Climate Model Tuning Without Hyperparameters

Nikki Lydeen', Timothy DelSole', Benjamin Cash'

1George Mason University, Fairfax, VA, USA

Key Points:

+ Earth system models (ESMs) have many tunable parameters that are difficult to
estimate and weakly constrained by theory.

« Kalman filter-based approaches are attractive options, but existing implementa-
tions require expensive offline hyperparameter selection.

* We propose a new Kalman filter algorithm that estimates model parameters and
its hyperparameter simultaneously.
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Abstract

This article introduces a new algorithm, KalmRidge, and demonstrates its ability to tune
an Earth system model (ESM) using idealized experiments. Unlike similar algorithms,
KalmRidge eliminates the need for offline hyperparameter selection, thereby substan-
tially reducing computational expense. This is done by rewriting the update equations
for the ensemble Kalman filter as an equivalent ridge regression problem, then apply-
ing standard cross-validation techniques to adaptively choose the regularization param-
eter. We propose that this algorithm, with time-mean spherical harmonic projections

as tuning targets, provides a promising, tractable approach for parameter estimation.

Plain Language Summary

Earth system models (ESMs) depend on parameters that are difficult to estimate.
Although these parameters are routinely estimated during model development, there is
no standard approach for parameter estimation, and existing algorithms are expensive
to apply. Contemporary algorithms have hyperparameters, i.e. parameters of the algo-
rithms themselves rather than of the model, which also must be estimated. Estimating
hyperparameters is very computationally expensive. This article introduces a new al-
gorithm which eliminates the need for hyperparameter estimation, and demonstrates its
application to a state-of-the-art ESM.

1 Introduction

Earth system models (ESMs) simulate atmospheric, oceanic, and terrestrial pro-
cesses and their interactions on a global scale. Some of the governing equations, partic-
ularly the equations of large-scale motion, are derived from well-understood physical prin-
ciples and may be discretized for numerical integration. In contrast, many important small-
scale processes, such as those associated with clouds, cannot be explicitly resolved at fea-
sible grid resolutions. Instead, the grid-scale aggregate effects of these processes are es-
timated using semi-empirical functions, called parameterizations, which depend on pa-
rameters that are weakly constrained by observations. Tuning is challenging because ESM
integrations are computationally expensive, and it requires running many ESM integra-
tions with different parameter values. Tuning is further complicated by interactions be-
tween processes, which may cause biases in parameter estimates due to compensating
errors.

Hourdin et al. (2017) and Schmidt et al. (2017) documented contemporary tuning
practices at several climate modeling centers. They found that different centers use dif-
ferent strategies and have different goals. In practice, these modeling centers use tradi-
tional, manual trial-and-error tuning, rather than automated tuning algorithms.

Estimating parameters in a dynamical model is a classic example of an inverse prob-
lem. An early geophysical application of this approach was introduced by Carrera and
Neuman (1986) in the context of groundwater flow models. For problems where distri-
butions are Gaussian, many inverse problems reduce to the Kalman filter. The Kalman
filter is one of the most extensively studied recursive state estimation algorithms. It gives
the best linear unbiased estimate (BLUE) under the assumptions that the forecast model
is linear and the prior and observational errors are normally distributed (Kalman, 1960).
Although the Kalman filter was developed originally as a method for estimating the state
of system, it can be used to estimate both state and model parameters simply by aug-
menting the state vector with a parameter vector, treating the augmented parameters
as unobserved state vectors. This methodology has been extensively applied in weather
data assimilation (Annan, Lunt, Hargreaves, and Valdes (2005), Yang and DelSole (2009),
Hu, Zhang, and Nielsen-Gammon (2010), and Koyama and Watanabe (2010)).
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When estimating the parameters of an ESM, the usual focus is on the statistical
moments on the model rather than the transient evolution. Various approaches have been
proposed to address this, ranging from stochastic PDF estimation techniques, which in-
clude algorithms like Metropolis-Hastings and multiple iterations of very fast simulated
annealing (Jackson et al., 2004), to methods that optimize explicit objective functions,
such as the downhill simplex algorithm (Severijns & Hazeleger, 2005; Zhang et al., 2018).
In this paper, we focus on Kalman filter-based methods. Within the context of climate
model tuning, these approaches are often referred to as Kalman inversion methods (Iglesias
et al., 2013; Schneider et al., 2017).

Many Kalman filter-based methods for tuning models incorporate at least one free
hyperparameter that must be manually specified or estimated. For example, the ensem-
ble Kalman filter often exhibits ensemble collapse, which is typically addressed through
techniques like covariance inflation and localization— both requiring the tuning of hyper-
parameters. A hyperparameter is a parameter of the algorithm itself, rather than of the
model being tuned. Free hyperparameters require user input for specification, unlike those
that are hard-coded or adaptively estimated by the algorithm. Methods for online es-
timation of such hyperparameters, like the adaptive inflation algorithm (Anderson (2007))
and the adaptive localization algorithm (Bishop and Hodyss (2009)), have been devel-
oped. However, these too involve secondary hyperparameters. Unfortunately, there is
often limited guidance on setting these values for applications far removed from the al-
gorithm’s initial use, requiring multiple algorithm runs to determine optimal settings,
thereby increasing the practical cost of model tuning.

The purpose of this paper is to introduce an algorithm devoid of free hyperparam-
eters. In the context of an ensemble Kalman filter, free hyperparameters typically arise
either through covariance inflation or through observation error covariances. Our basic
idea is to re-formulate the ensemble Kalman filter as an equivalent ridge regression prob-
lem, where the ridge parameter is identified with the hyperparameter. Then standard
cross-validation techniques are used to select the hyperparameter adaptively. This ap-
proach estimates the hyperparameter separately and independently at each iteration of
the filter, eliminating the need for presetting an initial value or allowing for a period of
adaptation. Consequently, the algorithm provides immediate estimates right from the
first iteration, continuing reliably in subsequent iterations.

In the next section, we review Kalman inversion and the associated ensemble ver-
sion. Our proposed algorithm is then discussed in detail in Section 3. To place this al-
gorithm into context, we compare it to various alternatives discussed in Section 4. One
such alternative is an unregularized version that applies the Kalman filter without hy-
perparameters. In this scenario, ensemble methods are used to derive approximate co-
variances for the prior, and the observation error covariance matrix is calculated by us-
ing the sample covariance matrix from a long dataset. Another alternative involves us-
ing consistency diagnostics to estimate hyperparameters. For instance, Desroziers, Berre,
Chapnik, and Poli (2005) show that the covariances of the innovations satisfy certain con-
sistency constraints, a fact that has been used subsequently to develop online estima-
tion algorithms of hyperparameters (Li et al., 2009). Another is to transform the prob-
lem of regularizing the observation error covariance into a problem of regularizing the
prior covariance matrix, and then apply algorithms designed for covariance inflation, like
those by Anderson (2007) and further refined by El Gharamti (2018). Additionally, we
consider an algorithm proposed by Iglesias and Yang (2021) that adaptively minimizes
discrepancies from observations and includes a criterion for early stopping in hyperpa-
rameter estimation. The performance of these algorithms is evaluated on both the Lorenz
96 model as a toy example and an Earth System Model in Sections 5 and 6, respectively.
The paper concludes with a summary and discussion of our findings.
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2 Kalman Inversion

The Kalman filter estimates the state « from two pieces of information: imperfect
observations o of x, and a prior distribution of . The state and observations are assumed
to be related according to

o=Hz+e, (1)

where € is a random vector sampled from a multivariate normal distribution with zero
mean and covariance matrix R, which we denote as

e ~N(0,R). (2)

The prior distribution is M (Zp, X ). Then, the Kalman filter updates & according to
Bayes’ theorem, yielding the normal distribution

T A N./\/‘(ffhz,q), (3)
where )
A ZEB—FEBHT (HZBHT+R)7 (O—HEB), (4)
and )
S4=3p-SpH' (HESpH' +R) H3Yjp. (5)

Equations (4) and (5) are known as the Kalman filter update equations.

Following Schneider et al. (2017), we estimate parameters 8 € RF*! using sta-
tistical moments m € R5*! computed from model integrations. Accordingly, the aug-

mented state vector is
x = (g) e RISTPIX1, (6)

Using statistical moments or other quantities instead of instantaneous states to estimate
parameters is often called Kalman inversion (Iglesias et al., 2013). Since only the mo-
ments contained in « are observable, Hx = m, hence

H = (Isxs Osxp). (7)

In practice, we estimate the prior distribution from a finite ensemble. If we have
an ensemble of size F with members x1,..., g, then

Sp = FpFy (8)
gives an unbiased estimate of 3 g, where

E
1 A A N 1

Fpn= — TR .- -z d = :*E y 9

B o1 (581 B TE fBB) and g E 1:1% 9)

Substituting 35 for £ in the Kalman filter update equations is the starting point for
the ensemble Kalman filter (EnKF) update equations. Like the KF, the EnKF is an it-
erative algorithm; the updated ensemble becomes the initial ensemble at the next iter-
ation, and new ESM integrations are computed using the new parameter estimates.

Although the above Kalman filter estimates both the statistical moments and the
parameters, only the parameter estimates are retained. Thus, at the next iteration, the
initial ensemble utilizes only the ensemble of parameter estimates from the previous it-
eration, whereas the moments are discarded since the dynamical model recomputes them
at the next iteration. For chaotic models, the state used for the initial condition at the
next iteration is arbitrary since, ideally, the model is run long enough to yield moments
that are independent of the initial state.
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3 Derivation of KalmRidge

Applying the update equations requires specifying the noise covariance matrix R.
In many applications, assumptions about the structure of R can reduce this problem to
the selection of a small number of parameters (henceforth ”hyperparameters”, to pre-
vent confusion with ESM parameters). Schneider et al. (2017) selected R by multiply-
ing a diagonal matrix of climatological variances (henceforth @) by the square of a hy-
perparameter 7:
R=12Q (10)

They found that their parameter estimates depend on r, but they did not propose a strat-
egy to select its value. Instead, they re-executed their algorithm several times, with dif-
ferent values of r for comparison. This process substantially increases the computational
expense, and it is unclear how one would choose the best value of r without prior knowl-
edge of the true parameter values.

We now show that the Kalman filter update equations are equivalent to the solu-
tion of a ridge regression problem, with r? serving as the ridge parameter \. This equiv-
alence naturally suggests that A can be estimated using cross-validation techniques com-
monly used in standard ridge regression problems. To show this, let A = 72, so that we
can rewrite Equation 4 as

To=Tp+SpH' (HEZpH' +)Q)  (o— HZp)
—Fp+ FpF H' (HFsFyH' +)Q) ' (0— HZp).
Then, applying the matrix identity
UT(A+UU") = (1+UTA'U) 'UT A (11)
with the identifications U = H Fp and A = AQ gives
Za=Zp+Fs (M +F;H' Q 'HFp)F,H'Q '(o— Hzp). (12)

We may write this in a more recognizable form by defining

X =Q '?HFjy (13)
and
y=Q '*(o - Hzp), (14)
in which case Equation 4 becomes
Ta=7Zp+ Fpf (15)
where X .
B=(XTX+X) X'y (16)

Equation 16 is identical to the equation of the ridge regression estimator (Hastie
et al., 2009). Hence, we propose selecting A using standard k-fold cross-validation meth-
ods in that context. This involves dividing the X and y into k£ equal parts, or ”folds”.
For each fold, the model is trained on k—1 folds and tested on the remaining fold. This
process repeats k times, with each fold used exactly once as the test set. Unlike simple
train/test splitting, k-fold cross-validation allows all data to be used for out-of-sample
testing.

With this approach, we can determine A adaptively as the algorithm iterates, re-
ducing the required number of integrations. Additionally, the approach automatically
solves the problem of choosing a suitable error norm when given observations with dif-
ferent units of measure, since cross-validation is performed with the transformed vari-
ables X and y. Note that the cross-validation is performed on the S+ P rows of X; hence,
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unlike typical cross-validation, the variables of the state vector are withheld, rather than
the ensemble members. Recall that P is the number of parameters and S is the num-
ber of moments.

The corresponding covariance update equation can be derived using standard iden-
tities, as follows:

Y4=Xp-SpH' (HSsH' +)Q)  HZp (17)
=FpF, —FpFH' (HFgF H'" + AQ)‘1 HFpFy (18)
— Fy [I ~FyH' (HFsFJH' + Q)" HFB} Fl (19)
= Fy (I+FJH' (0Q)™ HF;) Fj (20)
= FzDF} (21)
where
D=T+)"'X"X) =AM[+X X)) (22)

Once we have a value for A\, we may compute D and update the perturbed-parameter
ensemble with
Fy = FzD'2, (23)

We used the R package glmnet to perform the ridge regression with cross-validation
(Friedman et al., 2010). We found that cv.glmnet sometimes chooses poor A values be-
cause the default search range is too narrow. To ensure a sufficiently broad range of can-
didate A values, the limits of the search range are specified in the following way. Let the
singular value decomposition (SVD) of X be

X=UCV', (24)
where U and V are orthogonal matrices and C' is a diagonal matrix whose elements are
the singular values {c1,¢a,- -+, cs}, in descending order. Then, Equation 16 can be ex-
pressed as

B=VGU', (25)
where G is a diagonal matrix with elements

Ci
= S5 ——. 26
2+ A (26)

This expression implies that G, and therefore 3, is insensitive to A when A < c¢% or when
A > 3. Hence, the sensitive range is ¢ < A < c%. However, the column vectors of
Fp sum to the zero vector, since the ensemble members are centered, which implies that
X is not full column rank. Therefore, cg = 0, so we use the second smallest singular
value, cs_1 to define the lower limit of A. To be precise, the lower limit is chosen to be
a factor of ten less than the second smallest squared singular value, and the upper limit
is chosen to be a factor of ten greater than the largest squared singular value. Account-
ing for the fact that cv.glmnet normalizes y by its standard deviation and normalizes
the sum-square error in the objective function by the dimension of y, the upper and lower
limits of A are chosen to be

AMower = %%023_1 and )\upper = IO%C%, (27)
where S is the number of elements of y and o, is the standard deviation of the elements
of y.

Compared to the cost of integrating an ESM, computing the SVD is essentially “free”,
so the cost of this procedure is negligible, unlike offline hyperparameter tuning.

This completes the derivation of the KalmRidge algorithm. In the next section, we
will discuss some related algorithms that may serve as a basis for comparison.
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4 Alternatives to KalmRidge

We have already discussed the Schneider et al. (2017) approach, but there are other
algorithms which address the same problem. In the following subsections, we discuss a
few alternatives that will be used as a basis for comparison.

4.1 Unregularized Kalman Filter

In certain situations, one might consider implementing the Kalman filter without
regularization. For example, with a sufficiently large ensemble size and extensive obser-
vational data, simple sample estimates may provide adequately precise estimates of the
prior and observational error covariance matrices, potentially obviating the need for reg-
ularization. Here, we explore situations where a large observational dataset is available
for estimating R. It is important to note, however, that realistic ESM tuning does not
typically fit this scenario, as the observational time series is generally too short, result-
ing in a singular error covariance matrix R. It is also important to note that the covari-
ances pertain to statistical moments calculated over a specific time window T, rather
than instantaneous states commonly dealt with. If T, denotes the total observational time
period, then R can be derived from the moments estimated across T, /T, intervals within
the observational dataset. The resulting estimate for R will be singular unless the length
of the observational period T, is greater than the product of T,, and the dimension of
R.

4.2 Consistency Diagnostics

Another approach to estimate the hyperparameter is to choose it to satisfy a con-
sistency diagnostic. One such diagnostic was proposed by Desroziers et al. (2005), who
showed that if 3 and R are correctly specified, then

Eld,—.d_,) = R (28)
where

dy_,=0—Hzxp (29)
is the post-fit residual and

do_y=0—Hzxp (30)

is the pre-fit residual (i.e. the innovation). Li et al. (2009) used these equations to es-
timate a covariance inflation factor. Here, we use it to estimate the hyperparameter, 7.
Specifically, if we assume that R = r2Q, as before, then

|t (Bld-ud],)
B tr(Q)

gives an estimate of the hyperparameter. Since the right side of Equation 31 implicitly
depends on r, the hyperparameter value is determined by fixed-point iteration. With this
value of r, one can use ensemble Kalman inversion as previously described. It is neces-
sary to re-evaluate Equation 31 with each iteration.

7“2

(31)

4.3 Adaptive Inflation

It is well known that the ensemble Kalman filter suffers from ensemble collapse,
and strategies like covariance inflation and covariance localization have been employed
to prevent this (Anderson & Anderson, 1999). A natural question is whether these strate-
gies could be used in parameter estimation. In fact, the hyperparameter r can be inter-
preted as a kind of covariance inflation factor. This can be shown by the substitution
R = r2Q into Equations 4 and 5, followed by algebraic rearrangement:

Ta=Fp+ (r2Np)H (Hr2S5)H' +Q) ' (0 - HZp) (32)
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and
P28, = (r28p) — (r2Sp)H | (Hr2Zp)H' +Q)  H(r2Sp).  (33)

Equations 32 and 33 show that introducing the free hyperparameter 2 is equivalent to
inflating the background covariance matrix X5 by 2, then deflating the analysis co-
variance matrix 3 4. This suggests that an adaptive covariance inflation algorithms can
help solve the free hyperparameter problem, as those algorithms provide a way to esti-
mate that hyperparameter.

One of the first adaptive inflation algorithms was Anderson (2007), which was im-
proved by Anderson (2009). Later, El Gharamti (2018) modified Anderson (2009) to use
inverse gamma distributions instead of Gaussian distributions. Specifically, we consider
the El Gharamti (2018) algorithm. The e subscript indicates the ensemble member and
the s subscript indicates the state variable. This algorithm uses a sequential filter and
the following inflation rule:

el = /A (2se — Ts) + T (34)

Note that each state variable has its own inflation factor, A\;. The algorithm uses Bayes’
rule with inverse gamma priors to update these inflation factors. The inverse gamma dis-
tribution is defined by
B a1
A) = ——A Y Texp(—5/N), 35

P = frsA " exp(=5/) (3)
where o > 0 is called the shape parameter and S > 0 is called the scale parameter.
Since these parameters are estimated automatically within the algorithm, they are not
free hyperparameters.

To maintain compatibility with code written for the Anderson (2009) algorithm,
the El Gharamti (2018) algorithm uses Gaussian parameters and translates them to and
from inverse gamma parameters when updating the distribution. The inverse gamma dis-
tribution is advantageous because, unlike the Gaussian distribution, it is supported only
on the positive real numbers. This is important because inflation factors must be pos-
itive.

The user must specify an initial guess (prior) for the inflation factor variances. This
implies that the algorithm does have a hyperparameter, but the algorithm can update
its value adaptively. However, in practice the variance update is often disabled, such that
only the mean update is retained. The inflation factor means are initialized at unity (i.e.
no inflation) in all applications we have seen, so we do not consider them to constitute
free hyperparameters.

4.4 Annealed Regularization

Iglesias and Yang (2021) proposed another algorithm for estimating the hyperpa-
rameter. Using our notation, the hyperparameter is estimated at each iteration n by

71 . E E
A, =min (max <2<(I)>n’ 2<<I>,<I>)n>’1_tn> (36)

n—1\—1
N >1
tn = {ZJ_O " ale (37)

where

0 n=~0

E

b= {51Q 0~ Ha, )P} (39)

e=1

The constraint involving ¢,, causes the value of A1 to tend toward zero.
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Figure 1. Parameter estimation in Lorenz 96 with EnKI (Schneider et al., 2017).

5 Experiments with Lorenz 96

We now illustrate the above methods using a simple dynamical system. The Lorenz
96 model is an idealized dynamical system with governing equations

dXy,

at —Xpo1(Xp—2 — Xpy1) — Xp + F — heYy, (39)
1dY;), h
- dé = =bYj 16 (Yitok — Yim1k) — Yk + ij, (40)
and J
— 1

It features K = 36 slow variables Xy, and JK fast variables Yj; (J = 10 fast vari-
ables per slow variable), which form cyclic chains:

Xirxk =Xk Yjkrx =Yje Yjrok =Ykt (42)

This dynamical system represents some important aspects of real ESMs, such as advec-
tion, external forcing, dissipation, coupling, and chaos (Lorenz, 2006). The fast variables
are broadly analogous to higher-resolution atmospheric states and the slow variables are
analogous to lower-resolution oceanic states.

The model depends on four parameters: F, an external forcing; h, which controls
the coupling strength; ¢, a relative damping time scale; and b, which modulates advec-
tion in the fast dynamics.

Letting (---) denote simultaneous averaging over both time (long-term) and j, it
follows from Equations 39 and 40 that

(X?) =F(X) - he(XY) (43)
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and
(V2) = % (XYY, (44)

noting that individual fast (or slow) variables are statistically exchangeable (Lorenz &
Emanuel, 1998). These relationships suggest that we can tune Lorenz 96 using the fol-
lowing 5K = 180 moments as targets, as Schneider et al. (2017) did:

m=((x) (V) (x*) (XV) <W>)T (45)

In the subsections that follow, we compare the performance of different approaches
using these statistical moments as targets.

5.1 Ensemble Kalman Inversion

Schneider et al. (2017) applied (non-adaptive) EnKI to the Lorenz 96 model. Specif-
ically, they created a very long control integration (7' = 46416) with F' = ¢ =0 = 10
and h = 1, then used EnKI to estimate the parameters of the control integration us-
ing the moments in Equation 45 as (proxy) observations. Their initial ensemble, of size
100, used normal priors for (F, h, b) with u = (10,0,5), 0> = (10,1, 10); and a log-
normal prior for ¢ with u = 2, 2 = 0.1. They found that EnKI produces reasonable
parameter estimates (Figure 1).

Figure 2 shows results from experiments with KalmRidge. The mean estimates are
similar to those of Schneider et al. (2017), but our ensembles collapsed whereas theirs
did not. However, their EnKI implementation added noise to the ”observations”, whereas
our KalmRidge algorithm did not. Despite the similarity in the mean estimates, Kalm-
Ridge did not require offline hyperparameter selection, unlike their EnKI.

Both implementations fail to adequately estimate c. To investigate this deficiency,
we examined the sensitivity of the moments to parameter perturbations. Figure 3 shows
the variations in X2 and Y2 due to changes in one parameter while the other param-
eters are fixed to their control values. The figure shows that variations in F', h, and b
lead to relatively tight (albeit nonlinear) relationships, whereas variations in log(c) do
not. In fact, none of the moments exhibit sensitivity to log(c) near the control value (not
shown), suggesting an identifiability problem. It is likely that the insensitivity to per-
turbations of log(c) explains the poor estimates of c.

5.2 Unregularized Kalman Filter

The results from the ”basic statistics” approach are shown in Figure 4. Despite a
great abundance of proxy observations (the same T' = 46416 control integration as in
the previous section), this method suffers from very rapid ensemble collapse and corre-
spondingly gives poor estimates for some of the parameters.

5.3 Consistency Diagnostics

The results from the consistency diagnostic method are shown in Figure 5. This
method is slightly less successful at estimating the F' parameter than KalmRidge, but
more importantly, ensemble collapse occurs much more quickly in the consistency diag-
nostic method.

5.4 Adaptive Inflation

El Gharamti (2018) algorithm has previously been implemented in NCAR’s Data
Assimilation Research Testbed (DART) (Anderson et al., 2004). This is a Matlab im-
plementation, but our work has been in Python and R, so we translated the Matlab code

—10-
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to Python. Consistent with the Matlab implementation, the Python implementation dis-
ables the variance update, retaining only the mean update.

The results of applying our implementation of the El Gharamti (2018) algorithm
to the Lorenz 96 tuning problem are shown in Figure 6. The figure shows that the al-
gorithm works reasonably well for o), = 0.2, which is much smaller than the values con-
sidered by the author and used in DART (typically around 0.6). However, increasing it
much beyond o), = 0.2 causes immediate failure — the parameter variance becomes very
large, rapidly. The estimation problem is seen in the ¢ parameter consistently, and this
parameter is difficult to estimate, as was shown previously in this section. Since this al-
gorithm offers no method for choosing oy,, and the estimates from the algorithm are sen-
sitive to the value of o),, we consider oy, to be a free hyperparameter.

5.5 Annealed Regularization

Like our algorithm, the Iglesias and Yang (2021) algorithm does not have a free hy-
perparameter. However, as seen in Figure 7, their algorithm terminates before the pa-
rameter estimates converge. One might suggest continuing the iteration, but this is not
possible since the algorithm must stop when A~! reaches zero. The variations in the hy-
perparameter estimates with iteration for KalmRidge and adaptive regularization are
shown in Figure 8 and Figure 9, respectively. Note that the hyperparameter values cho-
sen by the adaptive regularization algorithm trend downward, whereas those chosen by
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KalmRidge do not. Unlike adaptive regularization, KalmRidge can be iterated until con-
vergence, since A is not forced to evolve in any particular way across iterations.

6 Demonstrations With CESM2

Unlike the Lorenz 96 model, which is simple “toy model”, the Community Earth
System Model version 2 (CESM2) represents all major Earth system components and
features hundreds of tunable parameters (Danabasoglu et al., 2020). In this section, we
demonstrate applications of KalmRidge to CESM2.

Parameter selection is a major unsolved problem in ESM tuning. Here, our goal
is to demonstrate the usefulness of a tuning algorithm for a small number of selected pa-
rameters. Many ESM tuning studies focus on cloud parameters due to their important
role in quantifying uncertainty in climate projections. For the purpose of illustration,
we selected two parameters that appear frequently in previous studies on tuning and sen-
sitivity of CESM, following recommendations by NCAR scientists (see Acknowledgements).

The first selected parameter is called clubb_gamma_coef (henceforth «y). This pa-
rameter is part of the Cloud Layers Unified By Binormals (CLUBB) parameterization
and controls the skewness of vertical velocity (Golaz et al., 2002). CESM2 is highly sen-
sitive to this parameter and it is commonly tuned to achieve a TOA energy balance tar-
get (Danabasoglu et al., 2020; Guo et al., 2014; Woelfle et al., 2019). The second param-
eter is called micro_mg_dcs (henceforth D.y). This parameter is part of the Morrison-
Gettelman cloud microphysics parameterization and determines the autoconversion size
from ice to snow (Gettelman & Morrison, 2015). Like v, D.s is known to be highly use-
ful for tuning radiation budgets (Zhao et al., 2013). Both v and D., were investigated
in connection with the double-ITCZ bias (Woelfle et al., 2019). We performed sensitiv-
ity experiments and found that v and D.s are highly correlated with the spatiotempo-
ral means of sea-surface temperature (SST) and longwave cloud forcing, respectively.

As in the preceding section, we used KalmRidge to estimate the parameter values
of a given control integration. In particular, we used a 500-year two-degree fully coupled
preindustrial control, which is part of the Coupled Model Intercomparison Project ver-
sion 6 (CMIP6). This integration used the parameter values v = 0.28 and D.; = 200%
1076,

Our goal is to tune parameters with reasonable computational expense. For con-
creteness, assume that, for each iteration of KalmRidge, we can afford to integrate CESM2
for up to 40 years. Each simulated year costs approximately 1500 core-hours on the Cheyenne
supercomputer. If each ensemble member is run for Y years, then the ensemble size FE
is chosen to satisfy £Y = 40. We chose Y = 2, which implies ¥ = 20. Hence, we
used 20-member two-year ensembles.

Our initial perturbed-parameter ensemble, given in Table 1, was a uniform random
sample with v € [0.25,0.35] and D.s € [200 x 1076,800 x 1076]. The literature does
not clearly define suitable parameter ranges, so we used these broad ranges following rec-
ommendations by NCAR scientists. Each ensemble member was initialized at 0031-01-
01 using a restart from the control (for more information, see the “Open Research” sec-
tion).

Before we can apply KalmRidge, we must choose which statistical moments to tar-
get. Our choice was guided by a list of properties which model developers consider ”de-
cisive” for tuning, as indicated by a survey of modeling centers (Hourdin et al., 2017).
We selected a subset of model output fields for consideration, as listed in Table 2. We
selected these particular fields because they are simple and rather uncontroversial — the
SST, for example, is an common ”first choice”.
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clubb_gamma_coef | micromg.dcs (x10°)

0.32917 517
0.27894 310
0.29663 347
0.27104 277
0.29237 588
0.2818 449
0.30702 463
0.34786 679
0.28595 462
0.30232 256
0.28154 418
0.27828 272
0.26183 584
0.25641 615
0.31531 352
0.30680 755
0.29615 668
0.32782 722
0.27089 297
0.26318 630

Table 1. [Initial perturbed-parameter ensemble used for tuning experiments.

For each field chosen, we computed anomalies by subtracting the annual cycle es-
timated from the control integration. Then, we computed moments by taking the time
means of the leading 100 spherical harmonic projections. Unlike individual grid-cell val-
ues, spherical harmonics capture large-scale orthogonal patterns: the first is the global
mean, the next few correspond to dipoles, and the patterns decrease in spatial scale there-
after. Figure 10 depicts some of the leading spherical harmonics.

We conducted three experiments. In the ”kitchen sink” experiment, we considered
all fields listed in Table 2. Then, to investigate the necessity of these fields, we performed
two further experiments: one using only SST, and one using both SST and longwave cloud
forcing. Figure 11 depicts the results of these experiments. We see that the parameters
are well-estimated in all three experiments, even after a single iteration. The estimates
using SST only are slightly biased after two iterations. Introducing the longwave cloud
forcing reduces this bias, whereas the other fields seem to be uninformative as their in-
clusion produces only minor changes.

In the above experiments, all ensemble members were initialized from the same state.
We also conducted preliminary experiments in which each ensemble member was initial-
ized from states drawn independently from the control integration using a Halton sequence
(Halton, 1960). The initial ensemble for these experiments is given in Table 3 and com-
parisons of the results with the preceding experiments are shown in Figure 12. As seen
in Figure 12, using a common initialization usually gave better estimates.

7 Discussion

In this article, we introduced a new algorithm, KalmRidge, and demonstrated ap-
plications to Lorenz 96 and CESM2. We found that KalmRidge successfully reproduces
results from Schneider et al. (2017) when applied to Lorenz 96.

—20—



Harmonic 2

Harmonic 1

Harmonic 3
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Figure 10. Leading spherical harmonic patterns.

Short name |

Long name

FLNS
FLNT
FSNS
FSNT
ICEFRAC
LWCF
PRECT
SNOWHICE
SNOWHLND
SST
SWCF
TS
Table 2.

Net longwave flux at the surface
Net longwave flux at the top of model
Net solar flux at the surface
Net solar flux at the top of model
Fraction of surface area covered by sea ice
Longwave cloud forcing
Total precipitation rate
Water equivalent snow depth (ice)
Water equivalent snow depth (land)
Sea surface temperature
Shortwave cloud forcing
Surface temperature (radiative)
CESM2 fields used for tuning experiments.

—21—



SST SST + LWCF Kitchen sink
0.34 1 1 ]

0.32 1 . .

030 1 . .

0.28 1

0.26 1 . .

800 - b b
1 1 —— Mean
---- Reference

600 ] i 95% Cl

x10°)

% 400 1

Dc

200

0 1 2 0 1 2 0 1 2
Iteration Iteration Iteration

Figure 11. Results of CESM experiments, depicting parameter estimates with 95% confidence

intervals before iterating (iteration zero) and in subsequent iterations.

clubb_gamma_coef | micromg dcs (x10°) | Initialization time

0.258838 626 0281-01-01
0.308838 359 0471-01-01
0.283838 559 0371-01-01
0.333838 759 0101-01-01
0.271338 315 0201-01-01
0.321338 515 0301-01-01
0.296338 715 0491-01-01
0.346338 248 0391-01-01
0.255713 448 0041-01-01
0.305713 648 0131-01-01
0.280713 381 0231-01-01
0.330713 581 0431-01-01
0.268213 781 0331-01-01
0.318213 278 0061-01-01
0.293213 478 0151-01-01
0.343213 678 0251-01-01
0.261963 211 0451-01-01
0.311963 411 0351-01-01
0.286963 611 0016-01-01
0.336963 344 0121-01-01

Table 3. Initial perturbed-parameter ensemble used for mixed-initialization experiments.
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432 However, unlike the form of EnKI presented in that article, KalmRidge does not

433 have a free hyperparameter. This eliminates the need for computationally expensive of-

a3 fline hyperparameter selection. We also proposed using spherical harmonic projections,

a3 which systematically capture large-scale spatial features, as tuning targets. We have not

436 explored the sensitivity of the algorithm to different basis vectors, but it is plausible that
237 Laplacian eigenvectors are particularly advantageous to tuning ESMs, given that they

438 systematically decompose variability based on spatial length scale. We note that the Lapla-
430 cian eigenvectors used here may be computed for arbitrary domains, including discon-

40 nected land masses or ocean area(DelSole & Tippett, 2015). Laplacian eigenvectors com-
aa1 puted for regional domains could facilitate more localized tuning efforts.

a2 KalmRidge, using spherical harmonic projections, demonstrated impressive per-

a3 formance in estimating the parameters of a CESM2 preindustrial control integration. De-
o spite its simplicity, this algorithm also demonstrated its robustness in the presence of

a5 irrelevant information — many of the moments, particularly in the ”kitchen sink” exper-

446 iment (e.g. the 57th spherical harmonic of the sea ice fraction), are irrelevant but do not
a7 detract from the performance of KalmRidge.

o Our results (Figure 12) suggest that using a common initial condition for all en-

420 semble members is better than using mixed initial conditions, but more experiments would
450 be needed to assess the generality of this result.

451 One caveat of KalmRidge is that its uncertainty estimates are too small. This was

452 also observed, to a greater extent, in the other tuning methods that we evaluated, ex-

453 cept for those by Schneider et al. (2017) and Iglesias and Yang (2021). However, the Schneider
a5 et al. (2017) algorithm requires the user to specify the value of a free hyperparameter,

455 but provides no procedure to estimate it. Without such a procedure, it is unclear how

456 one could determine the hyperparameter value without already knowing the optimal pa-
457 rameter values. The Iglesias and Yang (2021) algorithm does not have a free hyperpa-

458 rameter, but gives poor point estimates for the parameters. Hence, our algorithm is unique
459 in that it gives good point estimates for the parameters without the requisite tuning of

460 a free hyperparameter.

a61 The model experiments presented in this article are admittedly idealized, partic-

162 ularly since we assume that all model error is due to misspecification of two parameters.

463 For realistic applications, the algorithm must be generalized to account for the annual

464 cycle and climate change. Nevertheless, KalmRidge performs well in this idealized set-

265 ting, and any algorithm which cannot is unlikely to be useful when applied to more re-

266 alistic problems.

a7 8 Open Research

468 The CMIP6 preindustrial control integration used as the tuning control was ob-
469 tained from NCAR Campaign Storage at /glade/campaign/collections/cmip/CMIP6/timeseries—cmip6/
a0 (Eyring et al., 2016). These data are also available at https://www.earthsystemgrid

471 .org/dataset/ucar.cgd.cesm2.b.e21.B1850.£f09_g17.CMIP6-piControl.001.atm.proc
a2 .monthly_ave.html and are licensed under the Creative Commons Attribution-ShareAlike
473 4.0 International License.

474 The latest version of the KalmRidge software is available at https://github.com/

a5 nlydeen/adaptive-ki/ (Lydeen, 2022). The Community Earth System Model (CESM)

a76 version 2.1.1 is available at (Danabasoglu et al., 2019) and is developed at https://github
a77 .com/ESCOMP/cesm/. We used Conda version 4.14.0 for package management, available

478 under a BSD 3-Clause License at https://docs.conda.io/en/latest/miniconda.html

479 and developed at https://github.com/conda/conda/. Python and R codes are inter-

480 faced with RPy2. Data analysis was conducted with Numpy 1.7.1 (Harris et al., 2020),

a81 available under a BSD 3-Clause License at https://numpy.org/install/ and devel-
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oped at https://github.com/numpy/numpy/; XArray 0.20.1 (Hoyer & Hamman, 2017),
available under an Apache 2.0 License at (Hoyer et al., 2021) and developed at https://
github.com/pydata/xarray; and Pandas 1.3.5, availabe under a BSD 3-Clause License
at (Reback et al., 2021) and developed at https://github.com/pandas-dev/pandas/.
Plots were created with Matplotlib 3.5.2 (Hunter, 2007), available under the Matplotlib
License at (Caswell et al., 2022) and developed at https://github.com/matplotlib/
matplotlib/.
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