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Abstract

Parkinson’s disease (PD) and animal models of PD feature enhanced oscillations in several frequency bands in the basal
ganglia (BG). Past research has emphasized the enhancement of 13-30 Hz beta oscillations. Recently, however, oscillations
in the delta band (0.5-4 Hz) have been identified as a robust predictor of dopamine loss and motor dysfunction in several
BG regions in mouse models of PD. In particular, delta oscillations in the substantia nigra pars reticulata (SNr) were shown
to lead oscillations in motor cortex (M 1) and persist under M1 lesion, but it is not clear where these oscillations are initially
generated. In this paper, we use a computational model to study how delta oscillations may arise in the SNr due to projections
from the globus pallidus externa (GPe). We propose a network architecture that incorporates inhibition in SNr from oscillat-
ing GPe neurons and other SNr neurons. In our simulations, this configuration yields firing patterns in model SNr neurons
that match those measured in vivo. In particular, we see the spontaneous emergence of near-antiphase active-predicting and
inactive-predicting neural populations in the SNr, which persist under the inclusion of STN inputs based on experimental
recordings. These results demonstrate how delta oscillations can propagate through BG nuclei despite imperfect oscillatory
synchrony in the source site, narrowing down potential targets for the source of delta oscillations in PD models and giving
new insight into the dynamics of SNr oscillations.
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1 Introduction

Pathological neural oscillations in the basal ganglia and
motor cortical brain regions are hallmarks of Parkinson’s
disease (PD) and have been studied in both Parkinsonian
patients and animal models of PD (Boraud et al., 2005;
Hammond et al., 2007; Jenkinson & Brown, 2011). Exces-
sive beta oscillations (13-30 Hz) have received much of the
attention in the PD literature (Brown et al., 2001; Cassidy
et al., 2002; Weinberger et al., 2006; Halje et al., 2019)
but lower frequency oscillations have also been observed
in PD patients (Levy et al., 2002; Steigerwald et al., 2008;
Du et al., 2018; Zhuang et al., 2019) and animal models
(Raz et al., 2000; Tseng et al., 2001; Heimer et al., 2006;
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Walters et al., 2007; Parr-Brownlie et al., 2009; McCairn
& Turner, 2009; Aristieta et al., 2016). Such oscillations in
human patients have typically been associated with Parkin-
sonian limb tremor, and while such oscillations can have
significant coherence with tremor measured through elec-
tromyography (EMG), some oscillating neurons exhibit no
such EMG coherence (Du et al., 2018; Hurtado et al., 1999)
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or drift in and out of coherence with EMG signals over the
course of a recording (Hurtado et al., 2005). These oscil-
lations’ relationships to other motor symptoms in PD have
been far less studied.

Recently, it was shown that delta oscillations (0.5-4 Hz)
are the primary oscillatory phenotype that arises throughout
the basal ganglia after loss of dopamine in mouse models
of PD whereas, surprisingly, beta oscillations were never
observed in these animals (Whalen et al., 2020). In the sub-
stantia nigra pars reticulata (SNr), the main output nucleus
of the mouse basal ganglia, the prevalence of these delta
oscillations is predictive of the severity of dopamine loss
and non-tremorous motor dysfunction, and delta oscillations
tend to weaken during periods of motor activity. These find-
ings suggest a reappraisal of lower frequency oscillations as
a biomarker or causal factor in Parkinsonian akinesia, rigid-
ity and bradykinesia. However, the mechanisms by which
these oscillations arise in the Parkinsonian brain are not
well-understood.

Parkinsonism subdivides the SNr into two populations
defined by their patterns of delta oscillations, as well as a
third population of neurons without significant oscillatory
activity (Whalen et al., 2020). These two populations exhibit
roughly antiphase activity, but when they are referenced to
similar pathological oscillations in motor cortex (M1), a
clearer picture emerges. One population enters its up-state
approximately 180 ms before M1 enters its up-state and is
termed active-predicting (AP) because its activity predicts
future activity in M 1. The second population lags slightly
behind, entering its inactive state approximately 120 ms
before M1 enters its up-state and is named inactive-predicting
(IP) because this population’s inactivity predicts M1 activity.
These two features - the populations’ activity states and lead
times relative to M1 - plainly provide a disjoint classification
of SNr neurons, but it is not clear how this dichotomy arises
in the parkinsonian SNTr.

Delta oscillations in the Parkinsonian mouse are known to
require the loss of dopaminergic activation of D2 receptors
(Whalen et al., 2020). Because of this, a reasonable hypoth-
esis may be that SNr oscillations are inherited from upstream
neurons in the indirect pathway of the basal ganglia, which
originates in D2-expressing neurons of the striatum. These
neurons send inhibitory projections to the globus pallidus
externa (GPe), which in turn provides inhibitory projections
to the SNr, and GPe neurons themselves exhibit strong delta
oscillations in the Parkinsonian state as well. Specifically,
the SNr-projecting neurons of the GPe are all part of the so-
called prototypic GPe population (Mallet et al., 2012) and
exhibit delta oscillations approximately in phase with one
another (Mallet et al., 2008).

The main objective of this paper is to test in a compu-
tational model whether it is possible for the delta oscilla-
tions in GPe to account for the structure of SNr activity
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that we observe experimentally under dopamine depletion.
Specifically, we seek to determine if there exists a GPe-
SNr circuit architecture that can reproduce our experimen-
tal observations: the presence of near-antiphase AP and IP
populations in the SNr and the intrinsic firing patterns and
phase relationships observed within these groups. Using data
from our previous work (Whalen et al., 2020), we construct
confidence intervals for these neural measures that allow
comparisons of the results of various simulations to in vivo
observations. Guided by these comparisons to experimen-
tal data, we identify a synaptic architecture that achieves
realistic dynamics, and this model’s features suggest that a
competitive process for GPe and SNr synaptic formation on
the somas of SNr neurons is sufficient to allow for the spon-
taneous generation of AP and IP populations within the SNr
when SNr neurons are inhibited with oscillatory GPe input.
Despite phase lags within GPe, oscillations arise as observed
in vivo in the two SNr populations, with inherited phase rela-
tions that match experimental data. Moreover, the emergent
SNr dynamics persist with temporal drift in the GPe oscillation
frequency within the delta band as well as with the inclusion
of excitatory inputs from the subthalamic nucleus (STN)
to SNr based on recorded STN spike trains. These results
suggest that SNr need not develop its own intrinsic oscil-
lations in parkinsonism but can instead inherit them from
other basal ganglia nuclei. Overall, these findings provide
evidence for the striatum or GPe as the source of parkinso-
nian delta oscillations, a critical detail in understanding their
generation and in designing approaches for their ablation as
potential PD treatments.

2 Methods
2.1 Invivo experiments and analysis

In this subsection, we discuss the experimental and compu-
tational methods that went into the collection and analysis
of the experimental data presented in Figs. 1-3 of this paper
(cf. Whalen et al. (2020)).

Animals and data collection All experimental data used in
this paper were previously published in Whalen et al. (2020),
and detailed experimental methods can be found there. In
brief, male and female mice on a C57BL/6J background
were injected with 6-hydroxydopamine (6-OHDA) into the
medial forebrain bundle to induce dopamine depletion (DD);
control animals were instead injected with saline. Animals
were head-fixed atop a running wheel and acute electrophys-
iological recordings were performed in the SNr or GPe. Data
were manually spike sorted into single units. Some record-
ings included a simultaneously recorded electrocorticogram
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(ECoG) signal measured from primary motor cortex (M1)
through an implanted wire.

In this paper, we made use of the experimentally collected
GPe and STN data to design the inputs to our model SNr
neurons and we utlized the experimentally collected SNr data
for direct comparison with the activity of our model SNr neu-
rons. Much of the data analysis used in this paper was already
performed and reported in (Whalen et al., 2020), and hence
we refer the reader there for the full details of these analysis
methods and simply report an abridged version here.

Oscillation detection We detected oscillations by identify-
ing those frequencies at which our data featured both high
power and low phase shift. Our power calculations were
performed using partially overlapping time segments of 2!
ms of data sampled at 1 kHz, with steps of size As = 2% ms
taken between segments. For each segment, we computed
the renewal-corrected PSD as

Co (@)

Co(w)

Clw) =

and we averaged C(w) values across segments to obtain the
renewal-corrected PSD. Here, C'O(a)) denotes the theoretical
power spectral density (PSD) of a renewal process defined
by the interspike interval (ISI) probability distribution on
the segment scaled by the number of spikes in the segment
(Gerstner et al., 2014; Whalen et al., 2020). The numerator
term C‘oo(a)) is an estimate of the PSD of the spike train in
that segment, given by the squared modulus of the power
spectrum of the mean-subtracted spike train in the segment
(i.e., the original binary spike train in the segment after
subtracting off its mean over that segment, which sets the
0 Hz component of the spectrum to 0). All PSDs in this
study have undergone this renewal-correction but are simply
referred to as PSDs for brevity.

Our phase shift calculation involved three steps: taking
the arctangent of the power spectrum to find an uncorrected
phase ¢~> at each frequency for each segment; computing a
corrected phase ¢ for that frequency and segment by using
a mod function and translation to define frequency relative
to the start of the recording rather than the start of the seg-
ment; and averaging the phases across successive segments
for each frequency, to obtain an overall phase shift £(w) as a
function of frequency w.

Once these calculations had been performed for a
recorded unit, we defined statistically significant power to
occur at those frequencies within the band 0.5-4 Hz that
were local maxima of C(w), defined as being higher than
the three neighboring values to each side, that were above
the 99% confidence interval of renewal-corrected power
from the region of C (w) between 250 and 500 Hz, correct-
ing for multiple comparisons (Bonferroni correction) of all

frequencies in the delta band. We then checked if any fre-
quency detected in this way had a significantly low phase
shift. Such phase shifts were defined as those lying below
the 95% confidence interval of phase shifts from the region
of é(w) between 250 and 500 Hz, with correction for multi-
ple comparisons (Bonferroni correction) if multiple frequen-
cies were detected from the PSD.

AP/IP unit classification In recordings with a simultaneous
M1 ECoG signal, we built a series of regression models pre-
dicting the M1 ECoG signal from the spiking of single SNr
units at various lags in order to determine the sign and sig-
nificance of the relationship between each SNr unit and M1.

First, we binned the ECoG into 10ms bins and defined
the dependent variable Y as the difference between adjacent
ECoG measurements to reduce nonstationarity. We then
built a 10th order autoregressive model of Y which served
as the null model. Next, we built additional autoregressive
models to test lead/lag relations of SNr unit activity relative
to M1. For these models, we calculated the spike density
function (SDF) for an SNr unit by convolving its spike train
with a Gaussian function with a standard deviation of 100
ms. For simplicity, we assumed that if a lag exists by which
the unit firing influences the ECoG or vice versa, then there
is only one such lag by which this influence occurs. Thus,
for each time shift of the SDF between -1000 and +1000 ms
(defined in 10 ms increments, for a total of 201 time shifts)
we used the 10th order autoregressive terms and one SDF
term with this shift as its explanatory variables.

From this collection, we identified the model with the
smallest mean squared error. We next performed an F-test
at @ < 0.05, correcting for 201 comparisons (Bonferroni
correction), to determine whether the model at this lag was
significantly better than the null autoregressive model. We
found that all neurons with a significant lead/lag relationship
to M1 exhibited a "best lag" that was negative in time; that
is, SNr activity was predictive of future changes in M1. We
computed the regression coefficient at this best lag for each
neuron. Neurons for which the best lag had a positive coef-
ficient were termed active-predicting (AP), and neurons for
which the best lag had a negative coefficient were termed
inactive-predicting (IP).

Quantifying phase lags To quantify the oscillation phase
lags between pairs of units, we first computed the SDF of
each oscillating unit using a Gaussian filter with ¢ = 50
ms. For each pair, we performed cross-correlation using a
moving window procedure to minimize the effects of non-
stationarities in firing rate over the course of the recording
(Willard et al., 2019). We used a window size of 20 s with
a maximum lag of 4 s and zeroed the first and last 4 s of the
one of the SDFs to ensure that the correlation computation
at each lag would have an equal amount of zero-padding. We
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then divided the cross-correlation by its mean at lags greater
than 4 s so that the value at each lag could be interpreted as a
fraction of the neuron’s mean firing rate. This procedure was
computed on every window with a moving window step size
of 8 s then averaged together to obtain the final normalized
cross-correlation between the two signals.

Since most data (and all simulations) did not include an
ECoG reference to determine the SNr neuron’s identity (AP
or IP), we determined that the pair was in the same popula-
tion if their cross-correlation peak was closer to lag zero
than their trough, and different populations if their trough
was closer to lag zero than their peak. We defined their
relative phase as the absolute value of the lag at which this
extreme occurred (whether peak or trough).

2.2 Modeling neuronal dynamics and interactions

Conductance-based model of SNr neurons We used a pre-
viously published conductance-based biophysical model of
SNr neurons (Phillips et al., 2020) with small modifications
noted below. Parameters can be found in Phillips et al. (2020)
and were originally adapted from earlier computational stud-
ies (Abbott et al., 1997; Corbit et al., 2016; Xia et al., 1998)
or tuned from experimental data (Connelly et al., 2010; Zhou
et al., 2008), except where otherwise noted.

Because different input sources to SNr neurons have spa-
tially distinct targets, each neuron is modelled with a somatic
and a dendritic compartment. The respective membrane
potentials V¢ and V[, are governed by the equations

SW = _INa - INaP - ]K - ICa - ISK - Ileak
s
- IGABA = Ips.
Y _ I, — 1
D™y = T'trRPC3 T isD T ASIN

where C is that compartment’s membrane capacitance and
each I is an ion current: fast (I,,) and persistent (I,,) Na*
currents, delayed rectifying K* current (I), Ca** current (/ ca)s
Ca**-activated K* current (Igx), leak current (/,,,,) in the
somatic compartment, and a transient receptor potential chan-
nel 3 current ({7zpc3) in the dendritic compartment. /g and
I, are coupling currents representing the current flow from
the dendritic to somatic compartments and vice versa. If; ABA
denotes the synaptic current due to projections from simulated
GPe neurons (see below) and local connections from other SNr
neurons. /g7, denotes a tonic excitation from STN, projections
from which synapse primarily on dendrites in the SNr (Kita &
Kitai, 1987), which is included in lieu of spiking STN neurons.
The current equations take the following form:

INa = 8Na " m13va : hNa “SNg (VS - ENa)
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Iey = 8ca " Mea e - (Vg — a - In( [Cal,,

Isg = gsk - mgg - (Vg — Ex)

Lieak = 8teak * (Vs = Ejoa)

s _.S s
Loapa = 8aa * Vs = Egapa)
Cs
Ips=8c—= Vs—=Vp)

Irrpes = &rrees * (Vo — Errpcs)

Iy = gcc— ~(Vp=Vy)
D

Loy = 8sov - (Vp — Eglut)

where each g is the current’s maximum conductance, each
E is the current’s reversal potential, and each m, h, n, and
s is a gating variable. « in the equation for /-, is 13.27, the
coefficient for calcium in the Nernst equation.

Each of the gating variables obeys an equation of the type

dx  Xo(V)—x
d (V)

where x is an m, h, n, or s gating variable of a particular cur-
rent, x. (V) is the gate’s steady state and 7(V) is the gate’s
time constant, given by

x, (V) =1+ e—(V—Xl/z)/kx)_l’

V) 0 T): - TB
T =7+ —
. * e(Tl/z_V)/"E + e(f)l(/z_v)/‘ﬁl—

and all quantities in each expression, other than V, are constants.
An exception to the above specifications arises with the
Ca?*-gated SK channel, for which the m gate is governed by

k nge\ —1

where kg is the half-activation calcium concentration and
ng is the Hill coefficient. The intracellular Ca?* concentra-
tion [Cal,, evolves according to
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d[Cal,, [Cal;, — [Cal,;,
a - s lem \ T

where ag is a constant relating current to the rate of change

of [Ca**],,, 7, is the time constant for calcium efflux

through Ca?* pumps, and [Cal,,;, is the minimum calcium

concentration at which these pumps are active. The param-

eters for this equation were adapted from Xia et al. (1998).
The synaptic conductance gé s ODEYs the equation

ng gS
GABA _ _5GABA GPe
== +Wahe, DY 8(t—1,)

T

GABA n
SNr
+ W, Y 6 —1,)
m

where Tf; g 18 the synaptic decay time constant, W is the

synaptic weight from either GPe or other SNr neurons, &
is the delta (impulse) function, and ¢, ,, are the presynaptic
spike times arising from GPe and SNr, respectively. D is a
scaling factor for short-term synaptic depression governed
by (Abbott et al., 1997)

d_D_Do—D
dt T

—ap - (D=D,;,)- Y. 8(t—1,).

We adjusted two of the parameters to represent differences
between DD and control conditions. The conductance g;zpc3
in DD was set to 0, since activation of D1 receptors is required
for the opening of TRPC3 channels in SNr neurons (Zhou
et al., 2009). In control conditions, we tuned grzpc3 to match
the finding that under Na* channel block, blockade of TRPC3
channels yields a 10 mV hyperpolarization of the membrane
potential (Zhou et al., 2008). Tuning to respect this fact
yielded a value of 0.2 nS/pF for g;xpc3 in the control model.

The synaptic conductance ggy Was tuned such that the
mean firing rate of SNr neurons in the full network model in
DD conditions would match the mean firing rate observed in
vivo in DD. This yielded a range from 0.5 — 2.5 nS/pF, and
the value of gy for each SNr neuron was selected uniformly
from this range at the start of the simulation. Since electro-
physiological data reveals a 50% increase in mean STN firing
rates in control compared to DD conditions (Whalen et al.,
2020), this range was scaled by 1.5 in the control model.

Quadratic integrate-and-fire model To compare our
conductance-based model results to those from a simpler
framework, we separately modelled SNr neurons as quad-
ratic integrate-and-fire (QIF) units with a tonic excitatory
leak current and synaptic inhibition. In this model, each
cell’s voltage V is governed by

dV = [(10 . (V - Vr'est)z — gSTN . (V _ Eglut)
— 8cupa "V —Egapa)] - dt + odW

where V,,, = —60; E,,, = 0 and Eg,p, = —70 are respec-
tively the excitatory and inhibitory reversal potentials;
gsry = 0.001 is a tonic excitatory conductance tuned to
generate realistic SNr firing rates, and gg4p4 is the inhibi-
tory synaptic conductance defined as gé pa 1D the previous
section. Moreover, dW is a Gaussian noise process with
standard deviation o, which was simulated using the Euler-
Maruyama method; however, we used a noiseless (6 = 0)
model except where otherwise noted. Finally, for this model,
when V reaches a threshold V,;, = —20, the neuron is said to
have spiked and V'is reset to V., = =70.

Simulated GPe spike trains Rather than simulating GPe
neurons in full detail, we generated artificial spike trains to
serve as input to the SNr model neurons. In DD, we used
GPe spike trains of two types, Poisson or oscillating. Both
types were modelled as inhomogeneous Poisson processes
with rate function A(7). In Poisson spike trains, the rate func-
tion was defined as

0, t—T<t
— ’ — trefrac
40) {AC,I—T>t

refrac

where A, is the baseline firing rate, T is the period of the
oscillation in milliseconds (ms), and 7,,,,,. = 1ms is the abso-
lute refractory period. Firing rates were fit to the mean fir-
ing rate of GPe neurons recorded experimentally, and since
the median GPe firing rate did not differ significantly in
control and DD animals (Whalen et al., 2020), 4. was set
to the observed median value of 24 Hz and was unchanged
between control and DD simulations.
Oscillating spike trains were defined with a rate function
as follows:
t—T <t

refrac

Al) = { A4S (A @), =T >1

refrac

where f,.(t,A, w) is a periodic function of time ¢ with fre-
quency w chosen as 2 Hz to be near the median delta fre-
quency observed in GPe units (Whalen et al., 2020) and
amplitude A chosen such that a spike train would have a 1
Hz firing rate at its trough.

Since the delta oscillations observed in the SNr are not
perfect sine waves but rather are better fit by oscillatory pro-
cesses with up and down states, we chose f, . to be a square

wave with unequal up and downstate durations; that is,

_JA/2, mod(t1/w) Lu/w
Joselts A @) = { —A/2, mod (t, 1 /) > ufe

where u is the fraction of each period spent in the upstate.
To fit an appropriate value for u, we analyzed the oscillation
shapes of GPe neurons recorded in vivo in mice (Whalen et al.,
2020). We included only neurons with detected oscillations
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and with firing rates that exceeded 10 Hz to ensure that no
arkypallidal neurons were included, as they do not project
to SNr (Abdi et al., 2015; Mallet et al., 2012). For each neu-
ron, we computed its spike density function (SDF), sdf(?),
by convolving the spike train with a Gaussian filter with ¢
= 50 ms; this produces a smooth instantaneous firing rate
function, but one that is coarse enough such that delta oscil-
lations can still be seen. We then computed a moving mean
u(t) of the SDF with a rectangular window of 5 s to obtain
a mean firing rate over a much longer timescale, but short
enough to change along with long-timescale nonstationarities
in firing rate. We computed the fraction of time F for which
sdf(?) > u(t) and found the median F across all neurons to be
approximately 0.55. Thus, we chose u = 0.55 such that the
upstate comprises 55% of each period, while the downstate
comprises the remaining 45%.

For simulations in Fig. 4, we allowed w itself to vary in
time. The basic idea of this time variation was to introduce
small, random perturbations to @ in a way that preserves
history. We implemented this by choosing a long time step,
7,, and choosing a new sign for the perturbations to w every
7, time units (7, =1000 for Fig. 4A-C and 7, =2000 for
Fig. 4D-F). In between sign choices, we chose a new per-
turbation magnitude, Aw, every 7, < 7, time units (z; =100
for Fig. 4A-C and 7; =500 for Fig. 4D-F). The value of Aw
was chosen from a uniform distribution from O to 1% of
, inclusive (e.g. Aw € [0, 0.02] for @ = 2Hz). Once this
was selected, we performed the update @ < @ + Aw where
the choice of + or — depended on the most recently chosen
perturbation sign.

In the control model, we generated spike trains with a
more regular firing pattern, mimicking the firing patterns
observed in the healthy GPe (Whalen et al., 2020). Specifi-
cally, all neurons in the control model fired spikes with an
interspike interval (IST) of 40 + € ms, with the jitter e for each
ISI sampled randomly from a uniform distribution on [-2, 2].

Fitting GPe phase lag distributions Like SNr, oscillations
in GPe neurons can exhibit non-zero delays relative to one
another. To incorporate these delays into our model, we
computed the pairwise phase lag distribution for GPe, as
described above for SNr. To simulate a population of neu-
rons with phases such that this distribution was maintained,
we sought to estimate the distribution of individual phases
from this pairwise phase lag distribution. We assumed that
the phases are normally distributed following a normal dis-
tribution N(0, o) and sought to estimate ¢. The pairwise
phase lags that we measured can be considered as the abso-
lute difference of two independent samples from N(0, 0),
which means that they follow a half-normal distribution
H(0, v/262). The best fit to the pairwise distribution gives an
estimate of 0 = 34.6164 ms. At the start of each simulation,
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a GPe neuron’s phase was chosen from this distribution,
resulting in a pairwise phase distribution similar to the one
observed experimentally.

STN inputs to model SNr neurons In some specific com-
putations, we used experimental STN recordings from
Whalen et al. (2020) to simulate STN inputs to the model
SNr neurons. For a single simulation of this type, a set of
simultaneously recorded STN spike trains were used. The
maximal number of simultaneously recorded STN units in
the data set was 9, and only those experiments with 8 or 9
simultaneously recorded units were selected. The experi-
mental data was incorporated into the model by defining a
dynamic synaptic conductance ™", that evolved according
i STN
to the equation

dyn dyn
dg g
STN STN STN
= - L WYY (- 1)
I l
dt Torn glut -

where 7g7, = 3ms s the synaptic decay time constant, W, = 6
nS/pF is a weight parameter selected such that a jump in g?f?v
from O to W,y would induce an increase of about 2 mV in V),
in the absence of other synaptic inputs, 6 is again an impulse
function, and the 7, are the times at which spikes were observed
in any of the simultaneously recorded STN units.

For the simulations that included experimentally-derived
STN inputs, we used as the total synaptic conductance
ey = gg'VT'}v + gl where gi denotes a static bias con-
stant randomly chosen for each SNr neuron from the range
0.13—0.23 nS/pF to maintain appropriate overall SNr fir-
ing rates (in contrast to the 0.5—2.5 nS/pF used with static
gsrys see Supplemental Fig. 1). For simplicity, the same g‘;’T;’V
was used for all SNr neurons in each simulation. For each of
the four animals with sufficiently many simultaneously
recorded units, we ran four separate simulations, each based
on a randomly-selected, 60-second recorded segment. ljor

yn

each of these recordings, we used the first 10 s to allow g¢,

dyn

to equilibrate and incorporated the subsequent 50 s of g,

values into our simulation.

Connection architecture We chose populations of 100 SNr
neurons (50 neurons in each population for 2-population
models) and 100 GPe spike trains (50 in each of the oscillat-
ing and Poisson populations when applicable). Equally sized
populations were chosen because the number of neurons in
SNr in vivo is approximately equal to the number of GPe
neurons that project there (Simmons et al., 2020).

We considered several different architectures of connec-
tions from GPe to SNr and within SNr. Each SNr neuron
received four (in the basic and partially segregated models)
or an average of four (in the synaptic competition model)
connections from both GPe and other SNr neurons (yielding
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eight synapses on each neuron in total). The identities of the
specific pre-synaptic neurons from a given population that
project to each post-synaptic cell were selected completely
at random. The other aspects of these models are described
when they are discussed in Section 3. These numbers of
synapses were chosen since real SNr neurons receive a
small number (approximately two to six) unitary connec-
tions from GPe (Simmons et al., 2020) and an average of
four unitary connections from other SNr neurons (Higgs &
Wilson, 2016). While the large strength of these connections
is likely due to many synapses from a single presynaptic
neuron forming on the postsynaptic neuron (Simmons et al.,
2020; Smith & Bolam, 1989), we modelled these nests of
boutons as a single, strong synapse from each presynaptic
cell. The strength of each synapse was chosen uniformly
from the range 0.05 — 0.25 nS/pF.

2.3 Simulations and analysis

Simulations Code to simulate the models was written in
C++. Differential equations were evolved using Euler’s
method with a timestep of 0.025 ms with data extracted
every second time step or, as noted above, with the Euler-
Maruyama method when noise was included. Simulations
were run for a total of 50 simulation seconds, and the first
three seconds were discarded before analysis. Results from
the simulation were imported into MATLAB and Python
for analysis.

Measuring irregularity with CV, Since real spike trains
have a greater degree of nonstationarity than those in our
simulations, we used the CV, measure of irregularity (Holt
et al., 1996), which computes the coefficient of variation
(CV) over a moving window of two interspike intervals
(ISIs), thereby correcting for nonstationarities in firing rate.
Specifically, we compute the CV for all pairs of adjacent
ISIs and find this distribution’s mean:
1 zN: 2|At, — Ag)|

cV,=—
TN Aty + At

i=1

where At, is the length of the ith ISI and N is the number of
adjacent pairs of ISIs in the spike train.

Identifying oscillating neurons Oscillations in single model
neurons were detected using the same procedure as used
for our spike train data (see Oscillation detection), requir-
ing that oscillations passed both the power and phase shift
criteria. Although the forcing frequency in our simulations
was known to be 2 Hz, our oscillation detection algorithm
was agnostic to this information.

Since we did not simulate motor cortex, we could not
define AP and IP units in the same manner as in previous
experimental work (Whalen et al., 2020). Instead, we com-
pared the phases of SNr oscillations with those in GPe. We
computed an SDF of the sum of all GPe neurons’ spike trains
and calculated the cross-correlation of this mean GPe sig-
nal with each SNr neuron that exhibited a delta oscillation.
Beyond their relationship to M1, a defining feature of the AP
population is that it, on average, leads IP units in vivo. Since
the only way in our simulations for an oscillation in SNr to
become approximately in phase with GPe oscillations would
be through a bisynaptic (GPe to SNr to SNr) or higher order
multisynaptic connection, we defined AP neurons as those
for which the peak in the cross-correlation with the GPe SDF
was closer to zero lag than the trough, and IP neurons as
those for which the trough was closer to zero lag than their
peak. For display purposes, we also defined a phase offset
for each neuron relative to GPe. Specifically, for each AP
neuron, we computed 6 = [¢,| — |£,|, where 7,7, denote the
largest peak and trough, respectively, of the cross-correlation
between the neuron’s SDF and that of the simulated GPe
signal. We converted the time 6 to a phase by computing
2znfé for f defined as the maximum frequency of the AP
neuron’s power spectrum. For each IP neuron, we repeated
the same process but with 6 = |z,| — |¢,|. All resulting phase
offsets were negative, which confirms the validity of the
AP/IP classification. We also checked this result by run-
ning a simulation of the “basic” model with no GPe phase
delays (so lead-lag relationships could be easily identified)
and confirming that every neuron defined as AP through this
process led every neuron defined as IP. We also confirmed
that the AP lead bias remained in our final model (the syn-
aptic competition model, Fig. 3E). While our assumption
appears accurate, our computational model neurons may be
more accurately referred to as putative AP and IP units; how-
ever, in the remainder of this work, we drop the “putative”
modifier for brevity.

Quantifying model fit to data To compare the model results
to experimental data, we computed means and two-sided
95% confidence intervals for several metrics on the data,
such as the firing rate of SNr neurons and the fractions of
neurons that exhibited an oscillation. Confidence intervals
were computed in one of two ways:

1. The fractions of non-oscillating, AP and IP neurons each
follow a binomial distribution B(p,) with the assumption
that each recorded neuron’s identity is independent of
all others. For each group (AP, IP, or non-oscillating),
p, represents the probability that a neuron is a member
of that group. We estimated a 95% confidence inter-
val around the sample mean for each group using the
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analytic Clopper-Pearson method implemented in the
MATLAB function binofit.

2. For all other measures where an analytic estimate was
not possible, we computed 1000 bootstrapped samples
and calculated the statistic being estimated (e.g. mean
or CV), then used the 2.5th and 97.5th percentile from
all samples as the 95% confidence interval.

Cluster analysis We examined the separation between the
points corresponding to AP and IP neurons on axes defined
by either the total synaptic strength from GPe and SNr or
the delta power received from GPe and SNr by SNr neurons.
To peform this evaluation, we computed the centroids of the
AP and IP neuron clusters using labeled data. To quantify
the level of cluster separation, we defined a displacement
metric, which was calculated for each neuron projected onto
the dimension defined by the line connecting the two cluster
centroids. Each neuron’s displacement was its signed dis-
tance from the opposite cluster’s centroid, where the direc-
tion pointing from the opposite centroid toward the neuron’s
own cluster’s centroid was defined to be positive.

3 Results

We collected in vivo data from a variety of basal ganglia regions
in mouse (described in detail in previous work (Whalen et al.,
2020); see also Methods). These data showed that under DD,
two slowly (0.5-4 Hz) oscillating populations of SNr neurons
emerge, classified computationally based on whether the active
or inactive phase of their oscillations better predicted positive
deflections in a simultaneously recorded M1 (motor cortex)
ECoG signal, with a near-antiphase relationship between the
two (Fig. 1A-B; see also Introduction). In this work, we took
the activity of GPe neurons recorded in vivo as a starting point,
without consideration of its source, and we sought to test the
hypothesis that the features of the SNr oscillations observed in
experimental data can be explained by a model in which SNr
inherits its oscillatory pattern from its GPe inputs, despite the
distributed phases of GPe oscillations observed experimentally.
To investigate this idea, we built networks of 100 biophysically
detailed but simplified SNr neurons receiving input from a col-
lection of 100 simulated GPe spike trains, along with a constant
conductance excitatory synaptic input from STN, and compared
the results of these simulations to the in vivo data from SNr.

3.1 A model with partially segregated pathways
matches in vivo recordings
To start, we built a model with a simple architecture

designed in such a way that two subpopulations of SNr neu-
rons exhibiting antiphase oscillations were likely to emerge.

@ Springer

For this model, we split the simulated GPe spike trains into
two classes: 50 Poisson spike trains and 50 spike trains with
an underlying 2 Hz oscillation in their firing rate (see
Section 2). We organized the model SNr neurons into two equal-
sized populations, A and B. Population A received synaptic
input only from (1) oscillating GPe neurons, and (2) SNr
neurons from Population B, whereas Population B received
input only from (1) Poisson GPe neurons, and (2) Popula-
tion A SNr neurons (Fig. 2A). Specific synaptic connections
consistent with these constraints were established randomly
at the start of the simulation in such a way that each SNr
neuron received the same number of synapses, but each GPe
train and SNr neuron did not necessarily target the same
number of SNr neurons.

To compare the model results with experimentally
recorded data, we computed each model SNr neuron’s
renewal-corrected power spectrum and phase shift (Whalen
et al., 2020) to detect neurons with significant delta oscilla-
tions, then classified these neurons as either AP or IP based
on their activity patterns relative to GPe (Fig. 1C-D; see
Section 2). As in the experimental data, offsets of AP neuron
SDF peaks were roughly similar to offsets of IP neuron SDF
troughs, albeit with some heterogeneity across units.

To continue the comparison with the experimental
data, we next compared the delta power of each oscillating
model neuron to the delta-band powers of active-predicting
(AP) and inactive-predicting (IP) neurons recorded in vivo
(Fig. 2B-C). Qualitatively, the results of this simulation
show a clear AP/IP dichotomy, with group membership
determined completely by the neuron’s identity in the net-
work architecture. Specifically, those in Population A, which
receive oscillatory inhibition from GPe, make up the AP
population, while those receiving Poisson inhibition from
GPe and thus inheriting their oscillations only from SNr
connections make up the IP population. The AP neurons also
have greater power than the IP neurons, as seen in vivo. The
distributions of power levels in the simulations differ sub-
stantially from those seen in vivo, however, with no overlap
between the AP and IP power distributions.

To quantify the fit of our model to experimental data, we
checked whether the SNr spike trains in our simulations fell
within a 95% confidence interval of metrics derived from
real SNr data in three categories: basic firing properties,
sizes of oscillatory subpopulations, and properties of oscil-
lations (Fig. 2D).

For basic firing properties, we computed firing rates and
regularity of firing quantified with CV,, a measure of irregu-
larity that corrects for nonstationarities in firing rate over
time (see Section 2). In this initial model, the neurons were
significantly more regular (CV, closer to zero) than in the
experimental data.

We next considered the putative identities of neurons:
AP, IP, or non-oscillating. In this case, the differences from
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Fig. 1 Experimental data on antiphase oscillations in SNr recorded
in vivo in DD mice, with corresponding simulation data. A. Example
data showing how a spike density function (SDF) was used to identify
oscillation phases in recorded SNr neurons (AP:red, IP:blue), relative
to a simultaneously recorded M1 ECoG signal (grey). B. Histogram
of phase offsets of n = 59 oscillating SNr neurons relative to the M1
ECoG. For AP neurons (red), phase refers to the SDF peak. For 1P
neurons (blue), phase refers to the SDF trough. A perfectly anti-phase
relationship would correspond to complete overlap of these distribu-

experimental data are stark; since each neuron’s identity
is determined exactly by which population (A or B) it was
assigned to, there are exactly 50 AP and 50 IP neurons with no
non-oscillating neurons. Because of this over-simplification,
the results completely fail to replicate experimental data on
the sizes of the neuronal classes.

Finally, we examined some properties of the oscillations
exhibited by the model AP and IP neurons. Note that the
underlying oscillations in our simulations are stationary
(i.e. they are exactly a function of time, so their autocor-
relations do not decay at long lags), whereas oscillations in
the experimental setting have an autocorrelation that decays
to zero after a few periods. It is thus difficult to compare
raw power values between the simulations and experimental

tions. Figure panels A-B are reproduced from Figure 8 of our previ-
ous paper (Whalen et al., 2020). C. SDFs generated from IP (blue)
and AP (red) model SNr neurons and from our simulated GPe spike
train (grey). Note that consistent with our naming convention, AP
peaks lead those in GPe while IP peaks are closer in time to those in
GPe. D. Histograms of phase offsets of AP peaks (red) and IP troughs
(blue) for model neurons, relative to the GPe SDF (see Section 2).
The overlapping nature of these distributions captures these two pop-
ulations’ opposing relationships to the GPe

data; as such, we computed a mean power ratio between
the AP and IP classes, defined as the ratio between the
mean power of all AP neurons and the mean power of all
IP neurons in the simulation at the forcing frequency from
GPe, a measure which should cancel out the differences in
stationarity between the experimental and simulated data.
We found that in terms of the mean power ratio, this model
matches experimental data in that AP neuron oscillations are
stronger than IP neuron oscillations. However, the strength
disparity that emerged in our simulations is significantly
less than that found in vivo. We also computed the CVs of
the power of oscillations across neurons in each population
to determine if the variability of oscillation strengths across
neurons matched the real data. In the basic model results,
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Fig.2 Performance of models
with segregated pathways.

A. Architecture for the

basic model, where two SNr
populations receive inputs

from two entirely distinct GPe
subpopulations (one oscillating,
one Poisson) and only project
to each other. B. Delta power of
each neuron in vivo in the AP
and IP SNr populations. C. As
in B, but from the results of a
simulation of the basic model.
Black dots are neurons from
Population A from the archi-
tecture in Panel A, green dots
are neurons from Population

B. D. Performance of the basic
model on measures derived
from in vivo data. Each bar is

a bootstrapped or analytically
derived confidence interval (see
Section 2) and each red arrow
is the model’s results computed
from all simulated SNr neurons.
FR: mean firing rate (Hz); CV2
ISI: mean CV, of interspike
intervals; Frac AP/IP/No Osc:
fraction of neurons in the AP,
1P, or non-oscillating popula-
tions. Power Ratio: ratio of the
mean delta power of all AP neu-
rons to the mean power of all
IP neurons. AP/IP Power CV:
CV of the distribution of AP/
IP delta powers. E. Architecture
for the partially segregated
model, which extends the basic
model to include probabilities
of connections crossing over
from the population they would
normally project to. F-G. Same
as C-D for the results from the
partially segregated model
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there is significantly less variability in oscillation strength
in both populations than in vivo.

Overall, this basic model’s primary deviation from
experimental data lies in the variability of the oscillations
that SNr neurons exhibit. Specifically, in this model, all
neurons within a population oscillate at similar intensi-
ties, whereas neurons in vivo have more varied oscillations
or may show no detectable oscillations at all. As such, we
reject the hypothesis that the experimentally observed SNr
activity features arise from a fully segregated architecture
of GPe-SNr and SNr-SNr connections. As an alternative,
we extended our model to include additional variability by
relaxing its strict connectivity rules. Instead of all Popula-
tion A neurons receiving input only from oscillating GPe
neurons and from Population B SNr neurons, we included
a “crossover probability” such that 25% of Population A’s
GPe synapses instead came from Poisson neurons and 25%
of its SNr synapses were from other Population A neurons.
This adjustment was mirrored in Population B: 25% of GPe
synapses to Population B were now from the oscillating
population and 25% of SNr synapses were from Population
B. We termed this the partially segregated model (Fig. 2E).

We found that the partially segregated model yields AP
and IP populations in the SNr with much more realistic delta
power distributions than observed in the original model
(Fig. 2F). Notably, a neuron’s phase outcome was not deter-
mined completely by whether it was in Population A or B as
was the case in the basic model; by chance, some Population
A neurons have an IP relationship to GPe rather than the
expected AP relationship, and vice versa for Population B.
This model also performed significantly better quantitatively
than did the original, as each of the properties we measured
falls within the confidence intervals derived from experi-
mental data (Fig. 2G). The small number of crossover con-
nections led to weaker oscillations in some neurons, thereby
increasing the breadth of oscillation strengths seen in each
population and leading to the absence of detectable oscilla-
tions in some neurons, presumably due to the combination
of synaptic inputs that they received.

3.2 Aless prescribed synaptic competition model
also matches in vivo recordings

While it fits experimental data better than the basic model,
the partial segregation model still assumes the existence of
two anatomically distinct populations in SNr that are biased
to receive inputs of specific types from GPe and fellow SNr
neurons. To relax this assumption, we considered an archi-
tecture that could potentially allow for such a dichotomy to
emerge through natural heterogeneity. This model features

a single heterogeneous population of SNr neurons that each
receive a total of 8 synapses, each arising from a GPe spike
train or an SNr neuron source with equal likelihood. We
term this the synaptic competition model in keeping with
the traditional use of “synaptic competition” to refer to the
competition for space on individual postsynaptic targets
(Cancedda & Poo, 2009), as GPe and SNr (randomly) com-
pete to make synapses on each SNr neuron (Fig. 3A). Note,
however, that there is no competition-based constraint on the
weights of those connections that are present in the network.
With this model, we posited that the neurons that, by chance,
had a high level of inhibition from GPe would form the basis
of the AP population and those with a high level of inhibi-
tion from those AP neurons would form the IP population,
while neurons receiving more balanced input would fall to
one side or the other through more complicated multisynap-
tic dynamics or would not oscillate at all.

Simulations of the synaptic competition model showed
generally similar results to the partial segregation model.
The synaptic competition model produces fractions of AP
and IP SNr neurons and distributions of delta power in the
AP and IP populations (Fig. 3B) that are similar to those of
the partial segregation model, although with weaker power
intensities than previously. Moreover, all quantitative meas-
ures computed from SNr activity characteristics for the syn-
aptic competition model fall within the confidence intervals
determined from in vivo data (Fig. 3C).

The evident delta oscillations and emergence of antiphase
populations in SNr occurred in vivo exclusively under DD
conditions. Having identified a model that captured the basic
properties of the data and had a reasonably simple and real-
istic architecture, we asked if a version of this model that
did not include properties associated with DD would rea-
sonably fit our control in vivo data. As such, we made three
modifications to the synaptic competition model: 1) Instead
of oscillating and Poisson spike trains, all simulated spike
trains from GPe were tuned to be approximately pacemaking
(see Section 2); 2) the passive TRPC3 current was strength-
ened, consistent with experimental findings (Zhou et al.,
2008, 2009); 3) the tonic STN synaptic excitation to model
SNr neurons was increased as observed under healthy condi-
tions in our in vivo data. Without any additional parameter
tuning, the SNr dynamics of this model produced the SNr
firing rates and variability observed in vivo in healthy ani-
mals (Fig. 3D). As such, this model of competitive synaptic
allocation in SNr from GPe and other SNr neurons matches
our SNr data in both the control and dopamine depleted
conditions. These results suggest that a competitive synapse
formation mechanism could allow the SNr, when subject to
low-frequency oscillatory input from GPe, to exhibit two
distinct clusters of oscillating neurons.
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3.3 Imperfectly synchronous GPe oscillations
partially propagate and promote phase lag
dichotomy in SNr

Next, we sought to delve deeper into some of the dynamics
of the synaptic competition model with conductance-based
model neurons in DD. First, we investigated the phase delays
between neurons within and between AP and IP populations.
A feature of the in vivo AP/IP dichotomy is that oscillations
in AP neurons tend to lead those in IP neurons (Whalen et al.,
2020). Since we do not have an M1 reference signal in the
model as we did in some of our in vivo data, we attempted
to replicate this finding using the cross-correlations between
spike trains from individual neurons (see Section 2). Using
all of our labeled pairs of simultaneously recorded AP and
IP neurons, we see a clear bias towards AP neurons leading
simultaneously recorded IP neurons (Fig. 3E, p = 0.0179,
Wilcoxon signed rank test). In our results from the synaptic
competition model (in which we can simulate many more

pairs of simultaneously recorded neurons), we see a similar
bias toward the AP population leading IP neurons (Fig. 3F,
p < 0.0001).

We also compared the more general distributions of
within-population and between-population pairwise phase
lags. In our experimental data, both distributions peaked
at zero, as expected. While the within-population distribu-
tion has a sharper peak in the real data than in our simu-
lated results (indicating that our simulation has slightly
inflated lags relative to the real data), the distributions are
not significantly different from one another (Fig. 3G, p
= (0.2850, two-sample Kolmogorov-Smirnov test). Simi-
larly, the between-population distributions in both the real
and simulated data are wider than the within-population
distributions, and the simulation is again not significantly
different from the real data (Fig. 3H, p = 0.1443). As such,
this model replicates the phase delays evident in the DD
SNr network, although it may be biased slightly towards
longer delays.
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Fig.3 Performance of the synaptic competition model. A. Architec-
ture for the “competitive” model, where the numbers of GPe and SNr
synapses onto each SNr neuron are not fixed, but each SNr neuron’s
fixed total number of synapses have an equal chance of arising from
GPe or SNr. B. Delta power for each neuron in the AP and IP popula-
tions from a simulation of the synaptic competition model. C. Perfor-
mance of the synaptic competition model on measures derived from
in vivo data, see Fig. 2C. D. Left: Architecture of the healthy version
of the synaptic competition model where all oscillating and Poisson
GPe neurons are replaced with pacemakers. Right: Same as C, but
only comparing to measures from control in vivo data and only look-
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ing at measures which do not depend on the presence of delta oscil-
lations. E. Analysis of AP/IP lead-lag relationship. Histogram of the
phase lags between all pairs of simultaneously recorded AP and IP
neuron pairs in vivo. Counts on the left indicate AP leading IP. F:
Same as E for the results of the synaptic competition model. G. Anal-
ysis of broader lead-lag relationships. Top: histogram of the absolute
phase lags between all pairs of neurons in the same population (puta-
tively AP vs. AP or IP vs. IP). Bottom: same as top for the results of
the synaptic competition model. H. Same as G for all pairs of neurons
in opposite populations (putatively AP vs IP)
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3.4 Oscillations persist under stochastic variations
in frequency but not in higher frequency bands

We performed additional simulations with the synaptic
competition model to test whether transmission of oscilla-
tions would persist when the oscillation frequency varied
over time (see Section 2). With a 2Hz baseline frequency
®, this temporal variation had little impact on the measures
of SNr activity that we consider in this work (Fig. 4). On
the other hand, when we increased w into the beta band,
with or without temporal variations, the oscillations in
the input signal no longer achieved the same degree of
entrainment of the SNr population. Specifically, we find far
fewer AP SNr neurons and many more non-oscillatory SNr
units with higher frequency input oscillations; for example,
Fig. 4 shows representative results for @ = 15Hz, and we
obtained very similar results with @ = 20, 25, and 30Hz as
well. Hence, we conclude that the mechanisms at work in
the model in this paper yield low frequency signal trans-
mission but do not extend up to frequencies in the beta
band. We will return to this effect again in Section 3.7 and
in the Section 4.

3.5 Results are robust to the inclusion of STN
inputs to SNr

Delta oscillations were also observed in the STN in vivo in
DD mice (Whalen et al., 2020), so excitatory inputs from STN
to SNr could play a role in determining the dynamics in SNr.
To provide an initial exploration of this point, we augmented
the synaptic competition model to include dynamic STN
inputs to the SNr neurons, based on experimental recordings.
Specifically, we generated an excitatory synaptic current in
the dendrite of each model SNr neuron, with a dynamic con-
ductance that jumped by a fixed amount at each time that
a spike was fired by any of a collection of simultaneously
recorded STN neurons and decayed exponentially between
spikes (see Section 2). We ran a total of 16 simulations that
included dynamic STN inputs, produced by picking 4 random
time segments from each of the 4 recorded animals.

We found that although the inclusion of these dynamic
input currents from STN to SNr significantly altered the
specific timing of the spikes generated by the model SNr
neurons, it had little impact on the model SNt neurons’ oscil-
lation properties (Fig. 5). These results were robust across
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Fig.4 Performance of the synaptic competition model with vary-
ing frequencies of input oscillations. A. Power in the SNr AP and IP
clusters for w = 2Hz and @ = 15Hz with and without fast variation
(r; = 100 and 7, = 1000) in w. B. Similar comparison across model
performance measures. Note that the 2Hz results persist under varia-

tion in w whereas the larger w yields quite different results, including a
lack of significant oscillations in about 60% of SNr neurons. C. Six ran-
domly selected examples of the time courses of @ used in A-B for the
15Hz baseline. D-F. Similar results with a slower variation (z; = 500
and 7, = 2000) in @
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Fig.5 Results of including experimental STN data in the simulated
SNr network. A. Comparison across model performance measures
as in Figs. 2, 3, 4. Each data point (colored triangle) represents the
results averaged over four simulations corresponding to four different
STN data samples from one animal. B. Histogram of average firing
rates across the SNr network for all 16 simulations where STN data

the 16 trials. Thus, these simulations are consistent with the
idea that GPe oscillations are a possible source of the delta
oscillations observed in the SNr, in which anti-phase rela-
tionships emerge locally within the SNr, with STN inputs
affecting overall SNr firing rates but not providing a primary
influence on SNr oscillations.

3.6 A simplified SNr neuron model replicates some,
but not all, in vivo results

To check the generality of our results, and in particular
whether they rely on some specific nonlinearities associated
with SNr intrinsic dynamics or rather emerge simply from
the properties and connection pattern of the synapses, we
repeated our simulations of the synaptic competition model
with the conductance-based SNr neural model replaced with
quadratic integrate-and-fire (QIF) neurons (see Section 2).
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was included. The horizontal bar is the experimental data confidence
interval of the respective measure, with the median marked in blue.
C-E. Same as B but for: (C) the fraction of SNr neurons in the AP
oscillation cluster (Frac. AP), (D) the fraction of SNr neurons in the
IP oscillation cluster (Frac. IP), and (E) the ratio of the mean delta
power in the AP cluster to that in the IP cluster, respectively

We obtained similar results after this model substitution
with regards to the size, strength and power variability of
the AP and IP populations (Fig. 6A-B). The one measure
on which the QIF model does not match in vivo recordings
or the conductance-based model is the variability of ISIs,
measured using CV,. To increase this variability closer to
levels observed in vivo, we added Gaussian noise to the QIF
voltage equation (see Section 2) at varying levels to see how
this modification impacted our results. While increases in
voltage noise increased ISI irregularity to within the confi-
dence interval derived from in vivo data, there was a com-
mensurate increase in the fraction of non-oscillating neurons
and decrease in the ratio of AP:IP power, each of which
fell out of their confidence intervals (Fig. 6C). These results
demonstrate that the configuration of synaptic connections is
a key component of the underlying oscillatory dynamics in
this system, but the nonlinearities of the conductance-based
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Fig.6 Performance of the
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model are important for reproducing a complete picture of
the SNr neural dynamics.

3.7 The power of oscillatory inputs from GPe
and SNr define the AP and IP clusters

Finally, we sought to understand more deeply the dynamics
leading to the distinct AP and IP populations in our synap-
tic competition model. Since the number of synapses that
each SNr neuron receives from either population (GPe or
SNr) follows a unimodal binomial distribution, we might
expect a continuous spectrum of oscillatory profiles, with
a large number of non-oscillating neurons receiving near-
equal numbers of GPe and SNr synapses while neurons on
the tails of this distribution express a strong AP or IP oscil-
lation. The large numbers of strongly oscillating AP and IP
neurons arising in our simulations, however, suggest that
the neurons’ intrinsic dynamics and synaptic interactions
may combine to separate units into the more distinct AP
and IP classes.

To investigate this idea, for each neuron, we plotted the
sum of its synaptic weights from GPe against the sum of
its synaptic weights from other SNr neurons. As expected,

T T T T 1
0.03 0.045 0.06 0.075 0.09
Noise o

these two measures have an inverse relationship as dictated
by the competition between the number of GPe and SNr
synapses on a single neuron built into the model. Addition-
ally, we see that AP neurons tend to receive more GPe input
while IP neurons tend to receive more SNr input, as expected
(Fig. 7A). Note that each neuron’s placement on this scat-
terplot is determined completely by the random setup of
the network, as no synaptic weights are changed during the
simulation. As such, there is an expected binomial-like, uni-
modal density of points along the y = —x line.

Next, we weighed each synaptic weight by its oscillatory
power at the forcing frequency (2 Hz) to visualize the total
oscillatory power each neuron receives from GPe and SNr
synapses. Here, we see the AP and IP neurons separate into
much more distinct clusters (Fig. 7B). To quantify this effect,
we computed the distance from each point to the centroid of
the other cluster, in the direction specified by the line con-
necting the two cluster centroids, and found the distribution
of these distances to be biased to the positive side of zero
(Fig. 7C). As a comparison, we performed the same distance
computation on the strength scatterplot in Fig. 7A and found
a distance distribution more shifted toward zero, as would
be expected from this visually unimodal 2-D distribution
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Fig.7 Model SNr neurons cluster based on presynaptic GPe and SNr
delta power. A. Scatterplot of AP (red) and IP (blue) neurons based
on their total synaptic strength from other SNr and GPe neurons.
The two larger, lighter circles denote the centroids of the AP and IP
clusters. B. Same as A, except plotting the total 2 Hz power (X[(2 Hz
power) X (synaptic strength)]) from SNr and GPe. Also, histograms
show marginal distributions of 2Hz power from GPe for the IP and

(Fig. 7C). This degree of separation of clusters is surpris-
ing, as it is not clear how the levels of presynaptic oscilla-
tory power received by each neuron would dichotomize to
push these clusters apart, in contrast to the unimodality that
we observe in the strength scatterplot. This finding demon-
strates that the neurons in this model undergo an unexpected
bifurcation into two mostly distinct AP and IP populations,
which are not purely dictated by the synaptic architecture in
the network nor by the level of 2Hz power neurons receive
from GPe. Finally, we saw in Fig. 4 that inputs with higher
frequency oscillations are less effective at inducing peaks
at similar frequencies in the SNr neurons, with a major loss
of AP SNr neurons. A similar analysis to Fig. 7B done with
the higher frequency oscillations (Supplemental Fig. 2)
illustrates the lack of high frequency power in the GPe input
signal to SNr neurons in the 15 Hz case, which apparently
translates into a failure to shut down SNr neurons rhythmi-
cally and push them into the AP phase relationship with their
inputs (Fig. 1C), perhaps because the inhibitory signal result-
ing from imperfectly synchronized inputs at these higher fre-
quencies averages out to be less variable (see also Section 4).

4 Discussion

In this work, we have demonstrated that slowly oscillating
firing rates in a subset of GPe neurons suffice to induce an
oscillation structure in the SNr that mimics in vivo experi-
mental observations under DD (Whalen et al., 2020). These
results occur in a partially segregated network architecture
that explicitly defines SNr subdivisions by their distinct syn-
aptic connectivity patterns, where neurons tend to fall into
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AP clusters. C. Top: Displacement (signed distance) of each neuron
in the GPe-SNr synaptic strength space (panel A) to the centroid of
the opposite (AP or IP) cluster along the dimension defined by the
line connecting the two centroids (grey dashed line in A), totaled over
5 runs of the synaptic competition model with different randomly
instantiated connections and strengths. Bottom: Same as top for the
neurons in the GPe-SNr synaptic delta power space (panel B)

AP- or IP-like phase relationships based on which of the two
architectural subdivisions they belong to. However, we show
that this dichotomy is also possible through a simpler and
less assumptive synaptic competition model wherein SNr and
GPe compete to form a limited number of synapses on each
SNr soma. With small, experimental data-driven changes
to simulate a healthy state, we show that the model exhib-
its firing rates and patterns that match what we observe in
healthy control mice, lending further credence to the real-
ism of our model. Importantly, our results demonstrate that
despite the imperfect synchrony of delta oscillations in GPe,
these oscillations can propagate to downstream targets and
generate oscillations with realistic phase distributions in SNr.
Moreover, these findings persist when excitatory STN inputs
to SNr neurons based on recorded spike trains are included
in our simulations and when the inhibitory input oscillation
frequency drifts over time, whereas the widespread, clustered
nature of the SNr oscillations significantly deteriorates when
this input frequency is shifted to the beta band.

Our results are rather intuitive, but multiple aspects of
these findings are non-trivial: (a) The most straightforward
architecture for producing anti-phase dynamics, the segre-
gated architecture shown in Fig. 2A, does not reproduce the
variability in the data. (b) In the successful partially segre-
gated model shown in Fig. 2E, the cluster membership of
some neurons does not match what would be expected from
the synaptic architecture alone. (c) The biological reasonable
but non-segregated synaptic competition model shown in
Fig. 3A can completely capture the anti-phase oscillations
in the data. (d) Despite a mild phase heterogeneity in GPe,
significant phase differences emerge between the SNr clus-
ters. (e) The cluster membership in the synaptic competition
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model is not entirely determined by the total oscillatory
power from the GPe; the histograms in Fig. 7B show the
significant overlap between the clusters on this measure. (f)
This work shows that imperfectly synchronized oscillations
can propagate across populations via inhibitory synapses,
which do not necessarily provide the straightforward signal
transmission associated with excitatory synapses.

Network architecture assumptions Our initial models
assumed two anatomically distinct populations of SNr neu-
rons receiving connections from specific types of GPe and
SNr cells. Specifically, we assumed that the synaptic tar-
gets of oscillating and Poisson neurons in GPe are predomi-
nantly members of distinct neuron pools in SNr and that
these two SNr populations primarily project to one another
rather than to themselves. Experimentally, there is clear evi-
dence of topographical pathways through the basal ganglia,
including the GPe-SNr pathway, which are segregated by
the higher order processes — motor, limbic, or associative
— with which they are associated (DeLong & Wichmann,
2010; Yelnik et al., 2002). The topography is likely more
complicated, continuous, and convergent, however, than
the two discrete populations that we define in this model
(Foster et al., 2020; Nakano, 2000). Given experimental
results demonstrating the connection between delta oscilla-
tions and motor symptoms (Whalen et al., 2020), it is pos-
sible that oscillations may be restricted primarily to motor
pathways in the basal ganglia while not penetrating limbic
or associative pathways, which could lend credence to our
built-in dichotomy, although there is no direct evidence for
this idea. Even if two distinct GPe-SNr pathways exist as
we have modelled them here, however, it is unlikely that the
two SNr populations would be more likely to project to each
other rather than back to themselves, and this is a critical
detail for our basic and partially segregated models’ oscil-
latory behaviors. As such, we consider these initial models
a proof of concept for how realistic oscillations could form
in such a system, but not necessarily a realistic model of the
GPe-SNr network.

In contrast, our synaptic competition model does not rely
on any of these assumptions. Instead, the only architectural
assumption made is the existence of competition between
GPe and SNr neurons for the formation and maintenance
of synapses on SNr somas. While to our knowledge there
is no direct evidence of this competition at this site, other
examples of similar synaptic competition exist. For exam-
ple, synaptic scaling occurs in many regions of the brain
to approximately balance a neuron’s output (Turrigiano,
2008), although this has primarily been studied at excita-
tory rather than inhibitory synapses, and nascent synapses
may be pruned if nearby synapses are particularly active
(Lo & Poo, 1991). Notably, SNr neurons tend to exhibit
large nests of synapses all arising from the same presynaptic

neuron (Simmons et al., 2020; Smith & Bolam, 1989); this
redundancy may explain the atypical strength of these con-
nections onto SNr, and could also increase synaptic com-
petition if the physical space for multiple synaptic nests is
limited. While studies have looked closely at the synaptic
connectivity from GPe to SNr and within SNr (Higgs &
Wilson, 2016; Simmons et al., 2020), no study has looked
at the relationships between these connections and whether
strong inhibition from one source affects the probability of
receiving strong inhibition from the other. A study directly
testing whether levels of inhibition from GPe and SNr on a
single SNr neuron are inversely correlated, as we have pre-
dicted here, would lend credence to our proposed model of
delta oscillation propagation from GPe to SNr.

Model simplifications, predictions, and possible exten-
sions In comparing the results from models to real data, we
ran statistical tests or derived confidence intervals to deter-
mine if the simulated results were statistically indistinguish-
able from the real data in a classical statistical sense. We
caution, however, that our failure to reject the null hypoth-
esis that our simulation produces distributions that are the
same as those observed in vivo is not an acceptance of that
null hypothesis. Such a claim can, in fact, never be proven,
as even two samples from identical distributions will never
have precisely the same mean (or any test statistic of inter-
est). For the purposes of this study, we consider these tech-
niques sufficient to claim that our model reasonably matches
the experimental results.

With any computational model, certain aspects of realism
must be sacrificed, both in the model construction and in
interpreting its results. We focused our study on a network
of conductance-based SNr model neurons, which grounds
this model in biological realism based on the known ionic
currents driving these neurons’ electrochemical dynamics
and allows them to be well fit to experimental data. As we
demonstrated through a contrasting experiment with simpler
QIF model neurons, the complexity of dynamics afforded
by conductance-based neurons is important to capture the
full breadth of neural patterns we considered in this study.

Even our relatively realistic conductance-based model,
however, entails many simplifications. We included only two
compartments, one somatic and one dendritic, such that the
model neglects features like dendritic computation and vari-
able or even failed propagation of action potentials down
an axon. While we include short-term synaptic depression,
longer term plasticity is neglected, due both to the complex-
ity that this would induce in the model and a lack of experi-
mental understanding of plasticity in the SNr.

Additionally, certain newly discovered aspects of GPe
and SNr physiology could have significant implications if
included in this model. While GPe is canonically an inhibi-
tory nucleus, it has been shown to have both inhibitory

@ Springer



Journal of Computational Neuroscience

and excitatory effects on SNr neurons (Freeze et al., 2013;
Phillips et al., 2020), the latter of which may result from a
shift in the chloride reversal potential due to high chloride
influx derived from the many sources of inhibitory input
to SNr (Phillips et al., 2020). Such shunting or excitatory
effects of GPe inputs could greatly shift how effectively
oscillations propagate from GPe to SNr, especially in a
model in which chloride dynamics are allowed to dynami-
cally shift E,;. A sufficiently depolarized E; can in fact
allow for the spontaneous emergence of delta oscillations
in a network of interconnected SNr neurons (Phillips et al.,
2020). These oscillations are much weaker than those we
see in vivo, exhibiting only approximately a 2 Hz differ-
ence between peak and trough compared to the complete
cessation of firing observed in many SNr neurons in vivo.
Nonetheless, this intrinsic drive to oscillate at a delta fre-
quency under certain conditions could make SNr more
effective at amplifying oscillations present in the synaptic
inputs that it receives from other nuclei or could be the
initial source of these oscillations, which are subsequently
amplified by other biophysical mechanisms or through a
multisynaptic loop (e.g. Corbit et al., 2016; Rubin, 2017).
Indeed, the delta power that the SNr populations exhibit in
our synaptic competition model is not as strong as that in
the data (compare Fig. 2B versus Fig. 3B), and some sort
of amplification mechanism outside the scope of our model
may be responsible for this discrepancy.

While we use the term synaptic competition model for
the connection architecture that we propose, we caution
that the particulars of such synaptic competition have been
ignored here. We assume that there is limited space for the
large synaptic nests that are made on SNr somas (Simmons
et al., 2020; Smith & Bolam, 1989), and we begin the model
at a state in which that limited space has already been allo-
cated to GPe and SNr neurons. The endpoint of this inferred
competition can be tuned in the model by adjusting the
probability that a unitary connection arises from GPe rather
than SNr, but the details of how that underlying competition
might occur in the brain are not considered. In biological
neurodevelopment, such competition could exist in many
forms, with synapses being formed, pruned, strengthened,
and weakened through a number of activity-dependent plas-
ticity mechanisms (Fino et al., 2005; Thoenen, 2000), or the
synapses could genuinely be distributed in a simple random
fashion. The details of such development and plasticity in
the SNr are not known, but do not affect the endpoint of the
system that we are modeling here.

Despite these simplifications, we find that our model per-
forms well at capturing the structure of the oscillatory dynam-
ics across the SNr that are seen experimentally (Whalen et al.,
2020). To truly determine the usefulness of this model, it is
important to tie its results to predictions that can be checked
experimentally to test its veracity.
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A major conclusion of our work is that oscillations in GPe
are sufficient to recreate the oscillations observed experi-
mentally in SNr. This hypothesis could be tested by compar-
ing the oscillatory power in SNr neurons before and after the
ablation of GPe. We caution, however, that while GPe may
be sufficient to entrain SNr in this way, it may not be the only
nucleus doing so. Interestingly, while delta oscillations have
been observed in the STN (Whalen et al., 2020) in DD mice,
our results show that these are not necessary to explain the
emergent SNr dynamics and that inclusion of STN inputs
based on recorded spike trains has little impact on the quali-
tative dynamics of SNr neurons in the synaptic competition
model; however, a more thorough exploration of the impact
of STN inputs on SNr dynamics remains for future work. For
example, we supply the same STN inputs to all of our model
SNr neurons, but in reality, some heterogeneity in connectiv-
ity will surely be present. Moreover, since STN and D1 neu-
rons from striatum both synapse onto SNr dendrites, there
could exist a competitive level of innervation between these
two populations. The effects that such architectures have on
the resulting dynamics in SNr could suggest which pattern
of connections from STN to SNr may actually occur in vivo.
The direct pathway inputs from striatal neurons themselves
could also play a role in establishing the oscillation struc-
ture in SN, although these neurons were not observed to
exhibit delta oscillations (Whalen et al., 2020). Furthermore,
changes in SNr intrinsic properties, in extracellular ion con-
centrations (cf. Phillips et al. (2020)), in neuromodulation,
and in other biophysical factors could also contribute to SNr
oscillations in DD. Finally, another related future step would
be to use a previously developed model GPe-STN network,
known to produce oscillations under simulated parkinsonian
conditions (Terman et al., 2002), as the source of inputs to
the model SNr neurons. This step would first require tuning
of the GPe-STN model to capture the features of the experi-
mentally observed delta oscillations (Whalen et al., 2020).

Propagation of imperfectly synchronous delta oscillations A
particularly interesting result in our simulations is the effec-
tive entrainment of a large subset of SNr neurons by GPe
despite the imperfect synchrony of GPe oscillations, along
with the separation of SNr neurons into distinct phase clus-
ters with larger differences in oscillation phases. Regard-
ing the latter feature, it appears that the IP sub-population
inherits its oscillations from the AP sub-population, with
a delay based on the recovery time for IP from inhibition
from AP. The mechanism by which the SN population splits
into distinct clusters despite the continuum of levels of low-
frequency power that the neurons receive (Fig. 7B) is not
yet clear, however. Our in vivo recordings of GPe neurons
reveal a spread in the times when their delta peaks occur.
We posit that the reason that phase-shifted GPe oscillations
can effectively integrate in a single SNr neuron in a manner
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that causes oscillatory firing is that the phase differences
still represent only a fraction of the slow oscillation period
and that the heterogeneity of phases merely changes the
shape of the resultant oscillation; for instance, in the case
of square wave oscillatory profiles, oscillations with a large
delay integrated in the same SNr neuron may simply change
the relative durations of the neuron’s up and down states
while still allowing the delta oscillation to express. Indeed,
in simulations with higher frequency oscillations in the GPe
spike trains, we did not observe the same degree of signal
propagation and splitting of SNr neurons into two phase-
shifted clusters that we obtained with delta oscillations.

Taking this idea one step farther, we hypothesize that
the presence of relatively large phase differences in GPe
may help explain why delta oscillations are such a strong
feature in DD. A 20 ms delay between two neurons under-
going a 1 Hz oscillation still keeps them approximately in
phase, covering only 1/50 of their cycle. Yet, the same delay
in, for example, a 25 Hz oscillation gives these neurons an
antiphase relationship. If lags of this size are a common
feature of neural oscillations regardless of the oscillation
frequency, due to jitter across neurons in the times at which
they switch between spiking up and non-spiking down states,
heterogeneity in intrinsic neuronal properties and coupling,
or other factors, then a group of neurons oscillating at the
same high frequency would essentially tile the phase space,
so the integration of these signals in downstream neurons
would undergo destructive interference, making the propaga-
tion of these high frequency oscillations difficult. This idea
suggests that delta oscillations may be particularly robust
to the natural variability in relative timing across neurons
within a population, and could help explain why they can
have such a strong synchronizing effect, entraining the entire
cortex during slow-wave sleep (Steriade et al., 1993) and
extending throughout the basal ganglia, as we have estab-
lished in mice (Whalen et al., 2020), in DD.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10827-023-00853-z.
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