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Recordings from pre-Bötzinger complex (pre-BötC) neurons responsible for the inspiratory phase of the respiratory
rhythm reveal a ramping burst pattern, starting around the time that the transition from expiration to inspiration begins,
in which the spike rate gradually rises until a transition into a high-frequency burst occurs. The spike rate increase
along the burst is accompanied by a gradual depolarization of the plateau potential that underlies the spikes. These
effects may be functionally important for inducing the onset of inspiration and hence maintaining effective respiration;
however, most mathematical models for inspiratory bursting do not capture this activity pattern. Here, we study how
the modulation of spike height and afterhyperpolarization via the slow inactivation of an inward current can support
various activity patterns including ramping bursts. We use dynamical systems methods designed for multiple timescale
systems, such as bifurcation analysis based on timescale decomposition and averaging over fast oscillations, to generate
an understanding of and predictions about the specific dynamic effects that lead to ramping bursts. We also analyze how
transitions between ramping and other activity patterns may occur with parameter changes, which could be associated
with experimental manipulations, environmental conditions and/or development.

Pre-Bötzinger complex (pre-BötC) respiratory neurons
can exhibit activity that gradually ramps in intensity,
which could be important in the transition from expira-
tion to inspiration. We use modeling, simulations, and
mathematical analysis to investigate a novel, biological re-
alistic mechanism by which individual pre-BötC neurons
could produce ramping burst patterns. Specifically, we
add an additional negative feedback component to an ex-
isting pre-BötC model, we show that this addition yields
ramping burst dynamics, and we provide a computational
exploration of the robustness of these patterns along with
a mathematical analysis of the mechanisms that produce
them, using the theory of multiple timescale dynamical
systems. This work provides a new computational model
for the production of ramping bursts by individual neu-
rons and makes predictions about what electrophysiologi-
cal features underlie this activity.

I. INTRODUCTION

Typical mammalian respiration is a rhythmic behavior with
inspiration, post-inspiration, and late-expiration phases. The
inspiratory drive that induces movement of the diaphragm for
air intake is primarily determined by activity of a brainstem
region called the pre-Bötzinger complex (pre-BötC)1–3. Ex-
periments show that a subpopulation of pre-BötC neurons,
which activate during the transition from expiration to inspi-
ration and hence are known as pre-I neurons4,5, play a criti-
cal role in respiratory rhythm generation6. A significant frac-
tion of pre-I neurons exhibit an endogenous bursting capabil-
ity when isolated from synaptic inputs; some produce ramp-
ing burst patterns, which often persist under block of synap-
tic interactions7–9. As with most bursts, ramping bursts fea-
ture spiking or active phases that alternate with silent phases

that lack spikes. Their active phases feature a progressive in-
crease in spike frequency, accompanied by a gradual rise in
the plateau potential to which the membrane potential returns
between spikes (see e.g., Fig. 1A and data from Yamanishi et
al.10, Fig. 1E). Despite its functional importance, it is not yet
known how pre-inspiratory ramping results from dynamics at
the single-neuron level.

Extensive computational and mathematical works have
proposed and analyzed models for bursting in the pre-
BötC12,13. Many include specific transmembrane ion cur-
rents, which experiments have extensively characterized in
pre-BötC neurons1. Most existing models fail to produce
the gradual increase in spike frequency and other features of
ramping bursts, however (e.g., Figure 1B), despite the preva-
lence of these patterns in isolated pre-BötC neurons. One
recent work14 showed that modifying an existing pre-BötC
model by including potassium ion concentration dynamics al-
lows ramping bursts to emerge. That paper, however, does not
fully address the experimental findings because the resulting
ramping dynamics occurs over smaller ranges of ionic con-
ductances and external potassium concentrations than those
that support ramping in experiments8, and ramping bursts in
neurons can also occur with smaller variations in extracellu-
lar potassium concentrations than those arising with ramping
bursts in the previous model15. Thus, we were inspired to seek
an alternative mechanism that, when included within a base-
line pre-BötC neuron model, could result in ramping bursts.

This paper presents some of the results of this investigation;
see also16 for an earlier version of some of this work. Specif-
ically, we introduce and analyze what we call the dynamic
spike height model, which includes a second, slow inactiva-
tion component known to be associated with the fast inward
sodium current17. This innovation is motivated by recent ob-
servations that changes in spike height and other spike shape
features can transition a neuron between spiking and various
bursting modes18,19. In this model, we study how the interac-
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(A) (B)

FIG. 1. (A) Ramping burst pattern exhibited by the inspiratory neurons in the pre-BötC at external potassium concentration [K+]o = 8mM.
This figure was reproduced with permission from J. Neurosci. 23, 3538 (2003). Copyright 2003 Society for Neuroscience. (B) The bursting
pattern exhibited by a state-of-the-art model for inspiratory neurons11. Note the gradual decrease in spike frequency within each burst.

tions of ionic currents that evolve on various timescales give
rise to several interesting activity patterns, including ramping
bursts, depending on the tuning of model parameters. Within
the fast-slow decomposition framework often used to analyze
multiple timescale dynamical systems20, we use one- and two-
parameter bifurcation analysis and averaging over fast subsys-
tem dynamics to explain the mechanisms underlying these ac-
tivity patterns. In this analysis, we show how the timescale of
the secondary inactivation variable of the sodium current, rel-
ative to those of other model variables, changes under parame-
ter variations and contributes to the model activity patterns; in
particular, in the case of ramping bursts, we find that we must
take into account differences in these relations over the course
of each burst cycle in order to fully explain the dynamics.

II. METHODS

A. Model system

We consider a single-compartment neuron model, the dy-
namic spike height model or DSPK model16, based on the
Hodgkin-Huxley framework21. The model includes various
voltage-gated currents, a leak current, and a synaptic current.
In particular, since we are considering single-cell dynamics,
the synaptic current is meant to represent an excitatory tonic
drive to the neuron, corresponding to the signals that come to
pre-BötC respiratory neurons from other brain areas related to
blood pH, pulmonary stretch, and other feedback factors12.
We maintain the conductance of this current at a constant
value, which corresponds to a setting of steady metabolic de-
mands and environmental conditions rather than a more dy-
namic scenario.

The differential equations for the model take the form



cv′ = −(INa(v,mNa,hNa,h2Na)+ IK(v,n)
+ INaP(v,hNaP,mNaP)+ IL(v)
+ Isyn(v)),

h′Na = (hNa∞(v)−hNa)/τhNa(v),
h′2Na = (h2Na∞(v)−h2Na)/τh2Na(v),
m′

Na = (mNa∞(v)−mNa)/τmNa(v),
n′ = (n∞(v)−n)/τn(v).

h′NaP = (hNaP∞(v)−hNaP)/τhNaP(v),
m′

NaP = (mNaP∞(v)−mNaP)/τmNaP(v),

(1)

where INa is the fast sodium current with activation variable
mNa and inactivation variables hNa and h2Na, IK is the delayed
rectifier potassium current with activation gate variable n, INaP
is the persistent sodium current with activation variable mNaP
and inactivation variable hNaP, IL denotes the leak current and
Isyn is a synaptic current.

The expressions for the currents in (1) are given by:

INa(v,mNa,hNa,h2Na) = gNa mNa
3 hNa h2Na (v− eNa),

IK(v,n) = gk n4 (v− eK),

INaP(v,mNaP,hNaP) = gNaP mNaP hNaP (v− eNa),

IL(v) = gL (v− eL),

Isyn(v) = gsyn (v− esyn).

(2)

The steady-state activation and kinetic functions in (1) are as
follows:

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

02
01

47
2



3

hNa∞(v) = (1+ e−(vhNa+v)/shNa )−1,

τhNa(v) = thNa cosh((khNa + v)/phNa)
−1,

h2Na∞(v) = (1+ e−(vh2Na+v)/sh2Na )−1,

τh2Na(v) = th2Na cosh((kh2Na + v)/ph2Na)
−1.

mNa∞(v) = (1+ e−(vmNa+v)/smNa )−1,

τmNa(v) = tmNa cosh((kmNa + v)/pmNa)
−1,

n∞(v) = k1(v)/(k1(v)+ k2(v)),
τn(v) = (k1(v)+ k2(v))−1,

k1(v) = 0.011(44.0+ v)(1− e(−44.0−v)/5.0)−1,

k2(v) = 0.17e(−v−49.0)/40.0,

hNaP∞(v) = (1+ e−(vhNaP+v)/shNaP )−1,

τhNaP(v) = thNaP cosh((khNaP + v)/phNaP)
−1,

mNaP∞(v) = (1+ e−(vmNaP+v)/smNaP )−1,

τmNaP(v) = tmNaP cosh((kmNaP + v)/pmNaP)
−1.

(3)

Here, the gating variables n and hx,mx for each relevant
current label x, including the secondary inactivation gate
h2Na of the sodium current INa as motivated by experimental
observations17,22,23, obey the equations specified in (1).

The default parameter values for the DSPK model are given
in Table I. Later in the section, we will discuss further how
these were obtained.

B. Non-dimensionalization

We use non-dimensionalization to determine the timescales
of the variables in the DSPK model (equations (1), (2)). All
variables other than v are gating variables and hence are di-
mensionless. To make the voltage variable dimensionless, we
set v = V Qv, where Qv is a constant representing an upper
bound on the magnitude of v and V =

v
Qv

is dimensionless.

Next, we rescale time to make that dimensionless and group
parameters24,25 so that for each dimensionless voltage or gat-
ing variable in the model, call it x, we extract a constant Rx
such that the differential equation for x can be written as

x′ = Rx fx (4)

where the function fx is O(1) over the relevant ranges of its
arguments.

For all models in this paper, we take Qv = 100. Addi-
tional details about the non-dimensionalization process are
given in Appendix A; see also16. Based on the default pa-
rameter values for the DSPK model given in Table II, non-
dimensionalization yields the timescale constants shown in
Table II. Note that we separate out distinct ranges of these
values for different values of gL. As explained in Appendix
A, variation of gL translates into changes in certain timescales
that turn out to be important for the model dynamics.

C. Multiple timescale dynamics

Mathematical models for bursting generally have compo-
nents that evolve on different timescales. Consider a multiple
timescale model of the form{

dx/dt = f (x,y,ε),
dy/dt = εg(x,y,ε), (5)

where variables x ∈ Rm,m ≥ 2 and y ∈ Rn,n ≥ 2. We make
the assumption that ε is a small timescale parameter, denoted
mathematically as 0 < ε ≪ 1; therefore, y evolves at a slower
timescale compared to x.

Letting ε → 0 gives us the fast subsystem of model (5):

{
dx/dt = f (x,y,0),
dy/dt = 0, (6)

in which y remains fixed. The set of equilibrium or critical
points of the fast subsystem, which is called the critical man-
ifold, has the form

M0 = {(x,y) ∈ Rm ×Rn | f (x,y,0) = 0}.

In a neuronal model, points on M0 typically correspond either
to a non-spiking rest state or to a non-spiking state of depolar-
ization block. In general, we assume that the set M0 is com-
posed of a collection of branches, each of the form {(x(y),y)}
over some range of y values, where f (x(y),y,0) = 0.

Rescaling time using τ = εt and then letting ε → 0 gives us
the slow subsystem of model (5):

{
0 = f (x,y,0),

dy/dτ = g(x,y,0). (7)

On each branch of M0, system (7) simplifies to

ẏ = g(x(y),y,0) (8)

where we use the overdot to denote differentiation with re-
spect to τ .

Starting from any initial point not on M0, the solution of (5)
for 0 < ε ≪ 1 will usually converge on the fast or t timescale,
based on the dynamics encoded in (6), toward one of the at-
tractors of (6). Once in a small neighborhood of the attractor,
the trajectory will evolve under the slow or τ timescale dy-
namics given approximately by (8), assuming that x = x(y) on
the attractor. Under the slow drift, if the trajectory reaches
the boundary of the attractor, then the fast subsystem (6) will
again become dominant and it will determine how the trajec-
tory transitions to another attractor of this system.

Usually these attractors are either critical points, as dis-
cussed above, or periodic orbits, which in neuronal models
often correspond to repetitive, tonic spiking dynamics, some-
times called pacemaking. Since the components of y are con-
stants in (6), we can plot a bifurcation diagram for this fast
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TABLE I. Default parameter values for DSPK model (1)-(2).

c 36.0 pF gNa 108.2710 nS eNa 55.0 mV

vhNa 68.0 mV shNa −11.9 mV khNa 67.5 mV

phNa −12.8 mV thNa 8.46 mS vmNa 43.8 mV

smNa 6.0 mV kmNa 43.8 mV pmNa 14.0 mV

tmNa 0.25 mS vh2Na 44.3497 mV sh2Na −1.92387 mV

kh2Na −49.2889 mV ph2Na 4.5524 mV th2Na 1010.0 mS

gNaP 3.7666 nS vhNaP 60.8242 mV khNaP 63.5594 mV

shNaP −9.3338 mV phNaP 9.41933 mV thNaP 5250.0 mS

vmNaP 47.1 mV smNaP 3.1 mV kmNaP 47.1 mV

pmNaP 6.2 mV tmNaP 1.0 mS gK 250.148 nS

eK −73.0 mV gL 4.0 nS eL −62.5 mV

gsyn 0.3921 nS esyn −10.0 mV

TABLE II. The timescales associated with the variables of the DSPK model (1)-(2) for different gL values.

gL = 3.5
RV ≈ 6.94 RhNa ∈ [0.24, 0.744] RmNa ∈ [4.0, 4.78]
RhNaP ∈ [10−4, 0.002] RmNaP ∈ [1.0, 3.5] Rn ∈ [0.13, 0.49]
Rh2Na ∈ [10−4, 0.011]

gL = 4.0
RV ≈ 6.94 RhNa ∈ [0.167, 1.7] RmNa ∈ [4.0, 8.45]
RhNaP ∈ [10−4, 0.006] RmNaP ∈ [1.0, 19.20] Rn ∈ [0.06, 0.7]
Rh2Na ∈ [10−4, 0.11]

gL = 4.6
RV ≈ 6.94 RhNa ∈ [0.166, 2.07] RmNa ∈ [4.0, 9.94]
RhNaP ∈ [10−4, 0.0079] RmNaP ∈ [1.0, 28.84] Rn ∈ [0.058, 0.739]
Rh2Na ∈ [10−4, 0.2]

subsystem by using any component of y as a bifurcation pa-
rameter. A bifurcation diagram helps us to predict the attrac-
tors to which the fast dynamics will evolve, depending on the
initial conditions. If we consider the slow drift given by (8)
along a branch {x = x(y)} of attracting critical points, then
we can also predict how trajectories will move along such a
branch, when this branch will end and another fast transition
will occur, and which attractor will be the target of this fast
transition.

Until now, we have ignored the complication that a fast sys-
tem attractor may be a periodic orbit, which cannot simply be
represented by a single curve {x = x(y)} parameterized by
y. Using the slow subsystem, we can calculate the average
behavior of the slow variables on a stable periodic orbit of
the fast subsystem. Suppose that for each y in some domain,
xP(y; t) is a stable periodic orbit of the fast subsystem (6) with
period T (y). The averaged slow subsystem on this domain is
given by

dy/dτ =
1

T (y)

∫ T (y)

0
g(xP(y; t),y,0) dt. (9)

We can use system (9) to determine how the slow variables
will drift along such an attracting family of periodic orbits of

the fast subsystem. In some cases, this may occur until the
family ends and another fast transition results. On the other
hand, averaging theory explains that a hyperbolic critical point
of the averaged slow system (9) corresponds to a periodic orbit
in the full system (5) for ε sufficiently small, so when such a
point exists and is stable, our fast-slow analysis predicts that
the full model will engage in periodic dynamics.

D. Ramping dynamics and parameter tuning

We categorize a ramping burst pattern as one in which the
spike frequency increases as the burst progresses while the hy-
perpolarization between spikes weakens (Figure 1A). To find
parameter values for (1) that yield ramping burst patterns, we
harnessed an optimization routine using the fminsearch com-
mand in MATLAB. The cost function that we implemented in
the minimization algorithm is the sum of the following com-
ponents:

• (1)
∑N−2

k=1 (ISIk+1/ISIk), the sum of the ratios of succes-
sive inter-spike intervals,

• (2)
∑N−1

k=1 (Trk+1/Trk), the sum of the ratios of minimal
voltages, or voltage troughs, across successive spikes,
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• (3) min(Spk,k ∈ 1,2, . . . ,N)/Sp1, the ratio between the
minimum of the voltages across all spike peaks and the
peak voltage of first spike (note here that these voltages
were always negative, so their ratio was positive and
became larger if the shortest peak became shorter, with
a more negative peak voltage), and

• (4) max(ISIk,k ∈ 1,2, . . . ,N)/(silent phase duration of
the burst),

where the N is the number of spikes in the burst. That is, the
cost function penalizes increases in ISI durations (1), deepen-
ing of spike troughs (2), excessive shrinkage of spike height at
any stage of the burst (3) – since we chose to avoid close ap-
proach to depolarization block for these patterns – and overly
long ISIs within the active phase of a burst (4). After tuning
model parameters by hand to obtain an approximate ramping
pattern, this minimization algorithm helped us to identify pa-
rameter values for which the models exhibit ramping burst dy-
namics that align with the qualitative characteristics observed
experimentally. In the supplementary material we show that
the many significant digits in the values in Table I are not nec-
essary for ramping burst dynamics; moreover, we explicitly
investigate robustness with respect to variation of biologically
central parameter values in the Results section of the paper.

E. Code Accessibility

Model (1)-(3) was implemented using the XPPAUT
software26 and the simulations were performed on a standard
pc laptop (macOS, 1.4 GHz Quad-Core Intel Core i5 Proces-
sor, 8GB RAM). The files used to simulate the model as well
as the MATLAB code used for parameter optimization are
freely available online at https://modeldb.science/2016216.
We note that data sharing is not applicable to this article as
no new data were created or analyzed in this study.

III. RESULTS

A. The DSPK model produces a gradual ramping burst
pattern

The default parameter values for the DSPK model are given
in Table I. When the parameters take these values, the model
exhibits a ramping bursting pattern (Figure 2). The parameter
values in Table I were obtained from running an optimization
routine in MATLAB, which led to the specification of some
of these values to several significant digits, and we can vary
them away from these values without significantly affecting
the ramping pattern. A ramping bursting pattern exhibited by
the model for parameter values having at most two decimal
point precision is shown in the supplementary material, Figure
S1. The optimization routine in MATLAB found the param-
eter values in Table I by penalizing an increase in inter-spike
intervals, a decrease in the strength of depolarization and an
increase in the hyperpolarization depth across the burst.

FIG. 2. Ramping burst pattern exhibited by the DSPK model (1)-
(2) for default parameter values given in Table I. Ramping bursting
pattern exhibited by the DSPK model (1), (2) when parameter values
are rounded to a maximum precision of two decimal points is shown
in Sup.

Notice that the ramping burst produced with the optimized
parameter values (Figure 2) starts with relatively slow spikes.
After a small number of these events, the spiking oscillations
increase in frequency. In parallel, the minimum voltages as-
sociated with successive spikes become less negative, provid-
ing the desired ramping shape to the voltage plateau on top
of which spikes arise. While hNaP exhibits net deinactivation
across the slow spikes and only starts to inactivate once the
spikes become sufficiently fast, h2Na, on average, declines on
every spike, such that the initial growth in INaP is approxi-
mately balanced by the decline of INa and thus spikes do not
accelerate too quickly. While the model successfully produces
ramping bursts for an optimal parameter set, we would like to
know how robust this behavior is as well as what dynamic
mechanisms are involved in producing the ramping bursts and
the other activity patterns to which the ramping bursts give
way as parameters are varied sufficiently. We explore these
topics computationally and mathematically in the rest of this
section.

B. Dynamic regimes of the DSPK model are demarcated by
bifurcation events

Past works have explored the dependence of bursting dy-
namics in respiratory neurons on the leak and persistent
sodium current conductances, gL and gNaP

14,27–29. Hence, to
begin our analysis, we simulated the DSPK model across a
range of gL and gNaP values and applied an automatic pro-
cedure to classify the resulting dynamics into one of five
forms: ramping bursts (red), bursting without a ramping pat-
tern (blue), tonic spiking (black), silent with a stable critical
point at a low voltage, and depolarization block with a sta-
ble critical point at a high voltage (Figure 3A). We wrote a
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TR

PD HC

SN

SN
AH

max voltage

min voltagequiescent

depolarization            
block

FIG. 3. Activity patterns in the DSPK model. (A) Classification of the activity patterns exhibited by model (1), (2) for different gNaP and gL
values. The inset highlights at two levels of zoom the transition from spiking (black) to ramping bursts (red) and back to spiking as gL increases
for gNaP = 3.7666. For a small region near gL = 3.54 (shaded grey), the model exhibits amplitude modulated spiking. (B) Bifurcation diagram
of the full model (1), (2) with respect to gL with gNaP = 3.7666. The gL values of certain key bifurcations are indicated with vertical, dashed
black lines. The model undergoes a torus bifurcation (TR) at gL ≈ 3.534 nS, where the periodic orbits (green/blue branches) change stability
and a branch of stable tori (not shown) originates. It further undergoes a period doubling (PD) bifurcation at gL ≈ 4.6. Note that the lower gL
values where the model has a stable equilibrium point and where the torus bifurcation occurs are not included in panel (A), which focuses on
the bursting regions. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation, HC: homoclinic bifurcation, TR: Torus bifurcation, PD:
Period doubling bifurcation. The boundary curves separating the different activity patterns in panel (A) were obtained from two parameter
continuation of SN, AH, TR, and PD bifurcations as shown in (B). The absolute values of the derivatives of hNaP, h2Na, and n along the stable
oscillation pattern for several gL values are shown in the supplementary material in Figure S2.

custom MATLAB code to detect the types of patterns asso-
ciated with the different gL and gNaP values; see Section IID
for details on how ramping bursts were specified. Although
the identification fails at isolated points as can be seen in Fig-
ure 3A, it generally performs well. We note that the small,
second, blue (non-ramping) bursting region at low gNaP cor-
responds to bursts with small numbers of spikes. Note that
in exploratory simulations, we did not see any clear indica-
tions of bistability within the parameter domain considered.
Although the region of the slice of parameter space in which
ramping bursts occur is bounded and only spans about 1 nS of
change in each of gNaP and gL, this represents a more robust
form of ramping with respect to changes in gL than that based
on potassium concentration dynamics14, and the bursting re-
gion can be expanded by varying certain parameters jointly
(see Section III H).

Figure 3B shows the bifurcation diagram of the full DSPK
model (1)-(3) with respect to gL for gNaP fixed at its default
value of 3.7666 nS. For sufficiently low gL, the model has
a stable critical point (red) corresponding to pinning or de-
polarization block at a relatively depolarized voltage. As gL
increases, we see that the model undergoes a supercritical
AH bifurcation, resulting in a family of stable periodic orbits
(green curves) corresponding to tonic spiking. These periodic
orbits lose stability at a torus bifurcation at gL ≈ 3.534 nS. A
branch of stable tori originates at this gL value, corresponding

initially to solutions that still feature tonic spiking but with
spike amplitudes that vary gradually with a second, slower
period (see subsection III C); although we do not expect these
solutions to be very robust to parameter changes or of direct
biological significance, they represent the start of the dynamic
transition that eventually results in bursting for larger gL.

Above the torus bifurcation, we observe bursting and then,
for still larger gL, a period doubling (PD) bifurcation gives
rise to a second small interval of tonic spiking periodic or-
bits, which ends in a homoclinic (HC) bifurcation. This bi-
furcation occurs close to a saddle-node bifurcation of critical
points and these may in fact coincide in a SNIC bifurcation;
in any case, for gL above this level, system trajectories set-
tle to a silent, hyperpolarized equilibrium state. The boundary
curves between the various activity patterns in Figure 3A were
obtained through two parameter continuation of different bi-
furcations indicated in Figure 3B. The curve of AH bifurca-
tions marked the transition from depolarization block to spik-
ing. Proceeding in the direction of increasing gL, TR and PD
bifurcations gave the boundary separating bursting and spik-
ing regions. Lastly, at largest gL, SN bifurcations marked the
transition from spiking to a quiescent state. The bifurcation
diagram in Figure 3B and corresponding sequence of activity
patterns are consistent with our numerically observed lack of
bistability of system solutions; however, the simple, full sys-
tem bifurcation diagram in Figure 3B does not give us much
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7

information about the activity patterns occurring for most of
the range of gL values between the torus and PD bifurcations.
To understand these, we will perform a fast-slow timescale
decomposition and additional dynamical systems analysis in
subsection III C.

C. Timescales in the DSPK model vary with gL

We will now perform a deeper investigation of the diverse
activity patterns that the DSPK model exhibits for gNaP =
3.7666 nS for various values of gL. Figure 3A shows that
the activity pattern changes from spiking for low gL values to
ramping bursts for intermediate gL to another phase of spiking
for higher gL values. In fact, numerical simulations show that
before transitioning to bursting, the model also exhibits am-
plitude modulated fast spiking for a small range of gL values
near 3.54 nS. Therefore, in the rest of this section we ana-
lyze in detail the regular spiking, amplitude modulated spik-
ing, ramping bursts, and additional forms of spiking exhibited
by the model for gNaP = 3.7666 nS. For convenience, we will
henceforth drop the units of nS when we refer to specific con-
ductance values.

Note that along the family of oscillatory solutions of the
DSPK model, the oscillations feature larger maximal volt-
age and more negative minimal voltage for larger gL (Fig-
ure 3B, green and blue curves). We can explain this obser-
vation heuristically based on the properties of the currents in
the model. IL is a hyperpolarizing current due to its rever-
sal potential, so increasing gL lowers the membrane potential
between spikes and reduces excitability and spike frequency.
Due to the increased time interval and reduced voltage be-
tween spikes, INa and INaP will have more time to recover
from inactivation and will tend towards greater recovery from
inactivation due to the voltage-dependent properties of their
inactivation gates, hNa and hNaP. At the same time, the mag-
nitude of INa and INaP deinactivation needed to overcome IL
and generate a spike increases with gL. Therefore, as gL in-
creases, INa and INaP are more recovered from inactivation
at spike initiation, which leads to stronger spike-generating
currents and taller spikes that reach larger values of vmax. In
turn, these taller spikes cause greater activation of the outward
current IK , causing larger spike afterhyperpolarizations (i.e.,
more negative vmin) as gL is increased.

Since the rate of change of h2Na depends on v in (1),
the increase in the range of v values that occurs during
oscillations for larger gL results in an acceleration of the
timescale on which h2Na evolves. To see this, we turn to non-
dimensionalization of the DSPK model; information about
this process for different values of gL is shown in the subsec-
tion II B. We find that hNaP evolves on a slow timescale for
all values of gL, while the m-variables, hNa, n, and v remain

(relatively) fast for all gL. For gL sufficiently small, h2Na can
also be considered as slow. However, as gL is increased to 4,
the timescale of h2Na becomes less clear. We consider the re-
lation between the timescales of h2Na and the other variables
in the model to determine how to treat h2Na in our mathemat-
ical analysis. Figure S2 in the supplementary material shows
the absolute values of the t-derivatives of hNaP, which is a
slow variable, n, which is the slowest among the fast variables
in the DSPK model (1)-(3), and h2Na, along the stable activity
patterns observed for several values of gL. We see that the rate
of change of h2Na is close to that of the slow variable hNaP for
gL = 3.5 and closer to that of the fast variable n for gL = 4.6.
Hence, we will treat h2Na as having an intermediate timescale
for gL = 4 and a fast timescale for gL = 4.6. We shall see that
this choice fits well with the dynamic behavior of the model
variables as we turn to the analysis of the model’s activity pat-
terns for these gL values below, in the remaining parts of this
section.

D. Fast oscillations and a stable fixed point in the slow
averaged dynamics yield tonic spiking in the DSPK model for
gL = 3.5

When gL=3.5, the model generates rapid tonic spiking as
shown in Figure 4A. From non-dimensionalization, we con-
clude that in this case, both hNaP and h2Na can be considered
to be slow variables. Therefore, the model for gL=3.5 can be
studied as a 5-fast (v,mNa,mNaP,hNa,n) and 2-slow variable
system.

To perform a fast-slow decomposition on a system with 2
slow variables, we typically start by fixing one of the slow
variables and generating the bifurcation diagram of the fast
subsystem with respect to the other. In this case, the choice
of which slow variable to fix is not so important because
in direct simulations of (1), (2) with gL = 3.5, we see that
both h2Na and hNaP remain relatively constant throughout
each spike (Figure 4A; notice the highly zoomed y-axis range
shown for hNaP). For consistency with the next subsection,
we fix hNaP = 0.163 and use h2Na as our bifurcation parame-
ter for the fast subsystem, given by the differential equations
for v,mNa,mNaP,hNa,n. The resulting bifurcation diagram is
shown in Figure 4B with the spiking trajectory for gL = 3.5
superimposed in grey. Notice that the spiking trajectory cor-
responds to a stable periodic orbit in the fast subsystem.

To build on our observations in Figure 4A-B, we next plot
the two-parameter bifurcation diagram of the fast subsystem
with respect to the two slow variables, h2Na and hNaP (Figure
4C). We also calculate and plot the slow averaged nullclines
for the slow subsystem, generated by averaging over the fast
subsystem oscillations (see Section II C). Specifically, when
we average over the fast spikes, the slow averaged system of
equations is given byTh
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SN

AH

SN

FIG. 4. Analysis of DSPK the model (1), (2) for gL = 3.5. (A) Spiking pattern exhibited by the DSPK model (1), (2) for gL = 3.5. The dashed
grey line in the lowest panel corresponds to hNaP = 0.163. (B) Bifurcation diagram of the fast subsystem with respect to h2Na for hNaP = 0.163.
AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation. (C) The two-parameter bifurcation diagram of the fast subsystem with respect
to h2Na and hNaP. The slow averaged nullclines of h2Na and hNaP are shown in black and yellow, respectively. These are relevant in the region
where the fast subsystem exhibits oscillations, which lies between the homoclinic curve (green) and AH curve (blue) for the subsystem. For
completeness, we also show the system’s SN curves (magenta). In both (B) and (C), the spiking trajectory is overlaid in grey, but since it is
difficult to see in (C), where the spiking trajectory lies very close to the fixed point of the slow averaged system (red asterisk), the insets show
a zoomed view of this region.

h′NaP = 1
T (hNaP,h2Na)

∫ T (hNaP,h2Na)

0

(
hNaP∞(v(t;hNaP,h2Na))−hNaP

τhNaP(v(t;hNaP,h2Na))

)
dt

h′2Na = 1
T (hNaP,h2Na)

∫ T (hNaP,h2Na)

0

(
h2Na∞(v(t;hNaP,h2Na))−hNaP

τh2Na(v(t;hNaP,h2Na))

)
dt

(10)

where v(t;hNaP,h2Na) is the v-coordinate along the stable pe-
riodic orbit of the fast-subsystem for fixed hNaP and h2Na, with
period T (hNaP,h2Na) with respect to the time variable t.

The equations (10) are valid over the range of (hNaP,h2Na)
values where there are stable oscillations in the fast subsys-
tem. In Figure 4C, this corresponds to the parameter range
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located to the right side of the HC curve (shown in green) and
to the left side of AH curve (shown in blue). We see that the
slow averaged nullclines intersect at a fixed point very near
h2Na ≈ 0.45 with hNaP ≈ 0.163 (Figure 4C, red dot). More-
over, the relative slopes of the slow averaged nullclines at this
fixed point, which lies on the left branch of the cubic-like h2Na
averaged nullcline (Figure 4C, black curve), imply that it is
stable, consistent with the numerical results. Averaging the-
ory tells us that this fixed point corresponds to a stable peri-
odic orbit in the full system.

Since it is a projection to the slow phase space, the full os-
cillation in the fast variables, shown in Figure 4A-B, is not
visible in Figure 4C. We note that if we define ε so that the
slow time variable τ satisfies τ = εt, then we expect to ob-
serve an O(ε) error in the position of the fixed point com-
puted from the averaged nullclines, since they are calculated
assuming hNaP and h2Na to be fixed, as well as an O(ε) drift
in each slow variable along each spike. Indeed, the projec-
tion of the actual spiking trajectory to the (hNaP,h2Na) plane
lies very close to, but not exactly at, the nullcline intersection
point (Figure 4C, grey versus red). Combining the panels in
Figure 4, we have a full fast-slow analysis of the mechanisms
involved in producing the fast spiking trajectory for gL=3.5.

E. Destabilization of the slow averaged fixed point yields
amplitude modulated spiking in the DSPK model for gL = 3.54

When gL is increased to 3.54, the model exhibits ampli-
tude modulated (AM) spiking, as shown in Figure 5A. The
timescale of h2Na does not vary much from the previous case
since there is little difference between the gL values in these
cases. Hence, for gL = 3.54, the model can again be analyzed
as a 5-fast and 2-slow variable system.

Following the approach from the previous case, we extract
the approximation hNaP ≈ 0.168 from the simulation in Fig-
ure 5A, fix hNaP there, and consider the one-parameter bi-
furcation diagram of the fast subsystem with respect to h2Na
(Figure 5B). Note that, although the bifurcation diagram looks
almost identical to the previous one (Figure 4B),the superim-
posed full system trajectory no longer approximates the path
of a single fast subsystem periodic orbit. Indeed, this trajec-
tory, depicted in grey, drifts back and forth along a segment of
the stable periodic orbit family of the fast subsystem, revers-
ing direction periodically. From this observation, we conclude
that fixing hNaP does not provide a useful representation of the
system dynamics; indeed, the direction reversals require non-
trivial dynamics in a pair of slow variables. Nonetheless, the
one-parameter bifurcation diagram gives us a starting point
from which to generate a two-parameter bifurcation diagram
of the fast subsystem with respect to the two slow variables
h2Na and hNaP, to which we now turn.

Within the two-parameter bifurcation diagram (Figure 5C),
we also superimpose the full system trajectory (grey) and the
slow averaged nullclines from system (10) with gL = 3.54. Al-
though the slow averaged nullclines again intersect at a fixed
point (red dot), this point lies on the middle branch of the
cubic-like h2Na averaged nullcline and is unstable, with a sta-

ble periodic orbit of system (10) around it. That is, it appears
that there has been a supercritical AH bifurcation of the slow
averaged system as gL has increased from 3.5 to 3.54. At or
near the gL value where this AH bifurcation occurs, numerical
simulations show that the full system undergoes torus bifurca-
tion (Figure 3B). We also note that the resulting periodic so-
lution passes near a curve of homoclinic bifurcations as h2Na
approaches and reaches its maximum (Figure 5C), which ex-
plains the slowing of spiking along this part of the solution
(Figure 5A).

In summary, for gL = 3.54, the fast dynamics of model (1),
(2) is attracted to the stable family of fast subsystem periodic
orbits, which is parameterized by hNaP and h2Na. The cor-
responding slow averaged system (10) exhibits its own sta-
ble oscillations; each such oscillation cycle represents a path
along the fast subsystem periodic orbit family along which
the fast variables are dragged. This situation results in ongo-
ing spiking but with a periodic modulation of the amplitude of
the spikes produced (Figure 5A). In biological terms, the AM
spiking pattern results from a complex interplay of activation
and (de)inactivation of the INa and INaP currents, which is only
observed for a small range of gL values.

F. Dynamics on three timescales give rise to ramping bursts
in the DSPK model for gL = 4

The ramping burst pattern exhibited by the model (1)- (3)
for gL = 4 is displayed in Figure 2. Non-dimensionalization
shows that for gL = 4, the timescale constant for h2Na is
greater than that of the previous cases (see subsection II B and
supplementary material Figure S2). In this case, we analyze
h2Na as having an intermediate timescale, with hNaP remain-
ing slow and the other five variables remaining fast.

We analyze the case with gL = 4 in several steps. Specif-
ically, we divide the bursting time course into four parts as
shown in Figure 6A and analyze each epoch, or region, sepa-
rately. In Regions I and II, the trajectory is colored grey and
pink, respectively. Region III comprises the cyan and orange
shaded parts of the bursting trajectory and the trajectory is
colored purple in Region IV. With three timescales in the sys-
tem, we can first treat the slow variable hNaP as a bifurcation
parameter and consider the dynamics of the remaining, fast-
intermediate variables. If we therefore consider the bifurca-
tion diagram of the fast-intermediate subsystem with respect
to hNaP (Figure 6B), we find that the fast-intermediate subsys-
tem has stable periodic orbits (green) for hNaP values between
0.18 and 0.24, while it has a stable equilibrium point corre-
sponding to depolarization block for each larger hNaP value,
all of which will be useful later.

It is important to keep in mind that this bifurcation diagram
shows us the attractors of the fast-intermediate system with
hNaP fixed. In reality, hNaP does have a slow drift, which will
play a role in shaping the overall system dynamics. Indeed,
due to this slow drift, we do not show the bursting solution
superimposed on the bifurcation diagram in Figure 6B. That
is, because hNaP increases and decreases again during differ-
ent parts of the active phase of each ramping burst (Regions I
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SN

SN

AH

FIG. 5. Analysis of DSPK the model (1), (2) for gL = 3.54. (A) Amplitude modulated (AM) spiking pattern exhibited by the DSPK model.
The dashed grey line in the lowest panel corresponds to hNaP = 0.168. (B) Bifurcation diagram of the fast subsystem with respect to h2Na
for hNaP = 0.168. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation. (C) The two-parameter bifurcation diagram of the fast
subsystem with respect to h2Na and hNaP. The slow averaged nullclines of h2Na and hNaP are shown in black and yellow respectively. The
fixed point in the slow averaged system is shown as a red asterisk and the inset shows a zoomed view near this point. In both (B) and (C), the
AM spiking trajectory is overlaid in grey.

and III in Figure 6A, respectively), the bursting pattern is not
apparent when this trajectory is shown in this projection.

With the bifurcation diagram in Figure 6B established, we
turn to the fast-intermediate subsystem. For the analysis of
the fast-intermediate dynamics with hNaP fixed, we should
start by treating h2Na as a bifurcation parameter and consid-
ering the dynamics of the fast variables. Once we determine
the attracting dynamics for the fast variables, we can take
into account the intermediate timescale drift of h2Na. Once
this combined analysis reveals the attracting dynamics for the
combined fast-intermediate system for each hNaP, we can con-
sider how slow drift in hNaP results in passage along the fast-

intermediate timescale attractors and possibly jumps on the
faster timescales to other attractors. Let us now analyze the
dynamics in each of the regions.

Region I: The spiking, active phase of the burst begins at
the start of this region (dark grey part of time course in Figure
6A). Within this region, the burst pattern in Figure 6A exhibits
slow spikes. Notice that h2Na oscillates up and down on each
cycle with little net change while hNaP shows an increasing
trend across successive cycles. Also notice that the values of
hNaP here correspond to a range, from about 0.225 to 0.24, on
which the fast-intermediate system has stable periodic orbits
in Figure 6B. Thus, we turn to the fast-intermediate system to
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SN

SN

SN

SN

SN

AH

AH

AH

SNPO

HC

HC

HC

burst trajectory

hNaP nullcline for 
Region 1 

FIG. 6. (A) Ramping burst pattern exhibited by the DSPK model (1)-(3) for gL = 4. To analyze the burst further, we divide it into different
regions as shown. (B) The bifurcation diagram of the fast-intermediate subsystem with respect to hNaP. (C) Comparison of the periodic orbits
of the fast-intermediate system for different hNaP values with the slow oscillations in Region I of the bursting pattern for gL = 4, comprising
part of the projection of the full ramping burst solution (light grey). (D-E) Bifurcation diagram of the fast subsystem with respect to h2Na for
(D) hNaP = 0.245 and (E) hNaP = 0.215. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation, HC: homoclinic bifurcation, SNPO :
Saddle node of periodic orbits. The h2Na-nullcline is shown as dashed black curve in each case. (F) The two-parameter bifurcation diagram
of the fast subsystem with respect to h2Na and hNaP for gL = 4. The slow averaged nullcline of h2Na averaged over the oscillations in the fast
subsystem is shown in solid black. The slow averaged nullcline of hNaP averaged over the oscillations in the fast-intermediate subsystem in
Region I is shown in dashed black. The green dashed line marks the maximal hNaP value for which homoclinic bifurcations split the family of
fast subsystem periodic orbits. In each of (C)-(F), the ramping burst trajectory (light grey) is overlaid with the relevant section colored.
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understand the nature of these orbits, and then we consider the
drift in hNaP across successive orbits.

A comparison of the tonic spikes in this region of the burst
to the stable periodic orbits in the fast-intermediate system,
projected onto the fast v and intermediate h2Na coordinates,
is shown in Figure 6C. From this diagram, we see that each
of the three spikes in Region I corresponds to an orbit in the
fast-intermediate system. These fast-intermediate orbits are
what is known as relaxation oscillations: they feature fast ex-
cursions to relatively elevated values in v (and the other fast
variables, not visible in this projection) alternating with longer
epochs where the fast variables are near an attracting branch
of fast subsystem equilibrium points, with v near its mini-
mum, and h2Na drifts upward on the intermediate timescale
until reaching a saddle-node bifurcation of equilibria of the
fast subsystem, where the next spike begins. The spike-free
periods of intermediate timescale drift, over which h2Na in-
creases, form the inter-spike intervals as seen in Figure 6A,
Region I. The decrease in h2Na during the fast excursion com-
pensates for the silent phase increase in h2Na and ensures that
the fast dynamics can return to the attracting branch of fast
subsystem equilibria after each spike.

To analyze the gradual increase of hNaP from one spike to
the next, we determine the average behavior of hNaP along
each of these oscillations using the equation

h′NaP =
1

T (hNaP)

∫ T (hNaP)

0

hNaP∞(v(t,hNaP))−hNaP

τhNaP(v(t,hNaP))
dt (11)

where v(t,hNaP) is the stable periodic cycle of the fast-
intermediate system for fixed hNaP, with period T (hNaP). We
compute numerically that the right hand side of equation (11)
is positive, and hence hNaP increases slowly in this region.

Therefore, in region I, we observe fast-intermediate
timescale oscillations, while hNaP has a slow, increasing drift.
Eventually, this drift eliminates the fast-intermediate oscilla-
tions (i.e., hNaP exceeds the upper end of the outer green curve
in Figure 6B) and thus induces a transition to Region II.

Region II: In this region, the fast-intermediate system no
longer has stable oscillations; rather, for each fixed hNaP in
this region, this subsystem has a stable equilibrium point
corresponding to depolarization block (Figure 6B, elevated
hNaP). Because h2Na evolves on a slower timescale than the
fast variables, however, we take the further step of perform-
ing a timescale decomposition on the fast-intermediate sys-
tem, with hNaP fixed, to obtain a more detailed understanding
of the transient dynamics of the fast-intermediate subsystem.
That is, we treat h2Na as a bifurcation parameter and consider
the bifurcation diagram of the fast subsystem.

Performing this step for the hNaP values in Region II reveals
that there are stable oscillations in the fast subsystem (green
curve, Figure 6D). Each of these oscillations passes above and
below the h2Na nullcline (black dashed). The net change in
h2Na on each cycle is a decrease, as can be seen from Figure
6A and the negative value of the right hand side of the aver-
aged equation

h′2Na =
1

T (hNaP,h2Na)

∫ T (hNaP,h2Na)

0

h2Na∞(v(t;hNaP,h2Na))−h2Na

τh2Na(v(t;hNaP,h2Na))
dt, (12)

where v(t;hNaP,h2Na) is the v-coordinate along the stable peri-
odic orbit of the fast subsystem for fixed hNaP and h2Na, with
period T (hNaP,h2Na). Meanwhile, as h2Na drifts downward,
the fast variables continue to engage in fast periodic cycles
and hNaP remains roughly constant. This pattern of fast volt-
age oscillations with h2Na progressively decreasing and hNaP
relatively constant continues over several spikes. Gradually,
however, the rate of change of h2Na slows to become more
similar to that of hNaP; indeed, we have checked numerically
that the ratio of |h′2Na| to |h′NaP| drops from O(100) to O(10).
When they are sufficiently close, we can no longer justify
treating them as evolving on separate timescales, and we des-
ignate that a transition from Region II (pink) to Region III
(cyan) has occurred.

Region III: In this region, the average drift of h2Na becomes
smaller in magnitude across successive cycles. Indeed, the
difference between Region II and Region III is that in Region
III, the change in h2Na becomes so slow that is comparable to
the timescale of hNaP. Thus, we no longer consider the fast-
intermediate system with h2Na as the unique variable evolving
on the intermediate timescale, and we instead treat the full set
of model equations as a fast-slow system. Here, h2Na and hNaP

are the slow variables, and the relevant averaged equations be-
come system (10). We compute numerically from this system
that the change in hNaP on each cycle is negative. Therefore,
in this case, hNaP, like h2Na, drifts downward as the fast sub-
system oscillations continue.

Now, for the analysis of Region III, we have two slow vari-
ables, hNaP and h2Na. If we fix either of these variables, then
we can generate a bifurcation diagram of the fast subsystem
with respect to the other; however, it is important to note that
any such diagram is simply one point on a continuum of di-
agrams, parameterized by whichever slow variable was held
fixed. For consistency with our analysis of Region II, we will
continue to visualize fast subsystem bifurcation diagrams with
respect to h2Na with hNaP fixed. Although we will project the
trajectory onto such diagrams, it is important to keep in mind
that, since hNaP changes at a rate comparable to h2Na in this
region, the trajectory actually evolves along a continuum of
these diagrams.

Eventually, the slow downward drift of hNaP and h2Na in-
duces a pair of homoclinic bifurcations for the fast subsys-
tem, which split the stable family of periodic fast subsystem
solutions (Figure 6D) into two separated families (Figure 6E).
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The homoclinic bifurcations first appear at the hNaP value in-
dicated by the dotted green line in Figure 6F; for the part of the
cyan trajectory segment to the left of this line, the homoclinic
points are present in the fast subsystem bifurcation diagram
with respect to h2Na, although the trajectory itself lies at h2Na
values below the lower homoclinic point. When these bifurca-
tions occur, the trajectory initially still lies in a region of h2Na
on which fast subsystem periodic orbits exist, and oscillations
continue. Eventually, however, the drift in (hNaP,h2Na) pulls
the trajectory across a fast subsystem homoclinic curve, to
where the branch of stable fast subsystem periodic orbits is not
present. Thus, the ongoing fast oscillations terminate, and the
trajectory jumps on the fast timescale down to the lower, sta-
ble branch of fast subsystem critical points (Figure 6E, lower
orange trajectory segment transitioning to the neighborhood
of the lower red curve, where the trajectory is colored pur-
ple).30

Region IV: In this region, the trajectory travels along the
lower branch of fast subsystem critical points on the interme-
diate timescale, with h2Na increasing and hNaP increasing as
well, due to the imperfect separation of timescales, but doing
so over a relatively small range (note the small change in hNaP
in Figure 6A, Region IV, relative to the change in h2Na). This
excursion lasts until the trajectory returns to the fast subsys-
tem saddle-node bifurcation. We have indicated where the SN
point lies in Figure 6E for hNaP = 0.215, using an asterisk and
SN label at v below -50 mV and h2Na just above 0.8. Due to
the small drift in hNaP in Region IV, the actual jump-up oc-
curs with hNaP = 0.23, at the corresponding SN point; this is
the point on the SN curve in Figure 6F where the trajectory
switches from purple to grey. Once an SN point is reached,
the trajectory jumps up to start another phase of spiking oscil-
lations in Region I for the next burst cycle.

We have now analyzed a full ramping burst cycle. The vari-
ables h2Na and hNaP are slower than the other variables (fast
variables) in the system. Therefore, we can also plot the two-
parameter bifurcation diagram of the fast subsystem with re-
spect to h2Na and hNaP (Figure 6F) to gain another viewpoint
on the overall burst dynamics. Since h2Na has an intermedi-
ate timescale between that of the slow variable hNaP and the
other, faster variables in the model, we calculated the averaged
nullcline for h2Na (using equation (12)) with hNaP fixed at dif-
ferent values that it takes over the course of the burst cycle.
This curve is shown in black in Figure 6F. We also plot the
hNaP-nullcline (based on equation (11)) specifically for region
I, where there are stable oscillations in the fast-intermediate
subsystem, as a dashed black line. Furthermore, the burst tra-
jectory is shown with the same region-by-region color coding
used in the other figure panels.

Proceeding region by region, we see that in Region I (grey),
h2Na oscillates on each spike but shows little net drift, while
hNaP increases across cycles and approaches its nullcline, con-
sistent with Figures 6A-C. The drift in hNaP pulls the trajec-
tory away from the h2Na nullcline, such that h2Na transitions
to an epoch of more pronounced downward drift (Region II,
pink). There cannot be fast-intermediate periodic solutions
when h2Na is behaving in this non-periodic way, matching
what we observed in Region II in Figure 6D, and the spikes

here represent fast subsystem oscillations. Since the dynam-
ics in Region II is taking place on the fast and intermediate
timescales and does not converge to an attractor of the fast-
intermediate system, little change in hNaP can occur in this
region.

Due to the shape of the h2Na nullcline (black), the trajec-
tory gradually comes closer to this nullcline and the down-
ward drift of h2Na slows. This effect means that in Region III
(cyan), hNaP changes to a similar extent as h2Na across suc-
cessive fast subsystem oscillations. We checked numerically
that the slow averaged drift in hNaP is negative here; the hNaP
nullcline from system (10) lies very close to the homoclinic
curve, so we do not include it in Figure 6F. This drift in hNaP
in turn pulls the trajectory still closer to the h2Na nullcline and
slows the drift of h2Na more. As these effects continue, the
trajectory (orange segment) reaches and crosses the fast sub-
system homoclinic curve (green curve, but overlapped by the
black h2Na-nullcline near where the transition occurs), which
terminates the fast oscillations and produces the transition to
the silent phase (purple). Once this happens, the averaged
h2Na nullcline is no longer relevant since there are no fast sub-
system oscillations to average around, and the original h2Na
equation gives an increase in h2Na, along with a weaker in-
crease in the slower variable hNaP, until the fast subsystem
SN curve (magenta) is reached and the next cycle of ramping
oscillations begins.

Note that for gL = 3.54, the AM spiking solution corre-
sponds to a small amplitude periodic cycle in the (hNaP,h2Na)-
space that does not intersect the homoclinic curve (Figure 5C).
In case of ramping bursting with gL = 4, the amplitude of the
oscillation in the (hNaP,h2Na)-space (intermediate-slow sub-
system) has grown large enough that the orbit projection in-
tersects the fast subsystem homoclinic curve (Figure 6F). This
corresponds to the termination of the fast subsystem oscilla-
tions and a fast transition to a branch of fast subsystem critical
points during each burst cycle. Thus, an increase in gL causes
the (hNaP,h2Na) oscillation to grow in a way that induces a
transition in the model activity pattern from spiking to burst-
ing.

G. Fast subsystem oscillations yield a return to tonic spiking
in the DSPK model with gL = 4.6

For gL = 4.6, the model exhibits the spiking pattern shown
in Figure 7A. These spikes are larger and slower than those
arising for gL = 3.5. Non-dimensionalization (see subsec-
tion II B and supplementary material Figure S2) shows that
for gL = 4.6, the timescale constant of h2Na is comparable to
the timescale of the fast variables in the model, particularly
for high v values that occur near spike peaks. In this case, we
analyze the model as having 6 fast variables, including h2Na,
and 1 slow variable, hNaP.

Figure 7B shows the bifurcation diagram of the fast subsys-
tem (all variables except hNaP) with respect to hNaP. Notice
that the spiking trajectory corresponds to a stable periodic or-
bit in the fast subsystem for hNaP ≈ 0.33 (Figure 7C); based
on the position of the hNaP nullcline and the evaluation of the
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right hand side of equation (11), the slow drift in hNaP aver-
ages out to 0 on each oscillation cycle.

H. Ramping bursts are robust but pattern details change as
gNa,gNaP,gsyn vary

In this section, we analyze the robustness of the ramping
bursting pattern exhibited by the DSPK model (1), (2) with
respect to parameters gNa, gNaP, and gsyn. We chose these pa-
rameters because gNa and gNaP levels may change over the
course of development31–34, while gsyn provides a simple rep-
resentation of the strength of outside inputs including feed-
back control signals to the neuron, and functional rhythms
should be robust to changes in the levels of such inputs.

Figure 8A shows the activity patterns exhibited by the
model for various gNa and gNaP values. The default values
that we chose for gNa and gNaP are marked with a black dot
in Figure 8A. The ramping burst region is shown in red, while
the non-ramping bursting (either bursts with fewer than three
spikes or depolarization block bursts35 where the active phase
of the burst has decaying oscillations and the voltage eventu-
ally stabilizes at a sustained, depolarized level) and spiking re-
gions are shown in blue and black, respectively. Interestingly,
we see a weak trend in which larger gNaP values are needed
to maintain ramping bursts as gNa increases. Thus, INa and
INaP, although both inward sodium currents, are not compen-
sating for each other, presumably due to the differences in the
timescales on which they operate and their correspondingly
distinct effects on spike height and frequency. As with Figure
3A, we have used two-parameter continuation of bifurcation
curves to generate the boundaries between activity patterns in
panel Figure 8A.

The maximum inter-spike intervals within the active phases
of the ramping burst patterns are color-coded over the pa-
rameter region supporting ramping bursts in Figure 8B. Since
spiking frequency usually increases as the ramping burst pro-
gresses, the maximum inter-spike interval in the burst is gen-
erally the time from the first spike within the burst to the sec-
ond. The bursting patterns exhibited by the model at gNa and
gNaP values sampled along a line through the ramping region
are shown as insets in Figure 8B. The maximum inter-spike
interval decreases when going from inset Figures (a) to (c),
consistent with the color-coding in Figure 8B. Also, notice in
the inset figures in Figure 8B that the minimal voltage val-
ues change more as each burst progresses in (b) and (c) com-
pared to (a). This property is illustrated in Figure 8C, where
the color-code indicates the magnitude of the ramping of the
plateau potential, defined by the change, over the duration of
the burst, in the minimum voltage attained between spikes.

We also explored the different bursting patterns exhibited
by the DSPK model (1), (2) over varying values of gsyn (Fig-
ure 9). The period of the burst cycle (i.e., active phase plus
silent phase) with respect to gsyn with (gNa,gNaP) at their de-
fault values is plotted in Figure 9A. The inset shows the burst-
ing patterns exhibited by the model for gsyn = 0.3, 0.33, 0.36,
and 0.39. For gsyn = 0.3, notice that the burst does not ramp
but rather features a period of depolarization block, where the

voltage is elevated but no new spikes are generated (as seen
in some recordings, cf.7,36, and in a previous model35). As
gsyn increases from 0.3, the model starts to exhibit ramping
bursts. The maximum inter-spike interval and the strength of
the ramp (difference in minimal voltages across spikes) in the
burst are shown in Figure 9B, C, respectively, for gsyn val-
ues that give ramping bursts. The burst period, the maximum
inter-spike interval, and the the magnitude of ramping all de-
crease as gsyn increases, yielding more gradual, less extreme
ramps for larger gsyn.

We put these results together, and summarize the activity
patterns exhibited by the DSPK model for different gNa, gNaP
and gsyn values, in Figure 10. Notice that for lower gNa values,
ramping burst patterns can arise at lower gNaP and gsyn values.
As gNa increases, larger gNaP and gsyn values are needed for
ramping bursts to arise. These results predict that as gNa and
gNaP change during development, the range of external feed-
back signal strengths may need to change as well to preserve
functional respiratory dynamics.

IV. DISCUSSION

In this work, we introduce and analyze what we call the
DSPK model16, a neuronal model that includes a secondary,
experimentally supported22,23 slow negative feedback to the
inward sodium current, which induces gradual changes in
spike height and an associated ramping effect. The DSPK
model produces a range of activity patterns, and we perform
dynamical systems analysis based on timescale decomposi-
tion to understand how these arise. To begin this process, we
observe that non-dimensionalization classifies the persistent
sodium inactivation variable hNaP as a slow variable, as in
many other pre-BötC neuron models building from the work
of Butera et al.37, while most other gating terms are fast vari-
ables, meaning that they evolve on approximately the same
timescale as the voltage. The timescale of the second inac-
tivation variable of the sodium current, h2Na, depends on the
tuning of other model parameters, however, since the model
timescales are measured relative to voltage. While always
faster than that of hNaP, the h2Na timescale is comparable to
that of hNaP when gL is relatively low, with other model pa-
rameters at their default values. On the other hand, when gL
is increased towards and through the ramping burst regime,
the timescale of h2Na becomes significantly faster than that of
hNaP, in the ramping regime, and eventually is comparable to
the timescale of the other fast variables, in a regime where
ramping bursts no longer occur.

We analyzed model dynamics for specific, fixed values of
gL, yet our results also give us insights about how transitions
between different forms of model dynamics occur. When gL
increases from 3.5 to 3.54, the critical point of the slow aver-
aged nullclines, which corresponds to a spiking solution, be-
comes unstable through what appears, numerically, to be a
supercritical AH bifurcation. As a result, we obtain stable pe-
riodic orbits of the slow averaged dynamics in the (hNaP,h2Na)
space. These orbits correspond to amplitude modulated (AM)
spiking dynamics at gL = 3.54, and they grow in size as gL in-
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AH

HC

SNPO

SN

FIG. 7. Analysis of DSPK the model (1)-(3) for gL = 4.6. (A) Spiking pattern exhibited by the DSPK model for gL = 4.6. The dashed grey
line in the lowest panel corresponds to hNaP = 0.33. (B) Bifurcation diagram of the fast subsystem (now also including h2Na) with respect to
hNaP. The spiking trajectory is overlaid in grey. Notice that the spiking trajectory is a stable periodic orbit in the 6-dimensional fast subsystem
for hNaP ≈ 0.33. AH: Andronov-Hopf bifurcation, SN: Saddle node bifurcation, HC: homoclinic bifurcation, SNPO : Saddle node of periodic
orbits. (C) As predicted by the timescale analysis, the spiking trajectory exhibited by the model for gL = 4.6 (grey) aligns very well with the
periodic orbit in the fast subsystem with h2Na = 0.33 (green).

creases and the timescale of h2Na accelerates into an interme-
diate range (Figure 11). When the periodic orbit in the slow-
intermediate (hNaP,h2Na) averaged subsystem grows and in-
tersects the curve of (hNaP,h2Na) values where the fast sub-
system has a homoclinic orbit, as shown in Figure 6F, the full
system trajectory is no longer trapped in the vicinity of a sta-
ble family of fast subsystem periodic orbits. Rather, it can
make transitions to transient excursions along the stable lower
branch of fast subsystem equilibria. This switch marks the
transition from AM spiking to bursting. The additional tran-
sition from bursting to tonic spiking when gL grows further

is not as well defined. We have seen that when gL is large
enough, corresponding to this regime, the h2Na variable has a
timescale comparable to the other fast variables in the system.
We leave a detailed, rigorous mathematical analysis of each
of these transitions as a direction for future exploration.

Some previous works have noted that slow, negative feed-
back effects can enhance the robustness of specific burst pat-
terns and provide flexibility in burst patterning18,38, but they
did not suggest a mechanism for ramping burst generation.
Including slow potassium concentration dynamics in a burst-
ing model can result in a ramping burst pattern14. Compared
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FIG. 8. (A) Bursting patterns exhibited by the DSPK model (1)-(3) over a range of gNa, gNaP values. The black dot marks the default values of
gNa and gNaP. The boundaries between the various activity patterns exhibited by the model were determined using two parameter continuation.
(B) The maximum inter-spike interval in the ramping burst patterns. (C) The magnitude of the ramp (increase in spike trough voltage level) in
the ramping burst patterns.

to that model, the one considered in this work yields ramp-
ing bursts with more extreme changes in spike heights across
the burst, a feature that has been seen in some experimental
recordings5, and without the necessity of significant extracel-
lular potassium concentration changes during each burst cy-
cle. These bursts occur over a range of sodium and leak con-
ductances, and one role of feedback input to pre-BötC neurons
and of homeostatic adjustments in conductances could be to
maintain functionally relevant burst patterning (Fig. 3, Fig.
10). A future direction to explore would be to develop a more
detailed model that includes slow sodium inactivation, potas-
sium concentration dynamics, as well as sodium concentra-
tion dynamics, to investigate whether the combined presence
of these effects further enhances the robustness of ramping

bursts. In another previous paper examining bursting involv-
ing recurrent synaptic excitation, calcium dynamics involving
ICAN was shown to induce gradual reductions in both the spike
height, which led to a decrease in synaptic transmission, and
the magnitude of the AHP39, yielding a ramp-like burst pat-
tern with a rather extreme transition from slower tonic spik-
ing to a rapid, decrementing burst of spikes. Including these
mechanisms would allow for an even more thorough study
of burst patterns. Finally, modeling resurgent Na+ current is
yet another direction to explore in the context of ramping dy-
namics, since it could enhance inward current flow and lead
to faster spiking during each burst40; moreover, the possibil-
ity has been raised that IA could contribute to ramping burst
patterns41, which could also be investigated computationally.
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FIG. 9. (A) Bursting patterns exhibited by the DSPK model (1)-(3) over a range of gsyn values. (B) The maximum inter-spike interval in
the ramping burst patterns as a function of gsyn. (C) The magnitude of the ramp (increase in spike trough voltage level) in the ramping burst
patterns as a function of gsyn.

Future studies could also look at the role of neurons capa-
ble of ramping bursting, instantiated with any of these mech-
anisms, in network rhythm generation. For example, it is
possible that reciprocally coupled DSPK model neurons with
gL = 4.6 (tonic spiking mode) could together produce a ramp-
ing burst pattern, analogously to effects seen in regular burst-
ing models42–44 or in models lacking intrinsic bursting19,45.
More generally, it remains to be seen how these model neu-
rons would function in a larger, heterogeneous pre-BötC neu-
ron network46 or in a more complete network model including
various inhibitory respiratory populations that are active dur-
ing expiratory phases of respiration12,13. In the former vein, it
has been proposed that the respiratory rhythm generator pro-
duces relatively small burstlet oscillations, which need to re-
cruit pattern generator neurons in order to transition into a
full-blown inspiratory burst47. It is possible that the ramping

pattern, or more general forms of gradual spike acceleration
based on progressively diminishing spike heights and afterhy-
perpolarization depths, could contribute to the burstlet genera-
tion process by delaying full blown burst spiking in relatively
excitable neurons, thus allowing time for less excitable neu-
rons to become less refractory, or by recruiting other neurons
that inhibit expiratory neurons during inspiration, thus clear-
ing the way for recruitment of pattern generator cells.

Overall, this work predicts that single pre-BötC neu-
rons can produce the ramping burst patterns that arise dur-
ing the expiration-to-inspiration transition in mammalian
respiration7–9,14. Our work also predicts that, if this activ-
ity pattern at the single-neuron level is functionally important,
then during development, as sodium channel conductances
become stronger, feedback signals to pre-BötC inspiratory
neurons should intensify correspondingly. Experiments have
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FIG. 10. Classification of activity patterns exhibited by the DSPK
model (1)-(3) with variation of gNa, gNaP and gsyn values.

FIG. 11. Projections of the activity patterns of the DSPK model (1)-
(3) to h2Na −hNaP space for various values of gL.

shown that pre-BötC neurons have multiple types of sodium
channels, with different kinetics48, and the analysis in the pa-
per highlights the potential importance of the timescales of
sodium inactivation for shaping neuronal dynamics. Here we
find that while the fastest form of sodium inactivation con-
tributes to action potential generation and the slowest form
of sodium inactivation, associated with the persistent sodium
current, can support bursting, the inclusion of an intermedi-
ate inactivation timescale allows for a rich variety of dynamic
burst patterns while maintaining robustness of bursting over a
range of conductance and input levels, which could allow for
flexible modulation of outputs to match functional demands.

SUPPLEMENTARY ONLINE MATERIAL

The supplementary online material comprises two addi-
tional figures. One figure shows the ramping burst pattern ob-

tained from rounding the optimal parameter values to the hun-
dreths place. The other shows the magnitudes of the deriva-
tives of several DSPK model variables at various values of gL.
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Appendix A: Non-dimensionalization

In this appendix, we use non-dimensionalization to deter-
mine the timescales of the variables in the DSPK model (equa-
tions (1)-(3)). All variables in the model, except for v, are
gating variables and hence are dimensionless. To make the
voltage variable dimensionless, we set v = V Qv where Qv is
a constant representing the nominal values of v and V = v/Qv
is dimensionless. The aim is to find constants Rv, RhNa , Rh2Na ,
RmNa , RhNaP , RmNaP and Rn, such that

V ′ = Rv f1(V,hNa,h2Na,mNa,hNaP,mNaP,n)

h′Na = RhNa f2(V,hNa,h2Na,mNa,hNaP,mNaP,n)

h′2Na = Rh2Na f3(V,hNa,h2Na,mNa,hNaP,mNaP,n)

m′
Na = RmNa f4(V,hNa,h2Na,mNa,hNaP,mNaP,n)

h′NaP = RhNaP f5(V,hNa,h2Na,mNa,hNaP,mNaP,n)

m′
NaP = RmNaP f6(V,hNa,h2Na,mNa,hNaP,mNaP,n)

n′ = Rn f6(V,hNa,h2Na,mNa,hNaP,mNaP,n)

(A1)
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where the functions fi are O(1) for all i, over the relevant
ranges of their arguments.

In the main text, we analyze how the dynamics of this
model varies with changes in gL. Thus, we perform non-
dimensionalization for the various values of gL that we use
in our analysis, along with the default values of the other pa-
rameters given in Table I and Qv = 100, and we obtain the
following results.

First, when gL = 3.5, the timescale constants are:

Rv =
max(gNa, gNaP, gAHP, gK , gL, gsyn)

Cm

≈ 6.94,

RhNa =
1

τhNa(V Qv)
∈ [0.24, 0.744]

Rh2Na =
1

τh2Na(V Qv)
∈ [10−4, 0.011]

RmNa =
1

τmNa(V Qv)
∈ [4.0, 4.78]

RhNaP =
1

τhNaP(V Qv)
∈ [10−4, 0.002]

RmNaP =
1

τmNaP(V Qv)
∈ [1.0, 3.5]

Rn =
1

τn(V Qv)
∈ [0.13, 0.49]

(A2)

Note that the timescales for all the variables (except v) in-
clude denominator terms that depend on the range of v. When
gL increases from 3.5 to 4 and then further to 4.6, the activa-
tion and inactivation variables take on a higher range of values
to compensate for the increased hyperpolarization. This, in
turn, changes the range of values that v takes, which we check
numerically. Evaluating the various functions in (A2) over
this range gives the range of possible values for the timescale
constants.

The timescale constants for gL = 3.54 remain similar to

(A2). Next, when gL = 4, the timescale constants are:

Rv =
max(gNa, gNaP, gAHP, gK , gL, gsyn)

Cm

≈ 6.94,

RhNa =
1

τhNa(V Qv)
∈ [0.167, 1.7]

Rh2Na =
1

τh2Na(V Qv)
∈ [10−4, 0.11]

RmNa =
1

τmNa(V Qv)
∈ [4.0, 8.45]

RhNaP =
1

τhNaP(V Qv)
∈ [10−4, 0.006]

RmNaP =
1

τmNaP(V Qv)
∈ [1.0, 19.20]

Rn =
1

τn(V Qv)
∈ [0.06, 0.7]

(A3)

Finally, when gL = 4.6, the timescale constants are:

Rv =
max(gNa, gNaP, gAHP, gK , gL, gsyn)

Cm

≈ 6.94,

RhNa =
1

τhNa(V Qv)
∈ [0.166, 2.07]

Rh2Na =
1

τh2Na(V Qv)
∈ [10−4, 0.2]

RmNa =
1

τmNa(V Qv)
∈ [4, 9.94]

RhNaP =
1

τhNaP(V Qv)
∈ [10−4, 0.0079]

RmNaP =
1

τmNaP(V Qv)
∈ [1.0, 28.84]

Rn =
1

τn(V Qv)
∈ [0.058, 0.739]

(A4)
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