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Recordings from pre-Botzinger complex (pre-BotC) neurons responsible for the inspiratory phase of the respiratory
rhythm reveal a ramping burst pattern, starting around the time that the transition from expiration to inspiration begins,
in which the spike rate gradually rises until a transition into a high-frequency burst occurs. The spike rate increase
along the burst is accompanied by a gradual depolarization of the plateau potential that underlies the spikes. These
effects may be functionally important for inducing the onset of inspiration and hence maintaining effective respiration;
however, most mathematical models for inspiratory bursting do not capture this activity pattern. Here, we study how
the modulation of spike height and afterhyperpolarization via the slow inactivation of an inward current can support
various activity patterns including ramping bursts. We use dynamical systems methods designed for multiple timescale
systems, such as bifurcation analysis based on timescale decomposition and averaging over fast oscillations, to generate
an understanding of and predictions about the specific dynamic effects that lead to ramping bursts. We also analyze how
transitions between ramping and other activity patterns may occur with parameter changes, which could be associated

with experimental manipulations, environmental conditions and/or development.

Pre-Botzinger complex (pre-BotC) respiratory neurons
can exhibit activity that gradually ramps in intensity,
which could be important in the transition from expira-
tion to inspiration. We use modeling, simulations, and
mathematical analysis to investigate a novel, biological re-
alistic mechanism by which individual pre-BétC neurons
could produce ramping burst patterns. Specifically, we
add an additional negative feedback component to an ex-
isting pre-BotC model, we show that this addition yields
ramping burst dynamics, and we provide a computational
exploration of the robustness of these patterns along with
a mathematical analysis of the mechanisms that produce
them, using the theory of multiple timescale dynamical
systems. This work provides a new computational model
for the production of ramping bursts by individual neu-
rons and makes predictions about what electrophysiologi-
cal features underlie this activity.

I. INTRODUCTION

Typical mammalian respiration is a rhythmic behavior with
inspiration, post-inspiration, and late-expiration phases. The
inspiratory drive that induces movement of the diaphragm for
air intake is primarily determined by activity of a brainstem
region called the pre-Botzinger complex (pre-BotC)' 3. Ex-
periments show that a subpopulation of pre-BotC neurons,
which activate during the transition from expiration to inspi-
ration and hence are known as pre-I neurons*>, play a criti-
cal role in respiratory rhythm generation®. A significant frac-
tion of pre-I neurons exhibit an endogenous bursting capabil-
ity when isolated from synaptic inputs; some produce ramp-
ing burst patterns, which often persist under block of synap-
tic interactions’”. As with most bursts, ramping bursts fea-
ture spiking or active phases that alternate with silent phases

that lack spikes. Their active phases feature a progressive in-
crease in spike frequency, accompanied by a gradual rise in
the plateau potential to which the membrane potential returns
between spikes (see e.g., Fig. 1A and data from Yamanishi et
al.'9, Fig. 1E). Despite its functional importance, it is not yet
known how pre-inspiratory ramping results from dynamics at
the single-neuron level.

Extensive computational and mathematical works have
proposed and analyzed models for bursting in the pre-
Bo6tC!%13, Many include specific transmembrane ion cur-
rents, which experiments have extensively characterized in
pre-BotC neurons'. Most existing models fail to produce
the gradual increase in spike frequency and other features of
ramping bursts, however (e.g., Figure 1B), despite the preva-
lence of these patterns in isolated pre-BotC neurons. One
recent work'# showed that modifying an existing pre-BotC
model by including potassium ion concentration dynamics al-
lows ramping bursts to emerge. That paper, however, does not
fully address the experimental findings because the resulting
ramping dynamics occurs over smaller ranges of ionic con-
ductances and external potassium concentrations than those
that support ramping in experiments®, and ramping bursts in
neurons can also occur with smaller variations in extracellu-
lar potassium concentrations than those arising with ramping
bursts in the previous model'>. Thus, we were inspired to seek
an alternative mechanism that, when included within a base-
line pre-BotC neuron model, could result in ramping bursts.

This paper presents some of the results of this investigation;
see also'® for an earlier version of some of this work. Specif-
ically, we introduce and analyze what we call the dynamic
spike height model, which includes a second, slow inactiva-
tion component known to be associated with the fast inward
sodium current!”. This innovation is motivated by recent ob-
servations that changes in spike height and other spike shape
features can transition a neuron between spiking and various
bursting modes'®!°. In this model, we study how the interac-
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FIG. 1. (A) Ramping burst pattern exhibited by the inspiratory neurons in the pre-B6tC at external potassium concentration [K "], = 8mM.
This figure was reproduced with permission from J. Neurosci. 23, 3538 (2003). Copyright 2003 Society for Neuroscience. (B) The bursting

pattern exhibited by a state-of-the-art model for inspiratory neurons!!

tions of ionic currents that evolve on various timescales give
rise to several interesting activity patterns, including ramping
bursts, depending on the tuning of model parameters. Within
the fast-slow decomposition framework often used to analyze
multiple timescale dynamical systems??, we use one- and two-
parameter bifurcation analysis and averaging over fast subsys-
tem dynamics to explain the mechanisms underlying these ac-
tivity patterns. In this analysis, we show how the timescale of
the secondary inactivation variable of the sodium current, rel-
ative to those of other model variables, changes under parame-
ter variations and contributes to the model activity patterns; in
particular, in the case of ramping bursts, we find that we must
take into account differences in these relations over the course
of each burst cycle in order to fully explain the dynamics.

1. METHODS
A. Model system

We consider a single-compartment neuron model, the dy-
namic spike height model or DSPK model'®, based on the
Hodgkin-Huxley framework?!. The model includes various
voltage-gated currents, a leak current, and a synaptic current.
In particular, since we are considering single-cell dynamics,
the synaptic current is meant to represent an excitatory tonic
drive to the neuron, corresponding to the signals that come to
pre-BotC respiratory neurons from other brain areas related to
blood pH, pulmonary stretch, and other feedback factors'?
We maintain the conductance of this current at a constant
value, which corresponds to a setting of steady metabolic de-
mands and environmental conditions rather than a more dy-
namic scenario.

The differential equations for the model take the form

. Note the gradual decrease in spike frequency within each burst.

o' = —(Iya(v,mNa, hna, hong) + Ix (v, 1)
+ Inap (V, Anap, Mnap) +11.(V)
+Isyn(v)),
Bye = (hNaw(V) = hna) /Ty, (V)
wa = (hanaes(V) = hana) [ Ty, (V) (1)
Myy = (MNacs(V) —mna) /Ty, (v),
n= (ne(v) —n)/T(v).
Byap = (MNapeo(V) — hnaP)/ Tiygp (V)
Myap = (MNP (V) = MNaP) / Tyep (V),

where Iy, is the fast sodium current with activation variable
my, and inactivation variables &y, and hoyg, I is the delayed
rectifier potassium current with activation gate variable n, Iy,p
is the persistent sodium current with activation variable my,p
and inactivation variable hy,p, I; denotes the leak current and
Iy 1s a synaptic current.

The expressions for the currents in (1) are given by:

Ing (V mMya, hNathNa) = &Na WlNa3 N (V - eNa)y
Ix(vn) = gn*(v—ex),
INap (v, MNap, hNaP) = gNaPMNaPhNaP (V —ena),  (2)
LL(v) = gL(v—er),
Lyn(v) = 8oyn (v—egn).

The steady-state activation and kinetic functions in (1) are as
follows:
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Here, the gating variables n and h,,m, for each relevant
current label x, including the secondary inactivation gate
hyna of the sodium current Iy, as motivated by experimental
observations'7?223, obey the equations specified in (1).

The default parameter values for the DSPK model are given
in Table I. Later in the section, we will discuss further how
these were obtained.

B. Non-dimensionalization

We use non-dimensionalization to determine the timescales
of the variables in the DSPK model (equations (1), (2)). All
variables other than v are gating variables and hence are di-
mensionless. To make the voltage variable dimensionless, we
set v =V Q,, where Q, is a constant representing an upper

. vo. .. .
bound on the magnitude of v and V = — is dimensionless.

Next, we rescale time to make that dimenvsionless and group
parameters>*% so that for each dimensionless voltage or gat-
ing variable in the model, call it x, we extract a constant R,
such that the differential equation for x can be written as

¥ = R fe )

where the function f; is €(1) over the relevant ranges of its
arguments.

For all models in this paper, we take Q, = 100. Addi-
tional details about the non-dimensionalization process are
given in Appendix A; see also'®. Based on the default pa-
rameter values for the DSPK model given in Table II, non-
dimensionalization yields the timescale constants shown in
Table II. Note that we separate out distinct ranges of these
values for different values of g;. As explained in Appendix
A, variation of g, translates into changes in certain timescales
that turn out to be important for the model dynamics.

C. Multiple timescale dynamics

Mathematical models for bursting generally have compo-
nents that evolve on different timescales. Consider a multiple
timescale model of the form

dx/dt
dy/dt
where variables x € R”,m > 2 and y € R" ) n > 2. We make
the assumption that € is a small timescale parameter, denoted
mathematically as 0 < € < 1; therefore, y evolves at a slower

timescale compared to x.
Letting € — 0 gives us the fast subsystem of model (5):

flx,y,€),

£g(x,y,€), ©)

dy/dt = 0, ©)
in which y remains fixed. The set of equilibrium or critical

points of the fast subsystem, which is called the critical man-
ifold, has the form

My ={(x,y) € R" xR" | f(x,3,0) = 0}.

In a neuronal model, points on .# typically correspond either
to a non-spiking rest state or to a non-spiking state of depolar-
ization block. In general, we assume that the set .# is com-
posed of a collection of branches, each of the form {(x(y),y)}
over some range of y values, where f(x(y),y,0) = 0.

Rescaling time using T = &f and then letting € — 0 gives us
the slow subsystem of model (5):

dy/dt = ). @)

|
o
%
=
=

{ 0 = f(xvy’o)v

On each branch of .#, system (7) simplifies to

y = gx(y),y,0) (8)

where we use the overdot to denote differentiation with re-
spect to 7.

Starting from any initial point not on ., the solution of (5)
for 0 < € < 1 will usually converge on the fast or f timescale,
based on the dynamics encoded in (6), toward one of the at-
tractors of (6). Once in a small neighborhood of the attractor,
the trajectory will evolve under the slow or T timescale dy-
namics given approximately by (8), assuming that x = x(y) on
the attractor. Under the slow drift, if the trajectory reaches
the boundary of the attractor, then the fast subsystem (6) will
again become dominant and it will determine how the trajec-
tory transitions to another attractor of this system.

Usually these attractors are either critical points, as dis-
cussed above, or periodic orbits, which in neuronal models
often correspond to repetitive, tonic spiking dynamics, some-
times called pacemaking. Since the components of y are con-
stants in (6), we can plot a bifurcation diagram for this fast
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TABLE I. Default parameter values for DSPK model (1)-(2).

‘ c 36.0 pF‘ &Na 108.2710 nS‘ eNa 55.0 mV‘
| Vi, 63.0mV | Shy, —11.9mV| Ky, 67.5mV |
| Py, —12.8mV| Ty 8.46 mS | Vi, 43.8mV |
| Sy 6.0mV | Koy, 43.83mV | P, 14.0mV |
| iy 0.25 mS)| Vi 44.3497 mV | Shave —1.92387 mV |
| ki, —49.2889 mV | Phow, 4.5524 mV | e 1010.0 mS |
| gnap 3.7666 nS | Viap 60.8242 mV | Kinnop 63.5594 mV |
| Shyar —9.3338 mV| Phyap 9.41933 mV | thap 5250.0 mS |
| Vi 47.1mV | Sinap 3.1mV| Kimp,p 47.1mV |
| Py 6.2mV | - 1.0mS| 2K 250.148 nS |
| ex ~73.0mV| gL 4.0nS| er —62.5mV |
‘ Ssyn 0.3921 nS‘ esyn -10.0 mV‘ ‘

TABLE II. The timescales associated with the variables of the DSPK model (1)-(2) for different g; values.

Ry ~ 6.94 Ry, € 0.24, 0.744] Riny, € [4.0,4.78]
gL =35 Riy, € [107%,0.002] Runyop € [1.0,3.5] Ry € [0.13,0.49)

Ru,y, € [1074,0.011]

Ry ~ 6.94 Ry, € [0.167, 1.7] Runy, € 4.0, 8.45]
gL=40 Riy, € (1074, 0.006] Ruinyap € (1.0, 19.20] R € [0.06, 0.7]

Ry, € [1074,0.11]

Ry ~ 6.94 Ry, € [0.166, 2.07] Runy, € [4.0,9.94]
gL=46 Ry, € [1074,0.0079] Rinyep € (1.0, 28.84] Ru € [0.058,0.739)]

Ry, € [1074,0.2]

subsystem by using any component of y as a bifurcation pa-
rameter. A bifurcation diagram helps us to predict the attrac-
tors to which the fast dynamics will evolve, depending on the
initial conditions. If we consider the slow drift given by (8)
along a branch {x = x(y)} of attracting critical points, then
we can also predict how trajectories will move along such a
branch, when this branch will end and another fast transition
will occur, and which attractor will be the target of this fast
transition.

Until now, we have ignored the complication that a fast sys-
tem attractor may be a periodic orbit, which cannot simply be
represented by a single curve {x = x(y)} parameterized by
y. Using the slow subsystem, we can calculate the average
behavior of the slow variables on a stable periodic orbit of
the fast subsystem. Suppose that for each y in some domain,
xp(y;t) is a stable periodic orbit of the fast subsystem (6) with
period T (y). The averaged slow subsystem on this domain is
given by

1 T(y) 9
dy/dt = 7o /O sp(in)y.0) di. )

We can use system (9) to determine how the slow variables
will drift along such an attracting family of periodic orbits of

the fast subsystem. In some cases, this may occur until the
family ends and another fast transition results. On the other
hand, averaging theory explains that a hyperbolic critical point
of the averaged slow system (9) corresponds to a periodic orbit
in the full system (5) for € sufficiently small, so when such a
point exists and is stable, our fast-slow analysis predicts that
the full model will engage in periodic dynamics.

D. Ramping dynamics and parameter tuning

We categorize a ramping burst pattern as one in which the
spike frequency increases as the burst progresses while the hy-
perpolarization between spikes weakens (Figure 1A). To find
parameter values for (1) that yield ramping burst patterns, we
harnessed an optimization routine using the fiminsearch com-
mand in MATLAB. The cost function that we implemented in
the minimization algorithm is the sum of the following com-
ponents:

e (D) Zi\:lz (ISTj41/1S;), the sum of the ratios of succes-
sive inter-spike intervals,

e (2) Zivz_ll (Trg41/Try), the sum of the ratios of minimal
voltages, or voltage troughs, across successive spikes,
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* (3) min(Spg,k € 1,2,...,N)/Spy, the ratio between the
minimum of the voltages across all spike peaks and the
peak voltage of first spike (note here that these voltages
were always negative, so their ratio was positive and
became larger if the shortest peak became shorter, with
a more negative peak voltage), and

* (4) max(ISIy,k € 1,2,...,N)/(silent phase duration of
the burst),

where the N is the number of spikes in the burst. That is, the
cost function penalizes increases in ISI durations (1), deepen-
ing of spike troughs (2), excessive shrinkage of spike height at
any stage of the burst (3) — since we chose to avoid close ap-
proach to depolarization block for these patterns — and overly
long ISIs within the active phase of a burst (4). After tuning
model parameters by hand to obtain an approximate ramping
pattern, this minimization algorithm helped us to identify pa-
rameter values for which the models exhibit ramping burst dy-
namics that align with the qualitative characteristics observed
experimentally. In the supplementary material we show that
the many significant digits in the values in Table I are not nec-
essary for ramping burst dynamics; moreover, we explicitly
investigate robustness with respect to variation of biologically
central parameter values in the Results section of the paper.

E. Code Accessibility

Model (1)-(3) was implemented using the XPPAUT
software”® and the simulations were performed on a standard
pc laptop (macOS, 1.4 GHz Quad-Core Intel Core i5 Proces-
sor, 8GB RAM). The files used to simulate the model as well
as the MATLAB code used for parameter optimization are
freely available online at https://modeldb.science/2016216.
We note that data sharing is not applicable to this article as
no new data were created or analyzed in this study.

Ill. RESULTS

A. The DSPK model produces a gradual ramping burst
pattern

The default parameter values for the DSPK model are given
in Table I. When the parameters take these values, the model
exhibits a ramping bursting pattern (Figure 2). The parameter
values in Table I were obtained from running an optimization
routine in MATLAB, which led to the specification of some
of these values to several significant digits, and we can vary
them away from these values without significantly affecting
the ramping pattern. A ramping bursting pattern exhibited by
the model for parameter values having at most two decimal
point precision is shown in the supplementary material, Figure
S1. The optimization routine in MATLAB found the param-
eter values in Table I by penalizing an increase in inter-spike
intervals, a decrease in the strength of depolarization and an
increase in the hyperpolarization depth across the burst.

2Na
05f/VV%mMuJ/¢¢¢%“uw//Vvhwﬂaw/

0.2

hNaP

0.22 P B T B L R )

0.19} . . _ :
0 2 4 6 ti(s)

FIG. 2. Ramping burst pattern exhibited by the DSPK model (1)-
(2) for default parameter values given in Table I. Ramping bursting
pattern exhibited by the DSPK model (1), (2) when parameter values
are rounded to a maximum precision of two decimal points is shown
in Sup.

Notice that the ramping burst produced with the optimized
parameter values (Figure 2) starts with relatively slow spikes.
After a small number of these events, the spiking oscillations
increase in frequency. In parallel, the minimum voltages as-
sociated with successive spikes become less negative, provid-
ing the desired ramping shape to the voltage plateau on top
of which spikes arise. While hy,p exhibits net deinactivation
across the slow spikes and only starts to inactivate once the
spikes become sufficiently fast, hop,, on average, declines on
every spike, such that the initial growth in Iy,p is approxi-
mately balanced by the decline of Iy, and thus spikes do not
accelerate too quickly. While the model successfully produces
ramping bursts for an optimal parameter set, we would like to
know how robust this behavior is as well as what dynamic
mechanisms are involved in producing the ramping bursts and
the other activity patterns to which the ramping bursts give
way as parameters are varied sufficiently. We explore these
topics computationally and mathematically in the rest of this
section.

B. Dynamic regimes of the DSPK model are demarcated by
bifurcation events

Past works have explored the dependence of bursting dy-
namics in respiratory neurons on the leak and persistent
sodium current conductances, gz and gn.p'+?’2°. Hence, to
begin our analysis, we simulated the DSPK model across a
range of g; and gn,p values and applied an automatic pro-
cedure to classify the resulting dynamics into one of five
forms: ramping bursts (red), bursting without a ramping pat-
tern (blue), tonic spiking (black), silent with a stable critical
point at a low voltage, and depolarization block with a sta-
ble critical point at a high voltage (Figure 3A). We wrote a
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FIG. 3. Activity patterns in the DSPK model. (A) Classification of the activity patterns exhibited by model (1), (2) for different gy,p and g1
values. The inset highlights at two levels of zoom the transition from spiking (black) to ramping bursts (red) and back to spiking as g7, increases
for gnqap = 3.7666. For a small region near gy = 3.54 (shaded grey), the model exhibits amplitude modulated spiking. (B) Bifurcation diagram
of the full model (1), (2) with respect to gz with gy,p = 3.7666. The g1 values of certain key bifurcations are indicated with vertical, dashed
black lines. The model undergoes a torus bifurcation (TR) at g7 =~ 3.534 nS, where the periodic orbits (green/blue branches) change stability
and a branch of stable tori (not shown) originates. It further undergoes a period doubling (PD) bifurcation at g; ~ 4.6. Note that the lower g7,
values where the model has a stable equilibrium point and where the torus bifurcation occurs are not included in panel (A), which focuses on
the bursting regions. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation, HC: homoclinic bifurcation, TR: Torus bifurcation, PD:
Period doubling bifurcation. The boundary curves separating the different activity patterns in panel (A) were obtained from two parameter
continuation of SN, AH, TR, and PD bifurcations as shown in (B). The absolute values of the derivatives of hy,p, hong, and n along the stable

oscillation pattern for several g;, values are shown in the supplementary material in Figure S2.

custom MATLAB code to detect the types of patterns asso-
ciated with the different g; and gn.p values; see Section 11D
for details on how ramping bursts were specified. Although
the identification fails at isolated points as can be seen in Fig-
ure 3A, it generally performs well. We note that the small,
second, blue (non-ramping) bursting region at low gy,p cor-
responds to bursts with small numbers of spikes. Note that
in exploratory simulations, we did not see any clear indica-
tions of bistability within the parameter domain considered.
Although the region of the slice of parameter space in which
ramping bursts occur is bounded and only spans about 1 nS of
change in each of gy,p and gy, this represents a more robust
form of ramping with respect to changes in gy than that based
on potassium concentration dynamics'4, and the bursting re-
gion can be expanded by varying certain parameters jointly
(see Section III H).

Figure 3B shows the bifurcation diagram of the full DSPK
model (1)-(3) with respect to g7 for gn,p fixed at its default
value of 3.7666 nS. For sufficiently low gz, the model has
a stable critical point (red) corresponding to pinning or de-
polarization block at a relatively depolarized voltage. As g,
increases, we see that the model undergoes a supercritical
AH bifurcation, resulting in a family of stable periodic orbits
(green curves) corresponding to tonic spiking. These periodic
orbits lose stability at a torus bifurcation at g7 = 3.534 nS. A
branch of stable tori originates at this g; value, corresponding

initially to solutions that still feature tonic spiking but with
spike amplitudes that vary gradually with a second, slower
period (see subsection III C); although we do not expect these
solutions to be very robust to parameter changes or of direct
biological significance, they represent the start of the dynamic
transition that eventually results in bursting for larger gz .

Above the torus bifurcation, we observe bursting and then,
for still larger g7, a period doubling (PD) bifurcation gives
rise to a second small interval of tonic spiking periodic or-
bits, which ends in a homoclinic (HC) bifurcation. This bi-
furcation occurs close to a saddle-node bifurcation of critical
points and these may in fact coincide in a SNIC bifurcation;
in any case, for g; above this level, system trajectories set-
tle to a silent, hyperpolarized equilibrium state. The boundary
curves between the various activity patterns in Figure 3A were
obtained through two parameter continuation of different bi-
furcations indicated in Figure 3B. The curve of AH bifurca-
tions marked the transition from depolarization block to spik-
ing. Proceeding in the direction of increasing g7, TR and PD
bifurcations gave the boundary separating bursting and spik-
ing regions. Lastly, at largest gz, SN bifurcations marked the
transition from spiking to a quiescent state. The bifurcation
diagram in Figure 3B and corresponding sequence of activity
patterns are consistent with our numerically observed lack of
bistability of system solutions; however, the simple, full sys-
tem bifurcation diagram in Figure 3B does not give us much



information about the activity patterns occurring for most of
the range of gy values between the torus and PD bifurcations.
To understand these, we will perform a fast-slow timescale
decomposition and additional dynamical systems analysis in
subsection III C.

C. Timescales in the DSPK model vary with g;,

We will now perform a deeper investigation of the diverse
activity patterns that the DSPK model exhibits for gy.,p =
3.7666 nS for various values of g;. Figure 3A shows that
the activity pattern changes from spiking for low g; values to
ramping bursts for intermediate g;, to another phase of spiking
for higher g; values. In fact, numerical simulations show that
before transitioning to bursting, the model also exhibits am-
plitude modulated fast spiking for a small range of g; values
near 3.54 nS. Therefore, in the rest of this section we ana-
lyze in detail the regular spiking, amplitude modulated spik-
ing, ramping bursts, and additional forms of spiking exhibited
by the model for gn,p = 3.7666 nS. For convenience, we will
henceforth drop the units of nS when we refer to specific con-
ductance values.

Note that along the family of oscillatory solutions of the
DSPK model, the oscillations feature larger maximal volt-
age and more negative minimal voltage for larger g; (Fig-
ure 3B, green and blue curves). We can explain this obser-
vation heuristically based on the properties of the currents in
the model. [, is a hyperpolarizing current due to its rever-
sal potential, so increasing g7 lowers the membrane potential
between spikes and reduces excitability and spike frequency.
Due to the increased time interval and reduced voltage be-
tween spikes, Iy, and Iy,p will have more time to recover
from inactivation and will tend towards greater recovery from
inactivation due to the voltage-dependent properties of their
inactivation gates, hy, and hygp. At the same time, the mag-
nitude of Iy, and Iy.p deinactivation needed to overcome I,
and generate a spike increases with g;. Therefore, as g in-
creases, Iy, and Iy,p are more recovered from inactivation
at spike initiation, which leads to stronger spike-generating
currents and taller spikes that reach larger values of vy,q,. In
turn, these taller spikes cause greater activation of the outward
current I, causing larger spike afterhyperpolarizations (i.e.,
more negative vy,,) as g, is increased.

Since the rate of change of hyy, depends on v in (1),
the increase in the range of v values that occurs during
oscillations for larger g; results in an acceleration of the
timescale on which Ay, evolves. To see this, we turn to non-
dimensionalization of the DSPK model; information about
this process for different values of g; is shown in the subsec-
tion II B. We find that Ay,p evolves on a slow timescale for
all values of g;, while the m-variables, hy,, 7, and v remain

(relatively) fast for all g;. For g; sufficiently small, Ay, can
also be considered as slow. However, as gy, is increased to 4,
the timescale of /,y, becomes less clear. We consider the re-
lation between the timescales of /,y, and the other variables
in the model to determine how to treat /iy, in our mathemat-
ical analysis. Figure S2 in the supplementary material shows
the absolute values of the r-derivatives of hy,p, Which is a
slow variable, n, which is the slowest among the fast variables
in the DSPK model (1)-(3), and h;y,, along the stable activity
patterns observed for several values of g;. We see that the rate
of change of hyy, is close to that of the slow variable hy,p for
gr. = 3.5 and closer to that of the fast variable n for g; = 4.6.
Hence, we will treat hyy, as having an intermediate timescale
for g; =4 and a fast timescale for g = 4.6. We shall see that
this choice fits well with the dynamic behavior of the model
variables as we turn to the analysis of the model’s activity pat-
terns for these g; values below, in the remaining parts of this
section.

D. Fast oscillations and a stable fixed point in the slow
averaged dynamics yield tonic spiking in the DSPK model for
gr=3.5

When g;=3.5, the model generates rapid tonic spiking as
shown in Figure 4A. From non-dimensionalization, we con-
clude that in this case, both hy,p and hyy, can be considered
to be slow variables. Therefore, the model for g;=3.5 can be
studied as a 5-fast (v, myq, mpyqp,hna,n) and 2-slow variable
system.

To perform a fast-slow decomposition on a system with 2
slow variables, we typically start by fixing one of the slow
variables and generating the bifurcation diagram of the fast
subsystem with respect to the other. In this case, the choice
of which slow variable to fix is not so important because
in direct simulations of (1), (2) with g; = 3.5, we see that
both hyy, and hy.p remain relatively constant throughout
each spike (Figure 4A; notice the highly zoomed y-axis range
shown for hy,p). For consistency with the next subsection,
we fix hygp = 0.163 and use hyy, as our bifurcation parame-
ter for the fast subsystem, given by the differential equations
for v,myy,myap,hng,n. The resulting bifurcation diagram is
shown in Figure 4B with the spiking trajectory for gy = 3.5
superimposed in grey. Notice that the spiking trajectory cor-
responds to a stable periodic orbit in the fast subsystem.

To build on our observations in Figure 4A-B, we next plot
the two-parameter bifurcation diagram of the fast subsystem
with respect to the two slow variables, hoy, and hy,p (Figure
4C). We also calculate and plot the slow averaged nullclines
for the slow subsystem, generated by averaging over the fast
subsystem oscillations (see Section II C). Specifically, when
we average over the fast spikes, the slow averaged system of
equations is given by
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FIG. 4. Analysis of DSPK the model (1), (2) for g = 3.5. (A) Spiking pattern exhibited by the DSPK model (1), (2) for gz = 3.5. The dashed
grey line in the lowest panel corresponds to hy,p = 0.163. (B) Bifurcation diagram of the fast subsystem with respect to /iy, for hy,p = 0.163.
AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation. (C) The two-parameter bifurcation diagram of the fast subsystem with respect
to hyng and hy,p. The slow averaged nullclines of Ay, and hy,p are shown in black and yellow, respectively. These are relevant in the region
where the fast subsystem exhibits oscillations, which lies between the homoclinic curve (green) and AH curve (blue) for the subsystem. For
completeness, we also show the system’s SN curves (magenta). In both (B) and (C), the spiking trajectory is overlaid in grey, but since it is
difficult to see in (C), where the spiking trajectory lies very close to the fixed point of the slow averaged system (red asterisk), the insets show
a zoomed view of this region.
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[
where v(t;hyap, hong) is the v-coordinate along the stable pe- The equations (10) are valid over the range of (hy.p,hona)

riodic orbit of the fast-subsystem for fixed hy,p and hyy,, with values where there are stable oscillations in the fast subsys-
period T (hyap, hang) With respect to the time variable . tem. In Figure 4C, this corresponds to the parameter range



located to the right side of the HC curve (shown in green) and
to the left side of AH curve (shown in blue). We see that the
slow averaged nullclines intersect at a fixed point very near
hong = 0.45 with hy,p ~ 0.163 (Figure 4C, red dot). More-
over, the relative slopes of the slow averaged nullclines at this
fixed point, which lies on the left branch of the cubic-like Ay,
averaged nullcline (Figure 4C, black curve), imply that it is
stable, consistent with the numerical results. Averaging the-
ory tells us that this fixed point corresponds to a stable peri-
odic orbit in the full system.

Since it is a projection to the slow phase space, the full os-
cillation in the fast variables, shown in Figure 4A-B, is not
visible in Figure 4C. We note that if we define € so that the
slow time variable 7 satisfies T = €, then we expect to ob-
serve an ¢(g) error in the position of the fixed point com-
puted from the averaged nullclines, since they are calculated
assuming hy,p and hoy, to be fixed, as well as an () drift
in each slow variable along each spike. Indeed, the projec-
tion of the actual spiking trajectory to the (Aygp,hong) plane
lies very close to, but not exactly at, the nullcline intersection
point (Figure 4C, grey versus red). Combining the panels in
Figure 4, we have a full fast-slow analysis of the mechanisms
involved in producing the fast spiking trajectory for g;=3.5.

E. Destabilization of the slow averaged fixed point yields
amplitude modulated spiking in the DSPK model for g; = 3.54

When gy is increased to 3.54, the model exhibits ampli-
tude modulated (AM) spiking, as shown in Figure 5SA. The
timescale of Ay, does not vary much from the previous case
since there is little difference between the g; values in these
cases. Hence, for g; = 3.54, the model can again be analyzed
as a 5-fast and 2-slow variable system.

Following the approach from the previous case, we extract
the approximation Ay,p ~ 0.168 from the simulation in Fig-
ure S5A, fix hygp there, and consider the one-parameter bi-
furcation diagram of the fast subsystem with respect to hyy,
(Figure 5B). Note that, although the bifurcation diagram looks
almost identical to the previous one (Figure 4B),the superim-
posed full system trajectory no longer approximates the path
of a single fast subsystem periodic orbit. Indeed, this trajec-
tory, depicted in grey, drifts back and forth along a segment of
the stable periodic orbit family of the fast subsystem, revers-
ing direction periodically. From this observation, we conclude
that fixing hy,p does not provide a useful representation of the
system dynamics; indeed, the direction reversals require non-
trivial dynamics in a pair of slow variables. Nonetheless, the
one-parameter bifurcation diagram gives us a starting point
from which to generate a two-parameter bifurcation diagram
of the fast subsystem with respect to the two slow variables
hong and hy,p, to which we now turn.

Within the two-parameter bifurcation diagram (Figure 5C),
we also superimpose the full system trajectory (grey) and the
slow averaged nullclines from system (10) with g; = 3.54. Al-
though the slow averaged nullclines again intersect at a fixed
point (red dot), this point lies on the middle branch of the
cubic-like Ay, averaged nullcline and is unstable, with a sta-

ble periodic orbit of system (10) around it. That is, it appears
that there has been a supercritical AH bifurcation of the slow
averaged system as g7 has increased from 3.5 to 3.54. At or
near the g;, value where this AH bifurcation occurs, numerical
simulations show that the full system undergoes torus bifurca-
tion (Figure 3B). We also note that the resulting periodic so-
lution passes near a curve of homoclinic bifurcations as hyy,
approaches and reaches its maximum (Figure 5C), which ex-
plains the slowing of spiking along this part of the solution
(Figure SA).

In summary, for g; = 3.54, the fast dynamics of model (1),
(2) is attracted to the stable family of fast subsystem periodic
orbits, which is parameterized by hn,p and hoy,. The cor-
responding slow averaged system (10) exhibits its own sta-
ble oscillations; each such oscillation cycle represents a path
along the fast subsystem periodic orbit family along which
the fast variables are dragged. This situation results in ongo-
ing spiking but with a periodic modulation of the amplitude of
the spikes produced (Figure 5A). In biological terms, the AM
spiking pattern results from a complex interplay of activation
and (de)inactivation of the Iy, and Iy,p currents, which is only
observed for a small range of g; values.

F. Dynamics on three timescales give rise to ramping bursts
in the DSPK model for g, =4

The ramping burst pattern exhibited by the model (1)- (3)
for gr = 4 is displayed in Figure 2. Non-dimensionalization
shows that for g; = 4, the timescale constant for hyy, is
greater than that of the previous cases (see subsection II B and
supplementary material Figure S2). In this case, we analyze
hon, as having an intermediate timescale, with hy,p remain-
ing slow and the other five variables remaining fast.

We analyze the case with g; = 4 in several steps. Specif-
ically, we divide the bursting time course into four parts as
shown in Figure 6A and analyze each epoch, or region, sepa-
rately. In Regions I and II, the trajectory is colored grey and
pink, respectively. Region III comprises the cyan and orange
shaded parts of the bursting trajectory and the trajectory is
colored purple in Region I'V. With three timescales in the sys-
tem, we can first treat the slow variable hy,p as a bifurcation
parameter and consider the dynamics of the remaining, fast-
intermediate variables. If we therefore consider the bifurca-
tion diagram of the fast-intermediate subsystem with respect
to hyqp (Figure 6B), we find that the fast-intermediate subsys-
tem has stable periodic orbits (green) for /y,p values between
0.18 and 0.24, while it has a stable equilibrium point corre-
sponding to depolarization block for each larger hy,p value,
all of which will be useful later.

It is important to keep in mind that this bifurcation diagram
shows us the attractors of the fast-intermediate system with
hygp fixed. In reality, hy,p does have a slow drift, which will
play a role in shaping the overall system dynamics. Indeed,
due to this slow drift, we do not show the bursting solution
superimposed on the bifurcation diagram in Figure 6B. That
is, because hy,p increases and decreases again during differ-
ent parts of the active phase of each ramping burst (Regions I
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FIG. 5. Analysis of DSPK the model (1), (2) for g1 = 3.54. (A) Amplitude modulated (AM) spiking pattern exhibited by the DSPK model.
The dashed grey line in the lowest panel corresponds to hy,p = 0.168. (B) Bifurcation diagram of the fast subsystem with respect to Ay,
for hy,p = 0.168. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation. (C) The two-parameter bifurcation diagram of the fast
subsystem with respect to hyy, and hy,p. The slow averaged nullclines of Ay, and hy,p are shown in black and yellow respectively. The
fixed point in the slow averaged system is shown as a red asterisk and the inset shows a zoomed view near this point. In both (B) and (C), the

AM spiking trajectory is overlaid in grey.

and III in Figure 6A, respectively), the bursting pattern is not
apparent when this trajectory is shown in this projection.

With the bifurcation diagram in Figure 6B established, we
turn to the fast-intermediate subsystem. For the analysis of
the fast-intermediate dynamics with Ay.p fixed, we should
start by treating hoy, as a bifurcation parameter and consid-
ering the dynamics of the fast variables. Once we determine
the attracting dynamics for the fast variables, we can take
into account the intermediate timescale drift of Ay,. Once
this combined analysis reveals the attracting dynamics for the
combined fast-intermediate system for each hy,p, we can con-
sider how slow drift in Ay,p results in passage along the fast-

intermediate timescale attractors and possibly jumps on the
faster timescales to other attractors. Let us now analyze the
dynamics in each of the regions.

Region I: The spiking, active phase of the burst begins at
the start of this region (dark grey part of time course in Figure
6A). Within this region, the burst pattern in Figure 6A exhibits
slow spikes. Notice that hyy, oscillates up and down on each
cycle with little net change while hy,p shows an increasing
trend across successive cycles. Also notice that the values of
hnqp here correspond to a range, from about 0.225 to 0.24, on
which the fast-intermediate system has stable periodic orbits
in Figure 6B. Thus, we turn to the fast-intermediate system to
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FIG. 6. (A) Ramping burst pattern exhibited by the DSPK model (1)-(3) for g; = 4. To analyze the burst further, we divide it into different
regions as shown. (B) The bifurcation diagram of the fast-intermediate subsystem with respect to /y,p. (C) Comparison of the periodic orbits
of the fast-intermediate system for different sy,p values with the slow oscillations in Region I of the bursting pattern for g; = 4, comprising
part of the projection of the full ramping burst solution (light grey). (D-E) Bifurcation diagram of the fast subsystem with respect to Ay, for
(D) hyap = 0.245 and (E) hyap = 0.215. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation, HC: homoclinic bifurcation, SNPO :
Saddle node of periodic orbits. The hyy,-nullcline is shown as dashed black curve in each case. (F) The two-parameter bifurcation diagram
of the fast subsystem with respect to hyp, and hy,p for gr = 4. The slow averaged nullcline of h;y, averaged over the oscillations in the fast
subsystem is shown in solid black. The slow averaged nullcline of hy,p averaged over the oscillations in the fast-intermediate subsystem in
Region I is shown in dashed black. The green dashed line marks the maximal Ay,p value for which homoclinic bifurcations split the family of
fast subsystem periodic orbits. In each of (C)-(F), the ramping burst trajectory (light grey) is overlaid with the relevant section colored.



understand the nature of these orbits, and then we consider the
drift in hy,p across successive orbits.

A comparison of the tonic spikes in this region of the burst
to the stable periodic orbits in the fast-intermediate system,
projected onto the fast v and intermediate Ay, coordinates,
is shown in Figure 6C. From this diagram, we see that each
of the three spikes in Region I corresponds to an orbit in the
fast-intermediate system. These fast-intermediate orbits are
what is known as relaxation oscillations: they feature fast ex-
cursions to relatively elevated values in v (and the other fast
variables, not visible in this projection) alternating with longer
epochs where the fast variables are near an attracting branch
of fast subsystem equilibrium points, with v near its mini-
mum, and hyy, drifts upward on the intermediate timescale
until reaching a saddle-node bifurcation of equilibria of the
fast subsystem, where the next spike begins. The spike-free
periods of intermediate timescale drift, over which Ay, in-
creases, form the inter-spike intervals as seen in Figure 6A,
Region I. The decrease in hyy, during the fast excursion com-
pensates for the silent phase increase in Ay, and ensures that
the fast dynamics can return to the attracting branch of fast
subsystem equilibria after each spike.

To analyze the gradual increase of hy,p from one spike to
the next, we determine the average behavior of hy,p along
each of these oscillations using the equation

T(h‘NIZP) —
1 )/ hnape(V(t, hnap)) hNant an
0

Hyap = ———
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where v(t; inap, hong) is the v-coordinate along the stable peri-
odic orbit of the fast subsystem for fixed Ay,p and hoy,, With
period T (hnap,hong). Meanwhile, as hoy, drifts downward,
the fast variables continue to engage in fast periodic cycles
and hy,p remains roughly constant. This pattern of fast volt-
age oscillations with hyy, progressively decreasing and hyqp
relatively constant continues over several spikes. Gradually,
however, the rate of change of hyy, slows to become more
similar to that of hy,p; indeed, we have checked numerically
that the ratio of |hy,,| to |hy,p| drops from €'(100) to €'(10).
When they are sufficiently close, we can no longer justify
treating them as evolving on separate timescales, and we des-
ignate that a transition from Region II (pink) to Region III
(cyan) has occurred.

Region III: In this region, the average drift of /;y, becomes
smaller in magnitude across successive cycles. Indeed, the
difference between Region II and Region III is that in Region
I1I, the change in Ay, becomes so slow that is comparable to
the timescale of hy,p. Thus, we no longer consider the fast-
intermediate system with Ay, as the unique variable evolving
on the intermediate timescale, and we instead treat the full set
of model equations as a fast-slow system. Here, hoy, and hy,p

hoNass (V(t; hNap, hZNa)) —hana
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where v(t,hngp) is the stable periodic cycle of the fast-
intermediate system for fixed hy,p, with period T (hy.p). We
compute numerically that the right hand side of equation (11)
is positive, and hence hy,p increases slowly in this region.

Therefore, in region I, we observe fast-intermediate
timescale oscillations, while Ay,p has a slow, increasing drift.
Eventually, this drift eliminates the fast-intermediate oscilla-
tions (i.e., hy,p exceeds the upper end of the outer green curve
in Figure 6B) and thus induces a transition to Region II.

Region II: In this region, the fast-intermediate system no
longer has stable oscillations; rather, for each fixed hy,p in
this region, this subsystem has a stable equilibrium point
corresponding to depolarization block (Figure 6B, elevated
hnaep). Because hyy, evolves on a slower timescale than the
fast variables, however, we take the further step of perform-
ing a timescale decomposition on the fast-intermediate sys-
tem, with hy,p fixed, to obtain a more detailed understanding
of the transient dynamics of the fast-intermediate subsystem.
That is, we treat hyy, as a bifurcation parameter and consider
the bifurcation diagram of the fast subsystem.

Performing this step for the hy,p values in Region Il reveals
that there are stable oscillations in the fast subsystem (green
curve, Figure 6D). Each of these oscillations passes above and
below the Ay, nullcline (black dashed). The net change in
han, on each cycle is a decrease, as can be seen from Figure
6A and the negative value of the right hand side of the aver-
aged equation

dt, (12)
Thone (V(E3 ANap, hana))

(

are the slow variables, and the relevant averaged equations be-
come system (10). We compute numerically from this system
that the change in hy,p on each cycle is negative. Therefore,
in this case, hp,p, like hop,, drifts downward as the fast sub-
system oscillations continue.

Now, for the analysis of Region III, we have two slow vari-
ables, hy.p and hyy,. If we fix either of these variables, then
we can generate a bifurcation diagram of the fast subsystem
with respect to the other; however, it is important to note that
any such diagram is simply one point on a continuum of di-
agrams, parameterized by whichever slow variable was held
fixed. For consistency with our analysis of Region II, we will
continue to visualize fast subsystem bifurcation diagrams with
respect to hop, With hygp fixed. Although we will project the
trajectory onto such diagrams, it is important to keep in mind
that, since hy,p changes at a rate comparable to oy, in this
region, the trajectory actually evolves along a continuum of
these diagrams.

Eventually, the slow downward drift of hy.p and hyy, in-
duces a pair of homoclinic bifurcations for the fast subsys-
tem, which split the stable family of periodic fast subsystem
solutions (Figure 6D) into two separated families (Figure 6E).



The homoclinic bifurcations first appear at the hy,p value in-
dicated by the dotted green line in Figure 6F; for the part of the
cyan trajectory segment to the left of this line, the homoclinic
points are present in the fast subsystem bifurcation diagram
with respect to hoy,, although the trajectory itself lies at hyy,
values below the lower homoclinic point. When these bifurca-
tions occur, the trajectory initially still lies in a region of hyy,
on which fast subsystem periodic orbits exist, and oscillations
continue. Eventually, however, the drift in (hygp,hon,) pulls
the trajectory across a fast subsystem homoclinic curve, to
where the branch of stable fast subsystem periodic orbits is not
present. Thus, the ongoing fast oscillations terminate, and the
trajectory jumps on the fast timescale down to the lower, sta-
ble branch of fast subsystem critical points (Figure 6E, lower
orange trajectory segment transitioning to the neighborhood
of the lower red curve, where the trajectory is colored pur-
ple).3°

Region IV: In this region, the trajectory travels along the
lower branch of fast subsystem critical points on the interme-
diate timescale, with hyy, increasing and hy,p increasing as
well, due to the imperfect separation of timescales, but doing
so over a relatively small range (note the small change in Ay,p
in Figure 6A, Region IV, relative to the change in hyy,). This
excursion lasts until the trajectory returns to the fast subsys-
tem saddle-node bifurcation. We have indicated where the SN
point lies in Figure 6E for Ay,p = 0.215, using an asterisk and
SN label at v below -50 mV and hypy, just above 0.8. Due to
the small drift in iy.p in Region IV, the actual jump-up oc-
curs with hy,p = 0.23, at the corresponding SN point; this is
the point on the SN curve in Figure 6F where the trajectory
switches from purple to grey. Once an SN point is reached,
the trajectory jumps up to start another phase of spiking oscil-
lations in Region I for the next burst cycle.

We have now analyzed a full ramping burst cycle. The vari-
ables hon, and hy,p are slower than the other variables (fast
variables) in the system. Therefore, we can also plot the two-
parameter bifurcation diagram of the fast subsystem with re-
spect to hyn, and hy,p (Figure 6F) to gain another viewpoint
on the overall burst dynamics. Since Ay, has an intermedi-
ate timescale between that of the slow variable Aay,p and the
other, faster variables in the model, we calculated the averaged
nullcline for hyy, (using equation (12)) with hy,p fixed at dif-
ferent values that it takes over the course of the burst cycle.
This curve is shown in black in Figure 6F. We also plot the
hngp-nullcline (based on equation (11)) specifically for region
I, where there are stable oscillations in the fast-intermediate
subsystem, as a dashed black line. Furthermore, the burst tra-
jectory is shown with the same region-by-region color coding
used in the other figure panels.

Proceeding region by region, we see that in Region I (grey),
hyna oscillates on each spike but shows little net drift, while
hnqp increases across cycles and approaches its nullcline, con-
sistent with Figures 6A-C. The drift in /y,p pulls the trajec-
tory away from the hyy, nullcline, such that Ay, transitions
to an epoch of more pronounced downward drift (Region II,
pink). There cannot be fast-intermediate periodic solutions
when hyy, is behaving in this non-periodic way, matching
what we observed in Region II in Figure 6D, and the spikes
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here represent fast subsystem oscillations. Since the dynam-
ics in Region II is taking place on the fast and intermediate
timescales and does not converge to an attractor of the fast-
intermediate system, little change in /y,p can occur in this
region.

Due to the shape of the hyy, nullcline (black), the trajec-
tory gradually comes closer to this nullcline and the down-
ward drift of hyp, slows. This effect means that in Region III
(cyan), hy,p changes to a similar extent as hyy, across suc-
cessive fast subsystem oscillations. We checked numerically
that the slow averaged drift in &y,p is negative here; the hy,p
nullcline from system (10) lies very close to the homoclinic
curve, so we do not include it in Figure 6F. This drift in Ay,p
in turn pulls the trajectory still closer to the Ay, nullcline and
slows the drift of Ay, more. As these effects continue, the
trajectory (orange segment) reaches and crosses the fast sub-
system homoclinic curve (green curve, but overlapped by the
black hyn,-nullcline near where the transition occurs), which
terminates the fast oscillations and produces the transition to
the silent phase (purple). Once this happens, the averaged
hon, nullcline is no longer relevant since there are no fast sub-
system oscillations to average around, and the original /iy,
equation gives an increase in hpy,, along with a weaker in-
crease in the slower variable hy,p, until the fast subsystem
SN curve (magenta) is reached and the next cycle of ramping
oscillations begins.

Note that for g7 = 3.54, the AM spiking solution corre-
sponds to a small amplitude periodic cycle in the (Angp, hong)-
space that does not intersect the homoclinic curve (Figure 5C).
In case of ramping bursting with g7 = 4, the amplitude of the
oscillation in the (hyap,hon,)-space (intermediate-slow sub-
system) has grown large enough that the orbit projection in-
tersects the fast subsystem homoclinic curve (Figure 6F). This
corresponds to the termination of the fast subsystem oscilla-
tions and a fast transition to a branch of fast subsystem critical
points during each burst cycle. Thus, an increase in g7 causes
the (hnap,hang) oscillation to grow in a way that induces a
transition in the model activity pattern from spiking to burst-
ing.

G. Fast subsystem oscillations yield a return to tonic spiking
in the DSPK model with g, =4.6

For g; = 4.6, the model exhibits the spiking pattern shown
in Figure 7A. These spikes are larger and slower than those
arising for g7 = 3.5. Non-dimensionalization (see subsec-
tion II B and supplementary material Figure S2) shows that
for g5 = 4.6, the timescale constant of &y, is comparable to
the timescale of the fast variables in the model, particularly
for high v values that occur near spike peaks. In this case, we
analyze the model as having 6 fast variables, including oy,
and 1 slow variable, hy,p.

Figure 7B shows the bifurcation diagram of the fast subsys-
tem (all variables except hy,p) With respect to hy,p. Notice
that the spiking trajectory corresponds to a stable periodic or-
bit in the fast subsystem for hy,p = 0.33 (Figure 7C); based
on the position of the Ay,p nullcline and the evaluation of the



right hand side of equation (11), the slow drift in Ay,p aver-
ages out to 0 on each oscillation cycle.

H. Ramping bursts are robust but pattern details change as
8Nas8NaP,8syn Vary

In this section, we analyze the robustness of the ramping
bursting pattern exhibited by the DSPK model (1), (2) with
respect to parameters gng, gnap, and ggy,. We chose these pa-
rameters because gy, and gyqp levels may change over the
course of development?!=3*, while &syn provides a simple rep-
resentation of the strength of outside inputs including feed-
back control signals to the neuron, and functional rhythms
should be robust to changes in the levels of such inputs.

Figure 8A shows the activity patterns exhibited by the
model for various gy, and gn.p values. The default values
that we chose for gy, and gy.p are marked with a black dot
in Figure 8A. The ramping burst region is shown in red, while
the non-ramping bursting (either bursts with fewer than three
spikes or depolarization block bursts>> where the active phase
of the burst has decaying oscillations and the voltage eventu-
ally stabilizes at a sustained, depolarized level) and spiking re-
gions are shown in blue and black, respectively. Interestingly,
we see a weak trend in which larger gy,p values are needed
to maintain ramping bursts as gy, increases. Thus, Iy, and
Ingp, although both inward sodium currents, are not compen-
sating for each other, presumably due to the differences in the
timescales on which they operate and their correspondingly
distinct effects on spike height and frequency. As with Figure
3A, we have used two-parameter continuation of bifurcation
curves to generate the boundaries between activity patterns in
panel Figure 8A.

The maximum inter-spike intervals within the active phases
of the ramping burst patterns are color-coded over the pa-
rameter region supporting ramping bursts in Figure 8B. Since
spiking frequency usually increases as the ramping burst pro-
gresses, the maximum inter-spike interval in the burst is gen-
erally the time from the first spike within the burst to the sec-
ond. The bursting patterns exhibited by the model at gy, and
gnqp values sampled along a line through the ramping region
are shown as insets in Figure 8B. The maximum inter-spike
interval decreases when going from inset Figures (a) to (c),
consistent with the color-coding in Figure 8B. Also, notice in
the inset figures in Figure 8B that the minimal voltage val-
ues change more as each burst progresses in (b) and (c) com-
pared to (a). This property is illustrated in Figure 8C, where
the color-code indicates the magnitude of the ramping of the
plateau potential, defined by the change, over the duration of
the burst, in the minimum voltage attained between spikes.

We also explored the different bursting patterns exhibited
by the DSPK model (1), (2) over varying values of gy, (Fig-
ure 9). The period of the burst cycle (i.e., active phase plus
silent phase) with respect to gy, With (gna, gnvap) at their de-
fault values is plotted in Figure 9A. The inset shows the burst-
ing patterns exhibited by the model for gy, = 0.3, 0.33, 0.36,
and 0.39. For g, = 0.3, notice that the burst does not ramp
but rather features a period of depolarization block, where the
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voltage is elevated but no new spikes are generated (as seen
in some recordings, cf.73% and in a previous model?d). As
&syn increases from 0.3, the model starts to exhibit ramping
bursts. The maximum inter-spike interval and the strength of
the ramp (difference in minimal voltages across spikes) in the
burst are shown in Figure 9B, C, respectively, for gy, val-
ues that give ramping bursts. The burst period, the maximum
inter-spike interval, and the the magnitude of ramping all de-
crease as gy, increases, yielding more gradual, less extreme
ramps for larger ggy,.

We put these results together, and summarize the activity
patterns exhibited by the DSPK model for different gn,, gnap
and g, values, in Figure 10. Notice that for lower gy, values,
ramping burst patterns can arise at lower gyqp and gy, values.
As gyq increases, larger gyqp and gy, values are needed for
ramping bursts to arise. These results predict that as gy, and
gnqp change during development, the range of external feed-
back signal strengths may need to change as well to preserve
functional respiratory dynamics.

IV. DISCUSSION

In this work, we introduce and analyze what we call the
DSPK model!®, a neuronal model that includes a secondary,
experimentally supported®>?* slow negative feedback to the
inward sodium current, which induces gradual changes in
spike height and an associated ramping effect. The DSPK
model produces a range of activity patterns, and we perform
dynamical systems analysis based on timescale decomposi-
tion to understand how these arise. To begin this process, we
observe that non-dimensionalization classifies the persistent
sodium inactivation variable hy,p as a slow variable, as in
many other pre-BotC neuron models building from the work
of Butera et al.’’, while most other gating terms are fast vari-
ables, meaning that they evolve on approximately the same
timescale as the voltage. The timescale of the second inac-
tivation variable of the sodium current, /,y,, depends on the
tuning of other model parameters, however, since the model
timescales are measured relative to voltage. While always
faster than that of hy,p, the hoy, timescale is comparable to
that of hy,p when g; is relatively low, with other model pa-
rameters at their default values. On the other hand, when gy,
is increased towards and through the ramping burst regime,
the timescale of /iy, becomes significantly faster than that of
hnap, in the ramping regime, and eventually is comparable to
the timescale of the other fast variables, in a regime where
ramping bursts no longer occur.

We analyzed model dynamics for specific, fixed values of
gL, yet our results also give us insights about how transitions
between different forms of model dynamics occur. When gy,
increases from 3.5 to 3.54, the critical point of the slow aver-
aged nullclines, which corresponds to a spiking solution, be-
comes unstable through what appears, numerically, to be a
supercritical AH bifurcation. As a result, we obtain stable pe-
riodic orbits of the slow averaged dynamics in the (hy.p, hong)
space. These orbits correspond to amplitude modulated (AM)
spiking dynamics at g; = 3.54, and they grow in size as gy, in-
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creases and the timescale of /;y, accelerates into an interme-
diate range (Figure 11). When the periodic orbit in the slow-
intermediate (hyup,hon,) averaged subsystem grows and in-
tersects the curve of (hngp,hong) values where the fast sub-
system has a homoclinic orbit, as shown in Figure 6F, the full
system trajectory is no longer trapped in the vicinity of a sta-
ble family of fast subsystem periodic orbits. Rather, it can
make transitions to transient excursions along the stable lower
branch of fast subsystem equilibria. This switch marks the
transition from AM spiking to bursting. The additional tran-
sition from bursting to tonic spiking when g; grows further

is not as well defined. We have seen that when g is large
enough, corresponding to this regime, the Ay, variable has a
timescale comparable to the other fast variables in the system.
We leave a detailed, rigorous mathematical analysis of each
of these transitions as a direction for future exploration.

Some previous works have noted that slow, negative feed-
back effects can enhance the robustness of specific burst pat-
terns and provide flexibility in burst patterning!®3% but they
did not suggest a mechanism for ramping burst generation.
Including slow potassium concentration dynamics in a burst-
ing model can result in a ramping burst pattern'*. Compared
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to that model, the one considered in this work yields ramp-
ing bursts with more extreme changes in spike heights across
the burst, a feature that has been seen in some experimental
recordings®, and without the necessity of significant extracel-
lular potassium concentration changes during each burst cy-
cle. These bursts occur over a range of sodium and leak con-
ductances, and one role of feedback input to pre-B6tC neurons
and of homeostatic adjustments in conductances could be to
maintain functionally relevant burst patterning (Fig. 3, Fig.
10). A future direction to explore would be to develop a more
detailed model that includes slow sodium inactivation, potas-
sium concentration dynamics, as well as sodium concentra-
tion dynamics, to investigate whether the combined presence
of these effects further enhances the robustness of ramping

bursts. In another previous paper examining bursting involv-
ing recurrent synaptic excitation, calcium dynamics involving
Ican was shown to induce gradual reductions in both the spike
height, which led to a decrease in synaptic transmission, and
the magnitude of the AHP3, yielding a ramp-like burst pat-
tern with a rather extreme transition from slower tonic spik-
ing to a rapid, decrementing burst of spikes. Including these
mechanisms would allow for an even more thorough study
of burst patterns. Finally, modeling resurgent Na™ current is
yet another direction to explore in the context of ramping dy-
namics, since it could enhance inward current flow and lead
to faster spiking during each burst*’; moreover, the possibil-
ity has been raised that Iy could contribute to ramping burst
patterns*!, which could also be investigated computationally.
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Future studies could also look at the role of neurons capa-
ble of ramping bursting, instantiated with any of these mech-
anisms, in network rhythm generation. For example, it is
possible that reciprocally coupled DSPK model neurons with
g1 = 4.6 (tonic spiking mode) could together produce a ramp-
ing burst pattern, analogously to effects seen in regular burst-
ing models**** or in models lacking intrinsic bursting!®*>.
More generally, it remains to be seen how these model neu-
rons would function in a larger, heterogeneous pre-BotC neu-
ron network*® or in a more complete network model including
various inhibitory respiratory populations that are active dur-
ing expiratory phases of respiration'>!3. In the former vein, it
has been proposed that the respiratory rhythm generator pro-
duces relatively small burstlet oscillations, which need to re-
cruit pattern generator neurons in order to transition into a
full-blown inspiratory burst*’. It is possible that the ramping

pattern, or more general forms of gradual spike acceleration
based on progressively diminishing spike heights and afterhy-
perpolarization depths, could contribute to the burstlet genera-
tion process by delaying full blown burst spiking in relatively
excitable neurons, thus allowing time for less excitable neu-
rons to become less refractory, or by recruiting other neurons
that inhibit expiratory neurons during inspiration, thus clear-
ing the way for recruitment of pattern generator cells.

Overall, this work predicts that single pre-BotC neu-
rons can produce the ramping burst patterns that arise dur-
ing the expiration-to-inspiration transition in mammalian
respiration’>!4.  Our work also predicts that, if this activ-
ity pattern at the single-neuron level is functionally important,
then during development, as sodium channel conductances
become stronger, feedback signals to pre-BotC inspiratory
neurons should intensify correspondingly. Experiments have
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shown that pre-BotC neurons have multiple types of sodium
channels, with different kinetics*®, and the analysis in the pa-
per highlights the potential importance of the timescales of
sodium inactivation for shaping neuronal dynamics. Here we
find that while the fastest form of sodium inactivation con-
tributes to action potential generation and the slowest form
of sodium inactivation, associated with the persistent sodium
current, can support bursting, the inclusion of an intermedi-
ate inactivation timescale allows for a rich variety of dynamic
burst patterns while maintaining robustness of bursting over a
range of conductance and input levels, which could allow for
flexible modulation of outputs to match functional demands.

SUPPLEMENTARY ONLINE MATERIAL

The supplementary online material comprises two addi-
tional figures. One figure shows the ramping burst pattern ob-
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tained from rounding the optimal parameter values to the hun-
dreths place. The other shows the magnitudes of the deriva-
tives of several DSPK model variables at various values of gr.
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Appendix A: Non-dimensionalization

In this appendix, we use non-dimensionalization to deter-
mine the timescales of the variables in the DSPK model (equa-
tions (1)-(3)). All variables in the model, except for v, are
gating variables and hence are dimensionless. To make the
voltage variable dimensionless, we set v =V Q, where Q, is
a constant representing the nominal values of vand V =v/Q,
is dimensionless. The aim is to find constants Ry, Ry, Rp,y,.»
Ruyas Riyop» Rimy,p and Ry, such that

Vi = Ry fi(V,hna, honas MNas hivap, mMNap, 1)
Rye = Ruy, 2(V,hna, honas Mg, hiap, mnap, 1)
Pynvae = Rion, 3(VshNa, Bona, mMNa, ANap, MNap, 1)
my, = Ry, f4a(V.hNa, hona, Mna, Anap, Myap, 1) (A1)
Byap = Ruyep J5(Vihina, hona, Mna, Anap, Myap, 1)

/
Mygp = Rinyop f6(V,hna, hona, Ma, Anap, Map, 1)

n = Ry fo(V.hna, hana, Mnas hvap Mnap, 1)
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where the functions f; are &'(1) for all i, over the relevant
ranges of their arguments.

In the main text, we analyze how the dynamics of this
model varies with changes in g;. Thus, we perform non-
dimensionalization for the various values of g; that we use
in our analysis, along with the default values of the other pa-
rameters given in Table I and Q, = 100, and we obtain the
following results.

First, when g; = 3.5, the timescale constants are:

mMax (gna, gNaP> EAHP» 8K > 8L» 8syn)

R, = c
~ 6.94,
R _ € [0.24,0.744)
hNa ThNa (V QV) ' ’ '
1
R = ———— €[1074,0.011
hZNa ThZNa (V QV) [ ]
R = ;6[40 4.78) (A2
mNa TmNa (V QV) . ’ .
1
R = ———— < [1074,0.002
hNap ThNap (V Qv) [ ]
R - . [1.0,3.5]
T Ty (VO T
1
R = ————€0.13,0.49
"T v C ]

Note that the timescales for all the variables (except v) in-
clude denominator terms that depend on the range of v. When
g1, increases from 3.5 to 4 and then further to 4.6, the activa-
tion and inactivation variables take on a higher range of values
to compensate for the increased hyperpolarization. This, in
turn, changes the range of values that v takes, which we check
numerically. Evaluating the various functions in (A2) over
this range gives the range of possible values for the timescale
constants.

The timescale constants for g; = 3.54 remain similar to
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(A2). Next, when g; = 4, the timescale constants are:

max (gna, gNaPs SAHP: 8K 8L gsyn)

R, = c
m
~ 6.94,
Ry = —— €[0.167,17]
hng - ThNa (V Qv) . 5 L
1
R = —————¢c[1074,0.11
hZNa ThZNa (V Qv) [ ]
Ruy, = — c[4.0,845] )
i B TmNa(VQV) o
1
R = — €[107%,0.006
hNap ThNaP (V Qv) [ ]
1
R = ———— €]1.0,19.20
MNap TmNaP (V Qv) [ ]
1
R = ———— €10.06,0.7
" 7 (V Oy) | ]

Finally, when g; = 4.6, the timescale constants are:

max (gNaa 8NaP, 8AHP; 8K 8L, gsyn)

R, = c
m
~ 6.94,
R = ée[om 2.07]
hNu ThN{l (V QV) . ’ .
1
R ——€c[1074,0.2
hona Thome (V Qv) [ }
R - € [4,9.94] (A9
v Ty (V Ov) o
1
R — € [107%,0.0079
hNaP ThNap (V Qv) € [ ’ }
1
R = ———€[1.0,28.84
MNP TmNaP (V Qv) [ ]
1
R = ———— €[0.058,0.739
» v oy < ]
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