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Abstract
Parkinson’s disease (PD) and animal models of PD feature enhanced oscillations in several frequency bands in the basal 
ganglia (BG). Past research has emphasized the enhancement of 13-30 Hz beta oscillations. Recently, however, oscillations 
in the delta band (0.5-4 Hz) have been identified as a robust predictor of dopamine loss and motor dysfunction in several 
BG regions in mouse models of PD. In particular, delta oscillations in the substantia nigra pars reticulata (SNr) were shown 
to lead oscillations in motor cortex (M1) and persist under M1 lesion, but it is not clear where these oscillations are initially 
generated. In this paper, we use a computational model to study how delta oscillations may arise in the SNr due to projections 
from the globus pallidus externa (GPe). We propose a network architecture that incorporates inhibition in SNr from oscillat-
ing GPe neurons and other SNr neurons. In our simulations, this configuration yields firing patterns in model SNr neurons 
that match those measured in vivo. In particular, we see the spontaneous emergence of near-antiphase active-predicting and 
inactive-predicting neural populations in the SNr, which persist under the inclusion of STN inputs based on experimental 
recordings. These results demonstrate how delta oscillations can propagate through BG nuclei despite imperfect oscillatory 
synchrony in the source site, narrowing down potential targets for the source of delta oscillations in PD models and giving 
new insight into the dynamics of SNr oscillations.
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1  Introduction

Pathological neural oscillations in the basal ganglia and 
motor cortical brain regions are hallmarks of Parkinson’s 
disease (PD) and have been studied in both Parkinsonian 
patients and animal models of PD (Boraud et al., 2005; 
Hammond et al., 2007; Jenkinson & Brown, 2011). Exces-
sive beta oscillations (13-30 Hz) have received much of the 
attention in the PD literature (Brown et al., 2001; Cassidy 
et al., 2002; Weinberger et al., 2006; Halje et al., 2019) 
but lower frequency oscillations have also been observed 
in PD patients (Levy et al., 2002; Steigerwald et al., 2008; 
Du et al., 2018; Zhuang et al., 2019) and animal models 
(Raz et al., 2000; Tseng et al., 2001; Heimer et al., 2006; 
Walters et al., 2007; Parr-Brownlie et al., 2009; McCairn 
& Turner, 2009; Aristieta et al., 2016). Such oscillations in 
human patients have typically been associated with Parkin-
sonian limb tremor, and while such oscillations can have 
significant coherence with tremor measured through elec-
tromyography (EMG), some oscillating neurons exhibit no 
such EMG coherence (Du et al., 2018; Hurtado et al., 1999) 
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or drift in and out of coherence with EMG signals over the 
course of a recording (Hurtado et al., 2005). These oscil-
lations’ relationships to other motor symptoms in PD have 
been far less studied.

Recently, it was shown that delta oscillations (0.5-4 Hz) 
are the primary oscillatory phenotype that arises throughout 
the basal ganglia after loss of dopamine in mouse models 
of PD whereas, surprisingly, beta oscillations were never 
observed in these animals (Whalen et al., 2020). In the sub-
stantia nigra pars reticulata (SNr), the main output nucleus 
of the mouse basal ganglia, the prevalence of these delta 
oscillations is predictive of the severity of dopamine loss 
and non-tremorous motor dysfunction, and delta oscillations 
tend to weaken during periods of motor activity. These find-
ings suggest a reappraisal of lower frequency oscillations as 
a biomarker or causal factor in Parkinsonian akinesia, rigid-
ity and bradykinesia. However, the mechanisms by which 
these oscillations arise in the Parkinsonian brain are not 
well-understood.

Parkinsonism subdivides the SNr into two populations 
defined by their patterns of delta oscillations, as well as a 
third population of neurons without significant oscillatory 
activity (Whalen et al., 2020). These two populations exhibit 
roughly antiphase activity, but when they are referenced to 
similar pathological oscillations in motor cortex (M1), a 
clearer picture emerges. One population enters its up-state 
approximately 180 ms before M1 enters its up-state and is 
termed active-predicting (AP) because its activity predicts 
future activity in M1. The second population lags slightly 
behind, entering its inactive state approximately 120 ms 
before M1 enters its up-state and is named inactive-predicting 
(IP) because this population’s inactivity predicts M1 activity. 
These two features - the populations’ activity states and lead 
times relative to M1 - plainly provide a disjoint classification 
of SNr neurons, but it is not clear how this dichotomy arises 
in the parkinsonian SNr.

Delta oscillations in the Parkinsonian mouse are known to 
require the loss of dopaminergic activation of D2 receptors 
(Whalen et al., 2020). Because of this, a reasonable hypoth-
esis may be that SNr oscillations are inherited from upstream 
neurons in the indirect pathway of the basal ganglia, which 
originates in D2-expressing neurons of the striatum. These 
neurons send inhibitory projections to the globus pallidus 
externa (GPe), which in turn provides inhibitory projections 
to the SNr, and GPe neurons themselves exhibit strong delta 
oscillations in the Parkinsonian state as well. Specifically, 
the SNr-projecting neurons of the GPe are all part of the so-
called prototypic GPe population (Mallet et al., 2012) and 
exhibit delta oscillations approximately in phase with one 
another (Mallet et al., 2008).

The main objective of this paper is to test in a compu-
tational model whether it is possible for the delta oscilla-
tions in GPe to account for the structure of SNr activity 

that we observe experimentally under dopamine depletion. 
Specifically, we seek to determine if there exists a GPe-
SNr circuit architecture that can reproduce our experimen-
tal observations: the presence of near-antiphase AP and IP 
populations in the SNr and the intrinsic firing patterns and 
phase relationships observed within these groups. Using data 
from our previous work (Whalen et al., 2020), we construct 
confidence intervals for these neural measures that allow 
comparisons of the results of various simulations to in vivo 
observations. Guided by these comparisons to experimen-
tal data, we identify a synaptic architecture that achieves 
realistic dynamics, and this model’s features suggest that a  
competitive process for GPe and SNr synaptic formation on  
the somas of SNr neurons is sufficient to allow for the spon-
taneous generation of AP and IP populations within the SNr 
when SNr neurons are inhibited with oscillatory GPe input.  
Despite phase lags within GPe, oscillations arise as observed 
in vivo in the two SNr populations, with inherited phase rela-
tions that match experimental data. Moreover, the emergent 
SNr dynamics persist with temporal drift in the GPe oscillation 
frequency within the delta band as well as with the inclusion 
of excitatory inputs from the subthalamic nucleus (STN) 
to SNr based on recorded STN spike trains. These results 
suggest that SNr need not develop its own intrinsic oscil-
lations in parkinsonism but can instead inherit them from 
other basal ganglia nuclei. Overall, these findings provide 
evidence for the striatum or GPe as the source of parkinso-
nian delta oscillations, a critical detail in understanding their  
generation and in designing approaches for their ablation as 
potential PD treatments.

2 � Methods

2.1 � In vivo experiments and analysis

In this subsection, we discuss the experimental and compu-
tational methods that went into the collection and analysis 
of the experimental data presented in Figs. 1-3 of this paper 
(cf. Whalen et al. (2020)).

Animals and data collection  All experimental data used in 
this paper were previously published in Whalen et al. (2020), 
and detailed experimental methods can be found there. In 
brief, male and female mice on a C57BL/6J background 
were injected with 6-hydroxydopamine (6-OHDA) into the 
medial forebrain bundle to induce dopamine depletion (DD); 
control animals were instead injected with saline. Animals 
were head-fixed atop a running wheel and acute electrophys-
iological recordings were performed in the SNr or GPe. Data 
were manually spike sorted into single units. Some record-
ings included a simultaneously recorded electrocorticogram 
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(ECoG) signal measured from primary motor cortex (M1) 
through an implanted wire.

In this paper, we made use of the experimentally collected 
GPe and STN data to design the inputs to our model SNr 
neurons and we utlized the experimentally collected SNr data 
for direct comparison with the activity of our model SNr neu-
rons. Much of the data analysis used in this paper was already 
performed and reported in (Whalen et al., 2020), and hence 
we refer the reader there for the full details of these analysis 
methods and simply report an abridged version here.

Oscillation detection  We detected oscillations by identify-
ing those frequencies at which our data featured both high 
power and low phase shift. Our power calculations were 
performed using partially overlapping time segments of 212 
ms of data sampled at 1 kHz, with steps of size Δs = 29 ms 
taken between segments. For each segment, we computed 
the renewal-corrected PSD as

and we averaged Ĉ(𝜔) values across segments to obtain the 
renewal-corrected PSD. Here, Ĉ0(𝜔) denotes the theoretical 
power spectral density (PSD) of a renewal process defined 
by the interspike interval (ISI) probability distribution on 
the segment scaled by the number of spikes in the segment 
(Gerstner et al., 2014; Whalen et al., 2020). The numerator 
term Ĉ∞(𝜔) is an estimate of the PSD of the spike train in 
that segment, given by the squared modulus of the power 
spectrum of the mean-subtracted spike train in the segment 
(i.e., the original binary spike train in the segment after 
subtracting off its mean over that segment, which sets the 
0 Hz component of the spectrum to 0). All PSDs in this 
study have undergone this renewal-correction but are simply 
referred to as PSDs for brevity.

Our phase shift calculation involved three steps: taking 
the arctangent of the power spectrum to find an uncorrected 
phase �̃  at each frequency for each segment; computing a 
corrected phase � for that frequency and segment by using 
a mod function and translation to define frequency relative 
to the start of the recording rather than the start of the seg-
ment; and averaging the phases across successive segments 
for each frequency, to obtain an overall phase shift �(�) as a 
function of frequency �.

Once these calculations had been performed for a 
recorded unit, we defined statistically significant power to 
occur at those frequencies within the band 0.5–4 Hz that 
were local maxima of Ĉ(𝜔) , defined as being higher than 
the three neighboring values to each side, that were above 
the 99% confidence interval of renewal-corrected power 
from the region of Ĉ(𝜔) between 250 and 500 Hz, correct-
ing for multiple comparisons (Bonferroni correction) of all 

Ĉ(𝜔) =
Ĉ∞(𝜔)

Ĉ0(𝜔)

frequencies in the delta band. We then checked if any fre-
quency detected in this way had a significantly low phase 
shift. Such phase shifts were defined as those lying below 
the 95% confidence interval of phase shifts from the region 
of �(�) between 250 and 500 Hz, with correction for multi-
ple comparisons (Bonferroni correction) if multiple frequen-
cies were detected from the PSD.

AP/IP unit classification  In recordings with a simultaneous 
M1 ECoG signal, we built a series of regression models pre-
dicting the M1 ECoG signal from the spiking of single SNr 
units at various lags in order to determine the sign and sig-
nificance of the relationship between each SNr unit and M1.

First, we binned the ECoG into 10ms bins and defined 
the dependent variable Y as the difference between adjacent 
ECoG measurements to reduce nonstationarity. We then 
built a 10th order autoregressive model of Y which served 
as the null model. Next, we built additional autoregressive 
models to test lead/lag relations of SNr unit activity relative 
to M1. For these models, we calculated the spike density 
function (SDF) for an SNr unit by convolving its spike train 
with a Gaussian function with a standard deviation of 100 
ms. For simplicity, we assumed that if a lag exists by which 
the unit firing influences the ECoG or vice versa, then there 
is only one such lag by which this influence occurs. Thus, 
for each time shift of the SDF between -1000 and +1000 ms 
(defined in 10 ms increments, for a total of 201 time shifts) 
we used the 10th order autoregressive terms and one SDF 
term with this shift as its explanatory variables.

From this collection, we identified the model with the 
smallest mean squared error. We next performed an F-test 
at 𝛼 < 0.05 , correcting for 201 comparisons (Bonferroni 
correction), to determine whether the model at this lag was 
significantly better than the null autoregressive model. We 
found that all neurons with a significant lead/lag relationship 
to M1 exhibited a "best lag" that was negative in time; that 
is, SNr activity was predictive of future changes in M1. We 
computed the regression coefficient at this best lag for each 
neuron. Neurons for which the best lag had a positive coef-
ficient were termed active-predicting (AP), and neurons for 
which the best lag had a negative coefficient were termed 
inactive-predicting (IP).

Quantifying phase lags  To quantify the oscillation phase 
lags between pairs of units, we first computed the SDF of 
each oscillating unit using a Gaussian filter with � = 50 
ms. For each pair, we performed cross-correlation using a 
moving window procedure to minimize the effects of non-
stationarities in firing rate over the course of the recording 
(Willard et al., 2019). We used a window size of 20 s with 
a maximum lag of 4 s and zeroed the first and last 4 s of the 
one of the SDFs to ensure that the correlation computation 
at each lag would have an equal amount of zero-padding. We 
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then divided the cross-correlation by its mean at lags greater 
than 4 s so that the value at each lag could be interpreted as a 
fraction of the neuron’s mean firing rate. This procedure was 
computed on every window with a moving window step size 
of 8 s then averaged together to obtain the final normalized 
cross-correlation between the two signals.

Since most data (and all simulations) did not include an 
ECoG reference to determine the SNr neuron’s identity (AP 
or IP), we determined that the pair was in the same popula-
tion if their cross-correlation peak was closer to lag zero 
than their trough, and different populations if their trough 
was closer to lag zero than their peak. We defined their 
relative phase as the absolute value of the lag at which this 
extreme occurred (whether peak or trough).

2.2 � Modeling neuronal dynamics and interactions

Conductance‑based model of SNr neurons  We used a pre-
viously published conductance-based biophysical model of 
SNr neurons (Phillips et al., 2020) with small modifications 
noted below. Parameters can be found in Phillips et al. (2020) 
and were originally adapted from earlier computational stud-
ies (Abbott et al., 1997; Corbit et al., 2016; Xia et al., 1998) 
or tuned from experimental data (Connelly et al., 2010; Zhou 
et al., 2008), except where otherwise noted.

Because different input sources to SNr neurons have spa-
tially distinct targets, each neuron is modelled with a somatic 
and a dendritic compartment. The respective membrane 
potentials VS and VD are governed by the equations

where C is that compartment’s membrane capacitance and 
each I is an ion current: fast ( INa ) and persistent ( INaP ) Na+ 
currents, delayed rectifying K + current ( IK ), Ca2+ current ( ICa ), 
Ca2+-activated K + current ( ISK ), leak current ( Ileak ) in the 
somatic compartment, and a transient receptor potential chan-
nel 3 current ( ITRPC3 ) in the dendritic compartment. IDS and 
ISD are coupling currents representing the current flow from 
the dendritic to somatic compartments and vice versa. IS

GABA
 

denotes the synaptic current due to projections from simulated 
GPe neurons (see below) and local connections from other SNr 
neurons. ISTN denotes a tonic excitation from STN, projections 
from which synapse primarily on dendrites in the SNr (Kita & 
Kitai, 1987), which is included in lieu of spiking STN neurons. 
The current equations take the following form:

CS

dVS

dt
= −INa − INaP − IK − ICa − ISK − Ileak

− IS
GABA

− IDS,

CD

dVD

dt
= −ITRPC3 − ISD − ISTN ,

INa = gNa ⋅ m
3

Na
⋅ hNa ⋅ sNa ⋅ (VS − ENa)

where each g is the current’s maximum conductance, each 
E is the current’s reversal potential, and each m, h, n, and 
s is a gating variable. � in the equation for ICa is 13.27, the 
coefficient for calcium in the Nernst equation.

Each of the gating variables obeys an equation of the type

where x is an m, h, n, or s gating variable of a particular cur-
rent, x∞(V) is the gate’s steady state and �(V) is the gate’s 
time constant, given by

and all quantities in each expression, other than V, are constants.
An exception to the above specifications arises with the 

Ca2+-gated SK channel, for which the m gate is governed by

where kSK is the half-activation calcium concentration and 
nSK is the Hill coefficient. The intracellular Ca2+ concentra-
tion [Ca]in evolves according to

INaP = gNaP ⋅ m
3

NaP
⋅ hNaP ⋅ (VS − ENa)

IK = gK ⋅ n4
K
⋅ hK ⋅ (VS − EK)

ICa = gCa ⋅ mCa ⋅ hCa ⋅ (VS − � ⋅ ln(
[Ca]out

[Ca]in
))

ISK = gSK ⋅ mSK ⋅ (VS − EK)

Ileak = gleak ⋅ (VS − Eleak)

IS
GABA

= gS
GABA

⋅ (VS − ES
GABA

)

IDS = gC
CS

CS + CD

⋅ (VS − VD)

ITRPC3 = gTRPC3 ⋅ (VD − ETRPC3)

ISD = gC
CS + CD

CD

⋅ (VD − VS)

ISTN = gSTN ⋅ (VD − Eglut)

dx

dt
=

x∞(V) − x

�x(V)

x∞(V) = (1 + e−(V−x1∕2)∕kx )
−1
,

�x(V) = �0
x
+

�1
x
− �0

x

e
(�x

1∕2
−V)∕�0

x + e
(�x

1∕2
−V)∕�1

x

mSK([Ca]in) =

(
1 +

(
kSK

[Ca]in

)nSK
)−1
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where �SK is a constant relating current to the rate of change 
of [Ca2+]in , �Ca is the time constant for calcium efflux 
through Ca2+ pumps, and [Ca]min is the minimum calcium 
concentration at which these pumps are active. The param-
eters for this equation were adapted from Xia et al. (1998).

The synaptic conductance gS
GABA

 obeys the equation

where �S
GABA

 is the synaptic decay time constant, W is the 
synaptic weight from either GPe or other SNr neurons, � 
is the delta (impulse) function, and tn,m are the presynaptic 
spike times arising from GPe and SNr, respectively. D is a 
scaling factor for short-term synaptic depression governed 
by (Abbott et al., 1997)

We adjusted two of the parameters to represent differences 
between DD and control conditions. The conductance gTRPC3 
in DD was set to 0, since activation of D1 receptors is required 
for the opening of TRPC3 channels in SNr neurons (Zhou 
et al., 2009). In control conditions, we tuned gTRPC3 to match 
the finding that under Na+ channel block, blockade of TRPC3 
channels yields a 10 mV hyperpolarization of the membrane 
potential (Zhou et al., 2008). Tuning to respect this fact 
yielded a value of 0.2 nS/pF for gTRPC3 in the control model.

The synaptic conductance gSTN was tuned such that the 
mean firing rate of SNr neurons in the full network model in 
DD conditions would match the mean firing rate observed in 
vivo in DD. This yielded a range from 0.5 − 2.5 nS/pF, and 
the value of gSTN for each SNr neuron was selected uniformly 
from this range at the start of the simulation. Since electro-
physiological data reveals a 50% increase in mean STN firing 
rates in control compared to DD conditions (Whalen et al., 
2020), this range was scaled by 1.5 in the control model.

Quadratic integrate‑and‑fire model  To compare our 
conductance-based model results to those from a simpler 
framework, we separately modelled SNr neurons as quad-
ratic integrate-and-fire (QIF) units with a tonic excitatory 
leak current and synaptic inhibition. In this model, each 
cell’s voltage V is governed by

d[Ca]in

dt
= −�SK ⋅ ICa −

(
[Ca]in − [Ca]min

�Ca

)

dgS
GABA

dt
= −

gS
GABA

�S
GABA

+WGPe
GABA

⋅ D ⋅

∑

n

�(t − tn)

+WSNr
GABA

⋅

∑

m

�(t − tm)

dD

dt
=

D0 − D

�D
− �D ⋅ (D − Dmin) ⋅

∑

n

�(t − tn).

dV = [a
0
⋅ (V − Vrest)

2 − gSTN ⋅ (V − Eglut)

− gGABA ⋅ (V − EGABA)] ⋅ dt + �dW

where Vrest = −60 ; Eglut = 0 and EGABA = −70 are respec-
tively the excitatory and inhibitory reversal potentials; 
gSTN = 0.001 is a tonic excitatory conductance tuned to 
generate realistic SNr firing rates, and gGABA is the inhibi-
tory synaptic conductance defined as gS

GABA
 in the previous 

section. Moreover, dW is a Gaussian noise process with 
standard deviation � , which was simulated using the Euler-
Maruyama method; however, we used a noiseless ( � = 0 ) 
model except where otherwise noted. Finally, for this model, 
when V reaches a threshold Vth = −20 , the neuron is said to 
have spiked and V is reset to Vreset = −70.

Simulated GPe spike trains  Rather than simulating GPe 
neurons in full detail, we generated artificial spike trains to 
serve as input to the SNr model neurons. In DD, we used 
GPe spike trains of two types, Poisson or oscillating. Both 
types were modelled as inhomogeneous Poisson processes 
with rate function �(t) . In Poisson spike trains, the rate func-
tion was defined as

where �c is the baseline firing rate, T is the period of the 
oscillation in milliseconds (ms), and trefrac = 1 ms is the abso-
lute refractory period. Firing rates were fit to the mean fir-
ing rate of GPe neurons recorded experimentally, and since  
the median GPe firing rate did not differ significantly in 
control and DD animals (Whalen et al., 2020), �c was set 
to the observed median value of 24 Hz and was unchanged 
between control and DD simulations.

Oscillating spike trains were defined with a rate function 
as follows:

where fosc(t,A,�) is a periodic function of time t with fre-
quency � chosen as 2 Hz to be near the median delta fre-
quency observed in GPe units (Whalen et al., 2020) and 
amplitude A chosen such that a spike train would have a 1 
Hz firing rate at its trough.

Since the delta oscillations observed in the SNr are not 
perfect sine waves but rather are better fit by oscillatory pro-
cesses with up and down states, we chose fosc to be a square 
wave with unequal up and downstate durations; that is,

where u is the fraction of each period spent in the upstate. 
To fit an appropriate value for u, we analyzed the oscillation 
shapes of GPe neurons recorded in vivo in mice (Whalen et al., 
2020). We included only neurons with detected oscillations 

𝜆(t) =

{
0, t − T ≤ trefrac
𝜆c, t − T > trefrac

𝜆(t) =

{
0, t − T ≤ trefrac
𝜆c + fosc(t,A,𝜔), t − T > trefrac

fosc(t,A,𝜔) =

{
A∕2, mod (t, 1∕𝜔) ≤ u∕𝜔

−A∕2, mod (t, 1∕𝜔) > u∕𝜔
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and with firing rates that exceeded 10 Hz to ensure that no 
arkypallidal neurons were included, as they do not project 
to SNr (Abdi et al., 2015; Mallet et al., 2012). For each neu-
ron, we computed its spike density function (SDF), sdf(t), 
by convolving the spike train with a Gaussian filter with � 
= 50 ms; this produces a smooth instantaneous firing rate 
function, but one that is coarse enough such that delta oscil-
lations can still be seen. We then computed a moving mean 
�(t) of the SDF with a rectangular window of 5 s to obtain 
a mean firing rate over a much longer timescale, but short 
enough to change along with long-timescale nonstationarities 
in firing rate. We computed the fraction of time F for which 
sdf(t) > 𝜇(t) and found the median F across all neurons to be 
approximately 0.55. Thus, we chose u = 0.55 such that the 
upstate comprises 55% of each period, while the downstate 
comprises the remaining 45%.

For simulations in Fig. 4, we allowed � itself to vary in 
time. The basic idea of this time variation was to introduce 
small, random perturbations to � in a way that preserves 
history. We implemented this by choosing a long time step, 
�2 , and choosing a new sign for the perturbations to � every 
�2 time units ( �2 =1000 for Fig. 4A-C and �2 =2000 for 
Fig. 4D-F). In between sign choices, we chose a new per-
turbation magnitude, Δ� , every 𝜏1 < 𝜏2 time units ( �1 =100 
for Fig. 4A-C and �1 =500 for Fig. 4D-F). The value of Δ� 
was chosen from a uniform distribution from 0 to 1 % of 
� , inclusive (e.g. Δ� ∈ [0, 0.02] for � = 2Hz). Once this 
was selected, we performed the update � ← � ± Δ� where 
the choice of + or − depended on the most recently chosen 
perturbation sign.

In the control model, we generated spike trains with a 
more regular firing pattern, mimicking the firing patterns 
observed in the healthy GPe (Whalen et al., 2020). Specifi-
cally, all neurons in the control model fired spikes with an 
interspike interval (ISI) of 40 + � ms, with the jitter � for each 
ISI sampled randomly from a uniform distribution on [−2, 2].

Fitting GPe phase lag distributions  Like SNr, oscillations 
in GPe neurons can exhibit non-zero delays relative to one 
another. To incorporate these delays into our model, we 
computed the pairwise phase lag distribution for GPe, as 
described above for SNr. To simulate a population of neu-
rons with phases such that this distribution was maintained, 
we sought to estimate the distribution of individual phases 
from this pairwise phase lag distribution. We assumed that 
the phases are normally distributed following a normal dis-
tribution N(0, �) and sought to estimate � . The pairwise 
phase lags that we measured can be considered as the abso-
lute difference of two independent samples from N(0, �) , 
which means that they follow a half-normal distribution 
H(0,

√
2σ2 ). The best fit to the pairwise distribution gives an 

estimate of � = 34.6164 ms. At the start of each simulation, 

a GPe neuron’s phase was chosen from this distribution, 
resulting in a pairwise phase distribution similar to the one 
observed experimentally.

STN inputs to model SNr neurons  In some specific com-
putations, we used experimental STN recordings from 
Whalen et al. (2020) to simulate STN inputs to the model 
SNr neurons. For a single simulation of this type, a set of 
simultaneously recorded STN spike trains were used. The 
maximal number of simultaneously recorded STN units in 
the data set was 9, and only those experiments with 8 or 9 
simultaneously recorded units were selected. The experi-
mental data was incorporated into the model by defining a 
dynamic synaptic conductance gdyn

STN
 that evolved according 

to the equation

where �STN = 3ms is the synaptic decay time constant, WSTN = 6 
nS/pF is a weight parameter selected such that a jump in gdyn

STN
 

from 0 to WSTN would induce an increase of about 2 mV in VD 
in the absence of other synaptic inputs, � is again an impulse 
function, and the tl are the times at which spikes were observed 
in any of the simultaneously recorded STN units.

For the simulations that included experimentally-derived 
STN inputs, we used as the total synaptic conductance 
gSTN = g

dyn

STN
+ gstat

STN
 , where gstat

STN
 denotes a static bias con-

stant randomly chosen for each SNr neuron from the range 
0.13−0.23 nS/pF to maintain appropriate overall SNr fir-
ing rates (in contrast to the 0.5−2.5 nS/pF used with static 
gSTN ; see Supplemental Fig. 1). For simplicity, the same gdyn

STN
 

was used for all SNr neurons in each simulation. For each of 
the four animals with sufficiently many simultaneously 
recorded units, we ran four separate simulations, each based 
on a randomly-selected, 60-second recorded segment. For 
each of these recordings, we used the first 10 s to allow gdyn

STN
 

to equilibrate and incorporated the subsequent 50 s of gdyn
STN

 
values into our simulation.

Connection architecture  We chose populations of 100 SNr 
neurons (50 neurons in each population for 2-population 
models) and 100 GPe spike trains (50 in each of the oscillat-
ing and Poisson populations when applicable). Equally sized 
populations were chosen because the number of neurons in 
SNr in vivo is approximately equal to the number of GPe 
neurons that project there (Simmons et al., 2020).

We considered several different architectures of connec-
tions from GPe to SNr and within SNr. Each SNr neuron 
received four (in the basic and partially segregated models) 
or an average of four (in the synaptic competition model) 
connections from both GPe and other SNr neurons (yielding 

dg
dyn

STN

dt
= −

g
dyn

STN

�STN
+WSTN

glut
⋅

∑

l

�(t − tl)
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eight synapses on each neuron in total). The identities of the 
specific pre-synaptic neurons from a given population that 
project to each post-synaptic cell were selected completely 
at random. The other aspects of these models are described 
when they are discussed in Section 3. These numbers of 
synapses were chosen since real SNr neurons receive a 
small number (approximately two to six) unitary connec-
tions from GPe (Simmons et al., 2020) and an average of 
four unitary connections from other SNr neurons (Higgs & 
Wilson, 2016). While the large strength of these connections 
is likely due to many synapses from a single presynaptic 
neuron forming on the postsynaptic neuron (Simmons et al., 
2020; Smith & Bolam, 1989), we modelled these nests of 
boutons as a single, strong synapse from each presynaptic 
cell. The strength of each synapse was chosen uniformly 
from the range 0.05 − 0.25 nS/pF.

2.3 � Simulations and analysis

Simulations  Code to simulate the models was written in 
C++. Differential equations were evolved using Euler’s 
method with a timestep of 0.025 ms with data extracted 
every second time step or, as noted above, with the Euler-
Maruyama method when noise was included. Simulations 
were run for a total of 50 simulation seconds, and the first 
three seconds were discarded before analysis. Results from 
the simulation were imported into MATLAB and Python 
for analysis.

Measuring irregularity with CV2  Since real spike trains 
have a greater degree of nonstationarity than those in our 
simulations, we used the CV2 measure of irregularity (Holt 
et al., 1996), which computes the coefficient of variation 
(CV) over a moving window of two interspike intervals 
(ISIs), thereby correcting for nonstationarities in firing rate. 
Specifically, we compute the CV for all pairs of adjacent 
ISIs and find this distribution’s mean:

where Δti is the length of the ith ISI and N is the number of 
adjacent pairs of ISIs in the spike train.

Identifying oscillating neurons  Oscillations in single model 
neurons were detected using the same procedure as used 
for our spike train data (see Oscillation detection), requir-
ing that oscillations passed both the power and phase shift 
criteria. Although the forcing frequency in our simulations 
was known to be 2 Hz, our oscillation detection algorithm 
was agnostic to this information.

CV2 =
1

N

N∑

i=1

2|Δti−1 − Δti|
Δti−1 + Δti

Since we did not simulate motor cortex, we could not 
define AP and IP units in the same manner as in previous 
experimental work (Whalen et al., 2020). Instead, we com-
pared the phases of SNr oscillations with those in GPe. We 
computed an SDF of the sum of all GPe neurons’ spike trains 
and calculated the cross-correlation of this mean GPe sig-
nal with each SNr neuron that exhibited a delta oscillation. 
Beyond their relationship to M1, a defining feature of the AP 
population is that it, on average, leads IP units in vivo. Since 
the only way in our simulations for an oscillation in SNr to 
become approximately in phase with GPe oscillations would 
be through a bisynaptic (GPe to SNr to SNr) or higher order 
multisynaptic connection, we defined AP neurons as those 
for which the peak in the cross-correlation with the GPe SDF 
was closer to zero lag than the trough, and IP neurons as 
those for which the trough was closer to zero lag than their 
peak. For display purposes, we also defined a phase offset 
for each neuron relative to GPe. Specifically, for each AP 
neuron, we computed � = |tt| − |tp| , where tp, tt denote the 
largest peak and trough, respectively, of the cross-correlation 
between the neuron’s SDF and that of the simulated GPe 
signal. We converted the time � to a phase by computing 
2�f � for f defined as the maximum frequency of the AP 
neuron’s power spectrum. For each IP neuron, we repeated 
the same process but with � = |tp| − |tt| . All resulting phase 
offsets were negative, which confirms the validity of the  
AP/IP classification. We also checked this result by run-
ning a simulation of the “basic” model with no GPe phase 
delays (so lead-lag relationships could be easily identified) 
and confirming that every neuron defined as AP through this 
process led every neuron defined as IP. We also confirmed 
that the AP lead bias remained in our final model (the syn-
aptic competition model, Fig. 3E). While our assumption 
appears accurate, our computational model neurons may be 
more accurately referred to as putative AP and IP units; how-
ever, in the remainder of this work, we drop the “putative” 
modifier for brevity.

Quantifying model fit to data  To compare the model results 
to experimental data, we computed means and two-sided 
95% confidence intervals for several metrics on the data, 
such as the firing rate of SNr neurons and the fractions of 
neurons that exhibited an oscillation. Confidence intervals 
were computed in one of two ways: 

1.	 The fractions of non-oscillating, AP and IP neurons each 
follow a binomial distribution B(pg) with the assumption 
that each recorded neuron’s identity is independent of 
all others. For each group (AP, IP, or non-oscillating), 
pg represents the probability that a neuron is a member 
of that group. We estimated a 95% confidence inter-
val around the sample mean for each group using the 
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analytic Clopper-Pearson method implemented in the 
MATLAB function binofit.

2.	 For all other measures where an analytic estimate was 
not possible, we computed 1000 bootstrapped samples 
and calculated the statistic being estimated (e.g. mean 
or CV), then used the 2.5th and 97.5th percentile from 
all samples as the 95% confidence interval.

Cluster analysis  We examined the separation between the 
points corresponding to AP and IP neurons on axes defined 
by either the total synaptic strength from GPe and SNr or 
the delta power received from GPe and SNr by SNr neurons. 
To peform this evaluation, we computed the centroids of the 
AP and IP neuron clusters using labeled data. To quantify 
the level of cluster separation, we defined a displacement 
metric, which was calculated for each neuron projected onto 
the dimension defined by the line connecting the two cluster 
centroids. Each neuron’s displacement was its signed dis-
tance from the opposite cluster’s centroid, where the direc-
tion pointing from the opposite centroid toward the neuron’s 
own cluster’s centroid was defined to be positive.

3 � Results

We collected in vivo data from a variety of basal ganglia regions 
in mouse (described in detail in previous work (Whalen et al., 
2020); see also Methods). These data showed that under DD, 
two slowly (0.5-4 Hz) oscillating populations of SNr neurons 
emerge, classified computationally based on whether the active 
or inactive phase of their oscillations better predicted positive 
deflections in a simultaneously recorded M1 (motor cortex) 
ECoG signal, with a near-antiphase relationship between the 
two (Fig. 1A-B; see also Introduction). In this work, we took 
the activity of GPe neurons recorded in vivo as a starting point, 
without consideration of its source, and we sought to test the 
hypothesis that the features of the SNr oscillations observed in 
experimental data can be explained by a model in which SNr 
inherits its oscillatory pattern from its GPe inputs, despite the 
distributed phases of GPe oscillations observed experimentally. 
To investigate this idea, we built networks of 100 biophysically 
detailed but simplified SNr neurons receiving input from a col-
lection of 100 simulated GPe spike trains, along with a constant 
conductance excitatory synaptic input from STN, and compared 
the results of these simulations to the in vivo data from SNr.

3.1 � A model with partially segregated pathways 
matches in vivo recordings

To start, we built a model with a simple architecture 
designed in such a way that two subpopulations of SNr neu-
rons exhibiting antiphase oscillations were likely to emerge. 

For this model, we split the simulated GPe spike trains into 
two classes: 50 Poisson spike trains and 50 spike trains with 
an underlying 2 Hz oscillation in their firing rate (see  
Section 2). We organized the model SNr neurons into two equal- 
sized populations, A and B. Population A received synaptic 
input only from (1) oscillating GPe neurons, and (2) SNr 
neurons from Population B, whereas Population B received 
input only from (1) Poisson GPe neurons, and (2) Popula-
tion A SNr neurons (Fig. 2A). Specific synaptic connections 
consistent with these constraints were established randomly 
at the start of the simulation in such a way that each SNr 
neuron received the same number of synapses, but each GPe 
train and SNr neuron did not necessarily target the same 
number of SNr neurons.

To compare the model results with experimentally 
recorded data, we computed each model SNr neuron’s 
renewal-corrected power spectrum and phase shift (Whalen 
et al., 2020) to detect neurons with significant delta oscilla-
tions, then classified these neurons as either AP or IP based 
on their activity patterns relative to GPe (Fig. 1C-D; see 
Section 2). As in the experimental data, offsets of AP neuron 
SDF peaks were roughly similar to offsets of IP neuron SDF 
troughs, albeit with some heterogeneity across units.

To continue the comparison with the experimental 
data, we next compared the delta power of each oscillating 
model neuron to the delta-band powers of active-predicting 
(AP) and inactive-predicting (IP) neurons recorded in vivo 
(Fig. 2B-C). Qualitatively, the results of this simulation 
show a clear AP/IP dichotomy, with group membership 
determined completely by the neuron’s identity in the net-
work architecture. Specifically, those in Population A, which 
receive oscillatory inhibition from GPe, make up the AP 
population, while those receiving Poisson inhibition from 
GPe and thus inheriting their oscillations only from SNr 
connections make up the IP population. The AP neurons also 
have greater power than the IP neurons, as seen in vivo. The 
distributions of power levels in the simulations differ sub-
stantially from those seen in vivo, however, with no overlap 
between the AP and IP power distributions.

To quantify the fit of our model to experimental data, we 
checked whether the SNr spike trains in our simulations fell 
within a 95% confidence interval of metrics derived from 
real SNr data in three categories: basic firing properties, 
sizes of oscillatory subpopulations, and properties of oscil-
lations (Fig. 2D).

For basic firing properties, we computed firing rates and 
regularity of firing quantified with CV2 , a measure of irregu-
larity that corrects for nonstationarities in firing rate over 
time (see Section 2). In this initial model, the neurons were 
significantly more regular (CV2 closer to zero) than in the 
experimental data.

We next considered the putative identities of neurons: 
AP, IP, or non-oscillating. In this case, the differences from 
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experimental data are stark; since each neuron’s identity 
is determined exactly by which population (A or B) it was 
assigned to, there are exactly 50 AP and 50 IP neurons with no 
non-oscillating neurons. Because of this over-simplification, 
the results completely fail to replicate experimental data on 
the sizes of the neuronal classes.

Finally, we examined some properties of the oscillations 
exhibited by the model AP and IP neurons. Note that the 
underlying oscillations in our simulations are stationary 
(i.e. they are exactly a function of time, so their autocor-
relations do not decay at long lags), whereas oscillations in 
the experimental setting have an autocorrelation that decays 
to zero after a few periods. It is thus difficult to compare 
raw power values between the simulations and experimental 

data; as such, we computed a mean power ratio between 
the AP and IP classes, defined as the ratio between the 
mean power of all AP neurons and the mean power of all 
IP neurons in the simulation at the forcing frequency from 
GPe, a measure which should cancel out the differences in 
stationarity between the experimental and simulated data. 
We found that in terms of the mean power ratio, this model 
matches experimental data in that AP neuron oscillations are 
stronger than IP neuron oscillations. However, the strength 
disparity that emerged in our simulations is significantly 
less than that found in vivo. We also computed the CVs of 
the power of oscillations across neurons in each population 
to determine if the variability of oscillation strengths across 
neurons matched the real data. In the basic model results, 

Unit 1
Unit 2

Unit 1

Unit 2

M1
ECoG

AP
IP

-  -  /2 0
Phase Offset from M1 (rad)

0

5

10

15

U
ni

t C
ou

nt

  /2

A

DB

Phase Offset from GPe (rad)
-  -  /2 0   /2

18

12

  6

  0

U
ni

t C
ou

nt
AP
IP

C

GPe

IP Unit

AP Unit

AP Unit

IP Unit

32100

SDF

1 2 3 4 5
Time (s) Time (s)

Fig. 1   Experimental data on antiphase oscillations in SNr recorded 
in vivo in DD mice, with corresponding simulation data. A. Example 
data showing how a spike density function (SDF) was used to identify 
oscillation phases in recorded SNr neurons (AP:red, IP:blue), relative 
to a simultaneously recorded M1 ECoG signal (grey). B. Histogram 
of phase offsets of n = 59 oscillating SNr neurons relative to the M1 
ECoG. For AP neurons (red), phase refers to the SDF peak. For IP 
neurons (blue), phase refers to the SDF trough. A perfectly anti-phase 
relationship would correspond to complete overlap of these distribu-

tions. Figure panels A-B are reproduced from Figure 8 of our previ-
ous paper (Whalen et  al.,  2020). C. SDFs generated from IP (blue) 
and AP (red) model SNr neurons and from our simulated GPe spike 
train (grey). Note that consistent with our naming convention, AP 
peaks lead those in GPe while IP peaks are closer in time to those in 
GPe. D. Histograms of phase offsets of AP peaks (red) and IP troughs 
(blue) for model neurons, relative to the GPe SDF (see Section  2). 
The overlapping nature of these distributions captures these two pop-
ulations’ opposing relationships to the GPe
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Fig. 2   Performance of models 
with segregated pathways. 
A. Architecture for the 
basic model, where two SNr 
populations receive inputs 
from two entirely distinct GPe 
subpopulations (one oscillating, 
one Poisson) and only project 
to each other. B. Delta power of 
each neuron in vivo in the AP 
and IP SNr populations. C. As 
in B, but from the results of a 
simulation of the basic model. 
Black dots are neurons from 
Population A from the archi-
tecture in Panel A, green dots 
are neurons from Population 
B. D. Performance of the basic 
model on measures derived 
from in vivo data. Each bar is 
a bootstrapped or analytically 
derived confidence interval (see 
Section 2) and each red arrow 
is the model’s results computed 
from all simulated SNr neurons. 
FR: mean firing rate (Hz); CV2 
ISI: mean CV

2
 of interspike 

intervals; Frac AP/IP/No Osc: 
fraction of neurons in the AP, 
IP, or non-oscillating popula-
tions. Power Ratio: ratio of the 
mean delta power of all AP neu-
rons to the mean power of all 
IP neurons. AP/IP Power CV: 
CV of the distribution of AP/
IP delta powers. E. Architecture 
for the partially segregated 
model, which extends the basic 
model to include probabilities 
of connections crossing over 
from the population they would 
normally project to. F-G. Same 
as C-D for the results from the 
partially segregated model

0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

SNr AP SNr IP
1

2

3

4

5

6

7

 D
el

ta
 P

ow
er

10-5

FR (Hz)
CV2 ISI

Frac. AP
Frac IP

Power Ratio

AP Power CV
Frac No Osc.

IP Power CV

FR (Hz)
CV2 ISI

Frac. AP
Frac IP

Power Ratio

AP Power CV
Frac No Osc.

IP Power CV

Oscillating Poisson

Pop. A Pop. B

Oscillating

GPe

SNr

4 SNr
Synapses
(per cell)

4 GPe
Synapses
(per cell)

Pop. A
Pop. B

0

1

2

3

4

5

 D
el

ta
 P

ow
er

10-5

SNr AP SNr IP

Real ModelCBA

D

G
SNr AP SNr IP

0

0.5

1

1.5

2

2.5

3

3.5
D

el
ta

 P
ow

er
10-5

Poisson

Pop. A Pop. B

GPe

SNr

%57 %5725% 25%

75%

25% 25%

4 SNr
Synapses
(per cell)

4 GPe
Synapses
(per cell)

OscillatingOscillating

75%

ModelE F
Pop. A
Pop. B



Journal of Computational Neuroscience	

1 3

there is significantly less variability in oscillation strength 
in both populations than in vivo.

Overall, this basic model’s primary deviation from 
experimental data lies in the variability of the oscillations 
that SNr neurons exhibit. Specifically, in this model, all 
neurons within a population oscillate at similar intensi-
ties, whereas neurons in vivo have more varied oscillations 
or may show no detectable oscillations at all. As such, we 
reject the hypothesis that the experimentally observed SNr 
activity features arise from a fully segregated architecture 
of GPe-SNr and SNr-SNr connections. As an alternative, 
we extended our model to include additional variability by 
relaxing its strict connectivity rules. Instead of all Popula-
tion A neurons receiving input only from oscillating GPe 
neurons and from Population B SNr neurons, we included 
a “crossover probability” such that 25% of Population A’s 
GPe synapses instead came from Poisson neurons and 25% 
of its SNr synapses were from other Population A neurons. 
This adjustment was mirrored in Population B: 25% of GPe 
synapses to Population B were now from the oscillating 
population and 25% of SNr synapses were from Population 
B. We termed this the partially segregated model (Fig. 2E).

We found that the partially segregated model yields AP 
and IP populations in the SNr with much more realistic delta 
power distributions than observed in the original model 
(Fig. 2F). Notably, a neuron’s phase outcome was not deter-
mined completely by whether it was in Population A or B as 
was the case in the basic model; by chance, some Population 
A neurons have an IP relationship to GPe rather than the 
expected AP relationship, and vice versa for Population B. 
This model also performed significantly better quantitatively 
than did the original, as each of the properties we measured 
falls within the confidence intervals derived from experi-
mental data (Fig. 2G). The small number of crossover con-
nections led to weaker oscillations in some neurons, thereby 
increasing the breadth of oscillation strengths seen in each 
population and leading to the absence of detectable oscilla-
tions in some neurons, presumably due to the combination 
of synaptic inputs that they received.

3.2 � A less prescribed synaptic competition model 
also matches in vivo recordings

While it fits experimental data better than the basic model, 
the partial segregation model still assumes the existence of 
two anatomically distinct populations in SNr that are biased 
to receive inputs of specific types from GPe and fellow SNr 
neurons. To relax this assumption, we considered an archi-
tecture that could potentially allow for such a dichotomy to 
emerge through natural heterogeneity. This model features 

a single heterogeneous population of SNr neurons that each 
receive a total of 8 synapses, each arising from a GPe spike 
train or an SNr neuron source with equal likelihood. We 
term this the synaptic competition model in keeping with 
the traditional use of “synaptic competition” to refer to the 
competition for space on individual postsynaptic targets 
(Cancedda & Poo, 2009), as GPe and SNr (randomly) com-
pete to make synapses on each SNr neuron (Fig. 3A). Note, 
however, that there is no competition-based constraint on the 
weights of those connections that are present in the network. 
With this model, we posited that the neurons that, by chance, 
had a high level of inhibition from GPe would form the basis 
of the AP population and those with a high level of inhibi-
tion from those AP neurons would form the IP population, 
while neurons receiving more balanced input would fall to 
one side or the other through more complicated multisynap-
tic dynamics or would not oscillate at all.

Simulations of the synaptic competition model showed 
generally similar results to the partial segregation model. 
The synaptic competition model produces fractions of AP 
and IP SNr neurons and distributions of delta power in the 
AP and IP populations (Fig. 3B) that are similar to those of 
the partial segregation model, although with weaker power 
intensities than previously. Moreover, all quantitative meas-
ures computed from SNr activity characteristics for the syn-
aptic competition model fall within the confidence intervals 
determined from in vivo data (Fig. 3C).

The evident delta oscillations and emergence of antiphase 
populations in SNr occurred in vivo exclusively under DD 
conditions. Having identified a model that captured the basic 
properties of the data and had a reasonably simple and real-
istic architecture, we asked if a version of this model that  
did not include properties associated with DD would rea-
sonably fit our control in vivo data. As such, we made three 
modifications to the synaptic competition model: 1) Instead 
of oscillating and Poisson spike trains, all simulated spike 
trains from GPe were tuned to be approximately pacemaking  
(see Section 2); 2) the passive TRPC3 current was strength-
ened, consistent with experimental findings (Zhou et al.,   
2008, 2009); 3) the tonic STN synaptic excitation to model 
SNr neurons was increased as observed under healthy condi-
tions in our in vivo data. Without any additional parameter 
tuning, the SNr dynamics of this model produced the SNr 
firing rates and variability observed in vivo in healthy ani-
mals (Fig. 3D). As such, this model of competitive synaptic 
allocation in SNr from GPe and other SNr neurons matches 
our SNr data in both the control and dopamine depleted 
conditions. These results suggest that a competitive synapse 
formation mechanism could allow the SNr, when subject to 
low-frequency oscillatory input from GPe, to exhibit two 
distinct clusters of oscillating neurons.
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3.3 � Imperfectly synchronous GPe oscillations 
partially propagate and promote phase lag 
dichotomy in SNr

Next, we sought to delve deeper into some of the dynamics 
of the synaptic competition model with conductance-based 
model neurons in DD. First, we investigated the phase delays 
between neurons within and between AP and IP populations. 
A feature of the in vivo AP/IP dichotomy is that oscillations 
in AP neurons tend to lead those in IP neurons (Whalen et al., 
2020). Since we do not have an M1 reference signal in the 
model as we did in some of our in vivo data, we attempted 
to replicate this finding using the cross-correlations between 
spike trains from individual neurons (see Section 2). Using 
all of our labeled pairs of simultaneously recorded AP and 
IP neurons, we see a clear bias towards AP neurons leading 
simultaneously recorded IP neurons (Fig. 3E, p = 0.0179, 
Wilcoxon signed rank test). In our results from the synaptic 
competition model (in which we can simulate many more 

pairs of simultaneously recorded neurons), we see a similar 
bias toward the AP population leading IP neurons (Fig. 3F, 
p < 0.0001).

We also compared the more general distributions of 
within-population and between-population pairwise phase 
lags. In our experimental data, both distributions peaked 
at zero, as expected. While the within-population distribu-
tion has a sharper peak in the real data than in our simu-
lated results (indicating that our simulation has slightly 
inflated lags relative to the real data), the distributions are 
not significantly different from one another (Fig. 3G, p 
= 0.2850, two-sample Kolmogorov-Smirnov test). Simi-
larly, the between-population distributions in both the real 
and simulated data are wider than the within-population 
distributions, and the simulation is again not significantly 
different from the real data (Fig. 3H, p = 0.1443). As such, 
this model replicates the phase delays evident in the DD 
SNr network, although it may be biased slightly towards 
longer delays.
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Fig. 3   Performance of the synaptic competition model. A. Architec-
ture for the “competitive” model, where the numbers of GPe and SNr 
synapses onto each SNr neuron are not fixed, but each SNr neuron’s 
fixed total number of synapses have an equal chance of arising from 
GPe or SNr. B. Delta power for each neuron in the AP and IP popula-
tions from a simulation of the synaptic competition model. C. Perfor-
mance of the synaptic competition model on measures derived from 
in vivo data, see Fig. 2C. D. Left: Architecture of the healthy version 
of the synaptic competition model where all oscillating and Poisson 
GPe neurons are replaced with pacemakers. Right: Same as C, but 
only comparing to measures from control in vivo data and only look-

ing at measures which do not depend on the presence of delta oscil-
lations. E. Analysis of AP/IP lead-lag relationship. Histogram of the 
phase lags between all pairs of simultaneously recorded AP and IP 
neuron pairs in vivo. Counts on the left indicate AP leading IP. F: 
Same as E for the results of the synaptic competition model. G. Anal-
ysis of broader lead-lag relationships. Top: histogram of the absolute 
phase lags between all pairs of neurons in the same population (puta-
tively AP vs. AP or IP vs. IP). Bottom: same as top for the results of 
the synaptic competition model. H. Same as G for all pairs of neurons 
in opposite populations (putatively AP vs IP)
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3.4 � Oscillations persist under stochastic variations 
in frequency but not in higher frequency bands

We performed additional simulations with the synaptic 
competition model to test whether transmission of oscilla-
tions would persist when the oscillation frequency varied 
over time (see Section 2). With a 2Hz baseline frequency 
� , this temporal variation had little impact on the measures 
of SNr activity that we consider in this work (Fig. 4). On 
the other hand, when we increased � into the beta band, 
with or without temporal variations, the oscillations in 
the input signal no longer achieved the same degree of 
entrainment of the SNr population. Specifically, we find far 
fewer AP SNr neurons and many more non-oscillatory SNr 
units with higher frequency input oscillations; for example, 
Fig. 4 shows representative results for � = 15Hz, and we 
obtained very similar results with � = 20, 25 , and 30Hz as 
well. Hence, we conclude that the mechanisms at work in 
the model in this paper yield low frequency signal trans-
mission but do not extend up to frequencies in the beta 
band. We will return to this effect again in Section 3.7 and 
in the Section 4.

3.5 � Results are robust to the inclusion of STN 
inputs to SNr

Delta oscillations were also observed in the STN in vivo in 
DD mice (Whalen et al., 2020), so excitatory inputs from STN 
to SNr could play a role in determining the dynamics in SNr. 
To provide an initial exploration of this point, we augmented 
the synaptic competition model to include dynamic STN 
inputs to the SNr neurons, based on experimental recordings. 
Specifically, we generated an excitatory synaptic current in 
the dendrite of each model SNr neuron, with a dynamic con-
ductance that jumped by a fixed amount at each time that 
a spike was fired by any of a collection of simultaneously 
recorded STN neurons and decayed exponentially between 
spikes (see Section 2). We ran a total of 16 simulations that 
included dynamic STN inputs, produced by picking 4 random 
time segments from each of the 4 recorded animals.

We found that although the inclusion of these dynamic 
input currents from STN to SNr significantly altered the 
specific timing of the spikes generated by the model SNr 
neurons, it had little impact on the model SNr neurons’ oscil-
lation properties (Fig. 5). These results were robust across 

Fig. 4   Performance of the synaptic competition model with vary-
ing frequencies of input oscillations. A. Power in the SNr AP and IP 
clusters for � = 2 Hz and � = 15 Hz with and without fast variation 
( �

1
= 100 and �

2
= 1000 ) in � . B. Similar comparison across model 

performance measures. Note that the 2Hz results persist under varia-

tion in � whereas the larger � yields quite different results, including a 
lack of significant oscillations in about 60% of SNr neurons. C. Six ran-
domly selected examples of the time courses of � used in A-B for the 
15Hz baseline. D-F. Similar results with a slower variation ( �

1
= 500 

and �
2
= 2000 ) in �
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the 16 trials. Thus, these simulations are consistent with the 
idea that GPe oscillations are a possible source of the delta 
oscillations observed in the SNr, in which anti-phase rela-
tionships emerge locally within the SNr, with STN inputs 
affecting overall SNr firing rates but not providing a primary 
influence on SNr oscillations.

3.6 � A simplified SNr neuron model replicates some, 
but not all, in vivo results

To check the generality of our results, and in particular 
whether they rely on some specific nonlinearities associated 
with SNr intrinsic dynamics or rather emerge simply from 
the properties and connection pattern of the synapses, we 
repeated our simulations of the synaptic competition model 
with the conductance-based SNr neural model replaced with 
quadratic integrate-and-fire (QIF) neurons (see Section 2).

We obtained similar results after this model substitution 
with regards to the size, strength and power variability of 
the AP and IP populations (Fig. 6A-B). The one measure 
on which the QIF model does not match in vivo recordings 
or the conductance-based model is the variability of ISIs, 
measured using CV2 . To increase this variability closer to 
levels observed in vivo, we added Gaussian noise to the QIF 
voltage equation (see Section 2) at varying levels to see how 
this modification impacted our results. While increases in 
voltage noise increased ISI irregularity to within the confi-
dence interval derived from in vivo data, there was a com-
mensurate increase in the fraction of non-oscillating neurons 
and decrease in the ratio of AP:IP power, each of which 
fell out of their confidence intervals (Fig. 6C). These results 
demonstrate that the configuration of synaptic connections is 
a key component of the underlying oscillatory dynamics in 
this system, but the nonlinearities of the conductance-based 

Fig. 5   Results of including experimental STN data in the simulated 
SNr network. A. Comparison across model performance measures 
as in Figs.  2, 3, 4. Each data point (colored triangle) represents the 
results averaged over four simulations corresponding to four different 
STN data samples from one animal. B. Histogram of average firing 
rates across the SNr network for all 16 simulations where STN data 

was included. The horizontal bar is the experimental data confidence 
interval of the respective measure, with the median marked in blue. 
C-E. Same as B but for: (C) the fraction of SNr neurons in the AP 
oscillation cluster (Frac. AP), (D) the fraction of SNr neurons in the 
IP oscillation cluster (Frac. IP), and (E) the ratio of the mean delta 
power in the AP cluster to that in the IP cluster, respectively
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model are important for reproducing a complete picture of 
the SNr neural dynamics.

3.7 � The power of oscillatory inputs from GPe 
and SNr define the AP and IP clusters

Finally, we sought to understand more deeply the dynamics 
leading to the distinct AP and IP populations in our synap-
tic competition model. Since the number of synapses that 
each SNr neuron receives from either population (GPe or 
SNr) follows a unimodal binomial distribution, we might 
expect a continuous spectrum of oscillatory profiles, with 
a large number of non-oscillating neurons receiving near-
equal numbers of GPe and SNr synapses while neurons on 
the tails of this distribution express a strong AP or IP oscil-
lation. The large numbers of strongly oscillating AP and IP 
neurons arising in our simulations, however, suggest that 
the neurons’ intrinsic dynamics and synaptic interactions 
may combine to separate units into the more distinct AP 
and IP classes.

To investigate this idea, for each neuron, we plotted the 
sum of its synaptic weights from GPe against the sum of 
its synaptic weights from other SNr neurons. As expected, 

these two measures have an inverse relationship as dictated 
by the competition between the number of GPe and SNr 
synapses on a single neuron built into the model. Addition-
ally, we see that AP neurons tend to receive more GPe input 
while IP neurons tend to receive more SNr input, as expected 
(Fig. 7A). Note that each neuron’s placement on this scat-
terplot is determined completely by the random setup of 
the network, as no synaptic weights are changed during the 
simulation. As such, there is an expected binomial-like, uni-
modal density of points along the y = −x line.

Next, we weighed each synaptic weight by its oscillatory 
power at the forcing frequency (2 Hz) to visualize the total 
oscillatory power each neuron receives from GPe and SNr 
synapses. Here, we see the AP and IP neurons separate into 
much more distinct clusters (Fig. 7B). To quantify this effect, 
we computed the distance from each point to the centroid of 
the other cluster, in the direction specified by the line con-
necting the two cluster centroids, and found the distribution 
of these distances to be biased to the positive side of zero 
(Fig. 7C). As a comparison, we performed the same distance 
computation on the strength scatterplot in Fig. 7A and found 
a distance distribution more shifted toward zero, as would 
be expected from this visually unimodal 2-D distribution 

Fig. 6   Performance of the 
synaptic competition model 
with simplified SNr dynamics 
based on the QIF model. A. 
Delta power for each neuron in 
the AP and IP populations from 
a simulation of the synaptic 
competition model using QIF 
SNr neurons. B. Performance of 
the synaptic competition model 
with QIF neurons on measures 
derived from in vivo data, see 
Fig. 2C. C. Performance of the 
model on select measures from 
panel B with increasing levels 
of Gaussian noise in the QIF 
voltage equation. Black circles 
indicate that the measure at 
that noise level fell within the 
confidence interval derived 
from real data (grey band), red 
X’s indicate a result which fell 
outside the confidence interval. 
From top to bottom: CV
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(Fig. 7C). This degree of separation of clusters is surpris-
ing, as it is not clear how the levels of presynaptic oscilla-
tory power received by each neuron would dichotomize to 
push these clusters apart, in contrast to the unimodality that 
we observe in the strength scatterplot. This finding demon-
strates that the neurons in this model undergo an unexpected 
bifurcation into two mostly distinct AP and IP populations, 
which are not purely dictated by the synaptic architecture in 
the network nor by the level of 2Hz power neurons receive 
from GPe. Finally, we saw in Fig. 4 that inputs with higher 
frequency oscillations are less effective at inducing peaks 
at similar frequencies in the SNr neurons, with a major loss 
of AP SNr neurons. A similar analysis to Fig. 7B done with 
the higher frequency oscillations (Supplemental Fig. 2) 
illustrates the lack of high frequency power in the GPe input 
signal to SNr neurons in the 15 Hz case, which apparently 
translates into a failure to shut down SNr neurons rhythmi-
cally and push them into the AP phase relationship with their 
inputs (Fig. 1C), perhaps because the inhibitory signal result-
ing from imperfectly synchronized inputs at these higher fre-
quencies averages out to be less variable (see also Section 4).

4 � Discussion

In this work, we have demonstrated that slowly oscillating 
firing rates in a subset of GPe neurons suffice to induce an 
oscillation structure in the SNr that mimics in vivo experi-
mental observations under DD (Whalen et al., 2020). These 
results occur in a partially segregated network architecture 
that explicitly defines SNr subdivisions by their distinct syn-
aptic connectivity patterns, where neurons tend to fall into 

AP- or IP-like phase relationships based on which of the two 
architectural subdivisions they belong to. However, we show 
that this dichotomy is also possible through a simpler and 
less assumptive synaptic competition model wherein SNr and 
GPe compete to form a limited number of synapses on each 
SNr soma. With small, experimental data-driven changes 
to simulate a healthy state, we show that the model exhib-
its firing rates and patterns that match what we observe in 
healthy control mice, lending further credence to the real-
ism of our model. Importantly, our results demonstrate that 
despite the imperfect synchrony of delta oscillations in GPe, 
these oscillations can propagate to downstream targets and 
generate oscillations with realistic phase distributions in SNr. 
Moreover, these findings persist when excitatory STN inputs 
to SNr neurons based on recorded spike trains are included 
in our simulations and when the inhibitory input oscillation 
frequency drifts over time, whereas the widespread, clustered 
nature of the SNr oscillations significantly deteriorates when 
this input frequency is shifted to the beta band.

Our results are rather intuitive, but multiple aspects of 
these findings are non-trivial: (a) The most straightforward 
architecture for producing anti-phase dynamics, the segre-
gated architecture shown in Fig. 2A, does not reproduce the 
variability in the data. (b) In the successful partially segre-
gated model shown in Fig. 2E, the cluster membership of 
some neurons does not match what would be expected from 
the synaptic architecture alone. (c) The biological reasonable 
but non-segregated synaptic competition model shown in 
Fig. 3A can completely capture the anti-phase oscillations 
in the data. (d) Despite a mild phase heterogeneity in GPe, 
significant phase differences emerge between the SNr clus-
ters. (e) The cluster membership in the synaptic competition 
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on their total synaptic strength from other SNr and GPe neurons. 
The two larger, lighter circles denote the centroids of the AP and IP 
clusters. B. Same as A, except plotting the total 2 Hz power ( Σ[(2 Hz 
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show marginal distributions of 2Hz power from GPe for the IP and 

AP clusters. C. Top: Displacement (signed distance) of each neuron 
in the GPe-SNr synaptic strength space (panel A) to the centroid of 
the opposite (AP or IP) cluster along the dimension defined by the 
line connecting the two centroids (grey dashed line in A), totaled over 
5 runs of the synaptic competition model with different randomly 
instantiated connections and strengths. Bottom: Same as top for the 
neurons in the GPe-SNr synaptic delta power space (panel B)
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model is not entirely determined by the total oscillatory 
power from the GPe; the histograms in Fig. 7B show the 
significant overlap between the clusters on this measure. (f) 
This work shows that imperfectly synchronized oscillations 
can propagate across populations via inhibitory synapses, 
which do not necessarily provide the straightforward signal 
transmission associated with excitatory synapses.

Network architecture assumptions  Our initial models 
assumed two anatomically distinct populations of SNr neu-
rons receiving connections from specific types of GPe and 
SNr cells. Specifically, we assumed that the synaptic tar-
gets of oscillating and Poisson neurons in GPe are predomi-
nantly members of distinct neuron pools in SNr and that 
these two SNr populations primarily project to one another 
rather than to themselves. Experimentally, there is clear evi-
dence of topographical pathways through the basal ganglia, 
including the GPe-SNr pathway, which are segregated by 
the higher order processes – motor, limbic, or associative 
– with which they are associated (DeLong & Wichmann, 
2010; Yelnik et al., 2002). The topography is likely more 
complicated, continuous, and convergent, however, than 
the two discrete populations that we define in this model 
(Foster et al., 2020; Nakano, 2000). Given experimental 
results demonstrating the connection between delta oscilla-
tions and motor symptoms (Whalen et al., 2020), it is pos-
sible that oscillations may be restricted primarily to motor 
pathways in the basal ganglia while not penetrating limbic 
or associative pathways, which could lend credence to our 
built-in dichotomy, although there is no direct evidence for 
this idea. Even if two distinct GPe-SNr pathways exist as 
we have modelled them here, however, it is unlikely that the 
two SNr populations would be more likely to project to each 
other rather than back to themselves, and this is a critical 
detail for our basic and partially segregated models’ oscil-
latory behaviors. As such, we consider these initial models 
a proof of concept for how realistic oscillations could form 
in such a system, but not necessarily a realistic model of the 
GPe-SNr network.

In contrast, our synaptic competition model does not rely 
on any of these assumptions. Instead, the only architectural 
assumption made is the existence of competition between 
GPe and SNr neurons for the formation and maintenance 
of synapses on SNr somas. While to our knowledge there 
is no direct evidence of this competition at this site, other 
examples of similar synaptic competition exist. For exam-
ple, synaptic scaling occurs in many regions of the brain 
to approximately balance a neuron’s output (Turrigiano, 
2008), although this has primarily been studied at excita-
tory rather than inhibitory synapses, and nascent synapses  
may be pruned if nearby synapses are particularly active  
(Lo & Poo, 1991). Notably, SNr neurons tend to exhibit 
large nests of synapses all arising from the same presynaptic 

neuron (Simmons et al., 2020; Smith & Bolam, 1989); this 
redundancy may explain the atypical strength of these con-
nections onto SNr, and could also increase synaptic com-
petition if the physical space for multiple synaptic nests is 
limited. While studies have looked closely at the synaptic 
connectivity from GPe to SNr and within SNr (Higgs & 
Wilson, 2016; Simmons et al., 2020), no study has looked 
at the relationships between these connections and whether 
strong inhibition from one source affects the probability of 
receiving strong inhibition from the other. A study directly 
testing whether levels of inhibition from GPe and SNr on a 
single SNr neuron are inversely correlated, as we have pre-
dicted here, would lend credence to our proposed model of 
delta oscillation propagation from GPe to SNr.

Model simplifications, predictions, and possible exten‑
sions  In comparing the results from models to real data, we 
ran statistical tests or derived confidence intervals to deter-
mine if the simulated results were statistically indistinguish-
able from the real data in a classical statistical sense. We 
caution, however, that our failure to reject the null hypoth-
esis that our simulation produces distributions that are the 
same as those observed in vivo is not an acceptance of that 
null hypothesis. Such a claim can, in fact, never be proven, 
as even two samples from identical distributions will never 
have precisely the same mean (or any test statistic of inter-
est). For the purposes of this study, we consider these tech-
niques sufficient to claim that our model reasonably matches 
the experimental results.

With any computational model, certain aspects of realism 
must be sacrificed, both in the model construction and in 
interpreting its results. We focused our study on a network 
of conductance-based SNr model neurons, which grounds 
this model in biological realism based on the known ionic 
currents driving these neurons’ electrochemical dynamics 
and allows them to be well fit to experimental data. As we 
demonstrated through a contrasting experiment with simpler 
QIF model neurons, the complexity of dynamics afforded 
by conductance-based neurons is important to capture the 
full breadth of neural patterns we considered in this study.

Even our relatively realistic conductance-based model, 
however, entails many simplifications. We included only two 
compartments, one somatic and one dendritic, such that the 
model neglects features like dendritic computation and vari-
able or even failed propagation of action potentials down 
an axon. While we include short-term synaptic depression, 
longer term plasticity is neglected, due both to the complex-
ity that this would induce in the model and a lack of experi-
mental understanding of plasticity in the SNr.

Additionally, certain newly discovered aspects of GPe 
and SNr physiology could have significant implications if 
included in this model. While GPe is canonically an inhibi-
tory nucleus, it has been shown to have both inhibitory 
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and excitatory effects on SNr neurons (Freeze et al., 2013; 
Phillips et al., 2020), the latter of which may result from a 
shift in the chloride reversal potential due to high chloride 
influx derived from the many sources of inhibitory input 
to SNr (Phillips et al., 2020). Such shunting or excitatory 
effects of GPe inputs could greatly shift how effectively 
oscillations propagate from GPe to SNr, especially in a 
model in which chloride dynamics are allowed to dynami-
cally shift ECl . A sufficiently depolarized ECl can in fact 
allow for the spontaneous emergence of delta oscillations 
in a network of interconnected SNr neurons (Phillips et al., 
2020). These oscillations are much weaker than those we 
see in vivo, exhibiting only approximately a 2 Hz differ-
ence between peak and trough compared to the complete 
cessation of firing observed in many SNr neurons in vivo. 
Nonetheless, this intrinsic drive to oscillate at a delta fre-
quency under certain conditions could make SNr more 
effective at amplifying oscillations present in the synaptic 
inputs that it receives from other nuclei or could be the 
initial source of these oscillations, which are subsequently 
amplified by other biophysical mechanisms or through a 
multisynaptic loop (e.g. Corbit et al., 2016; Rubin, 2017). 
Indeed, the delta power that the SNr populations exhibit in 
our synaptic competition model is not as strong as that in 
the data (compare Fig. 2B versus Fig. 3B), and some sort 
of amplification mechanism outside the scope of our model 
may be responsible for this discrepancy.

While we use the term synaptic competition model for 
the connection architecture that we propose, we caution 
that the particulars of such synaptic competition have been 
ignored here. We assume that there is limited space for the  
large synaptic nests that are made on SNr somas (Simmons  
et al., 2020; Smith & Bolam, 1989), and we begin the model 
at a state in which that limited space has already been allo-
cated to GPe and SNr neurons. The endpoint of this inferred 
competition can be tuned in the model by adjusting the 
probability that a unitary connection arises from GPe rather 
than SNr, but the details of how that underlying competition 
might occur in the brain are not considered. In biological 
neurodevelopment, such competition could exist in many 
forms, with synapses being formed, pruned, strengthened, 
and weakened through a number of activity-dependent plas-
ticity mechanisms (Fino et al., 2005; Thoenen, 2000), or the 
synapses could genuinely be distributed in a simple random 
fashion. The details of such development and plasticity in 
the SNr are not known, but do not affect the endpoint of the 
system that we are modeling here.

Despite these simplifications, we find that our model per-
forms well at capturing the structure of the oscillatory dynam-
ics across the SNr that are seen experimentally (Whalen et al., 
2020). To truly determine the usefulness of this model, it is 
important to tie its results to predictions that can be checked 
experimentally to test its veracity.

A major conclusion of our work is that oscillations in GPe 
are sufficient to recreate the oscillations observed experi-
mentally in SNr. This hypothesis could be tested by compar-
ing the oscillatory power in SNr neurons before and after the 
ablation of GPe. We caution, however, that while GPe may 
be sufficient to entrain SNr in this way, it may not be the only 
nucleus doing so. Interestingly, while delta oscillations have 
been observed in the STN (Whalen et al., 2020) in DD mice, 
our results show that these are not necessary to explain the 
emergent SNr dynamics and that inclusion of STN inputs 
based on recorded spike trains has little impact on the quali-
tative dynamics of SNr neurons in the synaptic competition 
model; however, a more thorough exploration of the impact 
of STN inputs on SNr dynamics remains for future work. For 
example, we supply the same STN inputs to all of our model 
SNr neurons, but in reality, some heterogeneity in connectiv-
ity will surely be present. Moreover, since STN and D1 neu-
rons from striatum both synapse onto SNr dendrites, there 
could exist a competitive level of innervation between these 
two populations. The effects that such architectures have on 
the resulting dynamics in SNr could suggest which pattern 
of connections from STN to SNr may actually occur in vivo. 
The direct pathway inputs from striatal neurons themselves 
could also play a role in establishing the oscillation struc-
ture in SNr, although these neurons were not observed to 
exhibit delta oscillations (Whalen et al., 2020). Furthermore, 
changes in SNr intrinsic properties, in extracellular ion con-
centrations (cf. Phillips et al. (2020)), in neuromodulation, 
and in other biophysical factors could also contribute to SNr 
oscillations in DD. Finally, another related future step would 
be to use a previously developed model GPe-STN network, 
known to produce oscillations under simulated parkinsonian 
conditions (Terman et al., 2002), as the source of inputs to 
the model SNr neurons. This step would first require tuning 
of the GPe-STN model to capture the features of the experi-
mentally observed delta oscillations (Whalen et al., 2020).

Propagation of imperfectly synchronous delta oscillations  A 
particularly interesting result in our simulations is the effec-
tive entrainment of a large subset of SNr neurons by GPe 
despite the imperfect synchrony of GPe oscillations, along 
with the separation of SNr neurons into distinct phase clus-
ters with larger differences in oscillation phases. Regard-
ing the latter feature, it appears that the IP sub-population 
inherits its oscillations from the AP sub-population, with 
a delay based on the recovery time for IP from inhibition 
from AP. The mechanism by which the SNr population splits 
into distinct clusters despite the continuum of levels of low-
frequency power that the neurons receive (Fig. 7B) is not 
yet clear, however. Our in vivo recordings of GPe neurons 
reveal a spread in the times when their delta peaks occur. 
We posit that the reason that phase-shifted GPe oscillations 
can effectively integrate in a single SNr neuron in a manner 
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that causes oscillatory firing is that the phase differences 
still represent only a fraction of the slow oscillation period 
and that the heterogeneity of phases merely changes the 
shape of the resultant oscillation; for instance, in the case 
of square wave oscillatory profiles, oscillations with a large 
delay integrated in the same SNr neuron may simply change 
the relative durations of the neuron’s up and down states 
while still allowing the delta oscillation to express. Indeed, 
in simulations with higher frequency oscillations in the GPe 
spike trains, we did not observe the same degree of signal 
propagation and splitting of SNr neurons into two phase-
shifted clusters that we obtained with delta oscillations.

Taking this idea one step farther, we hypothesize that 
the presence of relatively large phase differences in GPe 
may help explain why delta oscillations are such a strong 
feature in DD. A 20 ms delay between two neurons under-
going a 1 Hz oscillation still keeps them approximately in 
phase, covering only 1/50 of their cycle. Yet, the same delay  
in, for example, a 25 Hz oscillation gives these neurons an 
antiphase relationship. If lags of this size are a common 
feature of neural oscillations regardless of the oscillation 
frequency, due to jitter across neurons in the times at which 
they switch between spiking up and non-spiking down states, 
heterogeneity in intrinsic neuronal properties and coupling, 
or other factors, then a group of neurons oscillating at the 
same high frequency would essentially tile the phase space, 
so the integration of these signals in downstream neurons 
would undergo destructive interference, making the propaga-
tion of these high frequency oscillations difficult. This idea 
suggests that delta oscillations may be particularly robust 
to the natural variability in relative timing across neurons 
within a population, and could help explain why they can 
have such a strong synchronizing effect, entraining the entire 
cortex during slow-wave sleep (Steriade et al., 1993) and 
extending throughout the basal ganglia, as we have estab-
lished in mice (Whalen et al., 2020), in DD.
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