT Graphite
multicore simulator updated with the RISC-V instruction set
architecture [19], [20]. The simulator is modified with enclave
system call and hypercall overheads, and our proposed SSE
engines. In comparison to exit-based and exitless enclave
execution models, SSE improves throughput when worker
threads match the number of enclave cores in the system.
Consequently, the dedicated SSE engines for corresponding
responder threads deliver at par performance scaling with a
baseline system that implements no security primitives.

II. BACKGROUND AND MOTIVATION

A. Enclaves

The Intel Software Guard Extensions (SGX) [2] introduced
enclaves as an architectural security primitive to address cloud
computing security concerns. Since then, academia and industry
have aggressively adopted enclaves to enhance cloud computing
security services, as they provide (i) isolation of code/data at
the hardware level, (ii) remote attestation and authentication of
code/data for remote users, and (iii) encryption of code/data
that is only decrypted while being used inside the enclave.

1) Enclave Threat Model: The enclave threat model protects
against the entire software stack and an attacker with physical
access to the system, such as a rogue cloud employee. Thus,
the following components of the software stack are considered
untrusted: firmware, VMM, host operating system, and other
mutually untrusted applications. Protection against each of
these threats is maintained via the isolation of enclave code
and data at the hardware level and through the purging of
the entire enclave state upon each context switch. Meanwhile,
protection against a physical attacker is upheld through the
confidentiality and integrity checking of enclave data.

2) Diversity of Enclave Implementations: Two classes of
enclaves have been introduced, user-level and VM-based, which
are differentiated by the scope of applications they are intended
to protect. User-level enclaves, such as Intel SGX and RISC-
V Keystone, consider the operating system to be untrusted
and thus only encapsulate individual secure computations or
a single user-level application. VM-based enclaves, such as
AMD SEV and Arm CCA, consider the VMM to be untrusted

ecall
Application (Untrusted) Enclave (Trusted)
Untrusted Memory Trusted Memory
¢ Access to only untrusted ¢ Access to both trusted and
memory untrusted memory
¢ Can make system calls ¢ Cannot make system calls
ocall

Fig. 1: Exit-based System Call Flow

Shared Untrusted Buffer

e

/ Request Call (Enclave Worker)
1.
2.
3.
4.
5.
6.

Untrusted
Responder
Thread

Enclave

Worker
Thread

Wait For Call (Untrusted Responder)
Acquire spinlock
Is “Go” set?

- No: Release spinlock, go to 1

Release spinlock
Set retval = Execute(call_ID, data)
Acquire spinlock
Set “Done”

Release spinlock
Gotol J

Fig. 2: Exitless Worker-Responder Architecture

Acquire spinlock
Copy call_ID and data to Shared buffer
Set “Go” flag
Release spinlock
Acquire spinlock
Is “Done” flag set?

- No: Release spinlock, go to 5

7. Copy data back to Enclave memory
Q Continue execution

and thus encapsulate entire virtual machine (VM) instances.
VM-based enclaves trust the guest operating system, enabling
code execution across multiple privilege levels. Both user-level
and VM-based enclaves introduce performance overheads since
both require expensive secure switches outside (and back inside)
enclaves to enforce isolation from system-level software.

B. Exit-based Calling

The exit-based enclave model shown in Figure 1 implements
special security procedures for the enclave code to access the
system-level software. For an untrusted application to begin
execution inside an enclave, an ecall function is used to make
a secure context switch into trusted enclave code. Similarly,
to return to untrusted code, an outside call function (ocall)
is executed within an enclave to return control back to the
untrusted application.

During an ecall, several hardware security checks are
performed, the entire untrusted application state is backed
up, the state of the previous enclave application is restored (if
applicable), the core pipeline and translation look-aside buffers
(TLBs) are flushed, and the processor core is switched out of
enclave mode. During an ocall, the entire trusted enclave state
is backed up, the state of the untrusted application is restored,
the core pipeline and TLBs are flushed, and the processor core
is switched out of enclave mode. If an ocall is invoked to
utilize system-level services, all information located in enclave
memory needed by system-level software must first be copied
from enclave to untrusted memory. After the required services
are complete an ecall is performed to resume execution inside
an enclave. Consequently, ecalls and ocalls are costly and take
83-113x longer than typical system calls [11].

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

C. Exitless Calling

Prior works [11], [12] proposed an alternative exitless
calling model that mitigates expensive enclave exits when
system software services are required in the exit-based model
without violating isolation guarantees between the enclave
and untrusted responder. This is accomplished using an
asynchronous worker-responder calling mechanism between
worker threads (executing enclave code) that make system call
requests, and responder threads (executing untrusted code) that
process system call requests [11], [12]. Figure 2 illustrates
the architecture of this asynchronous worker-responder calling
mechanism, where the enclave code is the worker, and the
untrusted code is the responder. The worker is the party who
requests a call, while the responder stands by, waiting for a
call to process by constantly polling a shared memory location.
To uphold isolation guarantees, responders are not allowed to
directly access enclave code/data. Therefore, exitless utilizes an
asynchronous polling mechanism to create a communication
channel between the worker and responder threads using a
shared buffer located in untrusted memory that is synchronized
using a spinlock.

When system software services are needed, workers send
system call requests to responders by executing RequestCall
which loads system call information into a shared buffer, and
then indicates a request is pending by setting a Go shared flag.
After issuing a request, the corresponding worker waits for
its pending system call request to complete by monitoring the
shared Done flag until it is set by the responder (indicating
system call processing is complete). Once completed, the
worker thread copies the result back into trusted memory
and continues execution. Asynchronously, responders execute
WaitForCall, which continuously polls the Go flag for pending
requests. Each responder thread implements a self-governing
polling method to periodically check, receive, and process
pending system call requests. Once Go is set, responders
process the corresponding request by invoking the requested
system call with its provided arguments. After the system call
is complete, responders indicate a request has been processed
by setting the Done flag. Responders then continue polling
until the next request arrives. For applications that frequently
interact with system-level software, prior works [11], [12], [15]
have shown exitless calling significantly improves performance
by avoiding exit-based overheads.

IITI. LIMITATIONS OF EXITLESS CALLING

Exitless calling scales up to the system threading capabilities
and avoids exit-based calling overheads. However, it incurs
unnecessary polling and context-switching overheads induced
by the responder threads when the total number of threads
exceeds the scaling capabilities of a machine. Polling overheads
are incurred due to the asynchronous interface between workers
and responders and are greatest at increased parallelism. This is
because responders continuously poll, even without requests to
process. Polling consumes an entire hardware context without
any meaningful work to perform until the responder’s self-
governed timer expires. This results in a performance bottleneck

100

o]
o
|

[
o
!

KReq. / sec.
Y
o

N
o
!

o
|

1 2 4 6 8
Server Threads

Fig. 3: Evaluation of Lighttpd with each configuration spawning
an equal number of servers and responders (in exitless). Each
server and responder occupy a single thread. As the system
only has eight cores, in exitless it becomes overloaded in the
6-server configuration as twelve total threads are needed but
cannot execute simultaneously.

when a responder thread is forced to share a core with other
worker or responder threads. In such a scenario, responder
polls without meaningful work to process and thus reduces the
utilization of that core. Moreover, when there are not enough
cores for all workers and responders to execute, the system
scheduler is frequently invoked to swap workers for responders
and vice versa, resulting in costly context switching overheads.

We evaluate the popular application lighttpd [21] to demon-
strate the performance gap between exitless (EX-L), exit-based
(EX-B), and an insecure baseline (BL). These measurements
are performed on an 8-core SGX-enabled Intel Machine using
the Graphene-SGX framework [13]. While the total number
of servers, clients (which occupy only a single thread), and
responders are less than or equal to the number of logical
cores, the performance of exitless scales, as shown in Figure 3.
However, once the total number of server, client, and responder
threads exceeds the number of logical cores, the performance
of exitless reduces significantly. This significant degradation
in the performance of exitless is the result of two primary
overheads: (i) polling and (ii) context switching.

Polling overheads are incurred due to the asynchronous inter-
face between workers and responders and are most significant
at increased parallelism because responders continuously poll,
even when there are no requests to process. Continuous polling
consumes an entire hardware context without any meaningful
work until the next system call request arrives. While this is
not an issue when hardware contexts are abundant, the negative
effects of polling are glaring as the total number of workers
and responders approach the number of available cores on a
machine. In such cases, responders may poll without requests to
process, stalling workers since there are no remaining hardware
contexts for workers to execute.

When there are not enough cores for all workers and
responders to execute, the OS scheduler must be frequently
invoked to swap workers for responders and vice versa. Such
frequent swapping of threads results in costly context-switching
overheads. Frequent context switches further introduce cache
thrashing, as the memory locality utilized by a thread executing
uninterrupted may no longer be exploitable since another thread
accesses its unique data structures using the same private caches

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

Short Timer

Long Timer

l«— Swap OS in
<+—Swap OS out

) Call Request TIMER

Call Response @
P ———

Responder

| «— Swap OS in
<+—Swap OS out

l«— Swap OS in

«—Swap 0Sin
IDLE

<+— Swap OS out «+—Swap OS out

Worker

Worker

Responder

Fig. 4: System Calling in Exitless

as the thread it was swapped. This causes increased memory
access latency and reduces performance.

Prior works [11], [13], [17], [18] have introduced thread
scheduling and sleeping mechanisms to reduce the time
responders poll when a few call requests are made. More
specifically, [11], [13] reduce responder poll time by having
responders set a timer and sleep until it expires. Communication
between workers and responders must be truly asynchronous to
uphold the isolation property, responders must operate on their
autonomous timers without requiring the workers to invoke
them. This requirement makes setting the timer length difficult
as responders must sleep often and long enough to reduce
polling and context switches, but not so much that wake-up
penalties or unnecessary context switching occur, as shown in
Figure 4.

We consider cases where workers and responders share a
single core when the number of threads exceeds the number
of cores, as this is the best-performing configuration in such a
situation. The first scenario, where responders sleep too long,
is denoted Long Timer. In Long Timer, a wake-up penalty is
incurred after a period where no system calling occurred since
the responder went to sleep and is still asleep after a worker
finally makes a request. As a result, the worker continues to
poll until the responder wakes up and is swapped in. This
scenario is not ideal as system call processing does not begin
until the timer set by the responder expires, increasing the
latency of system calls.

The second scenario, where responders sleep too often
is denoted Short Timer. In Short Timer, significant context-
switching penalties are incurred as responders are invoked
unnecessarily. Figure 4 demonstrates this, as after sleeping for
a short period, the responder’s timer expires, and it is swapped
in without any system calls to process. Even in the best-case
scenario where the responder sleep time is configured to wake
up as soon as system call requests arrive, obviating any worker
polling, such periodic interruptions increase overall latency as
workers are frequently interrupted by unnecessary responder
invocations.

Thus, while exitless calling allows for improved performance
of highly interactive applications compared to exit-based
calling under certain conditions, it suffers from significant
performance challenges when polling becomes the bottleneck
and can also be worse than exit-based. This demonstrates that
overheads intrinsic to exitless calling can be more costly than

the overheads incurred on each enclave exit incurred in exit-
based and is not by itself an appropriate bottleneck mitigation
scheme in the presence of increased parallelism.

IV. SECURITY SERVICE ENGINES

To take advantage of multicore parallelism, we propose
Security Service Engines (SSE), a technique that overcomes
the polling challenge with exitless by coupling each general-
purpose enclave core in a shared-memory multicore processor
with a lightweight SSE engine. SSE engines can be integrated
using existing cores which we denote as SSE-Software or one
of two ways using dedicated hardware: either (i) on the CPU,
within the tile of its coupled enclave core, which we denote
SSE-ONCPU, or (ii) off the CPU using available off-chip
resources, such as an FPGA, which we denote SSE-OFFCPU.
In all configurations, SSE engines are fully programmable, have
their own dedicated private L1 instruction and data caches, and
access the shared cache hierarchy. SSE engines are designed to
perform two tasks: first, the execution of responders spawned
by an exitless enclave application and offloaded to an SSE;
second, serve asynchronous system call requests that are issued
by workers. The worker-responder architecture and API used in
SSE are similar to that of exitless but with a key difference. The
workers execute exclusively on enclave cores, while responders
are offloaded to SSE engines to avoid timer limitations and
consequently performance degradation.

A. SSE-Software

To operate in parallel and asynchronously, SSE offers each
enclave core a dedicated context to offload syscalls execution on
the responder core. SSE-Software is a software-only approach
and requires no additional hardware. In SSE-Software, all
available cores are spatially distributed between worker and
responder threads in I-worker-1-responder or n-worker-1-
responder configurations depending on the interactivity of
workloads. A shared memory buffer allows inter-process
communication (IPC) between the worker and the responder.
For non-interactive workloads, all available cores are assigned
to workers to maximize parallelism and performance. For low-
interactivity workloads, a small amount of responder cores
is sufficient, whereas, for high-interactivity applications, a
1-1 configuration is optimal to maximize parallelism and
performance.

Although SSE-Software has the inherent benefit of no hard-
ware overhead and provides asynchronous syscalls processing,
it has two major limitations. 1) For n-worker and 1-responder
configuration, the responder core serializes syscalls processing
for multiple workers which results in additional performance
penalties. 2) For 1-worker and 1-responder configurations,
fewer cores are available for worker threads, which results
in less parallelism, leading to performance degradation.

B. SSE-ONCPU

To overcome SSE-Software limitations, SSE-ONCPU pro-
poses a lightweight dedicated core to implement SSE. Figure

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

1 I
[
work Enclave Core
“Request Call” | L1-1 Cache || L1-D Cache |
Shared
Buffer > @
SSE
“Done” K] K|
] Shared | L1413 L2
Buffer Cache
Router o
S
7
Worker Responder | DRAM |

SSE-ONCPU Architecture

Fig. 5: SSE-ONCPU architecture with SSE engines, enclave
core, cache hierarchy, and untrusted shared buffer.

5 demonstrates how each tile is architected using the SSE-
ONCPU approach. It also shows how threads interact and
execute with SSE engines. In SSE-ONCPU, an application may
only spawn as many responder threads as there are SSE engines
on a machine to avoid unwanted polling bottlenecks. Each SSE
engine operates such that its responder thread strictly serves
the worker thread(s) executing on its corresponding enclave
core. Thus, while an application may spawn more worker
threads than there are enclave cores, any additional performance
penalty incurred under SSE because of over-saturating enclave
cores will also be incurred by a baseline system without
SSE engines. By providing workers and responders distinct
execution resources, unnecessary stalls, and context switching
are obviated as enough hardware contexts are provided for all
workers and responders to execute simultaneously.

1) Lightweight Implementation: As offload hardware is
typically responsible for the execution of a set of specified
tasks, there are opportunities to make optimizations to improve
performance or reduce area and/or power. For example, the
work performed by responder threads, i.e., checking the shared
buffer and executing system calls, is not compute-intensive.
Therefore, each SSE engine utilizes a simple in-order shallow
pipeline with no out-of-order execution support. Additionally,
during a system call an SSE engine only performs a one-
time copy of data located in untrusted memory. With little
data reuse, SSE implements small and simple private caches.
Furthermore, due to the layer of indirection added when
workers and responders interact, shared data must be marshaled
back and forth between private caches of enclave cores and
SSE engines. For simplicity, SSE engines are designed not to
cache much of the system call data, but instead evict it to the
shared L2 cache. Consequently, the enclave core can move the
requested data back into its enclave memory without needing
to invalidate its SSE engine’s private cache, thus avoiding
costly sharing misses. These implementation choices result in
cost-effective caches in SSE without reducing performance.

C. SSE-OFFCPU

Heterogeneous architectures featuring specialized hardware
accelerators are increasingly being deployed by leading CPU
vendors. Among various heterogeneous devices, FPGA fabric

. :
H .
/ A

I ' - \
| Enclave Core E H - > 2 E
| :: 2 [ti1s] [L1-0S5] [Li13] [L1Ds] !
' g |
: g oS iy ft ;
H L2 H Router Lt E ! I !
; Cache noE SSE 73 :
:\ DRAM oharedeatier 1| 1 E [t3] [163] [ts] [tos]| 7t
N //’ ‘\ /
Multicore CPU FPGA

Fig. 6: SSE-OFFCPU architecture with SSE engines located
off the CPU of a CPU-FPGA platform.

is actively being integrated within Intel CPUs using shared
memory QPI cache interface [22]. As such, we also consider an
implementation of SSE that leverages an existing heterogeneous
architecture with an FPGA located off the CPU, which we
denote SSE-OFFCPU. SSE engines can be mapped to the
FPGA either as (i) synthesizable logic blocks or (ii) burned
as programmable RISC-V cores, with our implementation
performing the latter to take the more programmable approach.
Figure 6 demonstrates how SSE engines can be implemented
using an FPGA, with workers and responders executing
exclusively on the enclave cores (located on the CPU) and
SSE engines (located on the FPGA), respectively.

1) Existing CPU-FPGA Platforms: We develop SSE-
OFFCPU considering recent CPU-FPGA platforms, such as
Intel’s Xeon+FPGA [23], which co-packages the CPU and
FPGA to deliver higher memory bandwidth and lower memory
latency for code that executes on the FPGA. In particular,
the FPGA has access to the shared memory of the CPU
which allows it to make memory accesses via the CPU.
Communication between the CPU and FPGA is supported
by both PCle and Quick Path Interconnect (QPI) physical
links. The PCle interconnect is used for reads and writes from
the FPGA memory directly from and to DRAM, respectively,
while the QPI interconnect maintains data coherency between
the last-level cache of the CPU and the memory located on
the FPGA. Using both types of links allows for the CPU and
FPGA to share a unified address space between the CPU and
FPGA which obviates costly data replication.

2) Code Execution Off-Chip: The untrusted and trusted
buffer still exists in the CPU space since enclave cores are
considered trusted and thus workers execute exclusively on
enclave cores. Each enclave core has its private L1 caches
and shared L2 slice, hence both enclave and insecure code are
stored in each enclave core’s private caches and shared L2 cache
slice. Meanwhile, since responders are considered untrusted,
they execute exclusively on the SSE engines located on the
FPGA and can only access untrusted data through the CPU
interface without requiring further modifications to the memory
hierarchy. The only code executed on the SSE engines in this
implementation is the responder code which only consists of
polling a shared flag and the capability to execute system calls.
Thus, data transfers between enclave cores and SSE engines
are leveraged through the last-level cache.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

D. Discussion of SSE Tradeoffs

Overall, an SSE-enhanced secure multicore processor pro-
vides a novel method to address the polling bottleneck in
exitless calling. The responders operate truly asynchronous to
the workers, and SSE can avoid the performance challenges
associated with the security-centric polling to service system
calls. Consequently, performance gains are achieved by avoid-
ing unwanted thread switches and reducing system call waiting
times for workers.

1) Generality of SSE: Similar to SSE-Software, multiple
enclave cores may share a single SSE engine to reduce
hardware overhead. However, for applications where each
worker frequently interacts with system-level software, a one-to-
one coupling of enclave cores and SSE engines is necessary to
achieve optimal performance. For less interactive applications,
a one-to-one coupling of enclave cores and SSE engines is
excessive and fewer SSE engines suffice. To optimize resource
utilization under such scenarios, the programmable SSE engines
can be reused to perform other useful services that have been
well-studied in literature, such as worklist-directed prefetching
of tasks in graph acceleration [24], cache optimizations [25],
and many others [26]-[28]. Compared to SSE-ONCPU, SSE
engines in SSE-OFFCPU have the added benefit of being
reconfigurable since they are implemented within the FPGA
fabric of a CPU-FPGA platform and thus allow for further
hardware optimizations to improve the performance of less
interactive applications.

2) Benefits of SSE-ONCPU over SSE-OFFCPU: As offload
engines typically execute a set of specified tasks, there
are opportunities to make optimizations to the engines to
further improve performance or reduce area and/or power.
The tasks executed on SSE engines are summarized as polling,
synchronization, and system call processing. Given the compute-
bound and low arithmetic-intensive nature of each of these
tasks, SSEs are implemented using simpler in-order cores, and
only need a single hardware context per core to execute a
single responder. This allows applications to execute in trusted
enclaves that are more arithmetic intensive and require the
full capability of an optimized superscalar core to maximize
performance to execute exclusively on such cores. Meanwhile,
responders, which do not require such capabilities, instead
occupy SSE engines and ensure optimal utilization of system
resources.

Compared to SSE-OFFCPU, the proximity of enclave cores
and SSE engines in the SSE-ONCPU configuration allows for
more efficient data communication and consequently shorter
L2 cache sharing and serialization latencies. Additionally, as
SSE-ONCPU places the SSE engines on-chip, SSE engines
operate at a higher frequency than they could if they were
implemented on an FPGA fabric as is done in SSE-OFFCPU.

3) Benefits of SSE-OFFCPU over SSE-ONCPU: In addition
to being reconfigurable compared to SSE-ONCPU, SSE-
OFFCPU has the added benefit of not requiring hardware
modifications. This allows users to better exploit the off-CPU
hardware for applications that are less interactive and hence do
not benefit as much from deploying many responder threads.

Algorithm 1 Server

procedure WORKER
conn_fd « ocall_accept(socket_fd)
for i < 1 to num_requests do
req_size < ocall_ioctl(conn_fd)

1:

2

3

4: > Request size
5: rd_queue < malloc(req_size)

6:

7

8

> Read buffer
ocall_read(conn_fd, rd_queue,req_size)
req +— parse_req(rd_queue) > Parse request
file_fd + ocall_open(req.name) > Open web page

9: info « ocall_fstat(file_fd)

> Web page info
10: resp — gen_resp(info) > Generate response
11: ocall_send(conn_fd,resp) > Send response
12: ocall_fstat(file_fd) > Check for changes
13: ocall_lseek(file_fd,0) > Move file offset
14: wr_queue < malloc(info.size) > Send buffer
15: ocall_read(file_fd,wr_queue,info.size)
16: ocall_send(conn_fd,wr_queue,info.size)
17: ocall_close(file_fd) > Close web page

However, SSE-OFFCPU comes with its tradeoffs. Most notably,
SSE engines in SSE-OFFCPU operate at a lower frequency
and incur a longer shared memory access latency since the
shared L2 slices are all located on the CPU. This prevents
SSE-OFFCPU from completely matching the performance of
SSE-ONCPU.

V. WORKLOADS

The proposed SSE architecture is simulated on an application-
level RISC-V simulator. To understand the performance impli-
cations, highly interactive applications are surveyed including
Lighttpd [21], Nginx [29], Apache [30], Memcached [31], and
Redis [32]. Each application makes hundreds of thousands
of syscalls per second and executes Linux kernel functions
(i.e., Linux kernel API [33]) to perform operating system-
level operations. It includes recv, send, read, socjet, and other
syscalls that perform I/O, network, and memory operations.
Highly interactive applications are broadly categorized into
Server (Lighttpd, Nginx, Apache) and Database (Memcached,
Redis) applications. To evaluate the SSE architecture, the
Server and Database benchmark applications are developed that
implement the steady-state behavior of real applications. To
implement syscalls at the application level, wrapper functions
are implemented, and code from the Linux kernel is re-used
[33] to implement operating system functionality.

A. Server Benchmark

Server is a highly interactive, lightweight web server
application. It moves a large amount of data (up to 16 KB)
through the send and read system calls between clients and
servers. It moves smaller amounts of data (less than 200 bytes)
through all other system calls. Each of these system calls
stresses worker-responder interactions in exitless calling. The
high-level pseudocode of the Server is shown in Algorithm 1.
Server spawns N workers that serve M/N web page requests
from clients that are divided evenly between workers. M is
the total number of web page requests issued. After accepting
a connection request, workers iterate over a loop that begins
with ioctl syscall to get the request size, then allocate a buffer
of that size. The request is read using recv syscall, parsed to

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

o _ Syscalls

S 8 150 | @Hypercalls

RS

©

g s— 100 1

£ c

2 3 50

S »n

Q L

g& 0

o Lighttpd Nginx Apache Server
Real Applications Benchmark

(a) Server

Fig. 7: Number of system-level software interactions (OS for syscalls

100%

80%

)]
=}
X

40%

20%

m Syscalls
u Work

Syscalls Core Time

Q
x

Lighttpd Nginx Apache Server Memcached Redis Database

Fig. 8: Per core time utilization to execute syscalls in the exit-
based system for real applications and benchmark applications.

Algorithm 2 Database

procedure WORKER
buf < malloc(BUF _SIZE)
for i < 1 to num_requests do
ocall_read(fd,buf,BUF_SIZE)
cmd < read_cmd (buf)
key,data < cmplt_read(cmd, buf)
idx < key%oHASH_TABLE_SIZE
: spin_lock_acquire(key_locks|idx])
9: if cmd == set then

> Request buffer

> Read request
> Get command
> Parse key/data
> Table index

1:
2
3
4:
5:
6.
7
8 > Acquire lock

10: hash_tablelidx| « data > Update entry
11: resp < add_set_header() > Get header
12: ocall_send(fd,resp) > Send response
13: else

14: res < hash_tablelidx] > Response data
15: resp < add_get_header(res) > Get header
16: resp < add_data(resp,data) > Get data
17: ocall_send(fd,resp) > Send response
18: spin_lock_release(key_locks[idx]) > Release lock

determine the requested file’s name, then the requested file is
opened using open call. Fstat is then called to get the requested
file stats needed that generate the response sent to the client
using a send call. Fstat is called again to ensure the file has not
been modified, then Iseek is called to move the file offset to
the beginning of the file. A buffer is allocated to store the file
contents that are read and then sent using read and send calls,
respectively. Finally, the worker closes the file using close call,
then repeats this process for the next request.

B. Database Benchmark

Database is a highly interactive key-value RAM database.
It moves a moderate amount of data (2 KB) through all
system calls, stressing worker-responder interactions in exitless
calling. The high-level pseudocode of the Database is shown

90

2 _ M Syscalls
S § 150 | @Hypercalls
s S
©
8 _~:— 100
£ c
<]
g g 50
S w»
QL
s& 0
a .
Memcached Redis Database
Real Applications Benchmark

(b) Database

and VMM for hypercalls) each core incurs per second.

in Algorithm 2. Database spawns N workers that serve M/N
queries that are divided evenly between workers, where M is
the total number of queries issued. Workers iterate over a loop
that begins with a read call to read a query and then parses
the query. After determining the command type (get or set),
the lock for the entry that is being accepted is acquired. If the
command is a get, then the data in the entry is sent back to
the client using a send call. If the command is a set, then the
entry is updated with the data received from the client, and a
response acknowledging the update is sent back to the client
using a send call. Finally, the worker releases the entry’s lock.

C. Benchmark Validation

Two sensitivity studies are conducted to validate that
benchmark applications align with real workloads for SSE
architecture performance characterization. Figure 7 shows
the per-core interactivity of real applications and Server and
Database benchmarks on an 8-core SGX-enabled Intel machine.
Figure 7 highlights that benchmark applications perform
hundreds of thousands of syscalls similar to real applications.
To validate time distribution to process syscalls and work in
benchmark and real applications, the time spent using strace
utility is measured on the SGX machine. Further, Figure 8
shows per core time utilization of syscalls in real applications
and the benchmark applications. The results validate that
the benchmark applications show a similar time distribution
compared to real applications.

VI. METHODOLOGY

The baseline (BL), exit-based (EX-B), exitless (EX-L),
and our proposed SSE-enhanced architectures (SSE-ONCPU
and SSE-OFFCPU) are implemented using the MIT Graphite
simulator enhanced with the needed performance models, and
RISC-V ISA [19], [20]. A 64-core tiled multicore processor
with a two-level coherent private L1 shared L2 cache hierarchy
per core, and a 2D mesh on-chip network with X-Y routing
is evaluated. The default architectural parameters used for
evaluation are shown in Table I. In BL and EX-B, workers are
spawned from 4-64 (depending on the configured number of
workers) on the corresponding core number. The spawning of
workers for EX-L, SSE-ONCPU, and SSE-OFFCPU is more
complex and thus is discussed in a later subsection.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

CPU Subsystem
Number of Cores 64 RISC-V, Out-of-Order @ 1 GHz
Reorder Buffer Entries 192
Store Queue Entries 32

Memory Subsystem
L1-I, L1-D Cache per core 32 KB, 4-way Assoc., 1 cycle
L2 Inclusive Cache per core | 256 KB, 8—way Assoc., 4 cycles
Cache Line Size 64 bytes
Directory Protocol Invalid-based MESI, ACKwisey
DRAM Controllers 4, 10 GBps per Contr./ 100ns
Encryption Overhead 10 cycles

Electrical 2-D Mesh with XY Routing

2 cycles (1-router, 1-link)

Only link contention, 64 bit Flits
(Infinite input buffers)

64 bits

Hop Latency
Contention Model

Flit Width

TABLE I: Architectural Simulator Parameters for Evaluation.

A. Enclave Modeling

To model memory encryption and integrity checking perfor-
mance overheads, a constant 10-cycle latency [34] is added
to each main memory data access performed across each
implementation excluding BL.

1) Exit-based (EX-B): Tian et. al [17] quantify the overhead
of each ecall/ocall in Intel SGX to be 9,000-cycles, respectively.
Thus, a 9,000-cycle latency is added to each ecall/ocall
performed in EX-B.

2) Exitless (EX-L): When the number of threads exceeds
the core count (at 64 workers), each worker-responder pair is
pinned to a single core as this yields the highest performance
under such conditions. Worker and responder threads are
swapped out for one another based on a timer set by the
responder. Initially, responders check for requests, and if there
are none, set a timer and sleep until it expires. After a responder
goes to sleep, a worker is swapped in and executes until the
timer set by a responder expires.

The fixed cost of a context switch is set to a conservative
500ns based on measurements performed in [35]. To maximize
performance when the number of threads exceeds the core
count, responder sleep times are configured to 10us which was
experimentally determined to achieve optimal performance for
the evaluated workloads.

3) SSE-Software: SSE-Software is modeled by pinning
worker and responder threads on dedicated cores. All available
cores are spatially distributed in n-clusters where each cluster
contains 1 responder core while the remaining cores act as
worker cores. This configuration is adopted to avoid additional
network-on-chip latencies for worker-responder communica-
tions. A shared memory that is accessible within the cluster is
used for worker-responder communication similar to EX-L.

4) SSE-ONCPU: SSE-ONCPU is modeled by adding an
in-order simple pipeline and its private 1KB L1 instruction and
data caches to each of the 64 tiles. Each SSE engine placed in
a tile shares the L2 cache slice with its corresponding enclave
core. Two variants of SSE-ONCPU are evaluated: (i) SSE-
ONCPU-NHP which has a reduced 224KB L2 slice on each
tile to compensate for the SSE-ONCPU area overhead and
ensure resources comparable to BL, EX-B, and EX-L are used,
and (ii) SSE-ONCPU-HP that has a full 256KB L2 slice on

each tile. Threads are spawned such that workers are mapped
exclusively to enclave cores, while responders are mapped
exclusively to SSE engines.

5) SSE-OFFCPU: SSE-OFFCPU is also implemented on
the simulator as opposed to an FPGA for a consistent evaluation
and comparison with all other configurations. SSE-OFFCPU
is modeled by adding 64 simple tiles, each with an in-order
core that operates at a clock frequency of 250MHz and has its
private 1KB L1 instruction and data caches that are coherent
with the last-level cache of the CPU. To emulate existing CPU-
FPGA platforms [22], no L2 cache slice is included in any of
the FPGA tiles, and instead are only located on the CPU tiles.
The added 64 FPGA tiles are positioned beneath the 64 CPU
tiles and the location of the memory controllers remains around
the original 64 CPU tiles, which causes an increase in shared
and main memory access times for the SSE engines compared
to the SSE-ONCPU. Like SSE-ONCPU, threads are spawned
such that workers are mapped exclusively to enclave cores,
while responders are mapped exclusively to SSE engines.

B. Evaluation Metrics

1) Throughput: Performance is measured in throughput
specific to the operations the benchmark performs. Further
details about how throughput is measured are described in the
next subsection.

2) Execution Time Breakdown: The performance of each
implementation is measured by tracking the average execution
time across all workers. To gain further insights, execution
time measurements are also tracked as follows:

« Work is the time spent executing workload-specific tasks
that are not system calls or hypercalls.

« Pack is the time spent copying data to/from enclave
memory from/to untrusted memory.

« Responder-Syscall is the time spent processing system
calls or hypercalls by SSE cores.

« Responder-Communication is the time spent copying
data to/from SSE memory from/to untrusted shared buffer.

« Poll is the time (i) workers wait for a responder’s timer
to expire after making a request and (ii) responders spend
checking the shared buffer for requests.

« Ctx Switch is the time spent executing a context switch.

C. Workload Configurations

1) Server: Server is evaluated under two configurations: (i)
an SGX-like configuration that incurs an enclave exit upon
each system call mentioned in the previous paragraph, and (ii)
an SEV-like configuration that only incurs enclave exits upon
send and recv system calls as these communicate directly with
devices that are managed by the VMM. 1,000 requests for a
16KB web pages are issued evenly between clients, with each
worker serving its respective client’s requests. Throughput is
measured in thousands of requests served per second (KReq)
and all evaluations are performed with 4 to 64 worker threads.

2) Database: Database is evaluated under one configuration
that incurs enclave exits upon send and read system calls as
these communicate directly with devices that are managed by

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

400

350 | ®M1KB 7
300 -|E4KB 7
8550 [|@8KB 2

~ | =16 KB g
o 200 32 KB 7 é
g 150 7 7
[2 2
¥ 100 7 7
50 by
e o=

4 8 16 32 64
Workers

Fig. 9: L1 Instruction and Data Cache Size

the VMM (and thus the host OS). 4,000 requests for a 2KB
query are issued evenly between clients, with each worker
serving its respective client’s requests. A get-to-set ratio of 1:1
is used. Throughput is measured in millions of queries served
per second (MOPs) and all evaluations are performed with 4
to 64 worker threads.

VII. EVALUATION

This section first outlines the evaluation used to determine the
SSE engine microarchitecture tradeoffs. Next, the performance
comparisons among the different configurations, BL, EX-B,
EX-L, SSE ONCPU Hardware Penalty (SSE-ONCPU-HP),
SSE ONCPU No Hardware Penalty (SSE-ONCPU-NHP), SSE-
OFFCPU, and SSE-Software with 1-1, 3-1, and 7-1 settings
are discussed.

A. SSE Microarchitecture Sizing Studies

Figure 9 shows the performance of SSE with varying L1
instruction and data cache sizes. With private cache sizes
ranging from 1-32KB, an overall difference in throughput of
2.7% is observed, indicating that SSE engines do not require
large private caches to achieve optimal performance due to a
significant number of sharing misses that are incurred upon
each worker-responder interaction. Therefore, L1 instruction
and data cache sizes of just 1KB are used to minimize SSE
engine area and power overheads.

To determine out-of-order/in-order setting for SSE, the size
of reorder buffer (ROB) is varied from 1-192 (data not shown).
An overall difference in throughput of just 0.7% is observed,
indicating that SSE engines do not require an out-of-order core
to obtain optimal performance.

The store queue in SSE is also varied from 1-32 (data not
shown). An overall difference of 4% in throughput is observed
due to a significant number of writes that are performed during
each worker-responder interaction. A single-entry store queue
causes stalls that delay the worker from resuming execution.
However, the SSE engines perform 0.5% better with only 8
store queue entries instead of 32 (default on the enclave cores).

B. Performance Evaluation of Server Benchmark

Figure 10 shows that baseline (BL) achieves the highest
throughput across both SGX and SEV configurations for the
Server benchmark as the number of workers is increased
from 4 to 64. EX-B achieves performance scaling under both
configurations but consistently performs worse due to costly

WBL HEX-B TEXL
[SSE-ONCPU-HP [JSSE-ONCPU-NHP @ SSE-OFFCPU
500 SSE-S-1-1 SSE-S-3-1 SSE-S-7-1
< 400
&
<. 300
o
$ 200
o
X 100
0
4 8 16 32 64
Workers
(a) Server: SGX-like Configuration
=BL TEX-B BEXL
[@ SSE-ONCPU-HP [JSSE-ONCPU-NHP [3SSE-OFFCPU
600 SSE-S-1-1 SSE-S-3-1 SSE-S-7-1

(b) Server: SEV-like Configuration

mBL BEX-B EEX-L
3.2 [E1SSE-ONCPU-HP [SSE-ONCPU-NHP [3SSE-OFFCPU
. [ISSE-S-1-1 SSE-S-3-1 SSE-S-7-1

4 8 16 32 64
Workers

(c) Database: SGX-like Configuration

Fig. 10: Worker Throughput Performance

200 [5000 cycles

150 7500 cycles|
9 9000 cycles
v 100
~
i w
X

AMEN , ,
4 8 16 32 64

Workers

Fig. 11: SGX Exit-Based ecall/ocall Latency Overhead Sweep

ecalls/ocalls. The ecall/ocall overheads lead to a 2.3 and 1.5x
performance loss for the SGX-like and SEV-like configurations
of Server, respectively. Figure 11 shows the varying ecall/ocall
overheads sweep study for EX-B. EX-L achieves performance
scaling relatively to EX-B but suffers a decrease in performance
at 32 and 64 workers due to polling and context switching
overheads.

SSE-Software overcomes ecall/ocall overheads but is limited
due to fewer worker cores. Furthermore, syscalls serialization
penalties lead to diminished performance for all settings

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

= Work @ Pack
A Ecall/Ocall O Poll

@ Work
@ Ecall/Ocall

@ R-Syscall

H R-Comm
O Ctx Switch

@ Pack
gPoll

@ R-Syscall
O Ctx Switch

H R-Comm

B Work E Pack @ R-Syscall HR-Comm

MAEcall/Ocall OPoll [Ctx Switch

Latency (Norm. to BL)
= h ¢
(%] (%]
Latency (Norm. to BL)

BL

EX-B

EX-L
ONCPU-HP
ONCPU-NHP
OFFCPU
SSE-S-1-1
SSE-$-3-1
SSE-S-7-1
EX-B

EX-L

(a) Server: SGX-like Configuration

Fig.

compared to EX-B and EX-L. Hardware implementations
of SSE continue to scale at 32 and 64 workers in both
configurations. This is because the additional SSE engines
enable SSE to mitigate polling and context-switching overheads.
Since the focus is on improving EX-L performance when the
number of threads exceeds the number of cores, Figure 12
shows the normalized breakdown of 64-worker configurations.

At 64 workers, EX-L performance is 1.9x and 1.5x worse
than BL for the SGX-like and SEV-like configurations of the
Server benchmark, respectively. This loss in performance is
due to the frequent swapping of workers and responders as
there are more threads than cores. Frequent context switching
leads to (i) cache thrashing since data lost during a context
switch must be re-fetched, and (ii) increased polling time as
responders check for system call requests on each invocation.
Figure 12 shows polling overheads are the primary cause
of performance degradation in EX-L. Even with an ideal 0-
cycle context switching overhead, EX-L would still trail BL
performance by 1.7x and 1.4x for Server SGX-like and SEV-
like setups. This demonstrates that any EX-L configuration
that relies on the security-centric timers fails to match BL
performance.

L1D cache thrashing is exacerbated by polling in EX-L
compared to BL. In Server SGX-like configuration, an increase
in L1D and L2 cache misses of 1.4x and 3.7x are incurred
compared to BL. This leads to a 12.8% and 41.1% increase in
workload and syscall components of worker execution latency,
respectively. For Server SEV-like configuration, cache thrashing
leads to an increase in L1D and L2 cache misses of 2x and
3x compared to BL. This causes a 7.8% and 49.3% increase
in workload and syscall execution times.

SSE-Software eliminates ecall/ocall and polling overheads
due to the spatial distribution of enclave and responder cores.
For 1-1 configuration, Figure 10 shows that SSE-Software
performs worse compared to EX-B and EX-L. This is due
to the loss of 50% available worker cores compared to EX-
B and EX-L. Figures 12a and 12b show an increase in
latencies due to the loss of worker cores. For 3-1 configuration,
SSE-Software outperforms EX-B and EX-L for SGX-like
server workload due to the availability of additional worker

ONCPU-HP

(b) Server: SEV-like Configuration

93

Latency (Norm. to BL)
w

ONCPU-NHP
OFFCPU
SSE-S-1-1
SSE-5-3-1
SSE-S-7-1
EX-B
EX-L
ONCPU-HP
ONCPU-NHP
OFFCPU
SSE-S-1-1
SSE-S-3-1
SSE-S-7-1

(c) Database: SGX-like Configuration

12: Worker Latency Breakdown (Normalized to BL)

cores but performs worst for SEV-Like workload due to less
utilization of responder cores. For the 7-1 configuration, Figure
12a shows that the syscalls serialization penalty outperforms
the availability of additional worker cores and SSE-Software
performance degrades.

1) SSE-ONCPU Analysis: SSE-ONCPU eliminates ecall/o-
call and polling overheads incurred in both EX-B and EX-L
(Figure 12) and outperforms EX-L by up to 68.1% and 39.8%
for Server SGX-like and SEV-like, respectively. However,
the worker—responder interactions that are not present in BL
are now split across enclave cores and SSE engines, adding
undesirable data movement between them that prevents SSE-
ONCPU from matching BL performance.

Both SSE-ONCPU-NHP and SSE-ONCPU-HP incur a
greater memory access latency than BL due to added memory
system stress caused by data movement in worker-responder
interactions. Consequently, compared to BL, an increase in
L1D sharing misses of 33.3x and 14.8x are incurred by SSE-
ONCPU-NHP, and an increase in L1D sharing misses of 13.6x
and 5.2x are incurred by SSE-ONCPU-HP for the SGX-like
and SEV-like configurations, respectively. Compared to BL,
SSE-ONCPU-NHP (which has a reduced L2 cache per tile),
incurs 3.3x and 1.9x more L2 misses, while SSE-ONCPU-HP
incurs 0.3% and 0.5% more L2 misses for the SGX-like and
SEV-like configurations, respectively. These increases in L1D
sharing and L2 misses result in a performance loss in the
workload, pack, and syscall processing components of worker
execution latency.

2) SSE-OFFCPU Analysis: Like each SSE-ONCPU config-
uration, SSE-OFFCPU also eliminates ecall/ocall and polling
overheads incurred in both EX-B and EX-L but does so with
a different architectural implementation that has its tradeoffs.
Overall, SSE-OFFCPU offers a 41.8% and 25% improvement
over EX-L but performs up to 18.5% and 11.8% worse than
SSE-ONCPU for the SGX-like and SEV-like configurations,
respectively.

Figure 12 shows that the main reason SSE-OFFCPU per-
forms worse than SSE-ONCPU-HP is due to the 53.6% and
38.9% longer syscall processing times incurred compared to
SSE-ONCPU-HP for the SGX-like and SEV-like configurations,

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

respectively. This is due to two primary reasons: (i) SSE
engines operate a lower frequency (1GHz for SSE-ONCPU
vs 250M Hz for SSE-OFFCPU) and (ii) SSE-OFFCPU incurs
longer shared memory access latencies because all shared L2
slices are located on the CPU, further away from the SSE
engines than in the SSE-ONCPU configuration. Data evicted
from the private caches of the SSE engines must travel a longer
distance back to enclave cores than in SSE-ONCPU, resulting
in 38.9% and 35.3% longer sharing miss latencies for the
SGX-like and SEV-like configurations, respectively, from the
perspective of the memory system.

C. Performance Evaluation of Database Benchmark

Figure 10c shows EX-B and EX-L incur a 2.8x and 1.9x
loss in performance compared to BL, respectively. Figure 12¢
shows that similar to Server, the primary loss in performance
in EX-L for Database comes from polling overheads.

SSE-Software eliminates ecall/ocall and polling overheads.
For 1-1 configuration, Figure 10c shows that SSE-Software
performs similar EX-B. Figure 12c¢ shows an increase in
latencies due to the loss of worker cores. For 3-1 configuration,
SSE-Software outperforms EX-B and EX-L for SGX-like
database workload due to the availability of additional worker
cores. For the 7-1 configuration, Figure 12c shows that
the syscalls serialization penalty outperforms the availability
of additional worker cores and SSE-Software performance
degrades.

1) SSE-ONCPU Analysis: Similar to Server, SSE-ONCPU
outperforms EX-L by up to 46.8%, but trails BL performance
by as much as 31.3% due to the added data movement between
workers and responders (Figure 12c). Each worker—responder
interaction in the Database involves transferring a 2KB query
which places greater stress on each interaction. For the Server
only two system calls and one hypercall involve exchanging a
large amount of data (16KB web pages) while all other system
calls and hypercalls transfer less than 200 bytes of data between
workers and responders, resulting in less data being exchanged
between workers and responders compared to the Database.

2) SSE-OFFCPU Analysis: SSE-OFFCPU suffers from
its performance degradation which causes a 60.6% loss in
performance compared to BL. As in Server, this performance
loss is caused by the (i) slower frequency that SSE engines
operate for this particular configuration and (ii) increased data
movement latencies exacerbated by the distance this data must
travel between workers and responders. Overall, this leads to
SSE-OFFCPU incurring 27 x and 79x longer L2 serialization
and sharing latencies compared to BL, respectively.

Overall, the evaluation indicates that as the total number of
threads exceeds the core count of a machine, exitless calling
becomes less beneficial because of significant polling and con-
text switching overheads. However, by providing enough SSE
engines such that the hardware’s parallelism is not overburdened
as proposed in each of the SSE implementations (SSE-ONCPU
and SSE-OFFCPU), polling and context switching overheads
can be obviated and continued performance scaling inline with
BL is achieved.

94

SSE Cores
FPGA LEs

4 8 16 32 64
108k | 216k | 432k | 864k | 1728k

TABLE II: SSE-OFFCPU Area Estimates using FPGA

D. Area Overhead Analysis

SSE comes at the cost of additional simple in-order pipelines
and minimal private caches. For ON-CPU implementation, two
multicore implementations are evaluated: (i) SSE-ONCPU-
NHP that reduces the size of the shared L2 cache in each
tile to compensate for the hardware overhead of SSE, and
(i) SSE-ONCPU-HP that pays for an added cost of SSE in
each tile to improve performance. An in-order RISC-V core
implementation has been shown to require 15k Logic Elements
(LE) on an FPGA [36]. A 1KB direct-mapped L1 cache takes
6k LEs to implement on an FPGA [37]. For SSE-OFFCPU
implementation, Table II shows implementation overhead in
FPGA LEs based on two L1 caches per core. The latest on-chip
CPU+FPGA systems, such as Intel® Stratix® 10 MX FPGA
[38], support more than 2 million LEs, which is sufficient to
implement up to 64 SSE cores.

VIII. CONCLUSION

This paper proposes a novel heterogeneous secure multi-
core processor architecture that leverages Security Service
Engines (SSEs) to improve the performance scaling of highly-
interactive security-centric applications. When using state-of-
the-art enclave-based execution leveraging exitless calling, these
types of applications incur unnecessary stalls and frequent
context switches due to the spawning of additional insecure
responder threads that compete for the same hardware resources
as application worker threads and lead to the saturation of a
machine’s hardware resources. With SSE, responder threads
execute on their distinct hardware resources which obviates
resource contention between workers and responders and thus
overcomes the overheads present in enclave-based execution
with exitless calling. By overcoming these overheads, an
increase in performance of up to 68% is achieved. Furthermore,
SSE enables performance scaling even when the total number
of application threads exceeds the number of cores and
comes within 5% of the performance that a security-centric
application executing with no hardware security primitives
achieves. Overall, SSE offers an efficient solution that makes
enclave-based execution practical.

IX. ACKNOWLEDGEMENTS

This research was supported by the National Science
Foundation under Grant No. 1929261.

REFERENCES

[1] D. C. Chou, “Cloud Computing: A Value Creation Model,” Computer
Standards & Interfaces, vol. 38, pp. 7277, Feb. 2015.

[2] V. Costan and S. Devadas, “Intel SGX Explained,” Tech. Rep. 086, 2016.

[3] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,” 2016.

[4] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovi¢, “Keystone:
An Open Framework for Architecting TEEs,” arXiv:1907.10119 [cs],
Sept. 2019. arXiv: 1907.10119.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

(51

[6

(71

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. P. Mulligan, G. Petri, N. Spinale, G. Stockwell, and H. J. M. Vincent,
“Confidential computing—a brave new world,” in 2021 International
Symposium on Secure and Private Execution Environment Design (SEED),
pp. 132-138, 2021.

V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation,” pp. 857-874, 2016.

T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“MI6: Secure Enclaves in a Speculative Out-of-Order Processor,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, (Columbus OH USA), pp. 42-56, ACM, Oct. 2019.
H. Omar and O. Khan, “IRONHIDE: A Secure Multicore that Efficiently
Mitigates Microarchitecture State Attacks for Interactive Applications,”
in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 111-122, Feb. 2020. ISSN: 2378-203X.

R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.
Sadeghi, and E. Stapf, “CURE: A security architecture with CUstomizable
and resilient enclaves,” p. 19, 2021.

R. Boivie and P. Williams, “SecureBlue++: CPU Support for Secure
Executables,” tech. rep., Sept. 2016.

O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture,
(Toronto ON Canada), pp. 81-93, ACM, June 2017.

M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: ExitLess
OS Services for SGX Enclaves,” in Proceedings of the Twelfth European
Conference on Computer Systems, (Belgrade Serbia), pp. 238-253, ACM,
Apr. 2017.

C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: a practical library
OS for unmodified applications on SGX,” in Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’17, pp. 645-658, USENIX Association. ZSCC: 0000263.

S. Kumar, A. Panda, and S. R. Sarangi, “A comprehensive benchmark
suite for intel SGX.”

B. D’Agostino and O. Khan, “Seeds of SEED: Characterizing Enclave-
level Parallelism in Secure Multicore Processors,” 2021.

J. Nye and O. Khan, “SSE: Security service engines to accelerate enclave
performance in secure multicore processors,” vol. 21, no. 2, pp. 129-132,
2022. Conference Name: IEEE Computer Architecture Letters.

H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten, “Switchless Calls Made Practical in Intel SGX,”
in Proceedings of the 3rd Workshop on System Software for Trusted
Execution, (Toronto Canada), pp. 22-27, ACM, Jan. 2018.

O. Shafi and J. Bashir, “Secsched: Flexible scheduling in secure
processors,” in Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques, PACT 20, (New
York, NY, USA), p. 229-240, Association for Computing Machinery,
2020.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A distributed parallel simulator for
multicores,” in HPCA - 16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture, pp. 1-12. ISSN: 2378-
203X.

H. Dogan, M. Ahmad, B. Kahne, and O. Khan, “Accelerating synchro-
nization using moving compute to data model at 1,000-core multicore
scale,” ACM Trans. Archit. Code Optim., vol. 16, pp. 4:1-4:27, Feb.
2019.

lighttpd, “lighttpd. An open-source web server optimized for speed-
critical environments..” https://www.lighttpd.net/.

Y.-K. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “In-depth
analysis on microarchitectures of modern heterogeneous CPU-FPGA
platforms,” vol. 12, no. 1, pp. 1-20.

N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia, J. Grecco,
A. Grier, N. Tjih, Y. Liu, P. Marolia, H. Mitchel, S. Subhaschandra,
A. Sheiman, T. Whisonant, and P. Gupta, “A reconfigurable computing
system based on a cache-coherent fabric,” in 2011 International Con-
ference on Reconfigurable Computing and FPGAs, pp. 80-85. ISSN:
2325-6532.

D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Minnow: Lightweight
offload engines for worklist management and worklist-directed prefetch-
ing,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 593-607, ACM.

B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “tiko: a
polymorphic cache hierarchy for general-purpose optimization of data

95

[26]

[27]
[28]
[29]
[30]
[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

movement,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, pp. 42-58, ACM.

M. Shan and O. Khan, “HD-CPS: Hardware-assisted drift-aware concur-
rent priority scheduler for shared memory multicores,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pp. 528-542. ISSN: 2378-203X.

S. Kumar, H. Raj, K. Schwan, and I. Ganev, “Re-architecting VMMs
for multicore systems: The sidecore approach,”

J. Liu and B. Abali, “Virtualization polling engine (VPE): using dedicated
CPU cores to accelerate i/o virtualization,” 2009.

“nginx - advanced load balancer, web server, & reverse proxy.”
https://nginx.org. Publisher: Nginx, Inc.

“Apache HTTP server project.” https://httpd.apache.org/. Publisher:
Apache Software Foundation.
“memcached - a distributed memory object caching system.”

https://memcached.org/.

“Redis - in-memory nosql database.” https://redis.io/.

“Linux Kernel 6.1.” https://www.kernel.org/, 2023.

R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and
L. Wingers, “The simon and speck lightweight block ciphers,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6,
2015.

C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Proceedings of the 2007 workshop on Experimental computer science
- ExpCS ’07, ACM Press.

“Ariane: An open-source 64-bit RISC-V Application-Class Processor and
latest Improvements.” https://riscv.org/wp-content/uploads/2018/05/14.15-
14.40-FlorianZaruba_riscv_workshop-1.pdf, 2018.

P. Yiannacouras and J. Rose, “A parameterized automatic cache generator
for fpgas,” in Proceedings. 2003 IEEE International Conference on Field-
Programmable Technology (FPT) (IEEE Cat. No.O3EX798), pp. 324-327,
2003.

“Intel® Stratix® 10 MX 2100 FPGA.” https://www.intel.com/
content/www/us/en/products/sku/210297/intel-stratix- 10-mx-2100-
fpga/specifications.html, 2017.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on December 15,2024 at 14:25:50 UTC from IEEE Xplore. Restrictions apply.

