

1 Climate Model Tuning Without Hyperparameters

2 **Nikki Lydeen¹, Timothy DelSole¹, Benjamin Cash¹**

3 ¹George Mason University, Fairfax, VA, USA

4 **Key Points:**

- 5 • Earth system models (ESMs) have many tunable parameters that are difficult to
estimate and weakly constrained by theory.
- 6 • Kalman filter-based approaches are attractive options, but existing implementa-
tions require expensive offline hyperparameter selection.
- 7 • We propose a new Kalman filter algorithm that estimates model parameters and
its hyperparameter simultaneously.
- 8
- 9
- 10

Abstract

This article introduces a new algorithm, *KalmRidge*, and demonstrates its ability to tune an Earth system model (ESM) using idealized experiments. Unlike similar algorithms, *KalmRidge* eliminates the need for offline hyperparameter selection, thereby substantially reducing computational expense. This is done by rewriting the update equations for the ensemble Kalman filter as an equivalent ridge regression problem, then applying standard cross-validation techniques to adaptively choose the regularization parameter. We propose that this algorithm, with time-mean spherical harmonic projections as tuning targets, provides a promising, tractable approach for parameter estimation.

Plain Language Summary

Earth system models (ESMs) depend on parameters that are difficult to estimate. Although these parameters are routinely estimated during model development, there is no standard approach for parameter estimation, and existing algorithms are expensive to apply. Contemporary algorithms have hyperparameters, i.e. parameters of the algorithms themselves rather than of the model, which also must be estimated. Estimating hyperparameters is very computationally expensive. This article introduces a new algorithm which eliminates the need for hyperparameter estimation, and demonstrates its application to a state-of-the-art ESM.

1 Introduction

Earth system models (ESMs) simulate atmospheric, oceanic, and terrestrial processes and their interactions on a global scale. Some of the governing equations, particularly the equations of large-scale motion, are derived from well-understood physical principles and may be discretized for numerical integration. In contrast, many important small-scale processes, such as those associated with clouds, cannot be explicitly resolved at feasible grid resolutions. Instead, the grid-scale aggregate effects of these processes are estimated using semi-empirical functions, called parameterizations, which depend on parameters that are weakly constrained by observations. Tuning is challenging because ESM integrations are computationally expensive, and it requires running many ESM integrations with different parameter values. Tuning is further complicated by interactions between processes, which may cause biases in parameter estimates due to compensating errors.

Hourdin et al. (2017) and Schmidt et al. (2017) documented contemporary tuning practices at several climate modeling centers. They found that different centers use different strategies and have different goals. In practice, these modeling centers use traditional, manual trial-and-error tuning, rather than automated tuning algorithms.

Estimating parameters in a dynamical model is a classic example of an inverse problem. An early geophysical application of this approach was introduced by Carrera and Neuman (1986) in the context of groundwater flow models. For problems where distributions are Gaussian, many inverse problems reduce to the Kalman filter. The Kalman filter is one of the most extensively studied recursive state estimation algorithms. It gives the best linear unbiased estimate (BLUE) under the assumptions that the forecast model is linear and the prior and observational errors are normally distributed (Kalman, 1960). Although the Kalman filter was developed originally as a method for estimating the state of system, it can be used to estimate both state and model parameters simply by augmenting the state vector with a parameter vector, treating the augmented parameters as unobserved state vectors. This methodology has been extensively applied in weather data assimilation (Annan, Lunt, Hargreaves, and Valdes (2005), Yang and DelSole (2009), Hu, Zhang, and Nielsen-Gammon (2010), and Koyama and Watanabe (2010)).

59 When estimating the parameters of an ESM, the usual focus is on the statistical
 60 moments on the model rather than the transient evolution. Various approaches have been
 61 proposed to address this, ranging from stochastic PDF estimation techniques, which in-
 62 clude algorithms like Metropolis-Hastings and multiple iterations of very fast simulated
 63 annealing (Jackson et al., 2004), to methods that optimize explicit objective functions,
 64 such as the downhill simplex algorithm (Severijns & Hazeleger, 2005; Zhang et al., 2018).
 65 In this paper, we focus on Kalman filter-based methods. Within the context of climate
 66 model tuning, these approaches are often referred to as Kalman inversion methods (Iglesias
 67 et al., 2013; Schneider et al., 2017).

68 Many Kalman filter-based methods for tuning models incorporate at least one free
 69 hyperparameter that must be manually specified or estimated. For example, the ensem-
 70 ble Kalman filter often exhibits ensemble collapse, which is typically addressed through
 71 techniques like covariance inflation and localization— both requiring the tuning of hyper-
 72 parameters. A hyperparameter is a parameter of the algorithm itself, rather than of the
 73 model being tuned. Free hyperparameters require user input for specification, unlike those
 74 that are hard-coded or adaptively estimated by the algorithm. Methods for online es-
 75 timation of such hyperparameters, like the adaptive inflation algorithm (Anderson (2007))
 76 and the adaptive localization algorithm (Bishop and Hodyss (2009)), have been devel-
 77 oped. However, these too involve secondary hyperparameters. Unfortunately, there is
 78 often limited guidance on setting these values for applications far removed from the al-
 79 gorithm’s initial use, requiring multiple algorithm runs to determine optimal settings,
 80 thereby increasing the practical cost of model tuning.

81 The purpose of this paper is to introduce an algorithm devoid of free hyperparam-
 82 eters. In the context of an ensemble Kalman filter, free hyperparameters typically arise
 83 either through covariance inflation or through observation error covariances. Our basic
 84 idea is to re-formulate the ensemble Kalman filter as an equivalent ridge regression prob-
 85 lem, where the ridge parameter is identified with the hyperparameter. Then standard
 86 cross-validation techniques are used to select the hyperparameter adaptively. This ap-
 87 proach estimates the hyperparameter separately and independently at each iteration of
 88 the filter, eliminating the need for presetting an initial value or allowing for a period of
 89 adaptation. Consequently, the algorithm provides immediate estimates right from the
 90 first iteration, continuing reliably in subsequent iterations.

91 In the next section, we review Kalman inversion and the associated ensemble ver-
 92 sion. Our proposed algorithm is then discussed in detail in Section 3. To place this al-
 93 gorithm into context, we compare it to various alternatives discussed in Section 4. One
 94 such alternative is an unregularized version that applies the Kalman filter without hy-
 95 perparameters. In this scenario, ensemble methods are used to derive approximate co-
 96 variances for the prior, and the observation error covariance matrix is calculated by us-
 97 ing the sample covariance matrix from a long dataset. Another alternative involves us-
 98 ing consistency diagnostics to estimate hyperparameters. For instance, Desroziers, Berre,
 99 Chapnik, and Poli (2005) show that the covariances of the innovations satisfy certain con-
 100 sistency constraints, a fact that has been used subsequently to develop online estima-
 101 tion algorithms of hyperparameters (Li et al., 2009). Another is to transform the prob-
 102 lem of regularizing the observation error covariance into a problem of regularizing the
 103 prior covariance matrix, and then apply algorithms designed for covariance inflation, like
 104 those by Anderson (2007) and further refined by El Gharamti (2018). Additionally, we
 105 consider an algorithm proposed by Iglesias and Yang (2021) that adaptively minimizes
 106 discrepancies from observations and includes a criterion for early stopping in hyperpa-
 107 rameter estimation. The performance of these algorithms is evaluated on both the Lorenz
 108 96 model as a toy example and an Earth System Model in Sections 5 and 6, respectively.
 109 The paper concludes with a summary and discussion of our findings.

110 **2 Kalman Inversion**

111 The Kalman filter estimates the state \mathbf{x} from two pieces of information: imperfect
 112 observations \mathbf{o} of \mathbf{x} , and a prior distribution of \mathbf{x} . The state and observations are assumed
 113 to be related according to

$$\mathbf{o} = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}, \quad (1)$$

114 where $\boldsymbol{\epsilon}$ is a random vector sampled from a multivariate normal distribution with zero
 115 mean and covariance matrix \mathbf{R} , which we denote as

$$\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{R}). \quad (2)$$

116 The prior distribution is $\mathcal{N}(\bar{\mathbf{x}}_B, \boldsymbol{\Sigma}_B)$. Then, the Kalman filter updates \mathbf{x} according to
 117 Bayes' theorem, yielding the normal distribution

$$\mathbf{x}_A \sim \mathcal{N}(\bar{\mathbf{x}}_A, \boldsymbol{\Sigma}_A), \quad (3)$$

118 where

$$\bar{\mathbf{x}}_A = \bar{\mathbf{x}}_B + \boldsymbol{\Sigma}_B \mathbf{H}^\top (\mathbf{H} \boldsymbol{\Sigma}_B \mathbf{H}^\top + \mathbf{R})^{-1} (\mathbf{o} - \mathbf{H}\bar{\mathbf{x}}_B), \quad (4)$$

119 and

$$\boldsymbol{\Sigma}_A = \boldsymbol{\Sigma}_B - \boldsymbol{\Sigma}_B \mathbf{H}^\top (\mathbf{H} \boldsymbol{\Sigma}_B \mathbf{H}^\top + \mathbf{R})^{-1} \mathbf{H} \boldsymbol{\Sigma}_B. \quad (5)$$

120 Equations (4) and (5) are known as the *Kalman filter update equations*.

121 Following Schneider et al. (2017), we estimate parameters $\boldsymbol{\theta} \in \mathcal{R}^{P \times 1}$ using sta-
 122 tistical moments $\mathbf{m} \in \mathcal{R}^{S \times 1}$ computed from model integrations. Accordingly, the aug-
 123 mented state vector is

$$\mathbf{x} = \begin{pmatrix} \mathbf{m} \\ \boldsymbol{\theta} \end{pmatrix} \in \mathcal{R}^{(S+P) \times 1}. \quad (6)$$

124 Using statistical moments or other quantities instead of instantaneous states to estimate
 125 parameters is often called *Kalman inversion* (Iglesias et al., 2013). Since only the mo-
 126 ments contained in \mathbf{x} are observable, $\mathbf{H}\mathbf{x} = \mathbf{m}$, hence

$$\mathbf{H} = (\mathbf{I}_{S \times S} \quad \mathbf{0}_{S \times P}). \quad (7)$$

127 In practice, we estimate the prior distribution from a finite ensemble. If we have
 128 an ensemble of size E with members $\mathbf{x}_1, \dots, \mathbf{x}_E$, then

$$\hat{\boldsymbol{\Sigma}}_B = \mathbf{F}_B \mathbf{F}_B^\top \quad (8)$$

129 gives an unbiased estimate of $\boldsymbol{\Sigma}_B$, where

$$\mathbf{F}_B = \frac{1}{\sqrt{E-1}} (\mathbf{x}_1 - \hat{\mathbf{x}}_B \quad \dots \quad \mathbf{x}_E - \hat{\mathbf{x}}_B) \quad \text{and} \quad \hat{\mathbf{x}}_B = \frac{1}{E} \sum_{i=1}^E \mathbf{x}_i. \quad (9)$$

130 Substituting $\hat{\boldsymbol{\Sigma}}_B$ for $\boldsymbol{\Sigma}_B$ in the Kalman filter update equations is the starting point for
 131 the ensemble Kalman filter (EnKF) update equations. Like the KF, the EnKF is an it-
 132 erative algorithm; the updated ensemble becomes the initial ensemble at the next iter-
 133 ation, and new ESM integrations are computed using the new parameter estimates.

134 Although the above Kalman filter estimates both the statistical moments and the
 135 parameters, only the parameter estimates are retained. Thus, at the next iteration, the
 136 initial ensemble utilizes only the ensemble of parameter estimates from the previous it-
 137 eration, whereas the moments are discarded since the dynamical model recomputes them
 138 at the next iteration. For chaotic models, the state used for the initial condition at the
 139 next iteration is arbitrary since, ideally, the model is run long enough to yield moments
 140 that are independent of the initial state.

141

3 Derivation of KalmRidge

142 Applying the update equations requires specifying the noise covariance matrix \mathbf{R} .
 143 In many applications, assumptions about the structure of \mathbf{R} can reduce this problem to
 144 the selection of a small number of parameters (henceforth "hyperparameters", to pre-
 145 vent confusion with ESM parameters). Schneider et al. (2017) selected \mathbf{R} by multiplying
 146 a diagonal matrix of climatological variances (henceforth \mathbf{Q}) by the square of a hy-
 147 perparameter r :

$$\mathbf{R} = r^2 \mathbf{Q} \quad (10)$$

148 They found that their parameter estimates depend on r , but they did not propose a strat-
 149 egy to select its value. Instead, they re-executed their algorithm several times, with dif-
 150 ferent values of r for comparison. This process substantially increases the computational
 151 expense, and it is unclear how one would choose the best value of r without prior knowl-
 152 edge of the true parameter values.

153 We now show that the Kalman filter update equations are equivalent to the solu-
 154 tion of a ridge regression problem, with r^2 serving as the ridge parameter λ . This equi-
 155 valence naturally suggests that λ can be estimated using cross-validation techniques com-
 156 monly used in standard ridge regression problems. To show this, let $\lambda = r^2$, so that we
 157 can rewrite Equation 4 as

$$\begin{aligned} \bar{\mathbf{x}}_A &= \bar{\mathbf{x}}_B + \mathbf{\Sigma}_B \mathbf{H}^\top (\mathbf{H} \mathbf{\Sigma}_B \mathbf{H}^\top + \lambda \mathbf{Q})^{-1} (\mathbf{o} - \mathbf{H} \bar{\mathbf{x}}_B) \\ &= \bar{\mathbf{x}}_B + \mathbf{F}_B \mathbf{F}_B^\top \mathbf{H}^\top (\mathbf{H} \mathbf{F}_B \mathbf{F}_B^\top \mathbf{H}^\top + \lambda \mathbf{Q})^{-1} (\mathbf{o} - \mathbf{H} \bar{\mathbf{x}}_B). \end{aligned}$$

158 Then, applying the matrix identity

$$\mathbf{U}^\top (\mathbf{A} + \mathbf{U} \mathbf{U}^\top)^{-1} = (\mathbf{I} + \mathbf{U}^\top \mathbf{A}^{-1} \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{A}^{-1} \quad (11)$$

159 with the identifications $\mathbf{U} = \mathbf{H} \mathbf{F}_B$ and $\mathbf{A} = \lambda \mathbf{Q}$ gives

$$\bar{\mathbf{x}}_A = \bar{\mathbf{x}}_B + \mathbf{F}_B (\lambda \mathbf{I} + \mathbf{F}_B^\top \mathbf{H}^\top \mathbf{Q}^{-1} \mathbf{H} \mathbf{F}_B) \mathbf{F}_B^\top \mathbf{H}^\top \mathbf{Q}^{-1} (\mathbf{o} - \mathbf{H} \bar{\mathbf{x}}_B). \quad (12)$$

160 We may write this in a more recognizable form by defining

$$\mathbf{X} = \mathbf{Q}^{-1/2} \mathbf{H} \mathbf{F}_B \quad (13)$$

161 and

$$\mathbf{y} = \mathbf{Q}^{-1/2} (\mathbf{o} - \mathbf{H} \bar{\mathbf{x}}_B), \quad (14)$$

162 in which case Equation 4 becomes

$$\bar{\mathbf{x}}_A = \bar{\mathbf{x}}_B + \mathbf{F}_B \hat{\boldsymbol{\beta}} \quad (15)$$

163 where

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}. \quad (16)$$

164 Equation 16 is identical to the equation of the ridge regression estimator (Hastie
 165 et al., 2009). Hence, we propose selecting λ using standard k -fold cross-validation meth-
 166 ods in that context. This involves dividing the X and y into k equal parts, or "folds".
 167 For each fold, the model is trained on $k-1$ folds and tested on the remaining fold. This
 168 process repeats k times, with each fold used exactly once as the test set. Unlike simple
 169 train/test splitting, k -fold cross-validation allows all data to be used for out-of-sample
 170 testing.

171 With this approach, we can determine λ *adaptively* as the algorithm iterates, re-
 172 ducing the required number of integrations. Additionally, the approach automatically
 173 solves the problem of choosing a suitable error norm when given observations with dif-
 174 ferent units of measure, since cross-validation is performed with the transformed vari-
 175 ables X and y . Note that the cross-validation is performed on the $S+P$ rows of X ; hence,

176 unlike typical cross-validation, the variables of the state vector are withheld, rather than
 177 the ensemble members. Recall that P is the number of parameters and S is the num-
 178 ber of moments.

179 The corresponding covariance update equation can be derived using standard iden-
 180 tities, as follows:

$$\boldsymbol{\Sigma}_A = \boldsymbol{\Sigma}_B - \boldsymbol{\Sigma}_B \mathbf{H}^\top (\mathbf{H} \boldsymbol{\Sigma}_B \mathbf{H}^\top + \lambda \mathbf{Q})^{-1} \mathbf{H} \boldsymbol{\Sigma}_B \quad (17)$$

$$= \mathbf{F}_B \mathbf{F}_B^\top - \mathbf{F}_B \mathbf{F}_B^\top \mathbf{H}^\top (\mathbf{H} \mathbf{F}_B \mathbf{F}_B^\top \mathbf{H}^\top + \lambda \mathbf{Q})^{-1} \mathbf{H} \mathbf{F}_B \mathbf{F}_B^\top \quad (18)$$

$$= \mathbf{F}_B \left[\mathbf{I} - \mathbf{F}_B^\top \mathbf{H}^\top (\mathbf{H} \mathbf{F}_B \mathbf{F}_B^\top \mathbf{H}^\top + \lambda \mathbf{Q})^{-1} \mathbf{H} \mathbf{F}_B \right] \mathbf{F}_B^\top \quad (19)$$

$$= \mathbf{F}_B \left(\mathbf{I} + \mathbf{F}_B^\top \mathbf{H}^\top (\lambda \mathbf{Q})^{-1} \mathbf{H} \mathbf{F}_B \right) \mathbf{F}_B^\top \quad (20)$$

$$= \mathbf{F}_B \mathbf{D} \mathbf{F}_B^\top \quad (21)$$

181 where

$$\mathbf{D} = (\mathbf{I} + \lambda^{-1} \mathbf{X}^\top \mathbf{X})^{-1} = \lambda (\lambda \mathbf{I} + \mathbf{X}^\top \mathbf{X})^{-1}. \quad (22)$$

182 Once we have a value for λ , we may compute \mathbf{D} and update the perturbed-parameter
 183 ensemble with

$$\mathbf{F}_A = \mathbf{F}_B \mathbf{D}^{1/2}. \quad (23)$$

184 We used the R package `glmnet` to perform the ridge regression with cross-validation
 185 (Friedman et al., 2010). We found that `cv.glmnet` sometimes chooses poor λ values be-
 186 cause the default search range is too narrow. To ensure a sufficiently broad range of can-
 187 didate λ values, the limits of the search range are specified in the following way. Let the
 188 singular value decomposition (SVD) of \mathbf{X} be

$$\mathbf{X} = \mathbf{U} \mathbf{C} \mathbf{V}^\top, \quad (24)$$

189 where \mathbf{U} and \mathbf{V} are orthogonal matrices and \mathbf{C} is a diagonal matrix whose elements are
 190 the singular values $\{c_1, c_2, \dots, c_S\}$, in descending order. Then, Equation 16 can be ex-
 191 pressed as

$$\boldsymbol{\beta} = \mathbf{V} \mathbf{G} \mathbf{U}^\top, \quad (25)$$

192 where \mathbf{G} is a diagonal matrix with elements

$$G_{ii} = \frac{c_i}{c_i^2 + \lambda}. \quad (26)$$

193 This expression implies that \mathbf{G} , and therefore $\boldsymbol{\beta}$, is insensitive to λ when $\lambda \ll c_S^2$ or when
 194 $\lambda \gg c_1^2$. Hence, the sensitive range is $c_1^2 < \lambda < c_S^2$. However, the column vectors of
 195 \mathbf{F}_B sum to the zero vector, since the ensemble members are centered, which implies that
 196 \mathbf{X} is not full column rank. Therefore, $c_S = 0$, so we use the *second* smallest singular
 197 value, c_{S-1} to define the lower limit of λ . To be precise, the lower limit is chosen to be
 198 a factor of ten less than the second smallest squared singular value, and the upper limit
 199 is chosen to be a factor of ten greater than the largest squared singular value. Account-
 200 ing for the fact that `cv.glmnet` normalizes \mathbf{y} by its standard deviation and normalizes
 201 the sum-square error in the objective function by the dimension of \mathbf{y} , the upper and lower
 202 limits of λ are chosen to be

$$\lambda_{\text{lower}} = \frac{1}{10} \frac{\sigma_y}{S} c_{S-1}^2 \quad \text{and} \quad \lambda_{\text{upper}} = 10 \frac{\sigma_y}{S} c_1^2, \quad (27)$$

203 where S is the number of elements of \mathbf{y} and σ_y is the standard deviation of the elements
 204 of \mathbf{y} .

205 Compared to the cost of integrating an ESM, computing the SVD is essentially “free”,
 206 so the cost of this procedure is negligible, unlike offline hyperparameter tuning.

207 This completes the derivation of the KalmRidge algorithm. In the next section, we
 208 will discuss some related algorithms that may serve as a basis for comparison.

209 **4 Alternatives to KalmRidge**

210 We have already discussed the Schneider et al. (2017) approach, but there are other
 211 algorithms which address the same problem. In the following subsections, we discuss a
 212 few alternatives that will be used as a basis for comparison.

213 **4.1 Unregularized Kalman Filter**

214 In certain situations, one might consider implementing the Kalman filter without
 215 regularization. For example, with a sufficiently large ensemble size and extensive obser-
 216 vational data, simple sample estimates may provide adequately precise estimates of the
 217 prior and observational error covariance matrices, potentially obviating the need for reg-
 218 ularization. Here, we explore situations where a large observational dataset is available
 219 for estimating \mathbf{R} . It is important to note, however, that realistic ESM tuning does not
 220 typically fit this scenario, as the observational time series is generally too short, result-
 221 ing in a singular error covariance matrix \mathbf{R} . It is also important to note that the covari-
 222 ances pertain to statistical moments calculated over a specific time window T_w , rather
 223 than instantaneous states commonly dealt with. If T_o denotes the total observational time
 224 period, then \mathbf{R} can be derived from the moments estimated across T_o/T_w intervals within
 225 the observational dataset. The resulting estimate for \mathbf{R} will be singular unless the length
 226 of the observational period T_o is greater than the product of T_w and the dimension of
 227 \mathbf{R} .

228 **4.2 Consistency Diagnostics**

229 Another approach to estimate the hyperparameter is to choose it to satisfy a con-
 230 sistency diagnostic. One such diagnostic was proposed by Desroziers et al. (2005), who
 231 showed that if Σ_B and \mathbf{R} are correctly specified, then

$$\mathbb{E}[\mathbf{d}_{o-a}\mathbf{d}_{o-b}^\top] = \mathbf{R} \quad (28)$$

232 where

$$\mathbf{d}_{o-a} = \mathbf{o} - \mathbf{H}\mathbf{x}_B \quad (29)$$

233 is the post-fit residual and

$$\mathbf{d}_{o-b} = \mathbf{o} - \mathbf{H}\mathbf{x}_B \quad (30)$$

234 is the pre-fit residual (i.e. the innovation). Li et al. (2009) used these equations to es-
 235 timate a covariance inflation factor. Here, we use it to estimate the hyperparameter, r .
 236 Specifically, if we assume that $\mathbf{R} = r^2\mathbf{Q}$, as before, then

$$r^2 = \frac{\text{tr}(\mathbb{E}[\mathbf{d}_{o-a}\mathbf{d}_{o-b}^\top])}{\text{tr}(\mathbf{Q})} \quad (31)$$

237 gives an estimate of the hyperparameter. Since the right side of Equation 31 implicitly
 238 depends on r , the hyperparameter value is determined by fixed-point iteration. With this
 239 value of r , one can use ensemble Kalman inversion as previously described. It is neces-
 240 sary to re-evaluate Equation 31 with each iteration.

241 **4.3 Adaptive Inflation**

242 It is well known that the ensemble Kalman filter suffers from ensemble collapse,
 243 and strategies like covariance inflation and covariance localization have been employed
 244 to prevent this (Anderson & Anderson, 1999). A natural question is whether these strate-
 245 gies could be used in parameter estimation. In fact, the hyperparameter r can be inter-
 246 preted as a kind of covariance inflation factor. This can be shown by the substitution
 247 $\mathbf{R} = r^2\mathbf{Q}$ into Equations 4 and 5, followed by algebraic rearrangement:

$$\bar{\mathbf{x}}_A = \bar{\mathbf{x}}_B + (r^{-2}\Sigma_B)\mathbf{H}^\top (\mathbf{H}(r^{-2}\Sigma_B)\mathbf{H}^\top + \mathbf{Q})^{-1} (\mathbf{o} - \mathbf{H}\bar{\mathbf{x}}_B) \quad (32)$$

248 and

$$r^{-2}\boldsymbol{\Sigma}_A = (r^{-2}\boldsymbol{\Sigma}_B) - (r^{-2}\boldsymbol{\Sigma}_B)\mathbf{H}^\top (\mathbf{H}(r^{-2}\boldsymbol{\Sigma}_B)\mathbf{H}^\top + \mathbf{Q})^{-1} \mathbf{H}(r^{-2}\boldsymbol{\Sigma}_B). \quad (33)$$

249 Equations 32 and 33 show that introducing the free hyperparameter r^2 is equivalent to
 250 inflating the background covariance matrix $\boldsymbol{\Sigma}_B$ by r^{-2} , then deflating the analysis co-
 251 variance matrix $\boldsymbol{\Sigma}_A$. This suggests that an *adaptive covariance inflation* algorithms can
 252 help solve the free hyperparameter problem, as those algorithms provide a way to esti-
 253 mate that hyperparameter.

254 One of the first adaptive inflation algorithms was Anderson (2007), which was im-
 255 proved by Anderson (2009). Later, El Gharamti (2018) modified Anderson (2009) to use
 256 inverse gamma distributions instead of Gaussian distributions. Specifically, we consider
 257 the El Gharamti (2018) algorithm. The e subscript indicates the ensemble member and
 258 the s subscript indicates the state variable. This algorithm uses a sequential filter and
 259 the following inflation rule:

$$x_{s,e}^{\text{inf.}} = \sqrt{\lambda_s}(x_{s,e} - \bar{x}_s) + \bar{x}_s \quad (34)$$

260 Note that each state variable has its own inflation factor, λ_s . The algorithm uses Bayes'
 261 rule with inverse gamma priors to update these inflation factors. The inverse gamma dis-
 262 tribution is defined by

$$p(\lambda) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{-\alpha-1} \exp(-\beta/\lambda), \quad (35)$$

263 where $\alpha > 0$ is called the shape parameter and $\beta > 0$ is called the scale parameter.
 264 Since these parameters are estimated automatically within the algorithm, they are not
 265 free hyperparameters.

266 To maintain compatibility with code written for the Anderson (2009) algorithm,
 267 the El Gharamti (2018) algorithm uses Gaussian parameters and translates them to and
 268 from inverse gamma parameters when updating the distribution. The inverse gamma dis-
 269 tribution is advantageous because, unlike the Gaussian distribution, it is supported only
 270 on the positive real numbers. This is important because inflation factors must be pos-
 271 itive.

272 The user must specify an initial guess (prior) for the inflation factor variances. This
 273 implies that the algorithm *does* have a hyperparameter, but the algorithm can update
 274 its value adaptively. However, in practice the variance update is often disabled, such that
 275 only the mean update is retained. The inflation factor means are initialized at unity (i.e.
 276 no inflation) in all applications we have seen, so we do not consider them to constitute
 277 free hyperparameters.

278 4.4 Annealed Regularization

279 Iglesias and Yang (2021) proposed another algorithm for estimating the hyperpa-
 280 rameter. Using our notation, the hyperparameter is estimated at each iteration n by

$$\lambda_n^{-1} = \min \left(\max \left(\frac{E}{2\langle \Phi \rangle_n}, \sqrt{\frac{E}{2\langle \Phi, \Phi \rangle_n}} \right), 1 - t_n \right) \quad (36)$$

281 where

$$t_n = \begin{cases} \sum_{j=0}^{n-1} \lambda_j^{-1} & n \geq 1, \\ 0 & n = 0 \end{cases} \quad (37)$$

$$\Phi_n = \left\{ \frac{1}{2} \left\| \mathbf{Q}^{-1/2} (\mathbf{o} - \mathbf{H} \mathbf{x}_{n,e}) \right\|^2 \right\}_{e=1}^E. \quad (38)$$

283 The constraint involving t_n causes the value of λ_n^{-1} to tend toward zero.

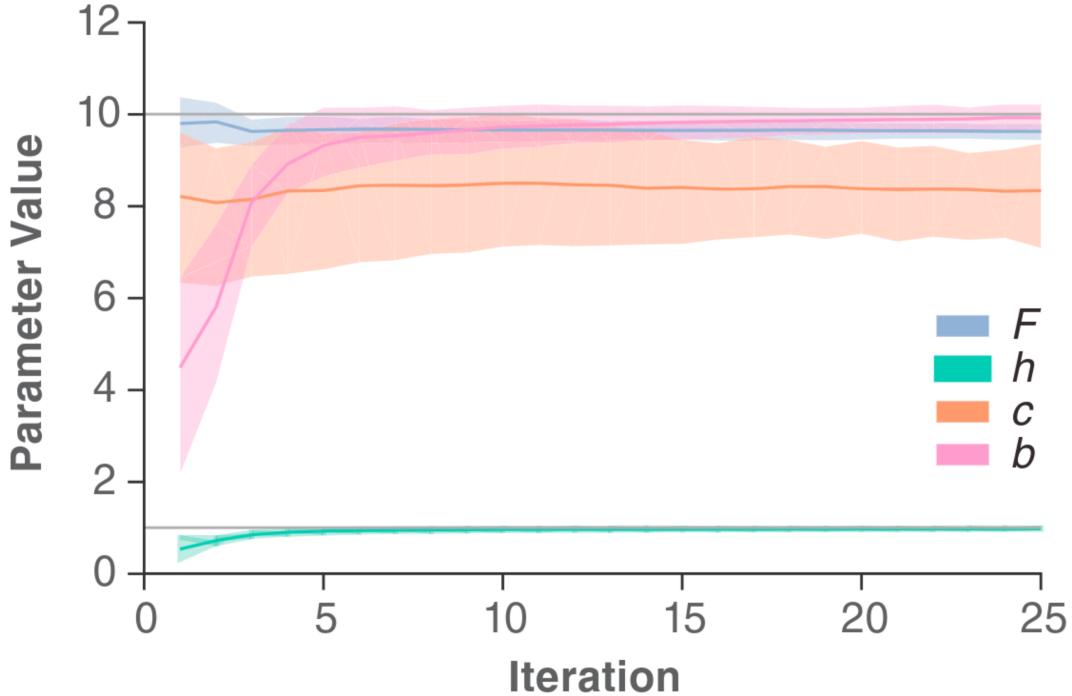


Figure 1. Parameter estimation in Lorenz 96 with EnKI (Schneider et al., 2017).

284 5 Experiments with Lorenz 96

285 We now illustrate the above methods using a simple dynamical system. The Lorenz
 286 96 model is an idealized dynamical system with governing equations

$$287 \frac{dX_k}{dt} = -X_{k-1}(X_{k-2} - X_{k+1}) - X_k + F - hc\bar{Y}_k, \quad (39)$$

$$288 \frac{1}{c} \frac{dY_{jk}}{dt} = -bY_{j+1,k}(Y_{j+2,k} - Y_{j-1,k}) - Y_{jk} + \frac{h}{J}X_k, \quad (40)$$

289 and

$$290 \bar{Y}_k = \frac{1}{J} \sum_{j=1}^J Y_{j,k}. \quad (41)$$

291 It features $K = 36$ slow variables X_k , and JK fast variables Y_{jk} ($J = 10$ fast vari-
 292 ables per slow variable), which form cyclic chains:

$$293 X_{k+K} = X_k \quad Y_{j,k+K} = Y_{jk} \quad Y_{j+J,k} = Y_{j,k+1}. \quad (42)$$

294 This dynamical system represents some important aspects of real ESMs, such as advec-
 295 tion, external forcing, dissipation, coupling, and chaos (Lorenz, 2006). The fast variables
 296 are broadly analogous to higher-resolution atmospheric states and the slow variables are
 297 analogous to lower-resolution oceanic states.

298 The model depends on four parameters: F , an external forcing; h , which controls
 299 the coupling strength; c , a relative damping time scale; and b , which modulates advec-
 297 tion in the fast dynamics.

298 Letting $\langle \dots \rangle$ denote simultaneous averaging over both time (long-term) and j , it
 299 follows from Equations 39 and 40 that

$$298 \langle X^2 \rangle = F \langle X \rangle - hc \langle X \bar{Y} \rangle \quad (43)$$

300 and

$$\langle \bar{Y}^2 \rangle = \frac{h}{J} \langle X \bar{Y} \rangle, \quad (44)$$

301 noting that individual fast (or slow) variables are statistically exchangeable (Lorenz &
 302 Emanuel, 1998). These relationships suggest that we can tune Lorenz 96 using the fol-
 303 lowing $5K = 180$ moments as targets, as Schneider et al. (2017) did:

$$\mathbf{m} = \begin{pmatrix} \langle X \rangle & \langle \bar{Y} \rangle & \langle X^2 \rangle & \langle X \bar{Y} \rangle & \langle \bar{Y}^2 \rangle \end{pmatrix}^\top. \quad (45)$$

304 In the subsections that follow, we compare the performance of different approaches
 305 using these statistical moments as targets.

306 5.1 Ensemble Kalman Inversion

307 Schneider et al. (2017) applied (non-adaptive) EnKI to the Lorenz 96 model. Specif-
 308 ically, they created a very long control integration ($T = 46416$) with $F = c = b = 10$
 309 and $h = 1$, then used EnKI to estimate the parameters of the control integration us-
 310 ing the moments in Equation 45 as (proxy) observations. Their initial ensemble, of size
 311 100, used normal priors for (F, h, b) with $\mu = (10, 0, 5)$, $\sigma^2 = (10, 1, 10)$; and a log-
 312 normal prior for c with $\mu = 2$, $\sigma^2 = 0.1$. They found that EnKI produces reasonable
 313 parameter estimates (Figure 1).

314 Figure 2 shows results from experiments with KalmRidge. The mean estimates are
 315 similar to those of Schneider et al. (2017), but our ensembles collapsed whereas theirs
 316 did not. However, their EnKI implementation added noise to the "observations", whereas
 317 our KalmRidge algorithm did not. Despite the similarity in the mean estimates, Kalm-
 318 Ridge did not require offline hyperparameter selection, unlike their EnKI.

319 Both implementations fail to adequately estimate c . To investigate this deficiency,
 320 we examined the sensitivity of the moments to parameter perturbations. Figure 3 shows
 321 the variations in X^2 and \bar{Y}^2 due to changes in one parameter while the other param-
 322 eters are fixed to their control values. The figure shows that variations in F , h , and b
 323 lead to relatively tight (albeit nonlinear) relationships, whereas variations in $\log(c)$ do
 324 not. In fact, none of the moments exhibit sensitivity to $\log(c)$ near the control value (not
 325 shown), suggesting an identifiability problem. It is likely that the insensitivity to per-
 326 turbations of $\log(c)$ explains the poor estimates of c .

327 5.2 Unregularized Kalman Filter

328 The results from the "basic statistics" approach are shown in Figure 4. Despite a
 329 great abundance of proxy observations (the same $T = 46416$ control integration as in
 330 the previous section), this method suffers from very rapid ensemble collapse and corre-
 331 spondingly gives poor estimates for some of the parameters.

332 5.3 Consistency Diagnostics

333 The results from the consistency diagnostic method are shown in Figure 5. This
 334 method is slightly less successful at estimating the F parameter than KalmRidge, but
 335 more importantly, ensemble collapse occurs much more quickly in the consistency diag-
 336 nomic method.

337 5.4 Adaptive Inflation

338 El Gharamti (2018) algorithm has previously been implemented in NCAR's Data
 339 Assimilation Research Testbed (DART) (Anderson et al., 2004). This is a Matlab im-
 340 plementation, but our work has been in Python and R, so we translated the Matlab code

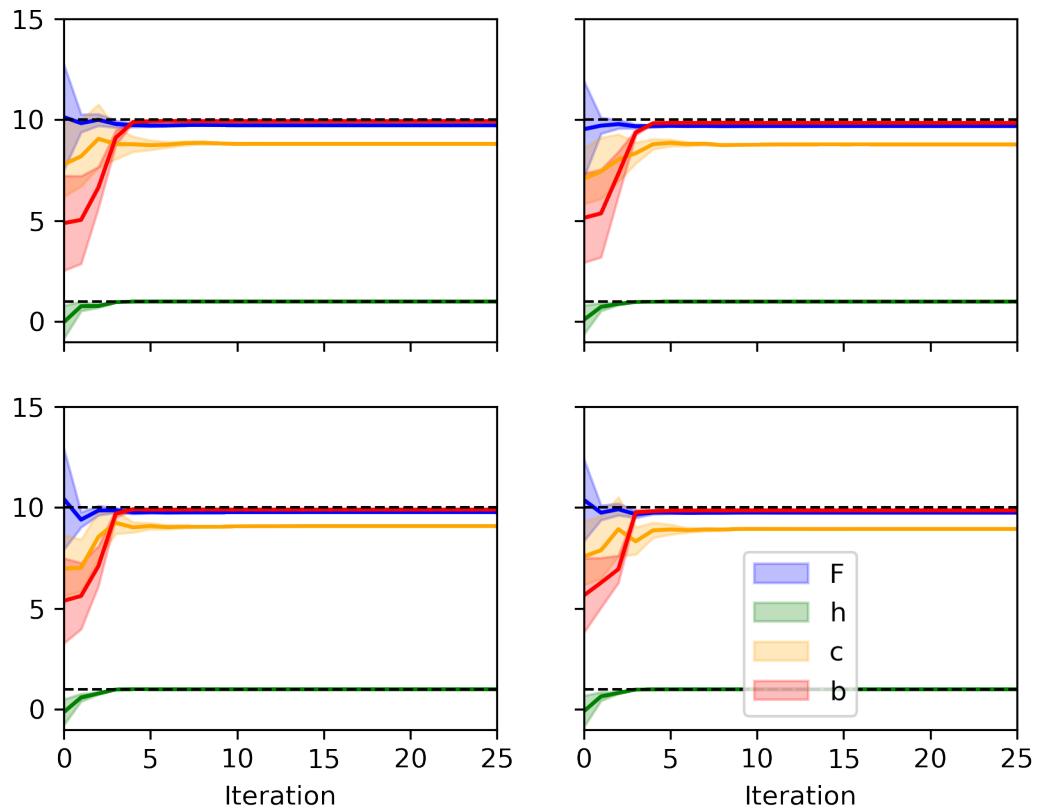


Figure 2. Lorenz 96 parameter estimates (means and interquartile ranges) from KalmRidge. The true parameter values are depicted with dashed lines. Note that some of the dashed lines overlap. Each subfigure is an independent run of the KalmRidge algorithm, each starting with a slightly different initial ensemble.

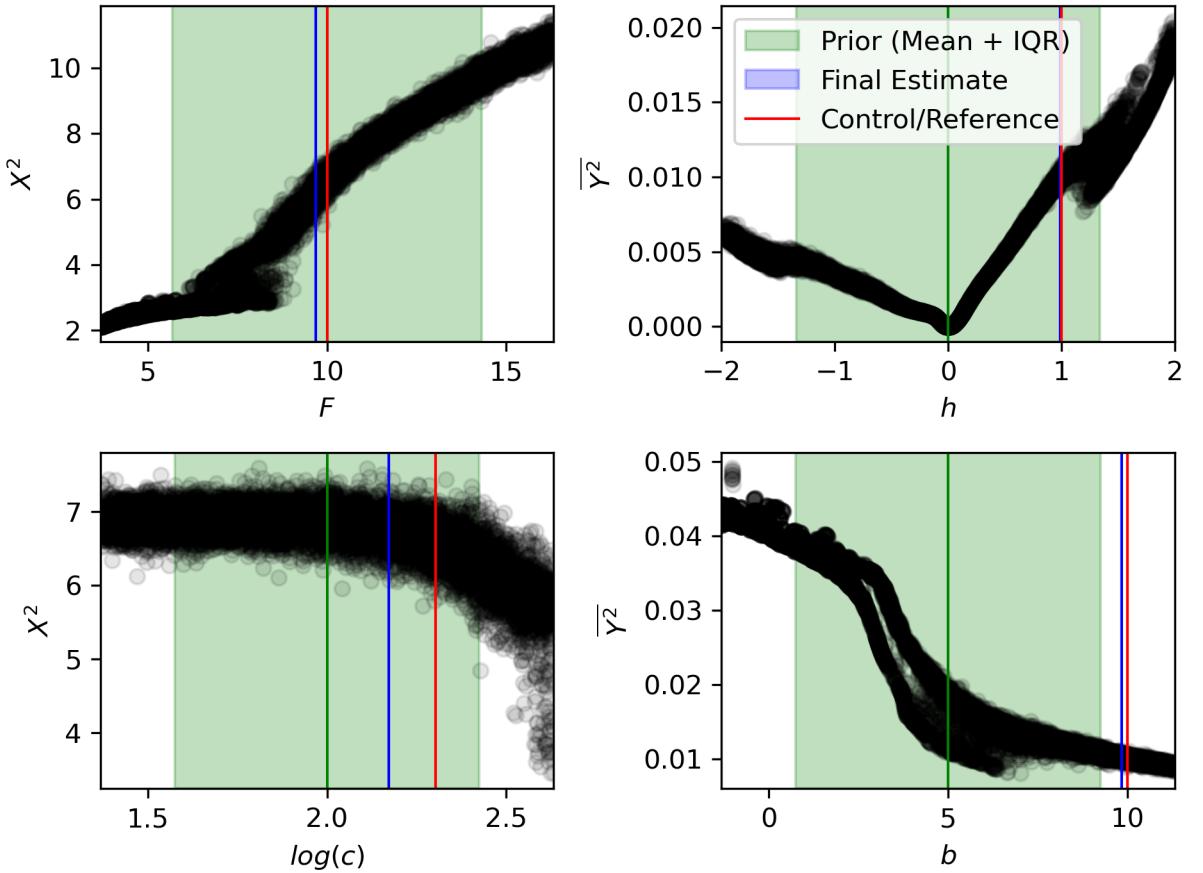


Figure 3. Single-parameter Lorenz 96 sensitivity experiments. In each plot, three parameters were fixed to their control values while the remaining parameter was varied. The vertical axis gives the spatiotemporal mean of a particular moment. Each black dot corresponds to a separate integration of Lorenz 96. The total number of Lorenz 96 integrations was 10,000.

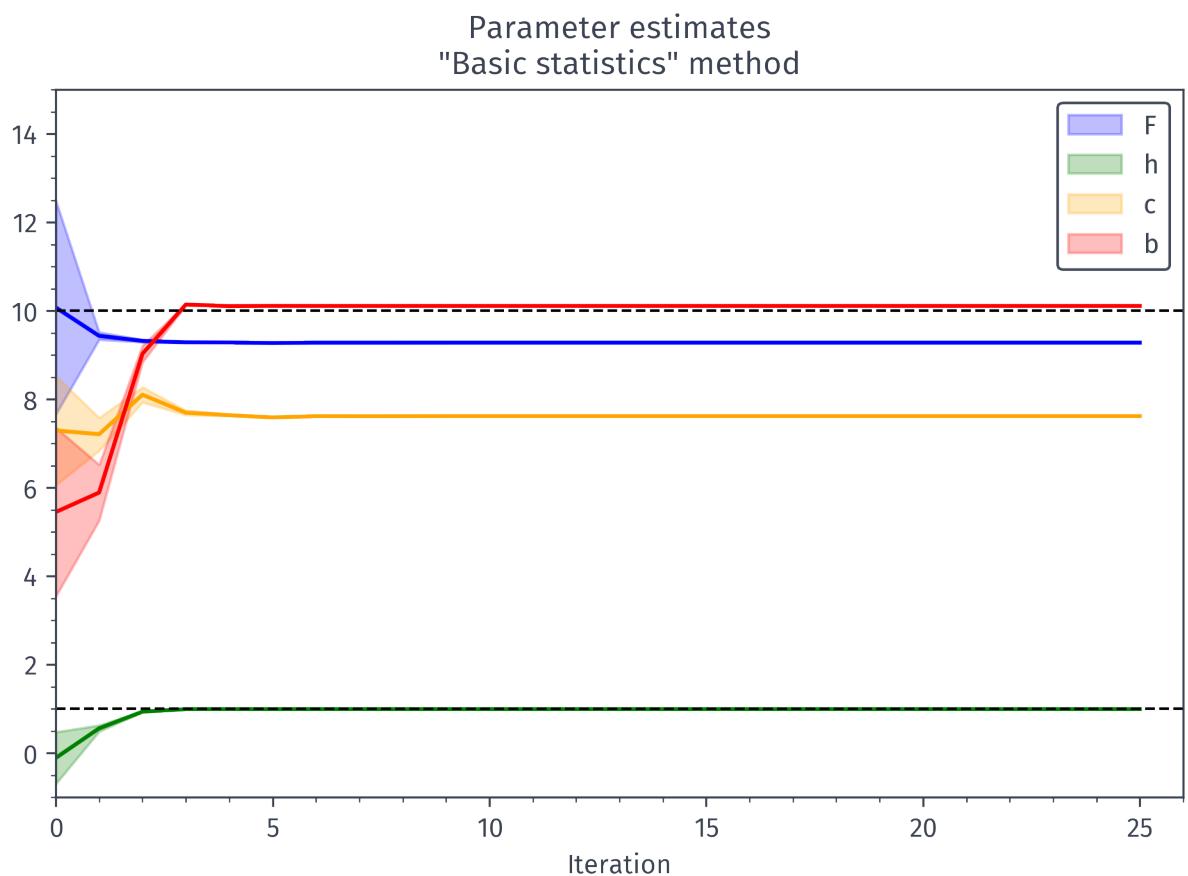


Figure 4. Lorenz 96 parameter estimates (means and interquartile ranges) from the “basic statistics” approach.

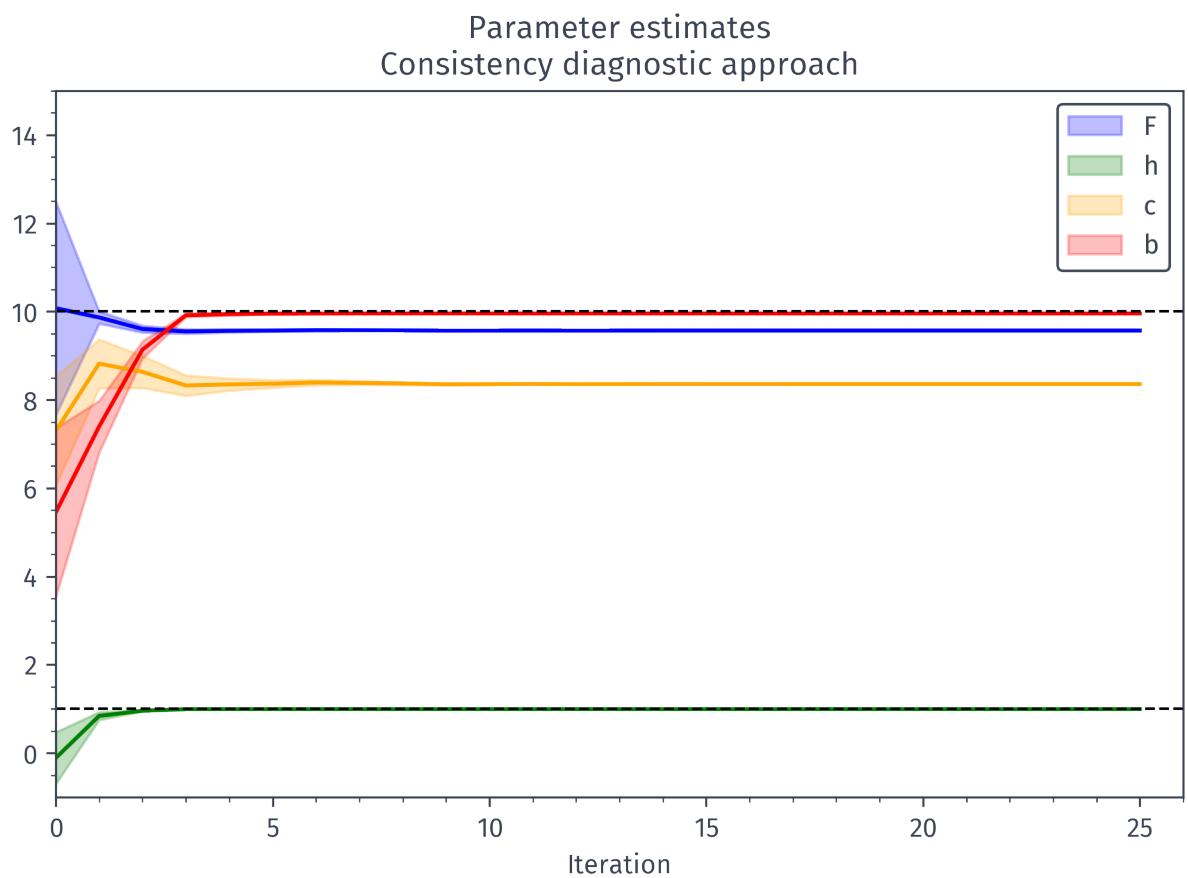


Figure 5. Lorenz 96 parameter estimates (means and interquartile ranges) from the consistency diagnostic approach.

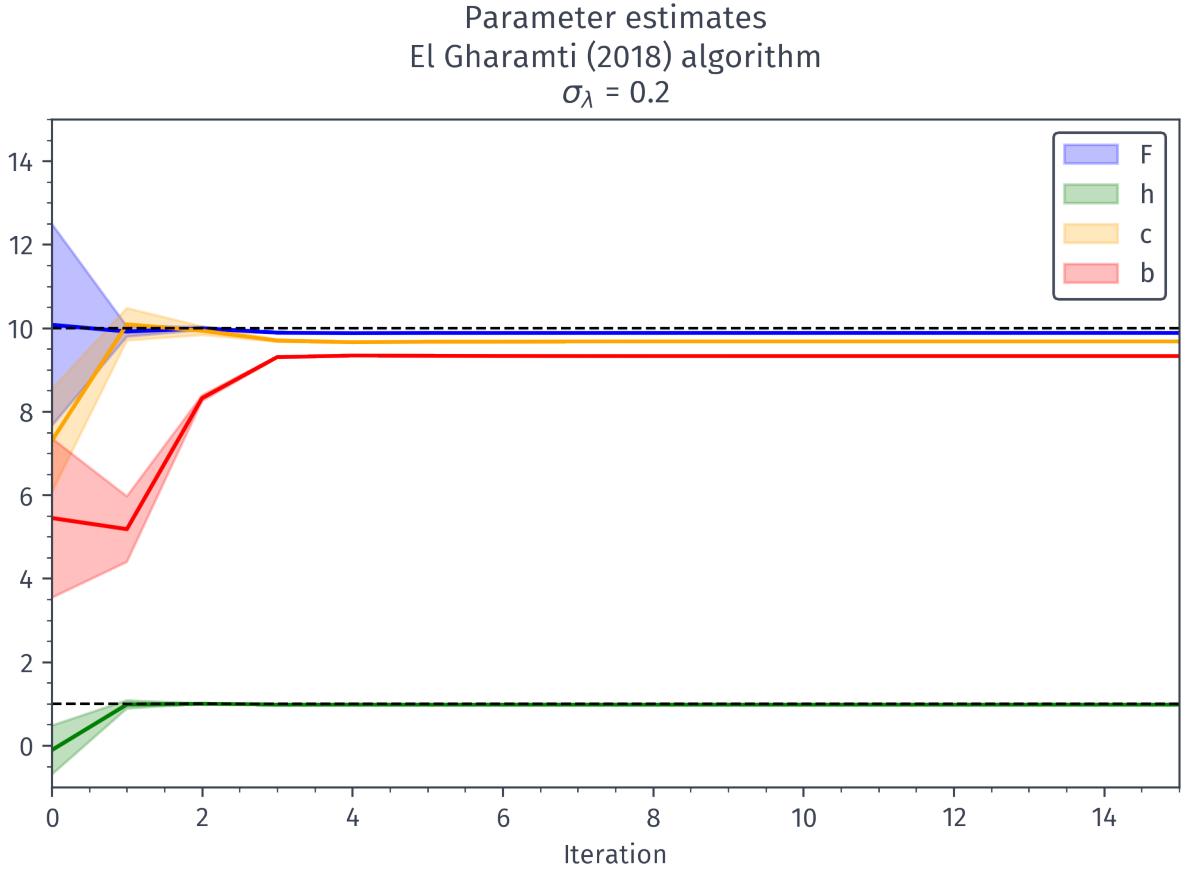


Figure 6. Successful parameter estimation with the El Gharamti (2018) algorithm.

341 to Python. Consistent with the Matlab implementation, the Python implementation dis-
342 ables the variance update, retaining only the mean update.

343 The results of applying our implementation of the El Gharamti (2018) algorithm
344 to the Lorenz 96 tuning problem are shown in Figure 6. The figure shows that the al-
345 gorithm works reasonably well for $\sigma_{\lambda_b} = 0.2$, which is much smaller than the values con-
346 sidered by the author and used in DART (typically around 0.6). However, increasing it
347 much beyond $\sigma_{\lambda_b} = 0.2$ causes immediate failure – the parameter variance becomes very
348 large, rapidly. The estimation problem is seen in the c parameter consistently, and this
349 parameter is difficult to estimate, as was shown previously in this section. Since this al-
350 gorithm offers no method for choosing σ_{λ_b} , and the estimates from the algorithm are sen-
351 sitive to the value of σ_{λ_b} , we consider σ_{λ_b} to be a free hyperparameter.

352 5.5 Annealed Regularization

353 Like our algorithm, the Iglesias and Yang (2021) algorithm does not have a free hy-
354 perparameter. However, as seen in Figure 7, their algorithm terminates before the pa-
355 rameter estimates converge. One might suggest continuing the iteration, but this is not
356 possible since the algorithm must stop when λ^{-1} reaches zero. The variations in the hy-
357 perparameter estimates with iteration for KalmRidge and adaptive regularization are
358 shown in Figure 8 and Figure 9, respectively. Note that the hyperparameter values cho-
359 sen by the adaptive regularization algorithm trend downward, whereas those chosen by

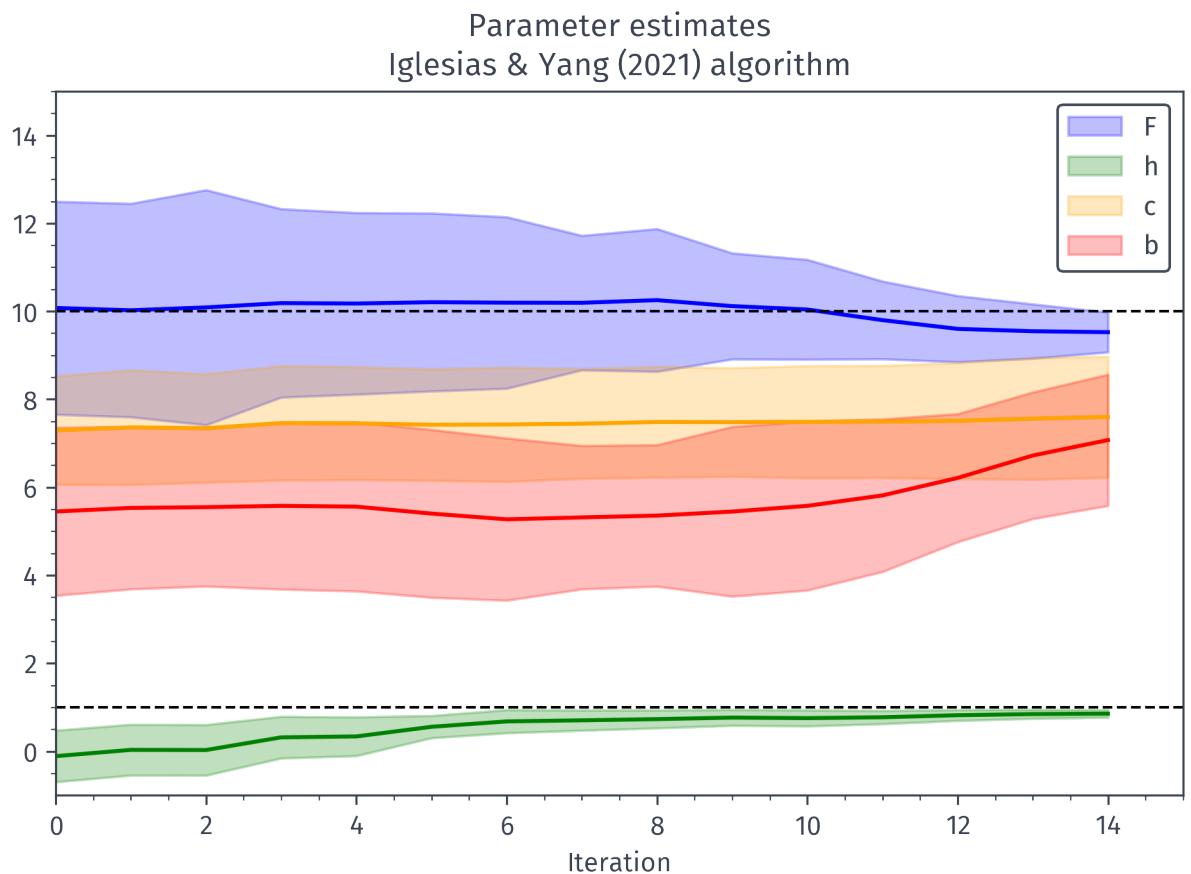


Figure 7. Lorenz 96 parameter estimates (means and interquartile ranges) using the Iglesias and Yang (2021) algorithm. The true parameter values are depicted with dashed lines.

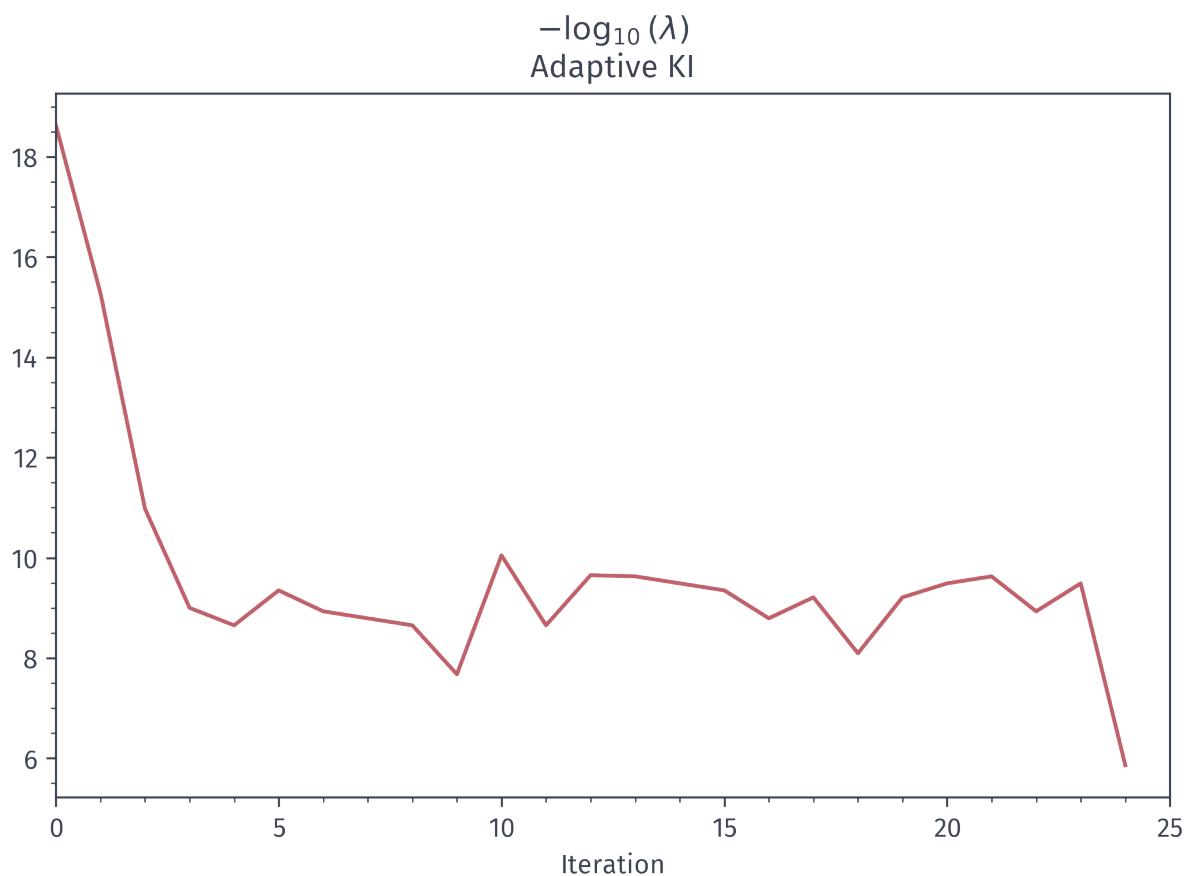


Figure 8. Evolution of $-\log_{10}(\lambda)$ in KalmRidge when applied to Lorenz 96.

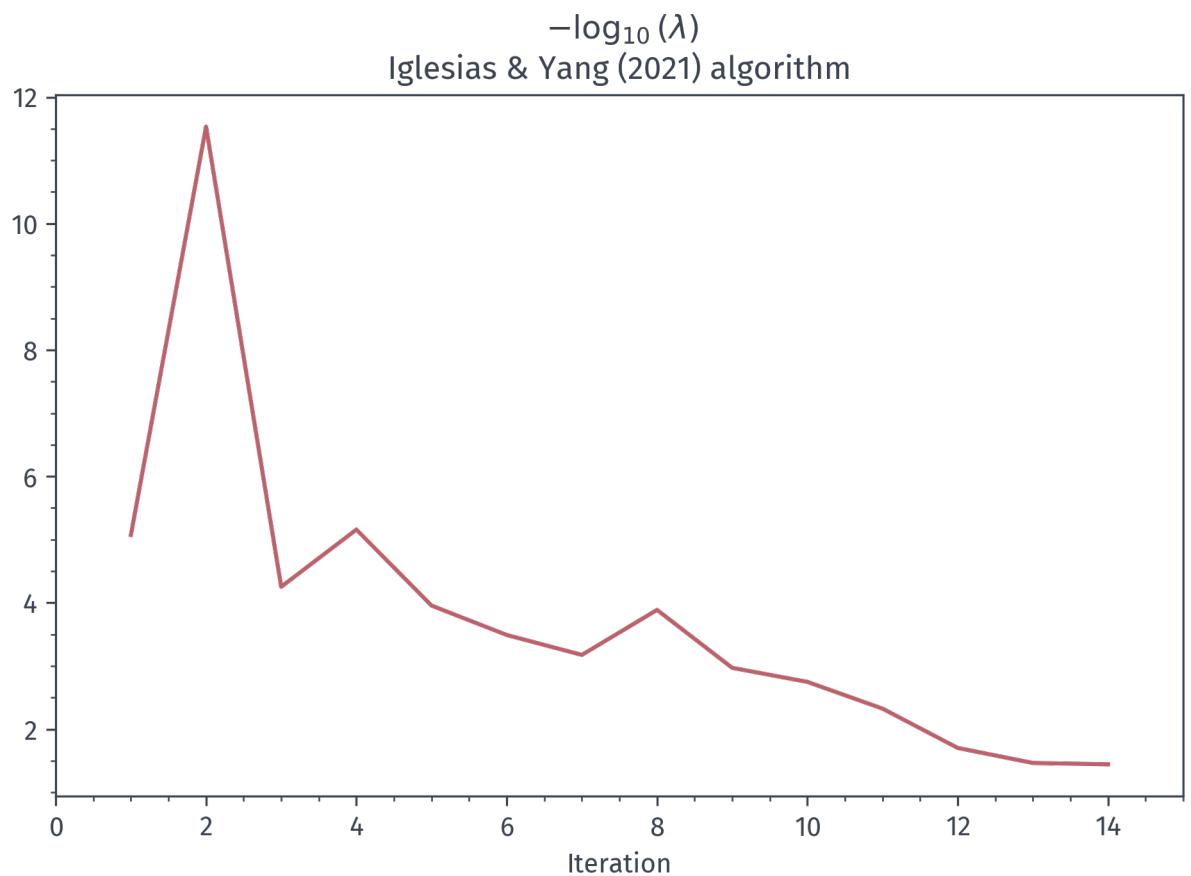


Figure 9. Evolution of $-\log_{10}(\lambda)$ in the Iglesias and Yang (2021) algorithm when applied to Lorenz 96.

360 KalmRidge do not. Unlike adaptive regularization, KalmRidge can be iterated until con-
361 vergence, since λ is not forced to evolve in any particular way across iterations.

362 6 Demonstrations With CESM2

363 Unlike the Lorenz 96 model, which is simple “toy model”, the Community Earth
364 System Model version 2 (CESM2) represents all major Earth system components and
365 features hundreds of tunable parameters (Danabasoglu et al., 2020). In this section, we
366 demonstrate applications of KalmRidge to CESM2.

367 Parameter selection is a major unsolved problem in ESM tuning. Here, our goal
368 is to demonstrate the usefulness of a tuning algorithm for a small number of selected pa-
369 rameters. Many ESM tuning studies focus on cloud parameters due to their important
370 role in quantifying uncertainty in climate projections. For the purpose of illustration,
371 we selected two parameters that appear frequently in previous studies on tuning and sen-
372 sitivity of CESM, following recommendations by NCAR scientists (see Acknowledgements).

373 The first selected parameter is called `clubb_gamma_coef` (henceforth γ). This pa-
374 rameter is part of the Cloud Layers Unified By Binormals (CLUBB) parameterization
375 and controls the skewness of vertical velocity (Golaz et al., 2002). CESM2 is highly sen-
376 sitive to this parameter and it is commonly tuned to achieve a TOA energy balance tar-
377 get (Danabasoglu et al., 2020; Guo et al., 2014; Woelfle et al., 2019). The second pa-
378 rameter is called `micro_mg_dcs` (henceforth D_{cs}). This parameter is part of the Morrison-
379 Gettelman cloud microphysics parameterization and determines the autoconversion size
380 from ice to snow (Gettelman & Morrison, 2015). Like γ , D_{cs} is known to be highly use-
381 ful for tuning radiation budgets (Zhao et al., 2013). Both γ and D_{cs} were investigated
382 in connection with the double-ITCZ bias (Woelfle et al., 2019). We performed sensitiv-
383 ity experiments and found that γ and D_{cs} are highly correlated with the spatiotempo-
384 ral means of sea-surface temperature (SST) and longwave cloud forcing, respectively.

385 As in the preceding section, we used KalmRidge to estimate the parameter values
386 of a given control integration. In particular, we used a 500-year two-degree fully coupled
387 preindustrial control, which is part of the Coupled Model Intercomparison Project ver-
388 sion 6 (CMIP6). This integration used the parameter values $\gamma = 0.28$ and $D_{cs} = 200 \times$
389 10^{-6} .

390 Our goal is to tune parameters with reasonable computational expense. For con-
391 creteness, assume that, for each iteration of KalmRidge, we can afford to integrate CESM2
392 for up to 40 years. Each simulated year costs approximately 1500 core-hours on the Cheyenne
393 supercomputer. If each ensemble member is run for Y years, then the ensemble size E
394 is chosen to satisfy $EY = 40$. We chose $Y = 2$, which implies $E = 20$. Hence, we
395 used 20-member two-year ensembles.

396 Our initial perturbed-parameter ensemble, given in Table 1, was a uniform random
397 sample with $\gamma \in [0.25, 0.35]$ and $D_{cs} \in [200 \times 10^{-6}, 800 \times 10^{-6}]$. The literature does
398 not clearly define suitable parameter ranges, so we used these broad ranges following rec-
399 ommendations by NCAR scientists. Each ensemble member was initialized at 0031-01-
400 01 using a restart from the control (for more information, see the “Open Research” sec-
401 tion).

402 Before we can apply KalmRidge, we must choose which statistical moments to tar-
403 get. Our choice was guided by a list of properties which model developers consider “de-
404 cisive” for tuning, as indicated by a survey of modeling centers (Hourdin et al., 2017).
405 We selected a subset of model output fields for consideration, as listed in Table 2. We
406 selected these particular fields because they are simple and rather uncontroversial – the
407 SST, for example, is an common “first choice”.

clubb_gamma_coef	micro_mg_dcs ($\times 10^6$)
0.32917	517
0.27894	310
0.29663	347
0.27104	277
0.29237	588
0.2818	449
0.30702	463
0.34786	679
0.28595	462
0.30232	256
0.28154	418
0.27828	272
0.26183	584
0.25641	615
0.31531	352
0.30680	755
0.29615	668
0.32782	722
0.27089	297
0.26318	630

Table 1. Initial perturbed-parameter ensemble used for tuning experiments.

408 For each field chosen, we computed anomalies by subtracting the annual cycle es-
 409 timated from the control integration. Then, we computed moments by taking the time
 410 means of the leading 100 spherical harmonic projections. Unlike individual grid-cell val-
 411 ues, spherical harmonics capture large-scale orthogonal patterns: the first is the global
 412 mean, the next few correspond to dipoles, and the patterns decrease in spatial scale there-
 413 after. Figure 10 depicts some of the leading spherical harmonics.

414 We conducted three experiments. In the "kitchen sink" experiment, we considered
 415 all fields listed in Table 2. Then, to investigate the necessity of these fields, we performed
 416 two further experiments: one using only SST, and one using both SST and longwave cloud
 417 forcing. Figure 11 depicts the results of these experiments. We see that the parameters
 418 are well-estimated in all three experiments, even after a single iteration. The estimates
 419 using SST only are slightly biased after two iterations. Introducing the longwave cloud
 420 forcing reduces this bias, whereas the other fields seem to be uninformative as their in-
 421 clusion produces only minor changes.

422 In the above experiments, all ensemble members were initialized from the same state.
 423 We also conducted preliminary experiments in which each ensemble member was initial-
 424 ized from states drawn independently from the control integration using a Halton sequence
 425 (Halton, 1960). The initial ensemble for these experiments is given in Table 3 and com-
 426 parisons of the results with the preceding experiments are shown in Figure 12. As seen
 427 in Figure 12, using a common initialization usually gave better estimates.

428 7 Discussion

429 In this article, we introduced a new algorithm, *KalmRidge*, and demonstrated ap-
 430 plications to Lorenz 96 and CESM2. We found that KalmRidge successfully reproduces
 431 results from Schneider et al. (2017) when applied to Lorenz 96.

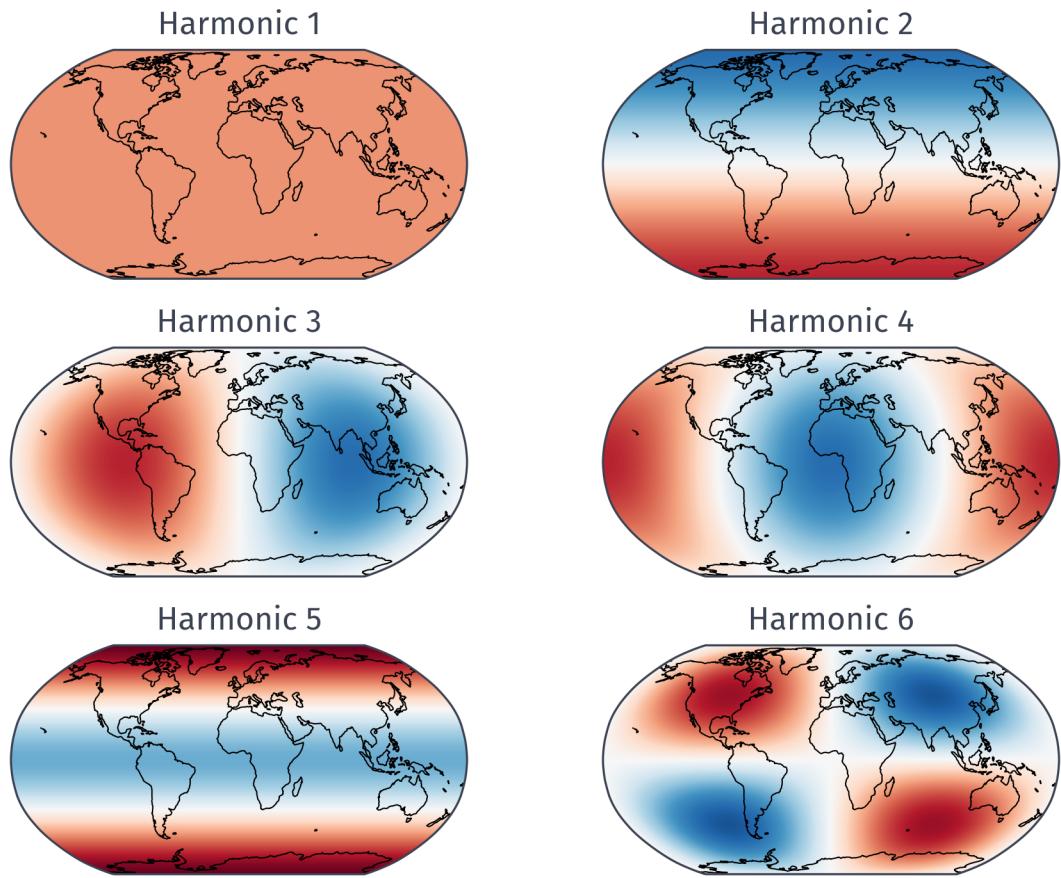


Figure 10. Leading spherical harmonic patterns.

Short name	Long name
FLNS	Net longwave flux at the surface
FLNT	Net longwave flux at the top of model
FSNS	Net solar flux at the surface
FSNT	Net solar flux at the top of model
ICEFRAC	Fraction of surface area covered by sea ice
LWCF	Longwave cloud forcing
PRECT	Total precipitation rate
SNOWHICE	Water equivalent snow depth (ice)
SNOWHLND	Water equivalent snow depth (land)
SST	Sea surface temperature
SWCF	Shortwave cloud forcing
TS	Surface temperature (radiative)
Table 2.	CESM2 fields used for tuning experiments.

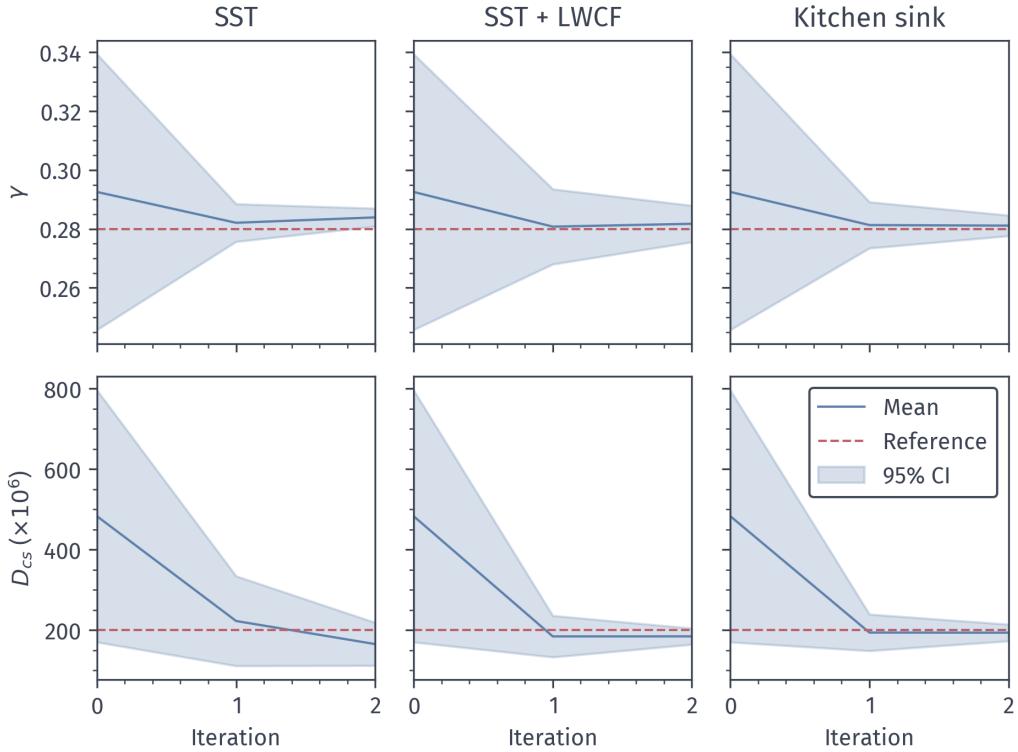


Figure 11. Results of CESM experiments, depicting parameter estimates with 95% confidence intervals before iterating (iteration zero) and in subsequent iterations.

clubb_gamma_coef	micro_mg_dcs ($\times 10^6$)	Initialization time
0.258838	626	0281-01-01
0.308838	359	0471-01-01
0.283838	559	0371-01-01
0.333838	759	0101-01-01
0.271338	315	0201-01-01
0.321338	515	0301-01-01
0.296338	715	0491-01-01
0.346338	248	0391-01-01
0.255713	448	0041-01-01
0.305713	648	0131-01-01
0.280713	381	0231-01-01
0.330713	581	0431-01-01
0.268213	781	0331-01-01
0.318213	278	0061-01-01
0.293213	478	0151-01-01
0.343213	678	0251-01-01
0.261963	211	0451-01-01
0.311963	411	0351-01-01
0.286963	611	0016-01-01
0.336963	344	0121-01-01

Table 3. Initial perturbed-parameter ensemble used for mixed-initialization experiments.

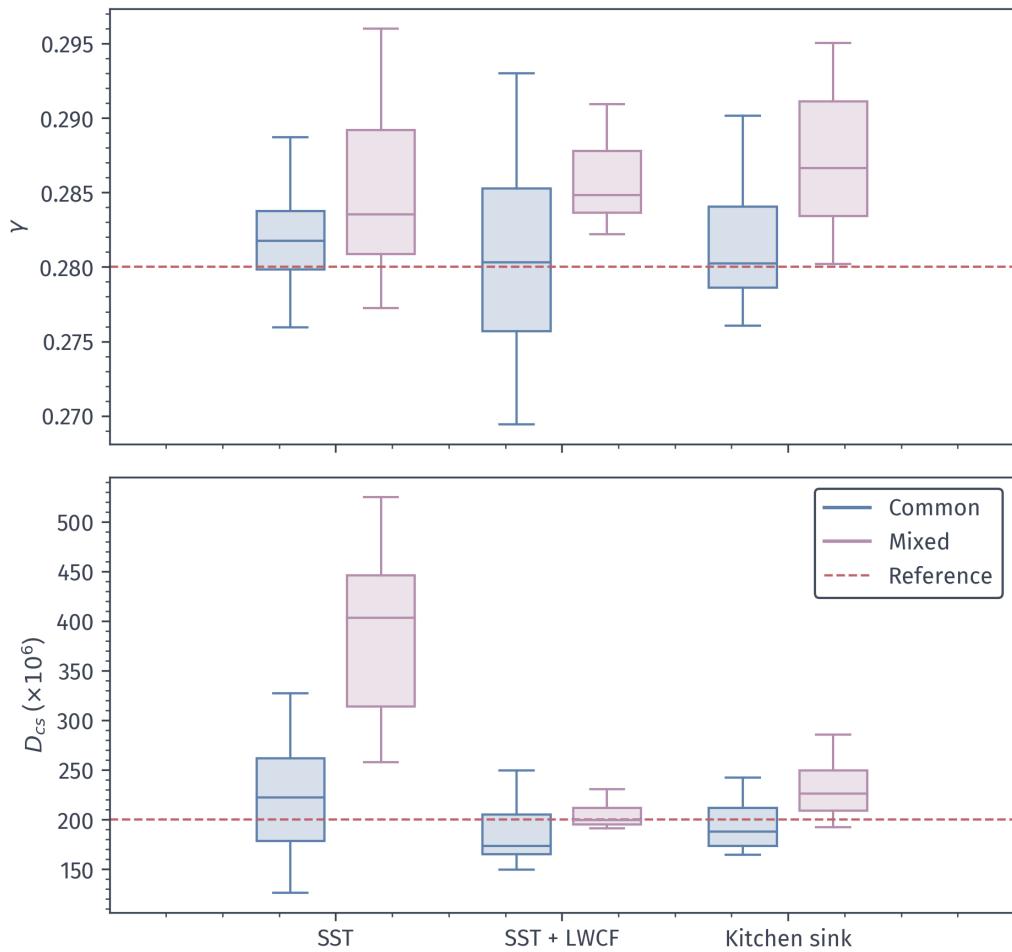


Figure 12. Comparison between common- and mixed-initialization experiments after one iteration.

432 However, unlike the form of EnKI presented in that article, KalmRidge does not
 433 have a free hyperparameter. This eliminates the need for computationally expensive of-
 434 fline hyperparameter selection. We also proposed using spherical harmonic projections,
 435 which systematically capture large-scale spatial features, as tuning targets. We have not
 436 explored the sensitivity of the algorithm to different basis vectors, but it is plausible that
 437 Laplacian eigenvectors are particularly advantageous to tuning ESMs, given that they
 438 systematically decompose variability based on spatial length scale. We note that the Lapla-
 439 cian eigenvectors used here may be computed for arbitrary domains, including discon-
 440 nected land masses or ocean area(DelSole & Tippett, 2015). Laplacian eigenvectors com-
 441 puted for regional domains could facilitate more localized tuning efforts.

442 KalmRidge, using spherical harmonic projections, demonstrated impressive per-
 443 formance in estimating the parameters of a CESM2 preindustrial control integration. De-
 444 spite its simplicity, this algorithm also demonstrated its robustness in the presence of
 445 irrelevant information – many of the moments, particularly in the "kitchen sink" exper-
 446 iment (e.g. the 57th spherical harmonic of the sea ice fraction), are irrelevant but do not
 447 detract from the performance of KalmRidge.

448 Our results (Figure 12) suggest that using a common initial condition for all en-
 449 semble members is better than using mixed initial conditions, but more experiments would
 450 be needed to assess the generality of this result.

451 One caveat of KalmRidge is that its uncertainty estimates are too small. This was
 452 also observed, to a greater extent, in the other tuning methods that we evaluated, ex-
 453 cept for those by Schneider et al. (2017) and Iglesias and Yang (2021). However, the Schneider
 454 et al. (2017) algorithm requires the user to specify the value of a free hyperparameter,
 455 but provides no procedure to estimate it. Without such a procedure, it is unclear how
 456 one could determine the hyperparameter value without already knowing the optimal pa-
 457 rameter values. The Iglesias and Yang (2021) algorithm does not have a free hyperpa-
 458 rameter, but gives poor point estimates for the parameters. Hence, our algorithm is unique
 459 in that it gives good point estimates for the parameters without the requisite tuning of
 460 a free hyperparameter.

461 The model experiments presented in this article are admittedly idealized, partic-
 462 ularly since we assume that all model error is due to misspecification of two parameters.
 463 For realistic applications, the algorithm must be generalized to account for the annual
 464 cycle and climate change. Nevertheless, KalmRidge performs well in this idealized set-
 465 ting, and any algorithm which cannot is unlikely to be useful when applied to more re-
 466 alistic problems.

467 8 Open Research

468 The CMIP6 preindustrial control integration used as the tuning control was ob-
 469 tained from NCAR Campaign Storage at [/glade/campaign/collections/cmip/CMIP6/timeseries-cmip6/](https://glade/campaign/collections/cmip/CMIP6/timeseries-cmip6/)
 470 (Eyring et al., 2016). These data are also available at https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.b.e21.B1850.f09_g17.CMIP6-piControl.001.atm.proc.monthly_ave.html and are licensed under the Creative Commons Attribution-ShareAlike
 471 4.0 International License.

472 The latest version of the KalmRidge software is available at <https://github.com/nlydeen/adaptive-ki/> (Lydeen, 2022). The Community Earth System Model (CESM)
 473 version 2.1.1 is available at (Danabasoglu et al., 2019) and is developed at <https://github.com/ESCOMP/cesm/>. We used Conda version 4.14.0 for package management, available
 474 under a BSD 3-Clause License at <https://docs.conda.io/en/latest/miniconda.html>
 475 and developed at <https://github.com/conda/conda/>. Python and R codes are inter-
 476 faced with RPy2. Data analysis was conducted with Numpy 1.7.1 (Harris et al., 2020),
 477 available under a BSD 3-Clause License at <https://numpy.org/install/> and devel-
 478 479 480 481

482 oped at <https://github.com/numpy/numpy/>; XArray 0.20.1 (Hoyer & Hamman, 2017),
 483 available under an Apache 2.0 License at (Hoyer et al., 2021) and developed at <https://github.com/pydata/xarray>; and Pandas 1.3.5, availabe under a BSD 3-Clause License
 484 at (Reback et al., 2021) and developed at [https://github.com/pandas-dev/pandas/](https://github.com/pandas-dev/pandas).
 485 Plots were created with Matplotlib 3.5.2 (Hunter, 2007), available under the Matplotlib
 486 License at (Caswell et al., 2022) and developed at [https://github.com/matplotlib/matplotlib/](https://github.com/matplotlib/matplotlib).
 487

489 Acknowledgements

490 This research was primarily supported by the National Science Foundation (OAC-
 491 1934529). We also acknowledge high-performance computing support from Cheyenne (Computational
 492 and Information Systems Laboratory (CISL), 2017). Finally, we acknowledge Andrew
 493 Gettelman and Cécile Hannay for their guidance in selecting CESM2 parameters and
 494 plausible ranges.

495 References

- 496 Anderson, J. L. (2007, January). An adaptive covariance inflation error correction
 497 algorithm for ensemble filters. *Tellus A: Dynamic Meteorology and Oceanogra-*
 498 *phy*, 59(2), 210. doi: 10.1111/j.1600-0870.2006.00216.x
- 499 Anderson, J. L. (2009, January). Spatially and temporally varying adaptive covari-
 500 ance inflation for ensemble filters. *Tellus A*, 61(1), 72–83. doi: 10.1111/j.1600
 501 -0870.2008.00361.x
- 502 Anderson, J. L., & Anderson, S. L. (1999, December). A Monte Carlo imple-
 503 mentation of the nonlinear filtering problem to produce ensemble assimila-
 504 tions and forecasts. *Monthly Weather Review*, 127(12), 2741–2758. doi:
 505 10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2
- 506 Anderson, J. L., Hoar, T., Raeder, K., & Collins, N. (2004). *Data assimilation re-*
 507 *search testbed (DART)*. UCAR/NCAR - Computational and Information Sys-
 508 tems Laboratory (CISL). Retrieved from <https://dart.ucar.edu/> doi: 10
 509 .5065/D6WQ0202
- 510 Annan, J. D., Lunt, D. J., Hargreaves, J. C., & Valdes, P. J. (2005, Febru-
 511 ary). Parameter estimation in an atmospheric GCM using the ensemble
 512 Kalman filter. *Nonlinear Processes in Geophysics*, 12(3), 363–371. doi:
 513 10.5194/npg-12-363-2005
- 514 Bishop, C. H., & Hodyss, D. (2009, January). Ensemble covariances adaptively lo-
 515 calized with ECO-RAP. part 1: tests on simple error models. *Tellus A*, 61(1),
 516 84–96. doi: 10.1111/j.1600-0870.2008.00371.x
- 517 Carrera, J., & Neuman, S. P. (1986, February). Estimation of aquifer parameters
 518 under transient and steady state conditions: 1. maximum likelihood method
 519 incorporating prior information. *Water Resources Research*, 22(2), 199–210.
 520 doi: 10.1029/wr022i002p00199
- 521 Caswell, T. A., Lee, A., Droettboom, M., De Andrade, E. S., Hoffmann, T., Kly-
 522 mak, J., ... Kniazev, N. (2022). *matplotlib/matplotlib: Rel: v3.5.3* [soft-
 523 ware]. Zenodo. Retrieved from <https://zenodo.org/record/6982547> doi:
 524 10.5281/ZENODO.6982547
- 525 Computational and Information Systems Laboratory (CISL). (2017). *Cheyenne:*
 526 *SGI ICE XA cluster*. UCAR/NCAR. Retrieved from <https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne> doi:
 527 10.5065/d6rx99hx
- 528 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
 529 Edwards, J., ... Strand, W. G. (2019, July 8). *CESM-release-cesm2.1.1* [soft-
 530 ware]. Zenodo. Retrieved from <https://zenodo.org/record/3895315> doi:
 531 <https://doi.org/10.5281/zenodo.3895315>

- 533 Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K.,
 534 Edwards, J., ... Strand, W. G. (2020, February). The Community Earth
 535 System Model version 2 (CESM2). *Journal of Advances in Modeling Earth
 536 Systems*, 12(2). doi: 10.1029/2019ms001916
- 537 DelSole, T., & Tippett, M. K. (2015, September). Laplacian eigenfunctions for cli-
 538 mate analysis. *Journal of Climate*, 28(18), 7420–7436. doi: 10.1175/jcli-d-15
 539 -0049.1
- 540 Desroziers, G., Berre, L., Chapnik, B., & Poli, P. (2005, October). Diagnosis of ob-
 541 servation, background and analysis-error statistics in observation space. *Quar-
 542 terly Journal of the Royal Meteorological Society*, 131(613), 3385–3396. doi: 10
 543 .1256/qj.05.108
- 544 El Gharamti, M. (2018, February). Enhanced adaptive inflation algorithm for en-
 545 semble filters. *Monthly Weather Review*, 146(2), 623–640. doi: 10.1175/mwr-d
 546 -17-0187.1
- 547 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &
 548 Taylor, K. E. (2016, May). Overview of the Coupled Model Intercomparison
 549 Project phase 6 (CMIP6) experimental design and organization. *Geoscientific
 550 Model Development*, 9(5), 1937–1958. doi: 10.5194/gmd-9-1937-2016
- 551 Friedman, J., Hastie, T., & Tibshirani, R. (2010, February). Regularization paths
 552 for generalized linear models via coordinate descent. *Journal of Statistical Soft-
 553 ware*, 33(1). doi: 10.18637/jss.v033.i01
- 554 Gettelman, A., & Morrison, H. (2015, February). Advanced two-moment
 555 bulk microphysics for global models. part I: Off-line tests and compar-
 556 ison with other schemes. *Journal of Climate*, 28(3), 1268–1287. doi:
 557 10.1175/jcli-d-14-00102.1
- 558 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002, December). A PDF-
 559 based model for boundary layer clouds. part I: Method and model de-
 560 scription. *Journal of the Atmospheric Sciences*, 59(24), 3540–3551. doi:
 561 10.1175/1520-0469(2002)059<3540:apbmfb>2.0.co;2
- 562 Guo, Z., Wang, M., Qian, Y., Larson, V. E., Ghan, S., Ovchinnikov, M., ... Zhou,
 563 T. (2014, August). A sensitivity analysis of cloud properties to CLUBB
 564 parameters in the single-column Community Atmosphere Model (SCAM5).
 565 *Journal of Advances in Modeling Earth Systems*, 6(3), 829–858. doi:
 566 10.1002/2014ms000315
- 567 Halton, J. H. (1960, December). On the efficiency of certain quasi-random sequences
 568 of points in evaluating multi-dimensional integrals. *Numerische Mathematik*,
 569 2(1), 84–90. doi: 10.1007/bf01386213
- 570 Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
 571 napeau, D., ... Oliphant, T. E. (2020, Sep 01). Array programming with
 572 NumPy. *Nature*, 585(7825), 357-362. Retrieved from <https://doi.org/10.1038/s41586-020-2649-2> doi: 10.1038/s41586-020-2649-2
- 573 Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The elements of statistical learn-
 574 ing*. Springer New York.
- 575 Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., ...
 576 Williamson, D. (2017, March). The art and science of climate model tun-
 577 ing. *Bulletin of the American Meteorological Society*, 98(3), 589–602. doi:
 578 10.1175/bams-d-15-00135.1
- 579 Hoyer, S., & Hamman, J. (2017, April). xarray: N-d labeled arrays and datasets
 580 in python. *Journal of Open Research Software*, 5(1), 10. Retrieved from
 581 <https://doi.org/10.5334/jors.148> doi: 10.5334/jors.148
- 582 Hoyer, S., Roos, M., Hamman, J., Keewis, Cherian, D., Fitzgerald, C., ... Wolfram,
 583 P. J. (2021). *pydata/xarray: v0.20.1* [software]. Zenodo. Retrieved from
 584 <https://zenodo.org/record/5648431> doi: 10.5281/ZENODO.5648431
- 585 Hu, X., Zhang, F., & Nielsen-Gammon, J. W. (2010, April). Ensemble-based
 586 simultaneous state and parameter estimation for treatment of mesoscale

- 588 model error: A real-data study. *Geophysical Research Letters*, 37(8). doi:
 589 10.1029/2010gl043017
- 590 Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. *Computing in Sci-
 591 ence & Engineering*, 9(3), 90–95. Retrieved from <https://doi.org/10.1109/mcse.2007.55>
 592 doi: 10.1109/mcse.2007.55
- 593 Iglesias, M. A., Law, K. J. H., & Stuart, A. M. (2013, March). Ensemble Kalman
 594 methods for inverse problems. *Inverse Problems*, 29(4), 045001. doi: 10.1088/
 595 0266-5611/29/4/045001
- 596 Iglesias, M. A., & Yang, Y. (2021, January). Adaptive regularisation for ensemble
 597 Kalman inversion. *Inverse Problems*, 37(2), 025008. doi: 10.1088/1361-6420/
 598 abd29b
- 599 Jackson, C., Sen, M. K., & Stoffa, P. L. (2004, July). An efficient stochastic
 600 Bayesian approach to optimal parameter and uncertainty estimation for
 601 climate model predictions. *Journal of Climate*, 17(14), 2828–2841. doi:
 602 10.1175/1520-0442(2004)017<2828:aesbat>2.0.co;2
- 603 Kalman, R. E. (1960, March). A new approach to linear filtering and pre-
 604 diction problems. *Journal of Basic Engineering*, 82(1), 35–45. doi:
 605 10.1115/1.3662552
- 606 Koyama, H., & Watanabe, M. (2010, August). Reducing forecast errors due to
 607 model imperfections using ensemble Kalman filtering. *Monthly Weather Re-
 608 view*, 138(8), 3316–3332. doi: 10.1175/2010mwr3067.1
- 609 Li, H., Kalnay, E., & Miyoshi, T. (2009, January). Simultaneous estimation of
 610 covariance inflation and observation errors within an ensemble Kalman filter.
 611 *Quarterly Journal of the Royal Meteorological Society*, 135(639), 523–533. doi:
 612 10.1002/qj.371
- 613 Lorenz, E. N. (2006, July). Predictability – a problem partly solved. In *Predictability
 614 of weather and climate* (pp. 40–58). Cambridge University Press. doi: 10.1017/
 615 cbo9780511617652.004
- 616 Lorenz, E. N., & Emanuel, K. A. (1998, February). Optimal sites for supplemen-
 617 tary weather observations: Simulation with a small model. *Journal of the At-
 618 mospheric Sciences*, 55(3), 399–414. doi: 10.1175/1520-0469(1998)055<0399:
 619 ofsfwo>2.0.co;2
- 620 Lydeen, N. (2022). *nlydeen/adaptive-ki: Initial public release* [software]. Zenodo. Re-
 621 trieved from <https://zenodo.org/record/7337913> doi: 10.5281/ZENODO
 622 .7337913
- 623 Reback, J., Jbrockmendel, McKinney, W., Van Den Bossche, J., Augspurger, T.,
 624 Cloud, P., ... Skipper Seabold (2021). *pandas-dev/pandas: Pandas 1.3.5* [soft-
 625 ware]. Zenodo. Retrieved from <https://zenodo.org/record/5774815> doi:
 626 10.5281/ZENODO.5774815
- 627 Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J.-C., Hannay, C.,
 628 ... Saha, S. (2017, September). Practice and philosophy of climate model tun-
 629 ing across six US modeling centers. *Geoscientific Model Development*, 10(9),
 630 3207–3223. doi: 10.5194/gmd-10-3207-2017
- 631 Schneider, T., Lan, S., Stuart, A., & Teixeira, J. (2017, December). Earth system
 632 modeling 2.0: A blueprint for models that learn from observations and tar-
 633 geted high-resolution simulations. *Geophysical Research Letters*, 44(24). doi:
 634 10.1002/2017gl076101
- 635 Severijns, C. A., & Hazeleger, W. (2005, September). Optimizing parameters in an
 636 atmospheric general circulation model. *Journal of Climate*, 18(17), 3527–3535.
 637 doi: 10.1175/jcli3430.1
- 638 Woelfle, M. D., Bretherton, C. S., Hannay, C., & Neale, R. (2019, July). Evolution
 639 of the double-ITCZ bias through CESM2 development. *Journal of Advances in
 640 Modeling Earth Systems*, 11(7), 1873–1893. doi: 10.1029/2019ms001647
- 641 Yang, X., & DelSole, T. (2009, January). Using the ensemble Kalman filter to es-
 642 timate multiplicative model parameters. *Tellus A: Dynamic Meteorology and*

- 643 *Oceanography*, 61(5), 601. doi: 10.1111/j.1600-0870.2009.00407.x
- 644 Zhang, T., Zhang, M., Lin, W., Lin, Y., Xue, W., Yu, H., ... Zheng, W. (2018,
645 December). Automatic tuning of the community atmospheric model (CAM5)
646 by using short-term hindcasts with an improved downhill simplex optimiza-
647 tion method. *Geoscientific Model Development*, 11(12), 5189–5201. doi:
648 10.5194/gmd-11-5189-2018
- 649 Zhao, C., Liu, X., Qian, Y., Yoon, J., Hou, Z., Lin, G., ... Bao, J. (2013, Novem-
650 ber). A sensitivity study of radiative fluxes at the top of atmosphere to cloud-
651 microphysics and aerosol parameters in the community atmosphere model
652 CAM5. *Atmospheric Chemistry and Physics*, 13(21), 10969–10987. doi:
653 10.5194/acp-13-10969-2013