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Abstract11

This article introduces a new algorithm, KalmRidge, and demonstrates its ability to tune12

an Earth system model (ESM) using idealized experiments. Unlike similar algorithms,13

KalmRidge eliminates the need for offline hyperparameter selection, thereby substan-14

tially reducing computational expense. This is done by rewriting the update equations15

for the ensemble Kalman filter as an equivalent ridge regression problem, then apply-16

ing standard cross-validation techniques to adaptively choose the regularization param-17

eter. We propose that this algorithm, with time-mean spherical harmonic projections18

as tuning targets, provides a promising, tractable approach for parameter estimation.19

Plain Language Summary20

Earth system models (ESMs) depend on parameters that are difficult to estimate.21

Although these parameters are routinely estimated during model development, there is22

no standard approach for parameter estimation, and existing algorithms are expensive23

to apply. Contemporary algorithms have hyperparameters, i.e. parameters of the algo-24

rithms themselves rather than of the model, which also must be estimated. Estimating25

hyperparameters is very computationally expensive. This article introduces a new al-26

gorithm which eliminates the need for hyperparameter estimation, and demonstrates its27

application to a state-of-the-art ESM.28

1 Introduction29

Earth system models (ESMs) simulate atmospheric, oceanic, and terrestrial pro-30

cesses and their interactions on a global scale. Some of the governing equations, partic-31

ularly the equations of large-scale motion, are derived from well-understood physical prin-32

ciples and may be discretized for numerical integration. In contrast, many important small-33

scale processes, such as those associated with clouds, cannot be explicitly resolved at fea-34

sible grid resolutions. Instead, the grid-scale aggregate effects of these processes are es-35

timated using semi-empirical functions, called parameterizations, which depend on pa-36

rameters that are weakly constrained by observations. Tuning is challenging because ESM37

integrations are computationally expensive, and it requires running many ESM integra-38

tions with different parameter values. Tuning is further complicated by interactions be-39

tween processes, which may cause biases in parameter estimates due to compensating40

errors.41

Hourdin et al. (2017) and Schmidt et al. (2017) documented contemporary tuning42

practices at several climate modeling centers. They found that different centers use dif-43

ferent strategies and have different goals. In practice, these modeling centers use tradi-44

tional, manual trial-and-error tuning, rather than automated tuning algorithms.45

Estimating parameters in a dynamical model is a classic example of an inverse prob-46

lem. An early geophysical application of this approach was introduced by Carrera and47

Neuman (1986) in the context of groundwater flow models. For problems where distri-48

butions are Gaussian, many inverse problems reduce to the Kalman filter. The Kalman49

filter is one of the most extensively studied recursive state estimation algorithms. It gives50

the best linear unbiased estimate (BLUE) under the assumptions that the forecast model51

is linear and the prior and observational errors are normally distributed (Kalman, 1960).52

Although the Kalman filter was developed originally as a method for estimating the state53

of system, it can be used to estimate both state and model parameters simply by aug-54

menting the state vector with a parameter vector, treating the augmented parameters55

as unobserved state vectors. This methodology has been extensively applied in weather56

data assimilation (Annan, Lunt, Hargreaves, and Valdes (2005), Yang and DelSole (2009),57

Hu, Zhang, and Nielsen-Gammon (2010), and Koyama and Watanabe (2010)).58
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When estimating the parameters of an ESM, the usual focus is on the statistical59

moments on the model rather than the transient evolution. Various approaches have been60

proposed to address this, ranging from stochastic PDF estimation techniques, which in-61

clude algorithms like Metropolis-Hastings and multiple iterations of very fast simulated62

annealing (Jackson et al., 2004), to methods that optimize explicit objective functions,63

such as the downhill simplex algorithm (Severijns & Hazeleger, 2005; Zhang et al., 2018).64

In this paper, we focus on Kalman filter-based methods. Within the context of climate65

model tuning, these approaches are often referred to as Kalman inversion methods (Iglesias66

et al., 2013; Schneider et al., 2017).67

Many Kalman filter-based methods for tuning models incorporate at least one free68

hyperparameter that must be manually specified or estimated. For example, the ensem-69

ble Kalman filter often exhibits ensemble collapse, which is typically addressed through70

techniques like covariance inflation and localization– both requiring the tuning of hyper-71

parameters. A hyperparameter is a parameter of the algorithm itself, rather than of the72

model being tuned. Free hyperparameters require user input for specification, unlike those73

that are hard-coded or adaptively estimated by the algorithm. Methods for online es-74

timation of such hyperparameters, like the adaptive inflation algorithm (Anderson (2007))75

and the adaptive localization algorithm (Bishop and Hodyss (2009)), have been devel-76

oped. However, these too involve secondary hyperparameters. Unfortunately, there is77

often limited guidance on setting these values for applications far removed from the al-78

gorithm’s initial use, requiring multiple algorithm runs to determine optimal settings,79

thereby increasing the practical cost of model tuning.80

The purpose of this paper is to introduce an algorithm devoid of free hyperparam-81

eters. In the context of an ensemble Kalman filter, free hyperparameters typically arise82

either through covariance inflation or through observation error covariances. Our basic83

idea is to re-formulate the ensemble Kalman filter as an equivalent ridge regression prob-84

lem, where the ridge parameter is identified with the hyperparameter. Then standard85

cross-validation techniques are used to select the hyperparameter adaptively. This ap-86

proach estimates the hyperparameter separately and independently at each iteration of87

the filter, eliminating the need for presetting an initial value or allowing for a period of88

adaptation. Consequently, the algorithm provides immediate estimates right from the89

first iteration, continuing reliably in subsequent iterations.90

In the next section, we review Kalman inversion and the associated ensemble ver-91

sion. Our proposed algorithm is then discussed in detail in Section 3. To place this al-92

gorithm into context, we compare it to various alternatives discussed in Section 4. One93

such alternative is an unregularized version that applies the Kalman filter without hy-94

perparameters. In this scenario, ensemble methods are used to derive approximate co-95

variances for the prior, and the observation error covariance matrix is calculated by us-96

ing the sample covariance matrix from a long dataset. Another alternative involves us-97

ing consistency diagnostics to estimate hyperparameters. For instance, Desroziers, Berre,98

Chapnik, and Poli (2005) show that the covariances of the innovations satisfy certain con-99

sistency constraints, a fact that has been used subsequently to develop online estima-100

tion algorithms of hyperparameters (Li et al., 2009). Another is to transform the prob-101

lem of regularizing the observation error covariance into a problem of regularizing the102

prior covariance matrix, and then apply algorithms designed for covariance inflation, like103

those by Anderson (2007) and further refined by El Gharamti (2018). Additionally, we104

consider an algorithm proposed by Iglesias and Yang (2021) that adaptively minimizes105

discrepancies from observations and includes a criterion for early stopping in hyperpa-106

rameter estimation. The performance of these algorithms is evaluated on both the Lorenz107

96 model as a toy example and an Earth System Model in Sections 5 and 6, respectively.108

The paper concludes with a summary and discussion of our findings.109
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2 Kalman Inversion110

The Kalman filter estimates the state x from two pieces of information: imperfect111

observations o of x, and a prior distribution of x. The state and observations are assumed112

to be related according to113

o = Hx+ ϵ, (1)

where ϵ is a random vector sampled from a multivariate normal distribution with zero114

mean and covariance matrix R, which we denote as115

ϵ ∼ N (0,R). (2)

The prior distribution is N (xB ,ΣB). Then, the Kalman filter updates x according to116

Bayes’ theorem, yielding the normal distribution117

xA ∼ N (xA,ΣA), (3)

where118

xA = xB +ΣBH
⊤ (HΣBH

⊤ +R
)−1

(o−HxB) , (4)

and119

ΣA = ΣB −ΣBH
⊤ (HΣBH

⊤ +R
)−1

HΣB . (5)

Equations (4) and (5) are known as the Kalman filter update equations.120

Following Schneider et al. (2017), we estimate parameters θ ∈ RP×1 using sta-121

tistical moments m ∈ RS×1 computed from model integrations. Accordingly, the aug-122

mented state vector is123

x =

(
m
θ

)
∈ R(S+P )×1. (6)

Using statistical moments or other quantities instead of instantaneous states to estimate124

parameters is often called Kalman inversion (Iglesias et al., 2013). Since only the mo-125

ments contained in x are observable, Hx = m, hence126

H =
(
IS×S 0S×P

)
. (7)

In practice, we estimate the prior distribution from a finite ensemble. If we have127

an ensemble of size E with members x1, . . . ,xE , then128

Σ̂B = FBF
⊤
B (8)

gives an unbiased estimate of ΣB , where129

FB =
1√

E − 1

(
x1 − x̂B · · · xE − x̂B

)
and x̂B =

1

E

E∑
i=1

xi. (9)

Substituting Σ̂B for ΣB in the Kalman filter update equations is the starting point for130

the ensemble Kalman filter (EnKF) update equations. Like the KF, the EnKF is an it-131

erative algorithm; the updated ensemble becomes the initial ensemble at the next iter-132

ation, and new ESM integrations are computed using the new parameter estimates.133

Although the above Kalman filter estimates both the statistical moments and the134

parameters, only the parameter estimates are retained. Thus, at the next iteration, the135

initial ensemble utilizes only the ensemble of parameter estimates from the previous it-136

eration, whereas the moments are discarded since the dynamical model recomputes them137

at the next iteration. For chaotic models, the state used for the initial condition at the138

next iteration is arbitrary since, ideally, the model is run long enough to yield moments139

that are independent of the initial state.140
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3 Derivation of KalmRidge141

Applying the update equations requires specifying the noise covariance matrix R.142

In many applications, assumptions about the structure of R can reduce this problem to143

the selection of a small number of parameters (henceforth ”hyperparameters”, to pre-144

vent confusion with ESM parameters). Schneider et al. (2017) selected R by multiply-145

ing a diagonal matrix of climatological variances (henceforth Q) by the square of a hy-146

perparameter r:147

R = r2Q (10)

They found that their parameter estimates depend on r, but they did not propose a strat-148

egy to select its value. Instead, they re-executed their algorithm several times, with dif-149

ferent values of r for comparison. This process substantially increases the computational150

expense, and it is unclear how one would choose the best value of r without prior knowl-151

edge of the true parameter values.152

We now show that the Kalman filter update equations are equivalent to the solu-153

tion of a ridge regression problem, with r2 serving as the ridge parameter λ. This equiv-154

alence naturally suggests that λ can be estimated using cross-validation techniques com-155

monly used in standard ridge regression problems. To show this, let λ = r2, so that we156

can rewrite Equation 4 as157

xA = xB +ΣBH
⊤ (HΣBH

⊤ + λQ
)−1

(o−HxB)

= xB + FBF
⊤
B H⊤ (HFBF

⊤
B H⊤ + λQ

)−1
(o−HxB) .

Then, applying the matrix identity158

U⊤ (A+UU⊤)−1
=
(
I +U⊤A−1U

)−1
U⊤A−1 (11)

with the identifications U = HFB and A = λQ gives159

xA = xB + FB

(
λI + F⊤

B H⊤Q−1HFB

)
F⊤
B H⊤Q−1(o−HxB). (12)

We may write this in a more recognizable form by defining160

X = Q−1/2HFB (13)

and161

y = Q−1/2(o−HxB), (14)

in which case Equation 4 becomes162

xA = xB + FBβ̂ (15)

where163

β̂ =
(
X⊤X + λI

)−1
X⊤y. (16)

Equation 16 is identical to the equation of the ridge regression estimator (Hastie164

et al., 2009). Hence, we propose selecting λ using standard k-fold cross-validation meth-165

ods in that context. This involves dividing the X and y into k equal parts, or ”folds”.166

For each fold, the model is trained on k−1 folds and tested on the remaining fold. This167

process repeats k times, with each fold used exactly once as the test set. Unlike simple168

train/test splitting, k-fold cross-validation allows all data to be used for out-of-sample169

testing.170

With this approach, we can determine λ adaptively as the algorithm iterates, re-171

ducing the required number of integrations. Additionally, the approach automatically172

solves the problem of choosing a suitable error norm when given observations with dif-173

ferent units of measure, since cross-validation is performed with the transformed vari-174

ables X and y. Note that the cross-validation is performed on the S+P rows of X; hence,175
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unlike typical cross-validation, the variables of the state vector are withheld, rather than176

the ensemble members. Recall that P is the number of parameters and S is the num-177

ber of moments.178

The corresponding covariance update equation can be derived using standard iden-179

tities, as follows:180

ΣA = ΣB −ΣBH
⊤ (HΣBH

⊤ + λQ
)−1

HΣB (17)

= FBF
⊤
B − FBF

⊤
B H⊤ (HFBF

⊤
B H⊤ + λQ

)−1
HFBF

⊤
B (18)

= FB

[
I − F⊤

B H⊤ (HFBF
⊤
B H⊤ + λQ

)−1
HFB

]
F⊤
B (19)

= FB

(
I + F⊤

B H⊤ (λQ)
−1

HFB

)
F⊤
B (20)

= FBDF⊤
B (21)

where181

D =
(
I + λ−1X⊤X

)−1
= λ

(
λI +X⊤X

)−1
. (22)

Once we have a value for λ, we may compute D and update the perturbed-parameter182

ensemble with183

FA = FBD
1/2. (23)

We used the R package glmnet to perform the ridge regression with cross-validation184

(Friedman et al., 2010). We found that cv.glmnet sometimes chooses poor λ values be-185

cause the default search range is too narrow. To ensure a sufficiently broad range of can-186

didate λ values, the limits of the search range are specified in the following way. Let the187

singular value decomposition (SVD) of X be188

X = UCV ⊤, (24)

where U and V are orthogonal matrices and C is a diagonal matrix whose elements are189

the singular values {c1, c2, · · · , cS}, in descending order. Then, Equation 16 can be ex-190

pressed as191

β = V GU⊤, (25)

where G is a diagonal matrix with elements192

Gii =
ci

c2i + λ
. (26)

This expression implies that G, and therefore β, is insensitive to λ when λ ≪ c2S or when193

λ ≫ c21. Hence, the sensitive range is c21 < λ < c2S . However, the column vectors of194

FB sum to the zero vector, since the ensemble members are centered, which implies that195

X is not full column rank. Therefore, cS = 0, so we use the second smallest singular196

value, cS−1 to define the lower limit of λ. To be precise, the lower limit is chosen to be197

a factor of ten less than the second smallest squared singular value, and the upper limit198

is chosen to be a factor of ten greater than the largest squared singular value. Account-199

ing for the fact that cv.glmnet normalizes y by its standard deviation and normalizes200

the sum-square error in the objective function by the dimension of y, the upper and lower201

limits of λ are chosen to be202

λlower =
1

10

σy

S
c2S−1 and λupper = 10

σy

S
c21, (27)

where S is the number of elements of y and σy is the standard deviation of the elements203

of y.204

Compared to the cost of integrating an ESM, computing the SVD is essentially “free”,205

so the cost of this procedure is negligible, unlike offline hyperparameter tuning.206

This completes the derivation of the KalmRidge algorithm. In the next section, we207

will discuss some related algorithms that may serve as a basis for comparison.208
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4 Alternatives to KalmRidge209

We have already discussed the Schneider et al. (2017) approach, but there are other210

algorithms which address the same problem. In the following subsections, we discuss a211

few alternatives that will be used as a basis for comparison.212

4.1 Unregularized Kalman Filter213

In certain situations, one might consider implementing the Kalman filter without214

regularization. For example, with a sufficiently large ensemble size and extensive obser-215

vational data, simple sample estimates may provide adequately precise estimates of the216

prior and observational error covariance matrices, potentially obviating the need for reg-217

ularization. Here, we explore situations where a large observational dataset is available218

for estimating R. It is important to note, however, that realistic ESM tuning does not219

typically fit this scenario, as the observational time series is generally too short, result-220

ing in a singular error covariance matrix R. It is also important to note that the covari-221

ances pertain to statistical moments calculated over a specific time window Tw, rather222

than instantaneous states commonly dealt with. If To denotes the total observational time223

period, then R can be derived from the moments estimated across To/Tw intervals within224

the observational dataset. The resulting estimate for R will be singular unless the length225

of the observational period To is greater than the product of Tw and the dimension of226

R.227

4.2 Consistency Diagnostics228

Another approach to estimate the hyperparameter is to choose it to satisfy a con-229

sistency diagnostic. One such diagnostic was proposed by Desroziers et al. (2005), who230

showed that if ΣB and R are correctly specified, then231

E[do−ad
⊤
o−b] = R (28)

where232

do−a = o−HxB (29)

is the post-fit residual and233

do−b = o−HxB (30)

is the pre-fit residual (i.e. the innovation). Li et al. (2009) used these equations to es-234

timate a covariance inflation factor. Here, we use it to estimate the hyperparameter, r.235

Specifically, if we assume that R = r2Q, as before, then236

r2 =
tr
(
E[do−ad

⊤
o−b]

)
tr(Q)

(31)

gives an estimate of the hyperparameter. Since the right side of Equation 31 implicitly237

depends on r, the hyperparameter value is determined by fixed-point iteration. With this238

value of r, one can use ensemble Kalman inversion as previously described. It is neces-239

sary to re-evaluate Equation 31 with each iteration.240

4.3 Adaptive Inflation241

It is well known that the ensemble Kalman filter suffers from ensemble collapse,242

and strategies like covariance inflation and covariance localization have been employed243

to prevent this (Anderson & Anderson, 1999). A natural question is whether these strate-244

gies could be used in parameter estimation. In fact, the hyperparameter r can be inter-245

preted as a kind of covariance inflation factor. This can be shown by the substitution246

R = r2Q into Equations 4 and 5, followed by algebraic rearrangement:247

xA = xB + (r−2ΣB)H
⊤ (H(r−2ΣB)H

⊤ +Q
)−1

(o−HxB) (32)
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and248

r−2ΣA = (r−2ΣB)− (r−2ΣB)H
⊤ (H(r−2ΣB)H

⊤ +Q
)−1

H(r−2ΣB). (33)

Equations 32 and 33 show that introducing the free hyperparameter r2 is equivalent to249

inflating the background covariance matrix ΣB by r−2, then deflating the analysis co-250

variance matrix ΣA. This suggests that an adaptive covariance inflation algorithms can251

help solve the free hyperparameter problem, as those algorithms provide a way to esti-252

mate that hyperparameter.253

One of the first adaptive inflation algorithms was Anderson (2007), which was im-254

proved by Anderson (2009). Later, El Gharamti (2018) modified Anderson (2009) to use255

inverse gamma distributions instead of Gaussian distributions. Specifically, we consider256

the El Gharamti (2018) algorithm. The e subscript indicates the ensemble member and257

the s subscript indicates the state variable. This algorithm uses a sequential filter and258

the following inflation rule:259

xinf.
s,e =

√
λs(xs,e − xs) + xs (34)

Note that each state variable has its own inflation factor, λs. The algorithm uses Bayes’260

rule with inverse gamma priors to update these inflation factors. The inverse gamma dis-261

tribution is defined by262

p(λ) =
βα

Γ(α)
λ−α−1 exp(−β/λ), (35)

where α > 0 is called the shape parameter and β > 0 is called the scale parameter.263

Since these parameters are estimated automatically within the algorithm, they are not264

free hyperparameters.265

To maintain compatibility with code written for the Anderson (2009) algorithm,266

the El Gharamti (2018) algorithm uses Gaussian parameters and translates them to and267

from inverse gamma parameters when updating the distribution. The inverse gamma dis-268

tribution is advantageous because, unlike the Gaussian distribution, it is supported only269

on the positive real numbers. This is important because inflation factors must be pos-270

itive.271

The user must specify an initial guess (prior) for the inflation factor variances. This272

implies that the algorithm does have a hyperparameter, but the algorithm can update273

its value adaptively. However, in practice the variance update is often disabled, such that274

only the mean update is retained. The inflation factor means are initialized at unity (i.e.275

no inflation) in all applications we have seen, so we do not consider them to constitute276

free hyperparameters.277

4.4 Annealed Regularization278

Iglesias and Yang (2021) proposed another algorithm for estimating the hyperpa-279

rameter. Using our notation, the hyperparameter is estimated at each iteration n by280

λ−1
n = min

(
max

(
E

2⟨Φ⟩n
,

√
E

2⟨Φ,Φ⟩n

)
, 1− tn

)
(36)

where281

tn =

{∑n−1
j=0 λ−1

j n ≥ 1,

0 n = 0
(37)

282

Φn =

{
1

2
∥Q−1/2 (o−Hxn,e) ∥2

}E

e=1

. (38)

The constraint involving tn causes the value of λ−1
n to tend toward zero.283
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Figure 1. Parameter estimation in Lorenz 96 with EnKI (Schneider et al., 2017).

5 Experiments with Lorenz 96284

We now illustrate the above methods using a simple dynamical system. The Lorenz285

96 model is an idealized dynamical system with governing equations286

dXk

dt
= −Xk−1(Xk−2 −Xk+1)−Xk + F − hcY k, (39)

287

1

c

dYjk

dt
= −bYj+1,k(Yj+2,k − Yj−1,k)− Yjk +

h

J
Xk, (40)

and288

Y k =
1

J

J∑
j=1

Yj,k. (41)

It features K = 36 slow variables Xk, and JK fast variables Yjk (J = 10 fast vari-289

ables per slow variable), which form cyclic chains:290

Xk+K = Xk Yj,k+K = Yjk Yj+J,k = Yj,k+1. (42)

This dynamical system represents some important aspects of real ESMs, such as advec-291

tion, external forcing, dissipation, coupling, and chaos (Lorenz, 2006). The fast variables292

are broadly analogous to higher-resolution atmospheric states and the slow variables are293

analogous to lower-resolution oceanic states.294

The model depends on four parameters: F , an external forcing; h, which controls295

the coupling strength; c, a relative damping time scale; and b, which modulates advec-296

tion in the fast dynamics.297

Letting ⟨· · · ⟩ denote simultaneous averaging over both time (long-term) and j, it298

follows from Equations 39 and 40 that299 〈
X2
〉
= F ⟨X⟩ − hc

〈
XY

〉
(43)
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and300 〈
Y 2
〉
=

h

J

〈
XY

〉
, (44)

noting that individual fast (or slow) variables are statistically exchangeable (Lorenz &301

Emanuel, 1998). These relationships suggest that we can tune Lorenz 96 using the fol-302

lowing 5K = 180 moments as targets, as Schneider et al. (2017) did:303

m =
(
⟨X⟩

〈
Y
〉 〈

X2
〉 〈

XY
〉 〈

Y 2
〉)⊤

. (45)

In the subsections that follow, we compare the performance of different approaches304

using these statistical moments as targets.305

5.1 Ensemble Kalman Inversion306

Schneider et al. (2017) applied (non-adaptive) EnKI to the Lorenz 96 model. Specif-307

ically, they created a very long control integration (T = 46416) with F = c = b = 10308

and h = 1, then used EnKI to estimate the parameters of the control integration us-309

ing the moments in Equation 45 as (proxy) observations. Their initial ensemble, of size310

100, used normal priors for (F , h, b) with µ = (10, 0, 5), σ2 = (10, 1, 10); and a log-311

normal prior for c with µ = 2, σ2 = 0.1. They found that EnKI produces reasonable312

parameter estimates (Figure 1).313

Figure 2 shows results from experiments with KalmRidge. The mean estimates are314

similar to those of Schneider et al. (2017), but our ensembles collapsed whereas theirs315

did not. However, their EnKI implementation added noise to the ”observations”, whereas316

our KalmRidge algorithm did not. Despite the similarity in the mean estimates, Kalm-317

Ridge did not require offline hyperparameter selection, unlike their EnKI.318

Both implementations fail to adequately estimate c. To investigate this deficiency,319

we examined the sensitivity of the moments to parameter perturbations. Figure 3 shows320

the variations in X2 and Y 2 due to changes in one parameter while the other param-321

eters are fixed to their control values. The figure shows that variations in F , h, and b322

lead to relatively tight (albeit nonlinear) relationships, whereas variations in log(c) do323

not. In fact, none of the moments exhibit sensitivity to log(c) near the control value (not324

shown), suggesting an identifiability problem. It is likely that the insensitivity to per-325

turbations of log(c) explains the poor estimates of c.326

5.2 Unregularized Kalman Filter327

The results from the ”basic statistics” approach are shown in Figure 4. Despite a328

great abundance of proxy observations (the same T = 46416 control integration as in329

the previous section), this method suffers from very rapid ensemble collapse and corre-330

spondingly gives poor estimates for some of the parameters.331

5.3 Consistency Diagnostics332

The results from the consistency diagnostic method are shown in Figure 5. This333

method is slightly less successful at estimating the F parameter than KalmRidge, but334

more importantly, ensemble collapse occurs much more quickly in the consistency diag-335

nostic method.336

5.4 Adaptive Inflation337

El Gharamti (2018) algorithm has previously been implemented in NCAR’s Data338

Assimilation Research Testbed (DART) (Anderson et al., 2004). This is a Matlab im-339

plementation, but our work has been in Python and R, so we translated the Matlab code340

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2. Lorenz 96 parameter estimates (means and interquartile ranges) from KalmRidge.

The true parameter values are depicted with dashed lines. Note that some of the dashed lines

overlap. Each subfigure is an independent run of the KalmRidge algorithm, each starting with a

slightly different initial ensemble.
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Figure 3. Single-parameter Lorenz 96 sensitivity experiments. In each plot, three parameters

were fixed to their control values while the remaining parameter was varied. The vertical axis

gives the spatiotemporal mean of a particular moment. Each black dot corresponds to a separate

integration of Lorenz 96. The total number of Lorenz 96 integrations was 10,000.
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Figure 4. Lorenz 96 parameter estimates (means and interquartile ranges) from the “basic

statistics” approach.
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Figure 5. Lorenz 96 parameter estimates (means and interquartile ranges) from the consis-

tency diagnostic approach.
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Figure 6. Successful parameter estimation with the El Gharamti (2018) algorithm.

to Python. Consistent with the Matlab implementation, the Python implementation dis-341

ables the variance update, retaining only the mean update.342

The results of applying our implementation of the El Gharamti (2018) algorithm343

to the Lorenz 96 tuning problem are shown in Figure 6. The figure shows that the al-344

gorithm works reasonably well for σλb
= 0.2, which is much smaller than the values con-345

sidered by the author and used in DART (typically around 0.6). However, increasing it346

much beyond σλb
= 0.2 causes immediate failure – the parameter variance becomes very347

large, rapidly. The estimation problem is seen in the c parameter consistently, and this348

parameter is difficult to estimate, as was shown previously in this section. Since this al-349

gorithm offers no method for choosing σλb
, and the estimates from the algorithm are sen-350

sitive to the value of σλb
, we consider σλb

to be a free hyperparameter.351

5.5 Annealed Regularization352

Like our algorithm, the Iglesias and Yang (2021) algorithm does not have a free hy-353

perparameter. However, as seen in Figure 7, their algorithm terminates before the pa-354

rameter estimates converge. One might suggest continuing the iteration, but this is not355

possible since the algorithm must stop when λ−1 reaches zero. The variations in the hy-356

perparameter estimates with iteration for KalmRidge and adaptive regularization are357

shown in Figure 8 and Figure 9, respectively. Note that the hyperparameter values cho-358

sen by the adaptive regularization algorithm trend downward, whereas those chosen by359
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Figure 7. Lorenz 96 parameter estimates (means and interquartile ranges) using the Iglesias

and Yang (2021) algorithm. The true parameter values are depicted with dashed lines.
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Figure 8. Evolution of − log10(λ) in KalmRidge when applied to Lorenz 96.
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Figure 9. Evolution of − log10(λ) in the Iglesias and Yang (2021) algorithm when applied to

Lorenz 96.
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KalmRidge do not. Unlike adaptive regularization, KalmRidge can be iterated until con-360

vergence, since λ is not forced to evolve in any particular way across iterations.361

6 Demonstrations With CESM2362

Unlike the Lorenz 96 model, which is simple “toy model”, the Community Earth363

System Model version 2 (CESM2) represents all major Earth system components and364

features hundreds of tunable parameters (Danabasoglu et al., 2020). In this section, we365

demonstrate applications of KalmRidge to CESM2.366

Parameter selection is a major unsolved problem in ESM tuning. Here, our goal367

is to demonstrate the usefulness of a tuning algorithm for a small number of selected pa-368

rameters. Many ESM tuning studies focus on cloud parameters due to their important369

role in quantifying uncertainty in climate projections. For the purpose of illustration,370

we selected two parameters that appear frequently in previous studies on tuning and sen-371

sitivity of CESM, following recommendations by NCAR scientists (see Acknowledgements).372

The first selected parameter is called clubb gamma coef (henceforth γ). This pa-373

rameter is part of the Cloud Layers Unified By Binormals (CLUBB) parameterization374

and controls the skewness of vertical velocity (Golaz et al., 2002). CESM2 is highly sen-375

sitive to this parameter and it is commonly tuned to achieve a TOA energy balance tar-376

get (Danabasoglu et al., 2020; Guo et al., 2014; Woelfle et al., 2019). The second param-377

eter is called micro mg dcs (henceforth Dcs). This parameter is part of the Morrison-378

Gettelman cloud microphysics parameterization and determines the autoconversion size379

from ice to snow (Gettelman & Morrison, 2015). Like γ, Dcs is known to be highly use-380

ful for tuning radiation budgets (Zhao et al., 2013). Both γ and Dcs were investigated381

in connection with the double-ITCZ bias (Woelfle et al., 2019). We performed sensitiv-382

ity experiments and found that γ and Dcs are highly correlated with the spatiotempo-383

ral means of sea-surface temperature (SST) and longwave cloud forcing, respectively.384

As in the preceding section, we used KalmRidge to estimate the parameter values385

of a given control integration. In particular, we used a 500-year two-degree fully coupled386

preindustrial control, which is part of the Coupled Model Intercomparison Project ver-387

sion 6 (CMIP6). This integration used the parameter values γ = 0.28 and Dcs = 200×388

10−6.389

Our goal is to tune parameters with reasonable computational expense. For con-390

creteness, assume that, for each iteration of KalmRidge, we can afford to integrate CESM2391

for up to 40 years. Each simulated year costs approximately 1500 core-hours on the Cheyenne392

supercomputer. If each ensemble member is run for Y years, then the ensemble size E393

is chosen to satisfy EY = 40. We chose Y = 2, which implies E = 20. Hence, we394

used 20-member two-year ensembles.395

Our initial perturbed-parameter ensemble, given in Table 1, was a uniform random396

sample with γ ∈ [0.25, 0.35] and Dcs ∈ [200 × 10−6, 800 × 10−6]. The literature does397

not clearly define suitable parameter ranges, so we used these broad ranges following rec-398

ommendations by NCAR scientists. Each ensemble member was initialized at 0031-01-399

01 using a restart from the control (for more information, see the “Open Research” sec-400

tion).401

Before we can apply KalmRidge, we must choose which statistical moments to tar-402

get. Our choice was guided by a list of properties which model developers consider ”de-403

cisive” for tuning, as indicated by a survey of modeling centers (Hourdin et al., 2017).404

We selected a subset of model output fields for consideration, as listed in Table 2. We405

selected these particular fields because they are simple and rather uncontroversial – the406

SST, for example, is an common ”first choice”.407
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clubb gamma coef micro mg dcs (×106)

0.32917 517
0.27894 310
0.29663 347
0.27104 277
0.29237 588
0.2818 449
0.30702 463
0.34786 679
0.28595 462
0.30232 256
0.28154 418
0.27828 272
0.26183 584
0.25641 615
0.31531 352
0.30680 755
0.29615 668
0.32782 722
0.27089 297
0.26318 630

Table 1. Initial perturbed-parameter ensemble used for tuning experiments.

For each field chosen, we computed anomalies by subtracting the annual cycle es-408

timated from the control integration. Then, we computed moments by taking the time409

means of the leading 100 spherical harmonic projections. Unlike individual grid-cell val-410

ues, spherical harmonics capture large-scale orthogonal patterns: the first is the global411

mean, the next few correspond to dipoles, and the patterns decrease in spatial scale there-412

after. Figure 10 depicts some of the leading spherical harmonics.413

We conducted three experiments. In the ”kitchen sink” experiment, we considered414

all fields listed in Table 2. Then, to investigate the necessity of these fields, we performed415

two further experiments: one using only SST, and one using both SST and longwave cloud416

forcing. Figure 11 depicts the results of these experiments. We see that the parameters417

are well-estimated in all three experiments, even after a single iteration. The estimates418

using SST only are slightly biased after two iterations. Introducing the longwave cloud419

forcing reduces this bias, whereas the other fields seem to be uninformative as their in-420

clusion produces only minor changes.421

In the above experiments, all ensemble members were initialized from the same state.422

We also conducted preliminary experiments in which each ensemble member was initial-423

ized from states drawn independently from the control integration using a Halton sequence424

(Halton, 1960). The initial ensemble for these experiments is given in Table 3 and com-425

parisons of the results with the preceding experiments are shown in Figure 12. As seen426

in Figure 12, using a common initialization usually gave better estimates.427

7 Discussion428

In this article, we introduced a new algorithm, KalmRidge, and demonstrated ap-429

plications to Lorenz 96 and CESM2. We found that KalmRidge successfully reproduces430

results from Schneider et al. (2017) when applied to Lorenz 96.431
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Figure 10. Leading spherical harmonic patterns.

Short name Long name

FLNS Net longwave flux at the surface
FLNT Net longwave flux at the top of model
FSNS Net solar flux at the surface
FSNT Net solar flux at the top of model

ICEFRAC Fraction of surface area covered by sea ice
LWCF Longwave cloud forcing
PRECT Total precipitation rate

SNOWHICE Water equivalent snow depth (ice)
SNOWHLND Water equivalent snow depth (land)

SST Sea surface temperature
SWCF Shortwave cloud forcing
TS Surface temperature (radiative)

Table 2. CESM2 fields used for tuning experiments.
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Figure 11. Results of CESM experiments, depicting parameter estimates with 95% confidence

intervals before iterating (iteration zero) and in subsequent iterations.

clubb gamma coef micro mg dcs (×106) Initialization time

0.258838 626 0281-01-01
0.308838 359 0471-01-01
0.283838 559 0371-01-01
0.333838 759 0101-01-01
0.271338 315 0201-01-01
0.321338 515 0301-01-01
0.296338 715 0491-01-01
0.346338 248 0391-01-01
0.255713 448 0041-01-01
0.305713 648 0131-01-01
0.280713 381 0231-01-01
0.330713 581 0431-01-01
0.268213 781 0331-01-01
0.318213 278 0061-01-01
0.293213 478 0151-01-01
0.343213 678 0251-01-01
0.261963 211 0451-01-01
0.311963 411 0351-01-01
0.286963 611 0016-01-01
0.336963 344 0121-01-01

Table 3. Initial perturbed-parameter ensemble used for mixed-initialization experiments.
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Figure 12. Comparison between common- and mixed-initialization experiments after one

iteration.
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However, unlike the form of EnKI presented in that article, KalmRidge does not432

have a free hyperparameter. This eliminates the need for computationally expensive of-433

fline hyperparameter selection. We also proposed using spherical harmonic projections,434

which systematically capture large-scale spatial features, as tuning targets. We have not435

explored the sensitivity of the algorithm to different basis vectors, but it is plausible that436

Laplacian eigenvectors are particularly advantageous to tuning ESMs, given that they437

systematically decompose variability based on spatial length scale. We note that the Lapla-438

cian eigenvectors used here may be computed for arbitrary domains, including discon-439

nected land masses or ocean area(DelSole & Tippett, 2015). Laplacian eigenvectors com-440

puted for regional domains could facilitate more localized tuning efforts.441

KalmRidge, using spherical harmonic projections, demonstrated impressive per-442

formance in estimating the parameters of a CESM2 preindustrial control integration. De-443

spite its simplicity, this algorithm also demonstrated its robustness in the presence of444

irrelevant information – many of the moments, particularly in the ”kitchen sink” exper-445

iment (e.g. the 57th spherical harmonic of the sea ice fraction), are irrelevant but do not446

detract from the performance of KalmRidge.447

Our results (Figure 12) suggest that using a common initial condition for all en-448

semble members is better than using mixed initial conditions, but more experiments would449

be needed to assess the generality of this result.450

One caveat of KalmRidge is that its uncertainty estimates are too small. This was451

also observed, to a greater extent, in the other tuning methods that we evaluated, ex-452

cept for those by Schneider et al. (2017) and Iglesias and Yang (2021). However, the Schneider453

et al. (2017) algorithm requires the user to specify the value of a free hyperparameter,454

but provides no procedure to estimate it. Without such a procedure, it is unclear how455

one could determine the hyperparameter value without already knowing the optimal pa-456

rameter values. The Iglesias and Yang (2021) algorithm does not have a free hyperpa-457

rameter, but gives poor point estimates for the parameters. Hence, our algorithm is unique458

in that it gives good point estimates for the parameters without the requisite tuning of459

a free hyperparameter.460

The model experiments presented in this article are admittedly idealized, partic-461

ularly since we assume that all model error is due to misspecification of two parameters.462

For realistic applications, the algorithm must be generalized to account for the annual463

cycle and climate change. Nevertheless, KalmRidge performs well in this idealized set-464

ting, and any algorithm which cannot is unlikely to be useful when applied to more re-465

alistic problems.466

8 Open Research467

The CMIP6 preindustrial control integration used as the tuning control was ob-468

tained from NCAR Campaign Storage at /glade/campaign/collections/cmip/CMIP6/timeseries-cmip6/469

(Eyring et al., 2016). These data are also available at https://www.earthsystemgrid470

.org/dataset/ucar.cgd.cesm2.b.e21.B1850.f09 g17.CMIP6-piControl.001.atm.proc471

.monthly ave.html and are licensed under the Creative Commons Attribution-ShareAlike472

4.0 International License.473

The latest version of the KalmRidge software is available at https://github.com/474

nlydeen/adaptive-ki/ (Lydeen, 2022). The Community Earth System Model (CESM)475

version 2.1.1 is available at (Danabasoglu et al., 2019) and is developed at https://github476

.com/ESCOMP/cesm/. We used Conda version 4.14.0 for package management, available477

under a BSD 3-Clause License at https://docs.conda.io/en/latest/miniconda.html478

and developed at https://github.com/conda/conda/. Python and R codes are inter-479

faced with RPy2. Data analysis was conducted with Numpy 1.7.1 (Harris et al., 2020),480

available under a BSD 3-Clause License at https://numpy.org/install/ and devel-481
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oped at https://github.com/numpy/numpy/; XArray 0.20.1 (Hoyer & Hamman, 2017),482

available under an Apache 2.0 License at (Hoyer et al., 2021) and developed at https://483

github.com/pydata/xarray; and Pandas 1.3.5, availabe under a BSD 3-Clause License484

at (Reback et al., 2021) and developed at https://github.com/pandas-dev/pandas/.485

Plots were created with Matplotlib 3.5.2 (Hunter, 2007), available under the Matplotlib486

License at (Caswell et al., 2022) and developed at https://github.com/matplotlib/487

matplotlib/.488
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