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Abstract. Convex regression is the problem of fitting a convex function to a data set consisting
of input-output pairs. We present a new approach to this problem called spectrahedral regression,
in which we fit a spectrahedral function to the data, i.e., a function that is the maximum eigenvalue
of an a�ne matrix expression of the input. This method represents a significant generalization
of polyhedral (also called max-a�ne) regression, in which a polyhedral function (a maximum of a
fixed number of a�ne functions) is fit to the data. We prove bounds on how well spectrahedral
functions can approximate arbitrary convex functions via statistical risk analysis. We also analyze
an alternating minimization algorithm for the nonconvex optimization problem of fitting the best
spectrahedral function to a given data set. We show that this algorithm converges geometrically with
high probability to a small ball around the optimal parameter given a good initialization. Finally,
we demonstrate the utility of our approach with experiments on synthetic data sets as well as real
data arising in applications such as economics and engineering design.
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1. Introduction. The problem of identifying a function that approximates a
given dataset of input-output pairs is a central one in data science. In this paper we
consider the problem of fitting a convex function to such input-output pairs, a task
known as convex regression. Concretely, given data {x(i), y(i)}n

i=1 ⇢Rd
⇥R, our objec-

tive is to identify a convex function f̂ such that f̂(x(i))⇡ y(i) for each i= 1, . . . , n. In
some applications, one seeks an estimate f̂ that is convex and positively homogeneous;
in such cases, the problem may equivalently be viewed as one of identifying a con-
vex set given (possibly noisy) support function evaluations. Convex reconstructions
in such problems are of interest for several reasons. First, prior domain information
in the context of a particular application might naturally lead a practitioner to seek
convex approximations. One prominent example arises in economics, in which the
theory of marginal utility implies an underlying convexity relationship. Another im-
portant example arises in computed tomography applications in which one has access
to support function evaluations of some underlying set, and the goal is to reconstruct
the set; here, due to the nature of the data acquisition mechanism, the set may be
assumed to be convex without loss of generality. A second reason for preferring a
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554 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

Fig. 1. Models for average weekly wage based on years of experience and education using spec-
trahedral and polyhedral regression. From left to right: The underlying data set, the spectrahedral
(m= 3) estimator, and the polyhedral (m= 6) estimator. A transformation in the years of education
covariate gives a data set that is approximately convex.

convex reconstruction f̂ is computational—in some applications the goal is to sub-
sequently use f̂ as an objective or constraint within an optimization formulation.
For example, in aircraft design problems, the precise relationship between various at-
tributes of an aircraft is often not known in closed form, but input-output data are
available from simulations; in such cases, identifying a good convex approximation
for the input-output relationship is useful for subsequent aircraft design using convex
optimization.

A natural first estimator one might write down is

(1.1) f̂ (n)
LSE 2 argmin

f :Rd!R is a convex function
1

n

nX

i=1

(y(i) � f(x(i)))2.

There always exists a polyhedral function that attains the minimum in (1.1), and
this function may be computed e�ciently via convex quadratic programming [21,
22, 25]. However, this choice su↵ers from a number of drawbacks. For a large sample
size, the quality of the resulting estimate su↵ers from overfitting as the complexity
of the reconstruction grows with the number of data points. For small sample sizes,
the quality of the resulting estimate is often poor due to noise. From a statistical
perspective, the estimator may also be suboptimal [16, 17]. For these reasons, it is
of interest to regularize the estimator by considering a suitably constrained class of
convex functions.

The most popular approach in the literature to penalize the complexity of the
reconstruction in (1.1) is to fit a polyhedral function that is representable as the max-
imum of at most m a�ne functions (for a user-specified choice of m) to the given
data [4, 10, 11, 13, 19, 28], which is based on the observation that convex func-
tions are suprema of a�ne functions. However, this approach is inherently restric-
tive in situations in which the underlying phenomenon is better modeled by a non-
polyhedral convex function, which may not be well-approximated by m-polyhedral
functions. Further, in settings in which the estimated function is subsequently used
within an optimization formulation, the above approach constrains one to using linear-
programming (LP) representable functions. See Figure 1 for a demonstration with
economic data.

To overcome these limitations, we consider fitting spectrahedral functions to data.
To define this model class, let Sm

k
denote the set of m⇥m real symmetric matrices

that are block-diagonal with blocks of size at most k⇥ k, with k dividing m.
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SPECTRAHEDRAL REGRESSION 555

Definition 1.1. Fix positive integers m,k such that k divides m. A function

f :Rd
!R is called (m,k)-spectrahedral if it can be expressed as follows:

f(x) = �max

 
dX

i=1

Aixi +B

!
,

where A1, . . . ,Ad,B 2 Smk . Here �max(·) is the largest eigenvalue of a matrix.

An (m,k)-spectrahedral function is convex as it is a composition of a convex
function with an a�ne map. For the case k = 1, the matrices A1, . . . ,Ad,B are
all diagonal and we recover the case of m-polyhedral functions. The case k = 2
corresponds to second-order-cone-programming (SOCP) representable functions, and
the case k =m utilizes the expressive power of semidefinite programming (SDP). In
analogy to the enhanced modeling power of SOCP and SDP in comparison to LP, the
class of (m,k)-spectrahedral functions is much richer than the set of m-polyhedral
functions for general k > 1. For instance, when k = m = d + 1 this class contains
the function f(x) = kxk2 for x 2 Rd as illustrated in (3.3). For estimates that are
(m,k)-spectrahedral, subsequently employing them within optimization formulations
yields optimization problems that can be solved via SOCP and SDP.

An (m,k)-spectrahedral function that is positively homogeneous (i.e., B = 0 in
the definition above) is the support function of a convex set that is expressible as the
linear image of an (m,k)-spectraplex defined, for positive integers k and m such that
k divides m, by

(1.2) Sm,k = {M 2 Sm
k

| tr(M) = 1, M ⌫ 0}.

We refer to the collection of linear images of Sm,k as (m,k)-spectratopes. Again, the
case k = 1 corresponds to the m-simplex, and the corresponding linear images are
m-polytopes. Thus, in the positively homogeneous case, our proposal is to identify a
linear image of an (m,k)-spectraplex to fit a given set of support function evaluations.
We note that the case k=m was recently considered in [27], and we comment in more
detail on the comparison between the present paper and [27] in section 1.2.

1.1. Our contributions. We consider the following constrained analogue of
(1.1):

(1.3) f̂ (n)
m,k
2 argmin

f :Rd!R is an (m,k)-spectrahedral function
1

n

nX

i=1

(y(i) � f(x(i)))2.

Here the parameters m,k are specified by the user.
First, we investigate in section 2 the expressive power of (m,k)-spectrahedral func-

tions. Our approach to addressing this question is statistical in nature and it proceeds
in two steps. We begin by deriving upper bounds on the error of the constrained esti-
mator (1.3) (under suitable assumptions on the data {(x(i), y(i))}n

i=1 supplied to the
estimator (1.3)), which entails computing the pseudo-dimension of a set that captures
the complexity of the class of spectrahedral functions. As is standard in statistical
learning theory, this error decomposes into an estimation error (due to finite sam-
ple size) and an approximation error (due to constraining the estimator (1.3) to a
proper subclass of convex functions). We then compare these to known minimax
lower bounds on the error of any procedure for identifying a convex function [10, 28].
Combined together, for the case of fixed k (as a function of m) we obtain tight lower
bounds on how well an (m,k)-spectrahedral function can approximate a Lipschitz
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556 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

convex function over a compact convex domain, and on how well a linear image of
an (m,k)-spectraplex can approximate an arbitrary convex body (see Theorem 2.8).
To the best of our knowledge, such bounds have only been obtained previously in the
literature for the case k = 1, e.g., how well m-polytopes can approximate arbitrary
convex bodies [3, 6].

Second, we investigate in section 3 the performance of an alternating minimization
procedure to solve (1.3) for a user-specified m,k. This method is a natural general-
ization of a widely used approach for fitting m-polyhedral functions, and it was first
described in [27] for the case of positively homogeneous convex regression with k=m.
We investigate the convergence properties of this algorithm under the following prob-
lem setup. Consider an (m,k)-spectrahedral function f⇤ : Rd

! R. Assuming that
the covariates x(i), i = 1, . . . , n, are independent and identically distributed (i.i.d.)
sub-Gaussian and each y(i) = f⇤(x(i))+"i, i= 1, . . . , n, for i.i.d. Gaussian noise "i, we
show in Theorem 3.1 that the alternating minimization algorithm is locally linearly
convergent with high probability given su�ciently large n. A key feature of this analy-
sis is that the requirements on the sample size n and the assumptions on the quality
of the initial guess are functions of a “condition number” type quantity associated to
f⇤, which (roughly speaking) measures how f⇤ changes if the parameters that describe
it are perturbed. The assumption on f⇤ in Theorem 3.1 may, however, be di�cult to
satisfy when k < m. We show in Theorem 3.2 that a similar convergence guarantee
holds under a weaker condition on f⇤ at the expense of stronger assumptions on the
distribution of the covariates.

Finally, in section 4 we give empirical evidence of the utility of our estimator
(1.3) on both synthetic datasets as well as data arising from real-world applica-
tions.

1.2. Related work. There are three broad topics with which our work has a
number of connections, and we describe these in detail next.

First, we consider our results in the context of the recent literature in optimization
on lift-and-project methods (see the recent survey [7] and the references therein). This
body of work has studied the question of the most compact description of a convex
body as a linear image of an a�ne section of a cone, and has provided lower bounds
on the sizes of such descriptions for prominent families of cone programs such as
LP, SOCP, and SDP. This literature has primarily considered exact descriptions, and
there is relatively little work on lower bounds for approximate descriptions (with the
exception of the case of polyhedral descriptions). The present paper may be viewed
as an approximation-theoretic complement to this body of work, and we obtain tight
lower bounds on the expressive power of (m,k)-spectrahedral functions (and on linear
images of the (m,k)-spectraplex) for bounded k > 1.

Second, recent results provide algorithmic guarantees for the widely used alter-
nating minimization procedure for fitting m-polyhedral functions [8, 9]; this work
gives both a local convergence analysis as well as a dimension reduction strategy to
restrict the space over which one needs to consider random initializations. In com-
parison, our results provide only a local convergence analysis, although we do so for
a more general alternating minimization procedure that is suitable for fitting general
(m,k)-spectrahedral functions. We defer the study of a suitable initialization strategy
to future work (see section 5).

Finally, we note that there is prior work on fitting nonpolyhedral functions in
the convex regression problem. Specifically, [14] suggests various heuristics to fit a
log-sum-exp type function, which may be viewed as a “soft-max” function. However,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPECTRAHEDRAL REGRESSION 557

these methods do not come with any approximation-theoretic or algorithmic guar-
antees. The recent work [27] considered the problem of fitting a convex body given
support function evaluations, i.e., the case of positively homogeneous convex regres-
sion, and proposed reconstructions that are linear images of an (m,m)-spectraplex;
in this context, [27] provided an asymptotic statistical analysis of the associated esti-
mator and first described an alternating minimization procedure that generalized the
m-polyhedral case, but with no algorithmic guarantees. In comparison to [27], the
present paper considers the more general setting of convex regression and also allows
for the spectrahedral function to have additional block-diagonal structure, i.e., gen-
eral (m,k)-spectrahedral reconstructions. Further, we provide algorithmic guarantees
in the form of local convergence analysis of the alternating minimization procedure,
and we provide approximation-theoretic guarantees associated to (m,k)-spectrahedral
functions (which rely on finite sample rather than asymptotic statistical analysis).

1.3. Notation. For A = (A1, . . . ,Ad) 2 (Sm
k
)d, we define for x 2 Rd the linear

pencil A[x] :=
P

d

i=1 xiAi 2 Sm
k
. The usual vector `2 norm is denoted k · k2 and the

sup norm by k · k1. The matrix Frobenius norm is denoted by k · kF , and the matrix
operator norm by k · kop. We denote by Bd(x,R) the ball in Rd centered at x 2 Rd

with radius R> 0.

2. Expressiveness of spectrahedral functions via statistical risk bounds.
In this section, we first obtain upper bounds on the risk of the (m,k)-spectrahedral
estimator in (1.3) decomposed into the approximation error and estimation error. We
then compare this upper bound with known minimax lower bounds on the risk for
certain classes of convex functions. This provides lower bounds on the approximation
error of (m,k)-spectrahedral functions to these functions classes.

2.1. General upper bound on the risk. To obtain an upper bound on the
risk of the estimator (1.3), we use the general bound obtained in [11, section 4.1]. To
give the statement, consider first the following general framework. Let (x(1), y(1)), . . . ,
(x(n), y(n)) be observations satisfying

y(i) = f⇤(x
(i)) + "i,(2.1)

for a function f⇤ :Rd
!R contained in some function class F . We assume the errors

"i are i.i.d. mean zero Gaussians with variance �2. Now, let {Fm}m2N be a collection
of function classes of growing complexity with m. For each m, define the constrained
least squares estimator

f̂ (n)
m

:= argmin
f2Fm

nX

i=1

(y(i) � f(x(i)))2.

We consider the risk of this estimator in the random design setting,1 where we assume
x(1), . . . , x(n) are i.i.d. random vectors in Rd with distribution µ. The risk is then
defined by

kf̂ (n)
m
� f⇤k

2
µ
:=

Z

Rd

(f̂ (n)
m

(x)� f⇤(x))
2dµ(x).

1One can also consider the risk in the fixed design setting, where one assumes the covariates
{x(i)}ni=1

are fixed, and risk bounds proved in [11] include this case. The results in this work can be
directly extended to this case as well by applying the corresponding results.
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558 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

Additionally, assume both f⇤ and Fm are uniformly bounded by a positive and finite
constant �.

As is standard in the theory of empirical processes, the rate is determined by the
complexity of the class Fm, which in this case is determined by the pseudo-dimension
of the set

Hm := {z 2Rn : z = (f(x(1)), . . . , f(x(n))) for some f 2Fm}.(2.2)

Recall that the pseudo-dimension of subset B ⇢Rn, denoted by Pdim(B), is defined
as the maximum cardinality of a subset � ✓ {1, . . . , n} for which there exists h 2 Rn

such that for every �0
✓ �, one can find a 2 B with ai < hi for i 2 �0 and ai > hi for

i2 �\�0.
Theorem 4.2 in [11], stated below, provides an upper bound on the risk of f̂ (n)

m

split into approximation error and estimation error.

Theorem 2.1. Let n � 7. Suppose there is a constant Dm � 1 such that

Pdim(Hm)Dm. Then, there exists an absolute constant c such that

E
h
kf̂ (n)

m
� f⇤k

2
µ

i
 c

✓
inf

f2Fm

kf � f⇤k
2
µ
+

max{�2,�2
}Dm logn

n

◆
.(2.3)

The (m,k)-spectrahedral estimator (1.3) is a special case of the estimator f̂ (n)
m

when F is the class of convex functions f : Rd
! R and Fm is the class of (m,k)-

spectrahedral functions as in Definition 1.1, denoted by Fm,k. Since the class is
parameterized by d+ 1 matrices in Sm

k
, we define, for each m2N and k= 1, . . . ,m,

(Â1, . . . , Âd, B̂)2 argmin
A1,...,Ad,B2Smk

nX

j=1

"
y(j) � �max

 
dX

i=1

x(j)
i

Ai +B

!#2
,(2.4)

and we define the (m,k)-spectrahedral estimator of f⇤ by

f̂m,k(x) := �max

 
dX

i=1

xiÂi + B̂

!
.

We also define the estimator when F is the class of support functions of con-
vex bodies (compact and convex subsets) in Rd, denoted by K, and Fm is the sub-
class consisting of positively homogeneous (m,k)-spectrahedral functions, or equiva-
lently, support functions of (m,k)-spectratopes. This corresponds to the case when
the o↵set matrix B = 0. In this setting, we assume we are given observations
(u(1), y(1)), . . . , (u(n), y(n))2 Sd�1

⇥R satisfying

y(i) = hK⇤(u
(i)) + "i,

where hK(u) := sup
x2K
hu,xi, u 2 Sd�1, is the support function of a set K⇤ 2K. We

denote the class of (m,k)-spectratopes or linear images of Sm,k in Rd by L(Sm,k). To
define the (m,k)-spectratope estimator, let

(Â1, . . . , Âd)2 argmin
A1,...,Ad,2Smk

nX

j=1

"
Yi � �max

 
dX

i=1

u(j)
i

Ai

!#2
,

and define

K̂m,k := {z 2Rd : z = (hÂ1,Xi, . . . , hÂd,Xi) for some X 2 Sm,k}.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPECTRAHEDRAL REGRESSION 559

In this support function estimation setting, we notate the risk in terms of the
convex bodies. Letting ⌫ denote the probability distribution on Sd�1 of u(1), we
define the risk

`2
⌫
(K̂,K) :=

Z

Sd�1

(h
K̂
(u)� hK(u))2d⌫(u).

In the following lemma, we prove an upper bound on the pseudo-dimension of the
relevant set (2.2) needed to apply Theorem 2.1 for the estimators f̂m,k and K̂m,k.

Lemma 2.2. For m,k 2N such that k divides m, define, for x(1), . . . , x(n)
2Rd

,

Hm,k :=

⇢
z =

⇣
�max

⇣
A[x(1)] +B

⌘
, . . . ,�max

⇣
A[x(n)] +B

⌘⌘
2Rn

for some A2 (Sm
k
)d,B 2 Sm

k

�
,

and for u(1), . . . , u(d)
2 Sd�1

,

H̃m,k :=
n
z =

⇣
�max

⇣
A[u(1)]

⌘
, . . . ,�max

⇣
A[u(n)]

⌘⌘
2Rn

for some A2 (Sm
k
)d
o
,

Then, there exist absolute constants c1, c2 > 0 such that

Pdim(Hm,k) c1km(d+ 1) log(c2n/k) and Pdim(H̃m,k) c1kmd log(c2n/k).

To prove the lemma, we need the following known result (see for instance,
Lemma 2.1 in [1]).

Proposition 2.3. Let p1, . . . , pn be fixed polynomials of degree at most m in D
variables for Dm. The number of distinct sign vectors (sgn(p1(A)), . . . , sgn(pn(A)))

that can be obtained by varying A2RD
is at most 2

�
2enm
D

�D
.

Proof of Lemma 2.2. Assume that the pseudo-dimension of Hm,k ⇢ Rn is ⇢. By
the definition of pseudo-dimension, the size of the collection of sign vectors

Gm,k := {(sgn(�max(A[x(1)] +B)), . . . , sgn(�max(A[x(n)] +B))) :A2 (Sm
k
)d,B 2 Sm

k
}

must be at most 2⇢. For each i,

sgn(A[x(i)] +B) = sgn(min{p1(A,B;x(i)), . . . , pm(A,B;x(i))}),

where p`(A,B;x(i)) = det(�(A[x(i)] +B)`:`) is the determinant of the `⇥ ` principal
submatrix of �A[x(i)]�B. Indeed, �max(A[x(i)] +B)  0 if and only if all of these
determinants are nonnegative. Thus, the size of Gm,k is the same as the size of

Im,k := {(sgn(p(A,B;x(1))), . . . , sgn(p(A,B;x(n)))) :A2 (Sm
k
)d,B 2 Sm

k
}),

where for each i, p(A,B;x(i)) :=min{p1(A,B;x(i)), . . . , pm(A,B;x(i))} is a piecewise
polynomial in A and B. To bound the size of Im,k, we use the idea from [1]. We can
partition (Sm

k
)d+1 into at most mn regions over which the vector is coordinatewise a

fixed polynomial. Then we apply Proposition 2.3.
We have n polynomials of degree at most m in up to D= (d+1)km variables, i.e.,

the number of degrees of freedom of d+1 m⇥m k-block matrices. Thus, the number

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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560 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

of distinct sign vectors in Im satisfies |Im| 2mn( 2en
(d+1)k )

(d+1)km. This implies that

2⇢  2mn( 2en
(d+1)k )

(d+1)km, and hence

⇢
(d+ 1)km

log 2
log

✓
2en

(d+ 1)k

◆
+

log(2mn)

log 2
 c1km(d+ 1) log

⇣c2n
k

⌘
.

The second claim follows similarly, where instead D= dkm.

We can now obtain an upper bound on the risk of the estimators f̂m,k and K̂m,k.
Recall that we assume f⇤ and functions in Fm,k are uniformly bounded by some
�2 (0,1), and for support function estimation we assumeK⇤ and elements of L(Sm,k)
are contained in Bd(0,�).

Theorem 2.4.

(i) For any convex function f⇤ : Rd
! R, there exist absolute constants c, b > 0

such that

E
h
kf̂m,k � f⇤k

2
µ

i
 c

✓
inf

f2Fm,k

kf � f⇤k
2
µ
+max{�2,�2

}km(d+ 1)
log(bn/k)

n

◆
.

(ii) For any convex body K⇤ in Rd
, there exist absolute constants c, b > 0 such

that

E
h
`2
⌫
(K̂m,k,K⇤)

i
 c

✓
inf

S2L(Sm,k)
`2
⌫
(S,K⇤) +max{�2,�2

}kmd
log(bn/k)

n

◆

Proof. This result follows from Theorem 2.1 and Lemma 2.2.

Remark 2.5. Theorem 4.2 in [11] also provides high probability tail bounds for
the risk that could also be applied here to obtain high probability statements for the
risk of spectrahedral estimators.

2.2. Minimax rates. The minimax risk for estimating a function in the class
F from {x(i), y(i)}n

i=1 in the random design setting is defined by

Rµ(n,F) :=min
f̂

max
f2F

E[kf̂ � fkµ].

In Table 1 we summarize known rates as n ! 1 of this minimax risk for cer-
tain subclasses of convex functions. First consider the class Fm,k(⌦) of functions
in Fm,k with compact and convex domain ⌦ ⇢ Rd. In this case, the rate of con-
vergence is O( logn

n
) when the domain ⌦ satisfies a certain smoothness assumption

(see [11, Theorem 2.6]), where we appeal to the fact that Fm,1 ✓ Fm,k. Otherwise,
the best lower bound on the risk is O

�
1
n

�
using standard arguments for parametric

estimation.
Additionally we consider two nonparametric subclasses of convex functions. First

is Lipschitz convex regression, where we assume the true function f⇤ belongs to the
class CL(⌦) of L-Lipschitz convex functions with convex and compact full-dimensional

Table 1

Minimax rates for subclasses of convex functions.

F Fm,k(⌦), for ⌦ smooth [11] CL(⌦) [28] K(�) [10]

Rµ(n,F) logn
n n

� 4
d+4 n

� 4
d+3
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SPECTRAHEDRAL REGRESSION 561

support ⌦ ⇢ Rd. Second is support function estimation, where we assume the true
function is the support function of a set K belonging to the collection K(�) of convex
and compact subsets of Rd contained in the ball Bd(0,�) for some finite � > 0. In
both settings, the usual least-squares estimator (LSE) over the whole class is minimax
suboptimal [16, 17] for all d large enough, necessitating a regularized LSE to obtain
the minimax rate.

2.3. Approximation rates. For Lipschitz convex regression, Lemma 4.1 in [28]
implies the following: for f⇤ 2 CL(⌦),

inf
f2Fm,1

kf � f⇤kµ  inf
f2Fm,1

kf � f⇤k1  cd,⌦,Lm
�2/d.(2.5)

For support function estimation, let dH(S,K) := khS � hKk1 denote the
Hausdor↵ distance between any S and K in K. A classical result of Bronstein (see
section 4.1 in [3]) implies

inf
S2L(Sm,1)

`⌫(S,K) inf
L(Sm,1)

dH(S,K) cd,�m
�2/(d�1).(2.6)

This result is also the core of the proof of (2.5).
We first show that inserting (2.5) and (2.6) into Theorem 2.4 and optimizing over

m gives general upper bounds on the risk for our (m,k)-spectrahedral estimators.
These rates match the minimax rate up to logarithmic factors for fixed k > 0, and
even when k is allowed to depend logarithmically on m.

Corollary 2.6. Suppose km = h(m) for a nondecreasing and di↵erentiable func-

tion h :R! (0,m].
(a) (Lipschitz convex regression) Suppose f⇤ 2 CL(⌦) and define the function

g(m) := h0(m)m
2d+4

d + h(m)m
d+4
d .

Then, for ↵n = g�1
⇣

2n
d(d+1)max{�2,�2} log(bn)

⌘
,

inf
m�1

E
h
kf̂m,km � f⇤k

2
µ

i
 cd,⌦,�

✓
↵
� 4

d
n +max{�2,�2

}(d+ 1)↵nh(↵n)
log(bn)

n

◆
,

(2.7)

(b) (Support function estimation) Suppose K⇤ 2K(�) and define the function

g(m) := h0(m)m
2(d+1)
d�1 + h(m)m

d+3
d�1 .

Then, for ↵n = g�1
⇣

2n
(d�1)dmax{�2,�2} log(bn)

⌘
,

inf
m�1

E
h
`2
⌫
(K̂m,km ,K⇤)

i
 cd,�

✓
↵
� 4

d�1
n +max{�2,�2

}(d+ 1)↵nh(↵n)
log(bn)

n

◆
.

(2.8)

We now provide two specific examples for particular functions h:
(i) If h(m) = kmr for fixed k > 0 and r 2 [0,1], then

inf
m�1

E
h
kf̂m,km � f⇤k

2
µ

i
O

⇣
n� 4

(r+1)d+4 log(bn)
4

(r+1)d+4

⌘
,

and
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562 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

inf
m�1

E
h
`2
⌫
(K̂m,km ,K⇤)

i
O

⇣
n� 4

(r+1)(d�1)+4 log(bn)
4

(r+1)(d�1)+4

⌘
.

(ii) If h(m) = logm, then ↵n =O
⇣
n

d
d+4 log(n)�

2d
d+4

⌘
, and

inf
m�1

E
h
kf̂m,km � f⇤k

2
µ

i
O

⇣
n� 4

d+4 log(n)
8

d+4

⌘
,

and

inf
m�1

E
h
`2
⌫
(K̂m,km ,K⇤)

i
O

⇣
n� 4

d+3 log(n)
8

d+3

⌘
.

Indeed, the inverse of p(x) := xa log(x) is p�1(x) = ( ax

W (ax) )
1/a, where W is the

Lambert W function. The bound then follows from the fact that W satisfies
logW (x) = logx�W (x) and as x!1, W (x)⇠ log(x).

Remark 2.7. For the case k= 1, Corollary 2.6 recovers the results in [10] and [11],
showing that these estimators obtain the minimax rate (up to logarithmic factors) for
the relevant class of functions.

Proof. We prove (2.7), and the second statement follows by a similar argument.
By Theorem 2.6 and (2.5),

E
h
kf̂m,km � f⇤k

2
µ

i
 cd,⌦,L

✓
m�4/d +

max{�2,�2
}(d+ 1)h(m)m

n
log(bn)

◆
.

The m? that minimizes the expression in the parentheses above satisfies

0 =�
4

d
(m?)

� 4
d�1 +

max{�2,�2
}(d+ 1) log(bn)

n
(h0(m?)m? + h(m?)) ,

or, equivalently,

4n

d(d+ 1)max{�2,�2} log(bn)
= h0(m?)m

2d+4
d

? + h(m?)m
d+4
d

? = g(m?).

Then, m? = g�1( 4n
d(d+1)max{�2,�2} log(bn) ), and plugging this back into the upper bound

gives the result.

As stated previously, an important observation from Corollary 2.6 is that when
km = k is a fixed constant that does not depend on m, the risk bounds for an optimal
choice m? match (up to logarithmic factors) the minimax lower bounds of the classes
CL(⌦) and K(�). This indicates that the approximation rate for the classes Fm,k

and L(Sm,k) for fixed k cannot be improved from the rate inherited from the sub-
classes Fm,1 and L(Sm,1), respectively. Indeed, this statistical risk analysis provides
the following main result of this section: approximation rate lower bounds for the
parametric classes Fm,k and L(Sm,k).

Theorem 2.8. Suppose there exists an absolute constant c > 0 and t2 [0,1] such
that km  cmt

for all m large enough. Let f⇤ 2 CL(⌦). For all "> 0, for all m large

enough,

inf
f2Fm,km

kf � f⇤k1 � cd,L,⌦m
�2(1+t)/d�".
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SPECTRAHEDRAL REGRESSION 563

Also, let K⇤ 2K(�). For all "> 0, for all m large enough,

inf
S2L(Sm,km )

dH(S,K⇤)� cd,�m
�2(1+t)/(d�1)�".

Remark 2.9. For constant k (i.e., t= 0), Theorem 2.8 implies

inf
f2Fm,k

kf � f⇤k1 = Õ(m�2/d) and inf
S2L(Sm,k)

dH(S,K⇤) = Õ(m�2/(d�1)),

where the Õ notation ignores polylogarithmic factors.

Proof. We argue by contradiction. Suppose there is some r > 4
d
(1 + t) such that

for all m> 0,

inf
f2Fm,k

kf � f⇤k
2
µ
 c1m

�r,

for some constant c1 (that may depend on L and ⌦). Then by Theorem 2.4 and the
minimax lower bound for CL(⌦), there exist constants c2, b such that for all n large
enough,

n�4/(d+4)
 c2 inf

m>0

✓
m�r +max{�2,�2

}mt+1(d+ 1)
log(bn)

n

◆
.

The infimum on the right-hand side is achieved at m? = ( rn

max{�2,�2}(d+1) log(bn) )
1

t+r+1 ,
and thus

n�4/(d+4)
 c2n

� r
t+r+1 log(bn)

r
t+r+1 (max{�2,�2

}(d+ 1))
r

t+r+1

h
r

�r
t+r+1 + r

t+1
t+r+1

i
.

For this inequality to hold for all n, it must hold that r  4
d
(1 + t), a contradiction.

The second statement is proved similarly.

3. Computational guarantees.

3.1. Alternating minimization algorithm. We now describe an alternating
minimization algorithm to solve the nonconvex optimization problem (1.3). Let ⇠(i) =
(x(i),1) 2 Rd+1 for each i = 1, . . . , n, and let A⇤ 2 (Sm

k
)d+1 be the true underlying

parameters. That is, we assume our observations for each i= 1, . . . , n satisfy

yi = �max(A⇤[⇠
(i)]) + "i.

We assume the "i’s are i.i.d. mean zero Gaussian noise with variance �2.
One iteration of the algorithm starts with a fixed parameter A 2 (Sm

k
)d+1 and

proceeds as follows. We first compute the maximizing eigenvector u(i)
2 Sm�1 for

each i= 1, . . . , n, such that for U (i) = u(i)(u(i))T , hU (i),A[⇠(i)]i= �max(A[⇠(i)]). With
the U (i)’s fixed, the second step is to update A by solving the linear least squares
problem

A
+
2 argminA2(Smk )d+1

1

n

nX

i=1

⇣
y(i) � hU (i),A[⇠(i)]i

⌘2
,(3.1)

where hU (i),A[⇠(i)]i= hA, ⇠(i)⌦U (i)
i=
P

d

j=1hAj , ⇠
(i)
j

U (i)
i. Note that in the algorithm

description below, Step 2 implicitly depends on k because if A 2 (Sm
k
)d+1, then A

+

will also be in (Sm
k
)d+1.
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564 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

Algorithm 3.1 Alternating Minimization for Spectrahedral Regression
Input: Collection of inputs and outputs {(x(i), y(i))}n

i=1; initialization A2 (Sm
k
)d+1

Algorithm: Repeat until convergence
Step 1: Update optimal eigenvector u(i)

 �max(A[⇠(i)])
Step 2: Update A by solving (3.1). A+

 (⌅T

A⌅A)�1⌅T

Ay, where ⌅T

A = (⇠(1) ⌦

U (1)
| · · · |⇠(n) ⌦U (n))2R(d+1)m2⇥n.

Output: Final iterate A

3.2. Convergence guarantee. The following result shows that under certain
conditions, this alternating minimization procedure converges geometrically to a small
ball around the true parameters given a good initialization. To state the initialization
condition in the result, we define for A2 (Sm

k
)d the similarity transformation O(A) =

(OA1OT , . . . ,OAdOT ) for an orthogonal m⇥m matrix O with blocks of size k. Note
that the eigenvalues of A[x] for x2Rd are invariant under any such O.

The proof of the following result appears after the statement, and it depends on
multiple lemmas that we state and prove in the appendix.

Theorem 3.1. Assume X ⇠ µ is an ⌘-sub-Gaussian random vector in Rd
such

that E[X2
i
] = 1 for each i = 1, . . . , d. Also suppose that the true parameter A⇤ 2

(Sm
k
)d+1

satisfies the following spectral condition:

inf
u2Sd

�1(A⇤[u])� �2(A⇤[u]) := > 0,(3.2)

where �1 := �max and �2 is the second largest eigenvalue. Let ⌘̃ := max{⌘,1} and fix

⌧ 2 (0,1). Then, there exist constants ci, i= 1, . . . ,4, such that if the initial parameter

choice A0 satisfies

kA0 �O(A⇤)k
2
F


32

128(d+ 1)m

✓
1� ⌧

1 + ⌧

◆
,

for some similarity transformation O and

n� c1m
3max

⇢✓
1 + ⌧

1� ⌧

◆
(d+ 1)2m�2 log(n)2

2(1� ⌧)
, ⌧�2⌘̃6(d+ 1)m, ⌘̃2max{1,�2

}

�
,

then the error at all iterations t simultaneously satisfies

kAt �O(A⇤)k
2
F


✓
3

4

◆t

kA0 �O(A⇤)k
2
F
+

c2m3(d+ 1)�2 log(n)2

n(1� ⌧)
,

with probability greater than 1� 6exp{�c3⌧2n/(⌘̃6(d+ 1)m4)}� n�c4m.

Before proceeding, we provide some examples of parameters A= (A1, . . . ,Ad+1)2
(Sm)d+1 where assumption (3.2) is satisfied.

First, consider the case where d= 2, m= 2, and A3 = 0. Note that for u 2 Sd�1,
there are vectors aij 2R2 for i, j = 1,2 such that

�1(A[u]) = �1


ha11, ui ha12, ui
ha12, ui ha22, ui

�
= ha11 + a22, ui+

p
ha11 � a22, ui2 + 4ha12, ui2

and

�2(A[u]) = �2


ha11, ui ha12, ui
ha12, ui ha22, ui

�
= ha11 + a22, ui �

p
ha11 � a22, ui2 + 4ha12, ui2.
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SPECTRAHEDRAL REGRESSION 565

Then, the eigengap satisfies

�1


ha11, ui ha12, ui
ha12, ui ha22, ui

�
� �2


ha11, ui ha12, ui
ha12, ui ha22, ui

�

= 2
p
ha11 � a22, ui2 + 4ha12, ui2 = kÃuk2 � �min(Ã),

where Ã = [ 2(a11�a22)
4a12

]. Thus, if Ã has a positive minimum singular value, (3.2) will
hold.

Another example of a parameterA that satisfies condition (3.2) is when �max(A[x]) =
kxk2. This is the parameter A= (A1, . . . ,Ad+1)2 (Sd+1)d+1 such that

(Ai)jk =

(
1, j = 1, k= i+ 1 or k= 1, j = i+ 1,

0 otherwise

for i= 1, . . . , d and Ad+1 = 0. Indeed, we see that

f(x) = �max(A[x]) = �max

0

BBB@

2

6664

0 x1 · · · xd

x1 0 · · · 0
...

...
. . .

...
xd 0 · · · 0

3

7775

1

CCCA
= kxk2.(3.3)

In fact, for any spectrahedral function f(x) = �max(A[x]) that is di↵erentiable for all
x2 Sd�1, A must necessarily satisfy (3.2).

However, there are examples that do not satisfy assumption (3.2). In particular,
it will never be satisfied in the setting of support function estimation when k = 1,
because the eigengap will achieve the minimum value of zero for u in the directions
of the vertices of the associated polytope. In the next result, we provide a second
convergence guarantee with a weaker condition on A⇤ at the expense of stronger
conditions on the initialization and the covariate distribution µ as well as a weaker
bound in probability. Following the statement we will describe examples when the
condition is satisfied in the k= 1 setting.

To state the conditions in the following result, we denote by A
(j)
⇤ for j = 1, . . .m/k

the (d+1)-tuples of k⇥k symmetric matrices that make up the blocks of the (d+1)-
tuple A⇤.

Theorem 3.2. Let X ⇠ µ be a random vector in Rd
such that kXk1  ⌘ and

µ is a continuous distribution. Define ⇠ := (X,1) 2 Rd+1
. Assume that there is a

constant c > 0 such that for all A 6=B 2 (Sk)d+1
,

P (|�1(A[⇠])� �1(B[⇠])| ⇢E [|�1(A[⇠])� �1(B[⇠])|]) c⇢ for all ⇢> 0.(3.4)

Also assume there exist > 0 and � 2 (0,1) such that

inf
j,`2{1,...,m/k}:j 6=`

E
h
|�1(A

(j)
⇤ [⇠])� �1(A

(`)
⇤ [⇠])|

i
�

m

k�
,(3.5)

and additionally, if k� 2,

inf
j=1,...,m/k

inf
u2Sd

�1(A
(j)
⇤ [u])� �2(A

(j)
⇤ [u]) := > 0.(3.6)

Let ⌘̃ :=max{⌘,1} and fix ⌧ 2 (0,1). Then, there exist constants ci, i= 1, . . . ,4, such
that if the initial parameter choice A0 satisfies

kA0 �O(A⇤)kF 
3k3/2

256max{1, c}⌘̃3(d+ 1)3/2m5/2

✓
1� ⌧

1 + ⌧

◆
,(3.7)
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566 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

for some similarity transformation O and

n� c1max

⇢
max{1, c2}⌘̃6(d+ 1)4m8(1� ⌧)�2 log(n)2

2k3(1 + ⌧)2
,
mk⌘̃3(d+ 1)3/2

⌧2

�
,

then the error at all iterations t� 1 simultaneously satisfies

kAt �O(A⇤)k
2
F


✓
3

4

◆t

kA0 �O(A⇤)k
2
F
+

c2m3(d+ 1)�2 log(n)2

n(1� ⌧)
,

with probability greater than 1� 3c�� n
� c3m

⌘̃2 min{
(d+1)m

�2 ,1}
� 6de

� c4n

⌘̃2(d+1)m .

Remark 3.3. Condition (3.4) is an example of a small-ball property for random
vectors that appears in the probability literature; see, for instance, [20, 24]. A small-
ball condition also appears in [9], which considers the polyhedral setting.

To see an example when these conditions are satisfied for the case k= 1, consider
the setting of support function estimation. The covariates are unit vectors u(i) on
Sd�1 and the parameter space is (Sm

k
)d. Let k = 1, and assume the covariates are

i.i.d. samples of a random unit vector U . Then, condition (3.4) is equivalent to the
following: for all a 6= b2Rd,

P (|ha� b,Ui| ⇢E [|ha� b,Ui|]) c⇢ for all ⇢> 0.

When U is uniform on the unit sphere Sd�1, this is satisfied. Indeed, letting � denote
the normalized spherical Lesbesgue measure on Sd�1 and !d denote the surface area
of Sd�1, first observe that

E|ha� b,Ui|= ka� bk2E|U1|= ka� bk2

Z

Sd�1

|u1|d�(u)

=
ka� bk2!d�1

!d

Z 1

�1
|t|(1� t2)

d�3
2 dt= c1ka� bk2,

for a finite constant c1 > 0 depending on d. Then, for all ⇢> 0,

P (|ha� b,Ui| ⇢E [|ha� b,Ui|]) = P (|ha� b,Ui| ⇢c1ka� bk2)

=

Z

Sd�1

1{|u1|⇢c1}d�(u)

=
2!d�1

!d

Z min{⇢c1,1}

0
(1� t2)

d�3
2 dt c2⇢,

where c2 > 0 depends only on d. Second, condition (3.5) is satisfied when

inf
` 6=j

c1ka
(`)
⇤ � a(j)⇤ k2 >m/�,

where a(j)⇤ = ((A1)jj , . . . (Ad)jj) for each j = 1, . . .m. The final condition (3.6) is not
relevant in the case where k = 1, but blocks of the form given by examples following
Theorem 3.1 will satisfy this condition.

3.3. Proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. First, given assumption (3.2), we show that for n large
enough, for all parameters A satisfying for some similarity transform O,

kA�O(A⇤)k
2
F


32

128(d+ 1)m

✓
1� ⌧

1 + ⌧

◆
,(3.8)
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SPECTRAHEDRAL REGRESSION 567

the parameter A+ obtained after applying one iteration of the algorithm satisfies

kA
+
�O(A⇤)k

2
F


3

4
kA�O(A⇤)k2

F
+O

✓
log(n)2

n

◆
(3.9)

with high probability.
Let U (i) = u(i)(u(i))T be such that �max(A[⇠(i)]) = hU (i),A[⇠(i)]i. The update A+

then equals

A
+ = (⌅T

A⌅A)
�1⌅T

Ay,

where

⌅T

A = (⇠(1) ⌦U (1)
| · · · |⇠(n) ⌦U (n))2R(d+1)m⇥m⇥n.(3.10)

Note that (⌅AA)i = hU (i),A[⇠(i)]i. Throughout the rest of the proof, we sometimes
abuse notation and consider the Kronecker product ⇠⌦U for ⇠ 2Rd+1 and U 2Rm⇥m

to be the vector Vec(⇠ ⌦U)2R(d+1)m2

.
By the invariance �max(A[x]) = �max(O(A)[x]) for all O, without loss of generality

we can assume in the following that A⇤ =O(A⇤) for the transformation O satisfying
assumption (3.8). Let y⇤ 2Rn and u(i)

⇤ 2 Sd�1 be such that for U (i)
⇤ := u(i)

⇤ (u(i)
⇤ )T ,

y⇤
i
= hU (i)

⇤ ,A⇤[⇠
(i)]i= �max(A⇤[⇠

(i)]).

Also denote by P⌅A = ⌅A(⌅T

A⌅A)�1⌅T

A the orthogonal projection onto the span of
the columns of ⌅A. Then, we have the following deterministic upper bound:

k⌅A(A
+
�A⇤)k

2 = kP⌅Ay�⌅AA⇤k
2 = kP⌅Ay

⇤ + P⌅A"�⌅AA⇤k
2

 2kP⌅A(y
⇤
�⌅AA⇤)k

2 + 2kP⌅A"k
2

 2
nX

i=1

⇣
hU (i)

⇤ ,A⇤[⇠
(i)]i � hU (i),A⇤[⇠

(i)]i
⌘2

+ 2kP⌅A"k
2.

Now, since hU (i)
�U (i)

⇤ ,A[⇠(i)]i � 0,

⇣
hU (i)

⇤ ,A⇤[⇠
(i)]i � hU (i),A⇤[⇠

(i)]i
⌘2



⇣
hU (i)

⇤ �U (i),A⇤[⇠
(i)]i+ hU (i)

�U (i)
⇤ ,A[⇠(i)]i

⌘2

=
D
A�A⇤, ⇠

(i)
⌦ (U (i)

�U (i)
⇤ )
E2

.

We also have the lower bound k⌅A(A+
�A⇤)k2 � �min(⌅T

A⌅A)kA+
�A⇤k

2. Thus,

kA
+
�A⇤k

2


2

�min(⌅T

A⌅A)

⇥
k⌅A�A⇤(A�A⇤)k

2
2 + kP⌅A"k

2
⇤


2

�min(⌅T

A⌅A)

⇥
�max(⌅

T

A�A⇤⌅A�A⇤)kA�A⇤k
2 + kP⌅A"k

2
⇤
.(3.11)

where ⌅A�A⇤ = (⇠(1) ⌦ (U (1)
�U (1)

⇤ )| · · · |⇠(n) ⌦ (U (n)
�U (n)

⇤ )).
Next, note that ⇠ = (X,1) is ⌘̃-sub-Gaussian, where ⌘̃ =max{⌘,1}. Lemmas A.2

and A.3 then imply the following. For ⌧ 2 (0,1), there exist absolute constants
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568 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

c1, c2 such that if n � c1⌧�2⌘̃6(d + 1)m4, then with probability greater than 1 �
2e�c2⌧

2
n/(⌘̃6(d+1)m4),

�max(⌅
T

A�A⇤⌅A�A⇤) n�max(E[(⇠ ⌦ (U �U⇤))(⇠ ⌦ (U �U⇤))
T ]) (1 + ⌧)(3.12)

for all A satisfying assumption (3.8). Since �max is a convex function, Jensen’s in-
equality implies

�max(E[(⇠ ⌦ (U �U⇤))(⇠ ⌦ (U �U⇤))
T ])E[k⇠ ⌦ (U �U⇤)k

2].

Then, by the definition of the Kronecker product, Lemma A.2, and the assumption
on X,

E
⇥
k⇠ ⌦ (U �U⇤)k

2
⇤
=E

⇥
k⇠k22kU �U⇤k

2
F

⇤
 32�2(d+ 1)kA�A⇤k

2
F
,(3.13)

Putting the bounds together and using assumption (3.8), we have

�max(E[(⇠ ⌦ (U �U⇤))(⇠ ⌦ (U �U⇤))
T ]) 32�2(d+ 1)kA�A⇤k

2
F


3

8m

✓
1� ⌧

1 + ⌧

◆
.

(3.14)

Plugging the bound (3.14) into (3.12) then gives the upper bound

�max(⌅
T

A�A⇤⌅A�A⇤)
3n

8m
(1� ⌧) .(3.15)

Also by Lemmas A.2 and A.3, if n� c1⌧�2⌘̃6(d+1)m4, then with probability greater
than 1� 2e�c2⌧

2
n/(⌘̃6(d+1)m4),

�min(⌅
T

A⌅A)� n�max(E[(⇠ ⌦U)(⇠ ⌦U)T ]) (1� ⌧)(3.16)

for all A satisfying (3.8). By Lemma A.1,

�max(E[(⇠ ⌦U)(⇠ ⌦U)T ])�m�1,(3.17)

and plugging the bound (3.17) into (3.16) gives

�min(⌅
T

A⌅A)� nm�1 (1� ⌧) .(3.18)

Finally, combining (3.15) and (3.18) with (3.11) implies

kA
+
�A

⇤
k
2
F


3

4
kA�A

⇤
k
2
F
+

2mkP⌅A"k
2
2

n(1� ⌧)
.

It remains to bound the error term. By Lemma A.4, there exist constants
c3, . . . c6 > 0 such that for n� c3m3⌘̃2max{⌘̃4(d+ 1)m,max{1,�2

}},

kP⌅A"k
2
2  c4 log(n)

2�2m2(d+ 1)

for all A satisfying (3.8) with probability greater than 1�n�c5m�2e�c6n/(⌘̃
6(d+1)m4).

This implies that for

n� c7m
3⌘̃2max{⌧�2⌘̃4(d+ 1)m,max{1,�2

}},
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SPECTRAHEDRAL REGRESSION 569

with probability at least 1� 6e�c6⌧
2
n/⌘̃

6(d+1)m4

� n�c5m,

kA
+
�A

⇤
k
2
F


3

4
kA�A

⇤
k
2
F
+

c4m3(d+ 1)�2 log(n)2

n(1� ⌧)
.

We now show that given the above upper bound, A+ also satisfies (3.8). Indeed, for

n�
4

2
·
128m(d+ 1)

3

✓
1 + ⌧

1� ⌧

◆
c4m3(d+ 1)�2 log(n)2

(1� ⌧)
,

we have

c4m3(d+ 1)�2 log(n)2

n(1� ⌧)

2

4
·

3

128m(d+ 1)

✓
1� ⌧

1 + ⌧

◆

and thus

kA
+
�A⇤k

2
F


3

4
kA�A⇤k

2
F
+

c4m3(d+ 1)�2 log(n)2

n(1� ⌧)


32

128m(d+ 1)

✓
1� ⌧

1 + ⌧

◆
.

The final conclusion follows from the fact that after t iterations, when

n� c8m
3max

⇢✓
1 + ⌧

1� ⌧

◆
(d+ 1)2m�2 log(n)2

2(1� ⌧)
, ⌧�2⌘̃6(d+ 1)m, ⌘̃2max{1,�2

}

�
,

applying the bound (3.9) t times gives

kAt �A⇤k
2
F


✓
3

4

◆t

kA0 �A⇤k
2
F
+

c4m3(d+ 1)�2 log(n)2

n(1� ⌧)

1X

k=0

✓
3

4

◆k



✓
3

4

◆t

kA0 �A⇤k
2
F
+

c9m3(d+ 1)�2 log(n)2

n(1� ⌧)
,

and all t bounds hold simultaneously with probability at least 1�6exp{�c6⌧2n/(⌘̃6(d+
1)m4)}� n�c9m.

Proof of Theorem 3.2. The proof follows the same arguments as the proof of the
previous theorem, and replacing Lemma A.2 with Lemma A.5 and Lemma A.4 with
Lemma A.7.

Also the bound (3.13) is replaced by the following:

E
⇥
k⇠ ⌦ (U �U⇤)k

2
⇤
=E

⇥
k⇠k22kU �U⇤k

2
F

⇤
 2⌘̃2(d+ 1)E[kU �U⇤kF ]


32max{1, c}⌘̃3(d+ 1)3/2m3/2

k3/2
kA�A⇤kF ,

where we use Lemma A.5 and the assumption on X.

4. Numerical experiments. In this section, we empirically compare spectra-
hedral and polyhedral regression for estimating a convex function from data. More
specifically, we compare (m,m)-spectrahedral estimators to m(m + 1)/2-polyhedral
estimators, both of which havem(m+1)/2 degrees of freedom per dimension. For each
experiment, we apply the alternating minimization algorithm with multiple random
initializations, and the solution that minimizes the least squared error is selected. We
adapted the code [26] for support function estimation used in [27] for spectrahedral
regression.
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570 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

4.1. Synthetic regression problems. The first experiments use synthetically
generated data from a known convex function, one from a spectrahedral function and
another from a convex function that is neither polyhedral nor spectrahedral. In both
problems below, the root-mean-squared error (RMSE) is obtained by first obtaining
estimators from 200 noisy training data points and then evaluating the RMSE of
the estimators on 200 test points generated from the true function. We ran the
alternating minimization algorithm with 50 random initializations for 200 steps or
until convergence, and we chose the best estimator.

First, we consider n i.i.d. data points distributed as (X,Y ), where X 2 R2 is
uniformly distributed in [�1,1]2, and

Y =
q
X2

1 +X2
2 + ",(4.1)

where " ⇠ N (0,0.12). In Figure 2, we have plotted polyhedral and spectrahedral
estimators obtained from n = 20, 50, and 200 data points. We have also plotted the
least-squares estimator (LSE) in each case. The RMSE for both models is given in
Table 2. The function y = kxk2 for x 2 R2 is an m = 3 spectrahedral function,
and the spectrahedral estimator performs better than the polyhedral estimator, as

Fig. 2. From top to bottom: Polyhedral ((k,m) = (1,6)), block spectrahedral ((k,m) = (2,4)),
spectrahedral (m = 3), and LSE reconstructions of the convex function y = kxk2 from n = 20, 50,
and 200 data points from model (4.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

5/
24

 to
 1

62
.1

29
.2

50
.3

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



SPECTRAHEDRAL REGRESSION 571

Table 2

RMSE for polyhedral and spectrahedral estimators for data generated from models (4.1) and
(4.2) as m increases.

Model DoF Spectrahedral k=m Spectrahedral k= 2 Polyhedral k= 1

(4.1) 3 0.0143 0.0143 0.1206
6 0.0261 0.0246 0.0456
15 0.0290 0.0360 0.0344

(4.2) 3 0.0143 0.0143 0.1206
6 0.1045 0.3622 0.1358
15 0.1048 0.3537 0.1266

expected. In addition, the RMSE is lowest for the m = 3 spectrahedral estimator
and increases for larger m with either k = m or k = 2. In the polyhedral case, the
RMSE decreases with larger m since the function y = kxk2 is not contained in any
polyhedral function class. The RMSE for the LSE is 0.8128, which is significantly
higher than the polyhedral and spectrahedral estimators. This can be contributed to
overfitting, especially near the boundary of the input domain, as illustrated by the
plots in Figure 2.

Second, we consider n i.i.d. data points generated as (X,Y ) 2 R ⇥ R, where
X ⇠N (0,1) and

Y = exp(bX) + ",(4.2)

where b = 1.1394 and " ⇠ N (0,0.12). The underlying convex function is neither
polyhedral nor spectrahedral, but the spectrahedral estimator better captures the
smoothness of the function, as illustrated in Figure 3. The spectrahedral estimator
also outperforms the polyhedral estimator with respect to the RMSE; see Table 2. We
also plot the LSE obtained from this data set in the last row of Figure 3. The RMSE
for the LSE when n= 200 is 0.0349, which is smaller that that for the polyhedral and
spectrahedral estimators. This shows that overfitting is not as much of a problem
here, most likely due to the dimension d= 1 of the input.

4.2. Predicting average weekly wages. The first experiment we perform on
real data is predicting average weekly wages based on years of education and expe-
rience. This data set is also studied in [13]. The data set is from the 1988 Current
Population Survey (CPS) and can be obtained as the data set ex1029 in the Sleuth2
package in R. It consists of 25,361 records of weekly wages for full-time, adult, male
workers for 1987, along with years of experience and years of education. It is rea-
sonable to expect that wages are concave with respect to the years of experience.
Indeed, at first wages increase with more experience, but with a decreasing return
each year until a peak of earnings is reached, and then they begin to decline. Wages
are also expected to increase as the number of years of education increases, but not
in a concave way. However, as in [13], we use the transformation 1.2years education to
obtain a concave relationship. We used polyhedral and spectrahedral regression to
fit convex functions to this data set, as illustrated in Figure 1. We also estimated
the RMSE for di↵erent values of m(m+1)/2 (the degrees of freedom per dimension)
through hold-out validation with 20% of the data points; see Table 3. This generaliza-
tion error is smaller for the spectrahedral estimator than the polyhedral estimator in
each case.

4.3. Convex approximation in engineering applications. In the following
two examples, we consider applications of convex regression in engineering
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572 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

Fig. 3. From top to bottom: Polyhedral ((k,m) = (1,6)), block spectrahedral ((k,m) = (2,4)),
spectrahedral (m= 3), and LSE reconstructions of the convex function y = exp(hx, bi) from n= 20,
50, and 200 noisy data points from model (4.2).

Table 3

RMSE for polyhedral and spectrahedral estimators for real data and engineering experiments.

Application m(m+ 1)/2 Spectrahedral Polyhedral

Average weekly wages 3 142.1166 145.5803
6 140.1173 141.4989
10 140.0352 141.9851

Aircraft profile drag 3 0.086 0.0895
6 0.0576 0.0709
10 0.0452 0.0515

Circuit design 3 0.0085 0.02
6 0.0072 0.012
10 0.0072 0.0088

applications where the goal is to subsequently use the convex estimator as an ob-
jective or constraint in an optimization problem. Polyhedral regression returns a
convex function compatible with a linear program, and using spectrahedral regression
provides an estimator compatible with semidefinite programming.

4.3.1. Aircraft data. In this experiment, we consider the XFOIL aircraft de-
sign problem studied in [14]. The profile drag on an airplane wing is described by a
coe�cient CD that is a function of the Reynolds number (Re), wing thickness ratio
(⌧), and lift coe�cient (CL). There is not an analytical expression for this relation-
ship, but it can be simulated using XFOIL [5]. For a fixed ⌧ , after a logarithmic
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SPECTRAHEDRAL REGRESSION 573

Fig. 4. Spectrahedral (m = 3) and polyhedral (m = 6) estimators of the log of drag coe�cient
versus log of Reynolds number and lift coe�cient for a fixed thickness ratio ⌧ = 8%.

transformation, the data set can be approximated well by a convex function. We fit
both spectrahedral and polyhedral functions to this data set, and the best fits for
the whole data set appear in Figure 4 for models with 6 degrees for freedom per di-
mension. Then, we performed hold-out validation, training on 80% of the data, and
testing on the remaining 20%. The RMSE is given in Table 3, where we observe that
the spectrahedral estimator achieves a smaller error than polyhedral regression.

4.3.2. Power modeling for circuit design. A circuit is an interconnected
collection of electrical components including batteries, resistors, inductors, capacitors,
logical gates, and transistors. In circuit design, the goal is to optimize over variables
such as devices, gates, threshold, and power supply voltages in order to minimize
circuit delay or physical area. The power dissipated, P , is a function of gate supply
Vdd and threshold voltages Vth. The following model (see [14] and [12]) can be used
to study this relationship:

P = V 2
dd

+ 30Vdde
�(Vth�0.06Vdd)/0.039.

We generate n i.i.d. data points as in [12] as follows. For each input-output pair,
first sample u= (Vdd, Vth) uniformly over the domain 1.0 Vdd  2.0 and 0.2 Vth 

0.4 and compute P (u). Then, apply the transformation (x, y) = (logu, logP (u)).
We fit this collection of transformed data points using polyhedral and spectrahedral
regression, and the estimators for n= 20, 50, and 200 are illustrated in Figure 5. We
also perform hold-out validation with 20% of the data for the case n = 200 and the
RMSE appears in in Table 3. By this measure, the spectrahedral estimator performs
much better than the polyhedral estimator in this application.

5. Discussion and future work. In this work, we have introduced spectrahe-
dral regression as a new method for estimating a convex function from noisy measure-
ments. Spectrahedral estimators are appealing from a qualitative and quantitative
perspective, and we have shown they hold advantages over the usual LSE methods
as well as polyhedral estimators when the underlying convex function is nonpolyhe-
dral. Our theoretical results and numerical experiments call for further study of the
expressivity of this model class and its computational advantages. We now describe
a few directions of future research.

5.1. Parameter selection and tuning. In our proposed method, the model
parameters m and k must be chosen in advance to obtain a spectrahedral estimator.
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574 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

Fig. 5. Polyhedral (m= 6) and spectrahedral (m= 3) estimators of n= 20, 50, and 200 trans-
formed data points generated from the power dissipation model.

Fig. 6. Data-driven tuning of parameters m and k. The left plot shows hold-out validation
error for spectrahedral estimators with varying parameter m obtained from noisy measurements of
an m = 3 spectrahedral function. The right plot shows hold-out validation error for m = 6 spectra-
hedral estimators of varying block size k obtained from noisy measurements of a k= 2 spectrahedral
function.

For small m and k, the estimator is e�cient to compute, and the resulting estimator
has a more compact description but may underfit the data. It would be very useful to
develop adaptive methods for choosing these parameters using the data set. Here we
describe an experiment to choose m and k using hold-out validation. Figure 6 shows
two plots illustrating two experiments. The first experiment uses hold-out validation
to find an appropriate m, and the second experiment finds an appropriate k given a
fixed m. Spectrahedral estimators were obtained using a test data set of size 200 for
varying m and k, and the RMSE from a test data set of size 200 was computed for
each. In the first experiment, the test and training data sets are generated from a
random spectrahedral function with k=m= 3. We see from the plot thatm= 3 would
indeed be the appropriate choice to model this data set. In the second experiment,
the data was generated from a random spectrahedral function with k= 2 and m= 6.
If we initially chose m= 6, the plot shows that k= 2 would indeed be the best choice
for the block sizes for the model.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

5/
24

 to
 1

62
.1

29
.2

50
.3

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



SPECTRAHEDRAL REGRESSION 575

5.2. Expressiveness of spectrahedral functions. An interesting open ques-
tion is to obtain the approximation rate for (m,k)-spectrahedral functions to the class
of Lipschitz convex functions and (m,k)-spectratopes to the class of convex bodies for
general k. There is extensive literature on this approximation question for polytopes
(see, for instance, [3, 6]), and we have obtained matching bounds (up to logarithmic
factors) for fixed k > 1. For k depending on m, and in particular in the case k =m,
the literature is more limited; one example is [2]. Progress in this direction would
complete our understanding of the expressive power of the model presented here and
have important consequences for how well semidefinite programming can approximate
a general convex program.

5.3. Computational guarantees. We have also proved computational guar-
antees for a natural alternating minimization algorithm for spectrahedral regression.
However, this convergence guarantee depends on a good initialization. In practice,
running the algorithm with multiple random initializations and taking the estimator
with the smallest error works well, but it would be very interesting to extend the
results on initialization in [8] to the spectrahedral case. Another line of future work is
to extend other methods to solve the nonconvex optimization (1.3) in the polyhedral
case such as the adaptive partitioning method in [13] and the method proposed in
[28]. These algorithms also lack theoretical guarantees, and it would be interesting
to obtain conditions under which these methods obtain good estimates of the true
parameter.

Appendix A. Lemmas for the proofs of Theorems 3.1 and 3.2. We first
give a few definitions that are needed in following lemmas. A random vector ⇠ 2Rd is
sub-Gaussian with parameter ⌘ if E[⇠] = 0 and for each u 2 Sd�1, E[e�hu,⇠i] e�

2
⌘
2
/2

for all �2R. The sub-Gaussian norm of a random variable X, denoted by kXk 2 , is
defined as

kXk 2 = inf{t > 0 :E[exp(X2/t2)] 2}.

For ⇠ 2 Rd, the sub-Gaussian norm is defined as k⇠k 2 := sup
u2Sd�1 kh⇠, uik 2 . The

subexponential norm of a random variable X, denoted by kXk 1 , is defined as

kXk 1 = inf{t > 0 :E[exp(|X|/t)] 2},

and the subexponential norm of a random vector ⇠ is defined similarly.
We also recall that the covering number of a Euclidean ball satisfies

N (Bq(z,R),k · k2,") (1 + 2R/")q(A.1)

for " 2R by a standard volume argument.
The proofs rely on uniform spectral concentration bounds of a sample covariance

matrix, which follow from Bernstein’s inequality and Dudley’s inequality. A general
reference for the ideas in the lemmas below is [32].

Lemma A.1. Let ⇠ be an ⌘-sub-Gaussian random vector in Rd
such that E[⇠2

i
] = 1

and, let U be any m⇥m matrix with kUkF = 1. Let ⌃ :=E[(⇠⌦U)(⇠⌦U)T ]2 Sdm2

.

Then, the following inequalities hold:

(i) k⇠ ⌦Uk 2  d1/2⌘;
(ii) m�1

 k⌃kop  d1/2;

(iii) k⇠ ⌦Uk 2  (md)1/2⌘k⌃k1/2op .
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576 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

Proof. Recall that ⇠ ⌦ U is sub-Gaussian if h⇠ ⌦ U,vi is sub-Gaussian for every
v 2 Sdm

2�1. Indeed, we first see that

k⇠ ⌦Uk2
F
= k⇠k22kUk

2
F
= k⇠k22.

Then, by Lemma 2.7.6 in [32] and the triangle inequality

kh⇠ ⌦U,vik2
 2

��k⇠k2

��
 1

=

�����

dX

i=1

⇠2
i

�����
 1



dX

i=1

k⇠ik
2
 2
 d⌘2.

For the second claim, we see that

k⌃k2
op
�

1

dm2
k⌃k2

F
=

1

dm2
E

2

4
dX

i=1

mX

j,k=1

⇠2
i
U2
ik

3

5=
1

m2
,

and

k⌃k2
op
 k⌃k2

F
=E

2

4
dX

i=1

mX

j,k=1

⇠2
i
U2
ik

3

5= d.

This implies the final claim kh⇠ ⌦U,vik 2  ⌘d
1/2
 ⌘(md)1/2k⌃k1/2op .

For the next lemmas, recall that for a random vector ⇠ 2Rd, for each A 2 (Sm
k
)d

we define UA to be the rank one matrix such that

h⇠ ⌦UA,Ai= hUA,A[⇠]i= �max(A[⇠]).

Also, define for r > 0 the set

B(A⇤, r) := {A2 (Sm
k
)d : kA�A⇤kF  r}.

Lemma A.2. Consider the setting of Theorem 3.1. Then, for all A1,A2 2

B(A⇤,/4),

kUA1 �UA2k
2
F


32kA1 �A2k
2
F

2
,

and

k⇠ ⌦UA1 � ⇠ ⌦UA2k 2 
25/2⌘̃((d+ 1)m)1/2



✓
inf

A2B(A⇤,/4)
k⌃1/2

A kop

◆
kA1 �A2kF .

Proof. First note that for all A 2 B(A⇤,/4), Weyl’s inequality implies that for
all u2 Sd�1,

�1(A[u])� �2(A[u])� �1(A⇤[u])� �2(A⇤[u])� 2kA�A⇤kop �


2
> 0.

Then, observe that kUA1�UA2k
2
F
= 2sin(⇥(u1, u2))2, where UA1 = u1uT

1 , UA2 = u2uT

2 ,
and u1, u2 2 Sm�1. By a variation of the Davis–Kahan theorem (Theorem 2 in [33]),

sin(⇥(u1, u2))
2


4k(A1 �A2)[⇠]k2op

(�1(A2[⇠])� �2(A2[⇠]))
2 

16kA1 �A2k
2
F

2
.
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This implies that

kUA1 �UA2k
2
F


32

2
kA1 �A2k

2
F
,

and by Lemma A.1,

kh⇠ ⌦ (UA1 �UA2), vik
2
 2


32⌘̃2(d+ 1)

2
kA1 �A2k

2
F


32⌘̃2(d+ 1)m

2

✓
inf

A2B(A⇤,/4)
k⌃Akop

◆
kA1 �A2k

2
F
.

Lemma A.3. Define Bq(z,R) := {x 2 Rq : kx� zk2  R} for R > 0 and z 2 Rq
.

Let {⇠a}a2Bq(z,R) be a stochastic process in Rd
such that

(i) k⇠ak 2  ⌘k⌃
1/2
a kop for some ⌘� 1;

(ii) for all a1, a2 2Bq(z,R), k⇠a1 � ⇠a2k 2 K(infa2Bq(z,R) k⌃
1/2
a kop)ka1� a2k2,

where ⌃a = E[⇠a⇠Ta ] for all a 2 Bq(z,R). Define ⌅a 2 Rn⇥d
to be the matrix with n

i.i.d. rows in Rd
distributed as ⇠a, and let ⌃a :=E[⇠a⇠Ta ]. Fix ⌧ > 0. Then, there exist

absolute constants c0, c1 > 0 such that if n� c0⌧�2K2⌘4R2max{q, d},

P
 

sup
a2Bq(z,R)

k⌃ak
�1
op

����
1

n
⌅T

a
⌅a �⌃a

����
op

� ⌧

!
 2e�c1n⌧

2
/K

2
⌘
4
R

2

.

This implies that with probability greater than 1� 2e�c1n⌧
2
/K

2
⌘
4
R

2

,

1� ⌧  inf
a2Bq(z,R)

�min

�
⌅T

a
⌅a

�

n�max(⌃a)
 sup

a2Bq(z,R)

�max

�
⌅T

a
⌅a

�

n�max(⌃a)
 1 + ⌧.

Proof. First suppose that ⇠a is isotropic for all a, i.e., ⌃a = I. For the general
case, the conclusion follows from the inequality

����
1

n
⌅T

a
⌅a �⌃a

����
op

 k⌃akop

�����
1

n

nX

i=1

(⌃�1/2
a

⇠(i)
a

)(⌃�1/2
a

⇠(i)
a

)T � I

�����
op

.

We first show that for any x 2 Sd�1, the stochastic process Xa := 1p
n
k⌅axk � 1

has sub-Gaussian increments kXa1 �Xa2k 2 =
1p
n
kk⌅a1xk2 � k⌅a2xk2k 2

.

Case 1: s2 [0,4K
p
n]. We first see that

P (|k⌅a1xk2 � k⌅a2xk2|� ska1 � a2k2)

= P
 ��k⌅a1xk

2
2 � k⌅a2xk

2
2

��
ka1 � a2k

� s(k⌅a1xk2 + k⌅a2xk2)

!

 P
 ��k⌅a1xk

2
2 � k⌅a2xk

2
2

��
ka1 � a2k

� sk⌅a1xk2

!

 P
 ��k⌅a1xk

2
2 � k⌅a2xk

2
2

��
ka1 � a2k

�
s
p
n

2

!
+ P

✓
k⌅a1xk2 

p
n

2

◆

 P
 ��k⌅a1xk

2
2 � k⌅a2xk

2
2

��
ka1 � a2k

�
s
p
n

2

!
+ P

⇣��k⌅a1xk2 �
p
n
��� s

8K

⌘
.(A.2)
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Then, note that

k⌅a1xk
2
2 � k⌅a2xk

2
2 =

nX

i=1

h⇠(i)
a1
� ⇠(i)

a2
, xih⇠(i)

a1
+ ⇠(i)

a2
, xi,

and by Lemma 2.7.7 in [32],

kh⇠(i)
a1
� ⇠(i)

a2
, xih⇠(i)

a1
+ ⇠(i)

a2
, xik 1  kh⇠

(i)
a1
� ⇠(i)

a2
, xik 2kh⇠

(i)
a1

+ ⇠(i)
a2

, xik 2

 2⌘Kka1 � a2k2.

Each term in the sum also has zero mean. Indeed,

E[h⇠(i)
a1
� ⇠(i)

a2
, xih⇠(i)

a1
+ ⇠(i)

a2
, xi] =E[h⇠(i)

a1
, xi2 � h⇠(i)

a2
, xi2] = 0.

Applying Bernstein’s inequality (Corollary 2.8.3 in [32]) gives, for all t� 0,

P
✓
k⌅a1xk

2
2 � k⌅a2xk

2
2

ka1 � a2k
� t

◆
 2e

�c1 min
n

t2

4⌘2K2n
,

t
2⌘K

o

.

For the second tail probability in (A.2), Theorem 3.1.1 in [32] implies

P
���k⌅a1xk2 �

p
n
��� t

�
 2e

� c2t2

⌘4 ,

where we have used that ⇠a is isotropic. Thus, since s < 4K
p
n and ⌘� 1,

P
✓
|k⌅a1xk2 � k⌅a2xk2|

ka1 � a2k2
� s

◆
 2e

�c1 min{ s2

16⌘2K2 ,
s
p

n
4⌘K }

+ 2e
� c2s2

64⌘4K2
 4e

� c3s2

⌘4K2 .

(A.3)

Case 2: s� 4K
p
n. By the triangle inequality,

P
✓
|k⌅a1xk2 � k⌅a2xk2|

ka1 � a2k
� s

◆
 P

✓
k(⌅a1 �⌅a2)xk

2

ka1 � a2k2
� s2

◆

= P
✓
k(⌅a1 �⌅a2)xk

2

ka1 � a2k2
� n

E[h⇠a1 � ⇠a2 , xi
2]

ka1 � a2k2
� s2 � n

E[h⇠a1 � ⇠a2 , xi
2]

ka1 � a2k2

◆

 P
✓
k(⌅a1 �⌅a2)xk

2

ka1 � a2k2
� n

E[h⇠a1 � ⇠a2 , xi
2]

ka1 � a2k2
� s2 � 4K2n

◆

 P
✓����
k(⌅a1 �⌅a2)xk

2

ka1 � a2k2
� n

E[h⇠a1 � ⇠a2 , xi
2]

ka1 � a2k2

�����
3s2

4

◆
.

where for the second to last inequality we have used that

E[h⇠a1 � ⇠a2 , xi
2] 4k⇠a1 � ⇠a2k

2
 2
 4K2

ka1 � a2k
2
2,

and the last inequality follows from the lower bound on s and the fact that ⌘� 1. By
Bernstein’s inequality again (Corollary 2.8.3 in [32]) and the lower bound on s,

P
✓
|k⌅a1xk2 � k⌅a2xk2|

ka1 � a2k
� s

◆
 2e

�c4 min
n

s4

nK4 ,
s2

K2

o

 2e�
c4s2

K2 .(A.4)

Combining (A.3) and (A.4) with Proposition 2.5.2 in [32] then implies

kXa1 �Xa2k 2 
K⌘2
p
n
ka1 � a2k2,

where we have used that ⌘�.
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By Theorem 8.1.6 in [32] and (A.1), we have, for �> 0 and n� q��2,

sup
a2Bq(z,R)

����
1
p
n
k⌅axk � 1

����
c5K⌘2
p
n

�
c6R
p
q+ 2R�

p
n
�
 c7K⌘

2R�(A.5)

with probability greater than 1� 2e��
2
n. Now, let ⌧ > 0. By the inequality |z2� 1|

3max{|z � 1|, |z � 1|2}, for all z � 0,

P
 

sup
a2Bq(z,R)

����
1

n
k⌅axk

2
2 � 1

�����
⌧

2

!
 P

 
sup

a2Bq(z,R)

����
1
p
n
k⌅axk2 � 1

�����
⌧

6

!
.

Letting �= ⌧

6c7K⌘2R
in (A.5) gives the following. For n� c8qK2⌘4R2⌧�2,

P
 

sup
a2Bq(z,R)

����
1

n
k⌅axk

2
2 � 1

�����
⌧

2

!
 2e�n⌧

2
/c8K

2
⌘
4
R

2

.

Finally, by Lemma 5.3 in [31],

sup
a2Bq(r)

����
1

n
⌅T

a
⌅a � I

����
op

 2max
x2N

sup
a2Bq(r)

����
1

n
k⌅axk

2
2 � 1

���� ,

where N is a 1
4 -net of the unit sphere Sd�1. Lemma 5.4 in [31] implies |N |  9d.

Applying the union bound then gives, for n� c8qK2⌘4R2⌧�2,

P
 

sup
a2Bq(z,R)

����
1

n
⌅T

a
⌅a � I

����
op

� ⌧

!
 P

 
max
x2N

sup
a2Bq(z,R)

����
1

n
k⌅axk

2
2 � kxk

2
2

�����
⌧

2

!

 |N |P
 

sup
a2Bq(z,R)

����
1

n
k⌅axk

2
2 � 1

�����
⌧

2

!
 2 · 9de�n⌧

2
/c9K

2
⌘
4
R

2

.

Thus, there exist absolute constants b1, b2 such that for n� b1⌧�2K2⌘4R2max{q, d},

P
 

sup
a2Bq(z,R)

����
1

n
⌅T

a
⌅a � I

����
op

� ⌧

!
 2e�b2n⌧

2
/K

2
⌘
4
R

2

.

Lemma A.4. Consider the setting of Theorem 3.1. Let B⇤ := B(A⇤,/4), and
define the class of orthogonal projections P := {P⌅A :A2B⇤}. Then, there exist abso-

lute constants ci, i= 0, . . . ,3, such that for n� c0max{⌘̃6m4(d+1), ⌘̃2m3max{1,�2
}},

P
✓
sup
P2P
kP"k22 � c1�

2 log(n)2(d+ 1)m2

◆
 n�c2m + 2e�c3n/(⌘̃

6(d+1)m4).

Proof. We first observe that for P = P⌅A 2P ,

kP"k22 = k⌅A(⌅
T

A⌅A)
�1⌅T

A"k
2
2  k(⌅

T

A⌅A)
�1
kopk⌅

T

A"k
2
2 =

k⌅T

A"k
2
2

�min(⌅T

A⌅A)


k⌅T

A"k
2
2

�min(⌅T

A⌅A)
.
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Then, for t > 0,

P
✓

sup
A2B⇤

k⌅T

A"k
2
2

�min(⌅T

A⌅A)
� t

◆
 P

✓
sup
A2B⇤

k⌅T

A"k
2
2

nk⌃Akop
� t inf

A

�min(⌅T

A⌅A)

nk⌃Akop

◆

= P
✓

sup
A2B⇤

k⌅T

A"k
2
2

nk⌃Akop
�

t

2

◆
+ P

✓
inf

A2B⇤

�min(⌅T

A⌅A)

nk⌃Akop


1

2

◆

 P
✓

sup
A2B⇤

k⌅T

A"k
2
2 �

tn

2m

◆
+ P

✓
inf

A2B⇤

�min(⌅T

A⌅A)

nk⌃Akop


1

2

◆
,(A.6)

where the last inequality follows from Lemma A.1. To upper bound the second prob-
ability above, Lemmas A.2 and A.3 imply that for n� c0⌘̃6(d+ 1)m4

P
✓

inf
A2B(A⇤,/4)

�min(⌅T

A⌅A)

nk⌃Akop
 1�

1

2

◆
 2exp{�c1n/(⌘̃

6(d+ 1)m4)}.(A.7)

We now turn to the first probability in (A.6). First note that for all A2B⇤,

E[k⌅A"k2] = E[k⌅Ak2F ]�2 =
nX

i=1

E[k⇠(i) ⌦U (i)
A k2]�2 =

nX

i=1

E[k⇠(i)k2kU (i)
A k2]�2 = n(d+ 1)�2.

(A.8)

In particular, the expectation does not depend on A. Then,

sup
A2B⇤

�
k⌅A"k

2
�E[k⌅A"k

2]
�
�E sup

A2B⇤

�
k⌅A"k

2
�E[k⌅A"k

2]
�

= sup
A2B⇤

k⌅A"k
2
�E sup

A2B⇤

k⌅A"k
2.

Now, recall that M := kmaxi=1,...,n "ik 2  c0�
p
logn for an absolute constant c0

[18]. Applying Theorem 1.1 in [15] to the family of matrices {⌅A⌅T

A :A 2 B⇤} gives
the following.

For s�max{c2�
p
log(n)E[supA2B⇤ k⌅

T

A"k2], c
2
2�

2 log(n)n(d+ 1)},

P
✓

sup
A2B⇤

k⌅T

A"k
2
�E


sup
A2B⇤

k⌅T

A"k
2

�
� s

◆

 exp

 
�

c2
�2 log(n)

min

(
s2

E
⇥
supA2B⇤ k⌅

T

A"k
⇤2 ,

s

E[supA2B⇤ k⌅Ak2op]

)!
.

Also by (A.8), E[supA2B⇤ k⌅
T

A"k
2]� n(d+ 1)�2, and thus, for s as above,

P
✓

sup
A2B⇤

k⌅T

A"k
2
� n(d+ 1)�2

� s

◆

 exp

 
�

c2
�2 log(n)

min

(
s2

E
⇥
supA2B⇤ k⌅

T

A"k
⇤2 ,

s

n(d+ 1)

)!
.(A.9)

We now upper bound E[supA2B⇤ k⌅
T

A"k], so we first define the stochastic process
XA := k⌅T

A"k. For A and B in (Sm
k
)d,

k⌅A �⌅Bk
2
F
=

nX

i=1

k⇠(i) ⌦ (U (i)
A �U (i)

B )k2
F
=

nX

i=1

k⇠(i)k22kU
(i)
A �U (i)

B k
2
F
.
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By the assumptions of Theorem 3.1 and Lemma A.2, for all A,B 2B⇤,

kk⌅A �⌅BkF k
2
 2

= kk⌅A �⌅Bk
2
F
k 1 

nX

i=1

kk⇠(i)k22kU
(i)
A �U (i)

B k
2
F
k 1 

c3n⌘̃2

2
kA�Bk

2
F
.

Then, by Lemma 2.7.5 in [32] and the Hanson–Wright inequality [23, Theorem 2.1],
since " is independent of {⌅A}A2B⇤ , there is a constant c4 such that

kXA �XBk
2
 1


����
k⌅T

A"k2 � k⌅
T

B"k2
k⌅A �⌅BkF

����
2

 2

kk⌅A �⌅BkF k
2
 2



����
k(⌅T

A �⌅T

B)"k2
k⌅A �⌅BkF

����
2

 2

kk⌅A �⌅BkF k
2
 2


c4n�4⌘̃2

2
kA�Bk

2
F
.

Thus, {XA}A2B⇤ has subexponential increments, and by Theorem 2.2.4 in [30] (with
 (x) = ex � 1) and (A.1),

E

sup
A2B⇤

k⌅T

A"k

�
E[k⌅T

A⇤"k] +E

sup
A2B⇤

k⌅T

A"k � k⌅
T

A⇤"k

�

 c5

 
�
p
n(d+ 1) +

p
n�2⌘̃m2(d+ 1)



Z
/4

0
log

✓
2

"

◆
d"

!

 c6max{�,�2
}⌘̃(d+ 1)m2pn.

Then, for s�max{c7
p

n log(n)max{�2,�3
}⌘̃(d+ 1)m2, c20�

2n log(n)(d+ 1)},

P
✓

sup
A2B⇤

k⌅T

A"k
2
� n(d+ 1)�2

� s

◆

 exp

✓
�

c8
�2 log(n)

min

⇢
s2

max{�2,�4}⌘̃2(d+ 1)2m4n
,

s

n(d+ 1)

�◆
.

Letting t= c9�2 log(n)2(d+ 1)m2 for a constant c9 > 0 large enough,

P
✓

sup
A2B⇤

k⌅T

A"k
2
�

tn

2m

◆
= P

✓
sup
A2B⇤

k⌅T

A"k
2
� c10�

2n log(n)2(d+ 1)m

◆

 P
✓

sup
A2B⇤

k⌅T

A"k
2
� n(d+ 1)�2

� c11�
2n log(n)2(d+ 1)m

◆

 exp

✓
�c12min

⇢
n log(n)3

max{1,�2}⌘̃2m2
,m log(n)

�◆
 n�c12m

for n �m3max{1,�2
}⌘̃2. Finally, combining the above bound with (A.7) and (A.6)

gives

P
✓
sup
P2P
kP"k22 � c4�

2 log(n)2(d+ 1)m2

◆
 n�c12m + 2e�c1n/(⌘̃

6(d+1)m4).

Lemma A.5. Consider the setting of Theorem 3.2 and let B⇤ :=B(A⇤,
k

4m⌘̃
p
d+1

).
For all A1,A2 2B⇤,

E[kUA1 �UA2kF ]
16m3/2max{1, c}⌘̃

p
d+ 1

k3/2
kA1 �A2kF ,(A.10)
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and

P

0

@
[

A1,A22B⇤

k⇠ ⌦ (UA1 �UA2)k
2
2 

32⌘̃2(d+ 1)m

2

✓
inf

A2B⇤
k⌃Akop

◆
kA1 �A2k

2
F

1

A c�.

(A.11)

Proof. For each j, `2 {1, . . . ,m/k}, define the event

EA1,A2

j,`
:= {�1(A

(j)
1 [⇠]) =max and �1(A

(`)
2 [⇠]) =max}.

Now assume that Ej,j holds for some j. Observe that kUA1�UA2k
2
F
= 2sin(⇥(u1, u2))2,

where u1, u2 2 Sk�1 are the leading eigenvectors of A(j)
1 [⇠] and A

(j)
2 [⇠], respectively.

Also, note that for all A2B(A⇤,/4), Weyl’s inequality implies

�1(A
(j)[u])� �2(A

(j)[u])� �1(A
(j)
⇤ [u])� �2(A

(j)
⇤ [u])� 2kA(j)

�A
(j)
⇤ kop �



2

for all u 2 Sd. By a variation of the Davis–Kahan theorem (Corollary 1 in [33]) and
(3.6),

sin(⇥(u1, u2))
2k(A(j)

1 �A
(j)
2 )[⇠]kop

�1(A
(j)
2 [⇠])� �2(A

(j)
2 [⇠])


4kA(j)

1 �A
(j)
2 kF


.

On the events Ej,` where ` 6= j, we have the upper bound kUA1�UA2kF  2. Together
this implies the following general upper bound:

kUA1 �UA2kF =

m/kX

j=1

kUA1 �UA2kF 1EA1,A2
j,j

+

m/kX

j=1

X

` 6=j

kUA1 �UA2kF 1EA1,A2
j,`


25/2


kA1 �A2kF 1EA1,A2

j,j
+ 2

m/kX

j=1

X

` 6=j

1
E

A1,A2
j,`

.(A.12)

We now bound the probability of EA1,A2

j,`
. By Weyl’s inequality,

EA1,A2

j,`
✓

n
�1(A

(`)
2 [⇠])� �1(A

(j)
2 [⇠]) and �1(A

(j)
1 [⇠])� �1(A

(`)
1 [⇠])

o

✓

n⇣
�1(A

(`)
2 [⇠])� �1(A

(j)
2 [⇠])

⌘⇣
�1(A

(`)
1 [⇠])� �1(A

(j)
1 [⇠])

⌘
 0
o
.

Then, by the fact that (a� b)2 � a2 if ab < 0 and again by Weyl’s inequality,

EA1,A2
j,`

(A.13)

✓
⇢⇣

�1(A(`)
2

[⇠])� �1(A(`)
1

[⇠])� �1(A(j)
2

[⇠]) + �1(A(j)
1

[⇠])
⌘2

�
⇣
�1(A(`)

2
[⇠])� �1(A(j)

2
[⇠])

⌘2
�

✓
n����1(A(`)

2
[⇠])� �1(A(`)

1
[⇠])

���+
����1(A(j)

1
[⇠])� �1(A(j)

2
[⇠])

����
����1(A(`)

2
[⇠])� �1(A(j)

2
[⇠])

���
o

✓
n
kA(`)

2
[⇠]�A(`)

1
[⇠]kop + kA(j)

1
[⇠]�A(j)

2
[⇠]kop �

����1(A(`)
2

[⇠])� �1(A(j)
2

[⇠])
���
o

✓
n
⌘̃
p
d+ 1

⇣
kA(`)

2
�A(`)

1
kF + kA(j)

1
�A(j)

2
kF

⌘
�
����1(A(`)

2
[⇠])� �1(A(j)

2
[⇠])

���
o
.
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Thus, by assumption (3.4),

P(EA1,A2
j,` )

 P
⇣
⌘̃
p
d+ 1

⇣
kA(`)

2
�A(`)

1
kF + kA(j)

1
�A(j)

2
kF

⌘
�
����1(A(`)

2
[⇠])� �1(A(j)

2
[⇠])

���
⌘

 c⌘̃
p
d+ 1

⇣
kA(`)

2
�A(`)

1
kF + kA(j)

1
�A(j)

2
kF

⌘

E
h����1(A(`)

2
[⇠])� �1(A(j)

2
[⇠])

���
i .(A.14)

By Weyl’s inequality and the triangle inequality,

|�1(A
(`)
2 [⇠])� �1(A

(j)
2 [⇠])|� |�1(A

(`)
⇤ [⇠])� �1(A

(j)
⇤ [⇠])|�

k

2m
,(A.15)

and by assumption (3.5),

E
h
|�1(A

(`)
2 [⇠])� �1(A

(j)
2 [⇠])|

i
�

m

k�
�

k

2m
�


2
.(A.16)

In order to prove (A.10), we see that the bounds (A.12), (A.14), and (A.16) imply

E[kUA1 �UA2kF ]


25/2


kA1 �A2kF + 2

m/kX

j=1

X

` 6=j

P(EA1,A2

j,`
)


25/2


kA1 �A2kF +

4c⌘̃
p
d+ 1



m/kX

j=1

X

` 6=j

⇣
kA

(`)
2 �A

(`)
1 kF + kA(j)

1 �A
(j)
2 kF

⌘

=
25/2


kA1 �A2kF +

8mc⌘̃
p
d+ 1

k

m/kX

j=1

kA
(j)
1 �A

(j)
2 kF


25/2


kA1 �A2kF +

8m3/2c⌘̃

k3/2

0

@
m/kX

j=1

kA
(j)
1 �A

(j)
2 k

2
F

1

A
1/2


16m3/2max{1, c}⌘̃

p
d+ 1

k3/2
kA1 �A2kF ,

where we have used the inequality kxk1 
p
nkxk2 for x 2 Rn. Next we prove claim

(A.11). First, we see that by (A.13)

P
⇣
[A1,A22B⇤E

A1,A2
j,`

⌘

 P
h
[A1,A22B⇤

n
⌘̃
p
d+ 1

⇣
kA(`)

2
�A(`)

1
kF + kA(j) �A(j)

2
kF

⌘
�
����1(A(`)

2
[⇠])� �1(A(j)

2
[⇠])

���
oi

,

and thus by the union bound, (A.15), and assumption (3.5),

P
⇣
[A1,A22B⇤ [j 6=` E

A1,A2
i,j

⌘


X

j 6=`
P
⇣
[A1,A22B⇤E

A1,A2
i,j

⌘


m2

k2
P

k

m
�

����1(A(`)
⇤ [⇠])� �1(A

(j)
⇤ [⇠])

���
�


m2

k2
P

k2�

m2
E
h����1(A(`)

⇤ [⇠])� �1(A
(j)
⇤ [⇠])

���
i
�

����1(A(`)
⇤ [⇠])� �1(A

(j)
⇤ [⇠])

���
�
 c�.
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Thus, (A.12) implies

P

0

@
[

A1,A22B⇤

kUA1 �UA2kF �
25/2


kA1 �A2kF

1

A c�.

The inequality k⇠⌦ (UA1 �UA2)k2  ⌘̃
p
d+ 1kUA1 �UA2kF and Lemma A.1 give the

second claim.

Lemma A.6. Define Bq(z,R) := {x 2 Rq : kx� zk2  R} for R > 0 and z 2 Rq
.

Let {⇠a}a2Bq(z,R) be a stochastic process in Rd
such that

(i) k⇠ak2  ⌘k⌃
1/2
a kop;

(ii) for all a1, a2 2Bq(z,R),

P

2

4
[

a1,a22Bq(z,R)

k⇠a1 � ⇠a2k2 �K

✓
inf

a2Bq(z,R)
k⌃ak

1/2
op

◆
ka1 � a2k2

3

5 �,

where ⌃a =E[⇠a⇠Ta ] for all a2Bq(z,R). Define ⌅a as in Lemma A.3 and fix ⌧ 2 (0,1).
Then, there exist constants c0, c1 such that for n� c0⌘3RK/⌧4, with probability greater

than 1� 2de�c1n⌧
2
/⌘

2

� �,

1� ⌧  inf
a2Bq(z,R)

�min

�
⌅T

a
⌅a

�

n�max(⌃a)
 sup

a2Bq(z,R)

�max

�
⌅T

a
⌅a

�

n�max(⌃a)
 1 + ⌧.

Proof. As in Lemma A.3, first suppose that for all a, ⇠a is isotropic. Fix ⌧ > 0.
For each a, the Matrix Bernstein’s inequality [29, Theorem 1.6.2] implies, for all s� 0,

P
 ����

1

n
⌅T

a
⌅a � I

����
op

� s

!
 2d exp

✓
�ns2

2⌘2 (1 + s)

◆
.

Now observe, by the reverse triangle inequality, that for any a, b2Bq(z,R),

�����

����
1

n
⌅T

a
⌅a � I

����
op

�

����
1

n
⌅T

b
⌅b � I

����
op

�����

2


1

n
k⌅T

a
⌅a �⌅T

b
⌅bk

2
op


1

n
sup

x2Sd�1

nX

i=1

h⇠(i)
a
� ⇠(i)

b
, xih⇠(i)

a
+ ⇠(i)

b
, xi


1

n

nX

i=1

k⇠(i)
a
� ⇠(i)

b
k2k⇠

(i)
a

+ ⇠(i)
b
k2 

2⌘

n

nX

i=1

k⇠(i)
a
� ⇠(i)

b
k2.

Now, let M⌧ be a ⌧
2

16⌘K -net in the ball Bq(z,R). For a 2 Bq(z,R), let a⌧ 2M⌧ be

the parameter such that ka� a⌧k2 
⌧
2

16⌘K . Then,

sup
a2Bq(z,R)

����
1

n
⌅T

a
⌅a � I

����
op

 sup
a2Bq(z,R)

�����

����
1

n
⌅T

a
⌅a � I

����
op

�

����
1

n
⌅T

a⌧
⌅a⌧ � I

����
op

�����+ sup
a2M⌧

����
1

n
⌅T

a
⌅a � I

����
op
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 sup
a2Bq(z,R)

 
2⌘

n

nX

i=1

k⇠(i)
a
� ⇠(i)

a⌧
k2

!1/2

+ sup
a2M⌧

����
1

n
⌅T

a
⌅a � I

����
op

.

By (A.1), |M⌧ | (1 + 32⌘RK

⌧2 )q. A union bound then gives

P
 

sup
a2Bq(z,R)

����
1

n
⌅T

a
⌅a � I

����
op

� ⌧

!

 P
 

sup
a2M⌧,K

����
1

n
⌅T

a
⌅a � I

����
op

�
⌧

2

!
+ P
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a2Bq(z,R)

2⌘

n

nX

i=1

k⇠(i)
a
� ⇠(i)

a⌧
k2 �

⌧2

4

!

 2d

✓
1 +

32⌘RK

⌧2

◆q

exp

✓
�n⌧2

8⌘2 (1 + ⌧/2)

◆

+ P
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a2Bq(z,R)

1

n

nX

i=1

k⇠(i)
a
� ⇠(i)

a⌧
k2 �

⌧2

8⌘

!
.

To bound the second probability, we see that by the assumptions on ⇠a,

P
 

sup
a2Bq(z,R)

1

n

nX

i=1

k⇠(i)
a
� ⇠(i)

a⌧
k2 �

⌧2

8⌘

!

 P

0

@ sup
a2Bq(z,R)

1

n

nX
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k⇠(i)
a
� ⇠(i)

a⌧
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,

\

a2Bq(z,R)
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a
� ⇠(i)

a⌧
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1
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0
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[

a2Bq(z,R)

k⇠(i)
a
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Thus, for n� c2⌘3RK/⌧4,

P
 

sup
a2Bq(z,R)

����
1

n
⌅T

a
⌅a � I

����
op

� ⌧

!
 2de

� c3n⌧2

⌘2 + �.

Lemma A.7. Consider the setting of Theorem 3.2 and let B⇤ :=B(A⇤,
k

4m⌘̃
p
d+1

).
Define P as in Lemma A.4. Then, there exist absolute constants ci, i= 0, . . . ,3, such
that for n� c0⌘̃2(d+ 1)3/2mk,

P
✓
sup
P2P
kP"k22 � c1�

2 log(n)2(d+ 1)m2

◆
 n

� c4m

⌘̃2 min{
(d+1)m

�2 ,1} + 2de
� c3n

⌘̃2(d+1)m + c�.

Proof. We proceed as in the proof of Lemma A.4 to show that for t > 0,

P( sup
P2P
kP"k2 � t) P

✓
sup
A2B⇤

k⌅T

A"k
2
2 �

tn

2m

◆
+ P

✓
inf

A2B⇤

�min(⌅T

A⌅A)

nk⌃Akop


1

2

◆
.(A.17)

To upper bound the second probability above, Lemmas A.5 and A.6 applied to the
stochastic process ⇠a := ⇠ ⌦UA imply that for n� c1⌘̃3(d+ 1)3/2mk,

P
✓

inf
A2B⇤

�min(⌅T

A⌅A)

nk⌃Akop


1

2

◆
 2de

� c2n

⌘̃2(d+1)m + c�.(A.18)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

5/
24

 to
 1

62
.1

29
.2

50
.3

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



586 ELIZA O’REILLY AND VENKAT CHANDRASEKARAN

For the first probability, proceeding as in the Lemma A.4, we obtain the following:
For s�max{c0�

p
log(n)E[supA2B⇤ k⌅

T

A"k2], c
2
0�

2 log(n)n(d+ 1)},

P
✓

sup
A2B⇤

k⌅T

A"k
2
� n(d+ 1)�2

� s

◆
 e

� c0
�2 log(n)

min

(
s2

E[supA2B⇤ k⌅T
A"k]2

,
s

⌘̃2n(d+1)

)

.

(A.19)

Now, to upper bound E[supA2B⇤ k⌅
T

A"k2], we first observe that by the independence
of the covariates and noise,

E

sup
A2B⇤

k⌅T

A"k

�
E


sup
A2B⇤

k⌅T

A"k
2
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=E


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2
F
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= �
p
nE

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2
F

�1/2
.

For all A2B⇤,

k⌅Ak
2
F
=

nX

i=1

k⇠(i) ⌦U (i)
A k

2
2  ⌘̃

2(d+ 1)n,

and thus

E

sup
A2B⇤

k⌅T

A"k

�
 n⌘̃�

p
d+ 1.

Then, for s�max{c0�2⌘̃n
p
log(n)(d+ 1), c20�

2n log(n)(d+ 1)}

P
✓
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k⌅T

A"k
2
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� s
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⇢
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,

s
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�◆
.

Letting t= c9�2 log(n)2(d+ 1)m2 for a constant c9 > 0 large enough,

P
✓

sup
A2B⇤

k⌅T

A"k
2
�

tn

2m

◆
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◆
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2
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✓
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m
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 n

� c4m
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�2 ,1}.

Finally, combining the above bound with (A.17) gives, for n� c1⌘̃3(d+1)3/2mk,

P
✓
sup
P2P
kP"k22 � c3�

2 log(n)2(d+ 1)m2

◆

 n
� c4m
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�2 ,1} + 2de
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