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Abstract—Wideband millimeter-wave and terahertz (THz) sys-
tems can facilitate simultaneous data communication with multi-
ple spatially separated users. It is desirable to orthogonalize users
across sub-bands by deploying frequency-dependent beams with
a sub-band-specific spatial response. True-Time-Delay (TTD)
antenna arrays are a promising wideband architecture to imple-
ment sub-band-specific dispersion of beams across space using
a single radio frequency (RF) chain. This paper proposes a
structured design of analog TTD codebooks to generate beams
that exhibit quantized sub-band-to-angle mapping. We introduce
a structured Staircase TTD codebook and analyze the frequency-
spatial behaviour of the resulting beam patterns. We develop
the closed-form two-stage design of the proposed codebook to
achieve the desired sub-band-specific beams and evaluate their
performance in multi-user communication networks.

I. INTRODUCTION

Millimeter-wave and terahertz (THz) systems offer large
bandwidths [1]-[3] which, besides enabling high data rates,
can facilitate simultaneous data communication with multi-
ple spatially separated users occupying non-overlapping sub-
bands. To support such sub-band-specific data communication,
base stations need to deploy directional beams with a sub-
band-specific spatial response, where all frequency resources
within a sub-band form a beam to serve a particular user [4],
[5], as shown in Fig. 1. While the conventional analog phased
arrays can only generate frequency-flat spatial responses, fully
digital or hybrid analog-digital arrays that leverage multiple
RF chains for enhanced beamforming capabilities incur high
costs and power consumption.

True-Time-Delay (TTD) arrays are a promising candidate
for sub-band beamforming owing to their low-complexity im-
plementation of frequency-dependent beams using a single RF
chain. Works in [6]-[9] use analog TTD arrays to implement
a fully dispersive rainbow beam codebook scanning a continu-
ous range of angles for expedited beam training. Recent works,
namely Joint-Phase-Time-Arrays (JPTA) [4] and mmFlexible
[5], leverage analog TTD-inspired architectures to generate
beams with quantized sub-band-specific dispersion in space.
The algorithm proposed in [4] iteratively optimizes the per-
antenna delays and phase shifts, whereas the algorithm in [5]
is based on a closed-form Least-Squares solution.
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Fig. 1: Sub-band-specific beamforming for simultaneous multi-user
data communication with analog True-Time-Delay arrays.

In contrast with [4], [5], this paper adopts a structured beam-
synthesis methodology rooted in principles of array design
and frequency-spatial beam-pattern analysis to design sub-
band beams, rather than target-based optimization or pattern-
fitting. The main contributions of the paper are summarized as
follows: We propose a structured delay-phase codebook called
Staircase TTD codebook in Sec. II, and study the frequency-
spatial characteristics of resulting beams in Sec. III. We then
develop a closed-form design of the proposed codebook to
implement dual-stage frequency-spatial filtering to achieve the
required sub-band-specific spatial responses in Sec. IV. Sec.
V presents simulation results that compare the performance
of Staircase TTD codebooks with state-of-the-art methods.
Finally, Sec. VII presents concluding remarks and future steps.

Notation: Scalars, vectors, and matrices are denoted by non-
bold, bold lower-case, and bold upper-case letters, respectively.
For a given matrix A, e® and log(A) denote matrices with
the (4,7)™" element given by e”is and log A; ; respectively.
Further, the n!" element of a vector v is denoted as v,,.
Conjugate, transpose and Hermitian transpose are denoted by
(), ()T, and ()M respectively.

II. SYSTEM MODEL

We consider a cellular system where a Base Station (BS)
simultaneously serves K users (UE) spatially distributed at
angles #*) V k = 1,..., K. The BS operates over the band-
width BW and transmits an Orthogonal Frequency Division
Multiplexing (OFDM) signal with a total of M,,; subcarriers
at carrier frequency f., where the frequency of the m!" subcar-
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rier is given by f,, = fo— BW/24+BW(m—1)/(Mio:—1) ¥V
m € {1,..., My, }. Each UE operates over a non-overlapping
contiguous bandwidth BW/K with a total of M, /K sub-
carriers.

The BS is equipped with an Np x 1 analog TTD array
with uniform half-wavelength spacing (\./2 = ¢/(2f.), where
c is the speed of light). Each antenna element is controlled
with time delays and phase shifts, which are denoted by
vectors 7, ® € RN7*1 respectively. The frequency-dependent
precoder at the BS wrrp[m] € CN7*1 is thus obtained as

follows:
ollows 1

WTTD [m] me

The goal is to design the per-antenna delays 7,, and phase

shifts ¢,, Vn € {1, ..., N7} to generate beams with the desired
sub-band to angle mapping.

J2m frmT+P) (1)

A. Uniform Staircase TTD codebook

We introduce the uniform Staircase TTD codebook that
is designed based on two sets of delay and phase incre-
ments applied at different antenna spacing intervals. The high-
frequency delay and phase increments (A7p, Agyp) occur at
every consecutive antenna element, whereas the low-frequency
increments (A7, A¢;) occur at a spacing of D antenna
elements. The resulting delay and phase vectors resemble a
staircase function of step size D, where the delay at the
(n+1)*" antenna is given as follows:

{ if mod (n,D) =0
Tn+l =

otherwise
where mod(.) denotes the modulo operator. The per-antenna
phase shifts apply increments in a similar manner. Under
special condition mod(Np, D) = 0, it is possible to realize
the Kronecker decomposition of the Staircase TTD combiner
in (1) to obtain delays and phases that can be expressed as
follows:

T + AT, + AT

T + ATy, )

N
T = (A7 + DA, ..., fT —1"&[0,...D-1" An,
ATjumup AT‘St’ep
N

® = (A¢; + DA, ..., — — 11T & [0,....,D —1]T Agy
———— D ~—
A¢jump A¢step
(3)

where @ denotes the Kronecker summation of two vectors
ac CNixl gnd b € CN2X1 defined as a @ b € CN1N2x1 —
log(e2®eP), where ® denotes Kronecker product. For ease of
notation, we define A7jymp = A1+ DAT, and A¢jymp =
A¢;+ DAgy, as the Staircase jump parameters, and ATgze, =
ATy, and A¢pgiep = A¢y, as the step parameters as shown in

0
? A ATjU"lll’ Ad)jump
Tjump» >
) DI,
0.0.9. jump ;
D
Atstep Sy e p‘sub-array: Uniform TTD
Apsgep ¥ |
ATstep, ACZ W
T A‘l)step 27
00Q | array s .
- 5 Nr indices uperpositiono
reed Dac/2 A2 T sub-arrays

Fig. 2: Uniform Staircase TTD codebook.
mod(n, D)=0
otherwise

d)nJrl = { ¢n + A(bj”m[’ - (D - 1)A¢step
&)

¢7L + A(bsl‘ep
III. FREQUENCY-SPATIAL ANALYSIS OF STAIRCASE TTD
A. Frequency-angle mapping of each sub-array

The uniform Staircase TTD codebook can be visualized as
the superposition of D uniform TTD sub-arrays (shown in
Fig. 2) with antenna spacing D)./2, delay spacing ATjymp
and phase spacing A¢;ymyp. Since the antenna spacing exceeds
the critical \./2 spacing by a factor of D, the resulting beams
exhibit D grating lobes or spectral copies for each frequency.

Each sub-array would have an identical frequency-beam-
centre mapping owing to identical uniform TTD array pa-
rameters. Based on (1), the precoder for each sub-array
Wrrplm] € CNT/PX1 g determined by:

Forpm] = | D im0, 5 11T (2 A+ B /)
Nr
(6)
The array response vector ap (6, fi,) for each
sub-array with D\./2 antenna-spacing at an angle of arrival
0 can be given as follows:

E (CNT/Dxl

a —jrim Nt 1T p g
aD(evfm) =e e [0,...,—5—1]" Dsin@ (7)

The frequency-dependent beamforming gain at angle 6
can thus be obtained as G(0, f,,) = |Wi,,[mlap(0, fu)l?,
which can be simplified as follows:

sin (%g\pju'mp(f’rn)) ’
sin (g\lljump(fm))

where  Ujump(f) = 2fmATjump + A@jump/m +
D(fm/fe)sin@. The beam-centre for frequency f,,, denoted
by 0*(fm) or 8%, corresponds to the angle that maximizes
the beamforming gain function, i.e. 0%, = {0|G(0, f,n) =
Np/D}, and can be obtained by solving W jymp(fm) = 22,
z € Z. Owing to grating lobes, each frequency f,,, will have

D beam-centre solutions, which are given as follows:

G0, fm) =

®)

Fig. 2, since the two parameters govern the inter- and intra- . ) f.
step behaviour of the staircase TTD codebook. Consequently, 0" (fm,q) = sin [1 - 5(‘1 -1 I -
the delays and phases of the uniform Staircase TTD codebook Ars Ad; " ) i
in (2) can be expressed as follows: mod (2 Jo—LETE 4 R 2 422 > }
D Dr fm ""Dfm

| Ta+ ATjmp — (D — 1)ATyp; mod(n,D) =0 )

Tn+l = { T + ATyrep; otherwise where each value of ¢ = 1,..., D corresponds to a distinct
(4) spectral copy of the main beam. As is evident from (9), the
3379
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D spectral copies for each frequency f,, have an angular
separation of Asiné}, = % j{m ~ 2 when f. >> BW.
Thus, the DA./2 array-spacing partitions the angular region
into D non-overlapping segments of uniform sinusoidal width,
within which each spectral copy is confined, as shown in Fig.
3(a,c). The grating factor D thus determines the number and

relative spacing of spectral beam copies.

Further, the slope of the frequency-beam-centre map, de-
noted by [‘)sn9m can be obtained from (9) as MTJ%
This tells us that ATjump determines the extent of frequency-
dependent angular dispersion of each spectral copy within its
segment. Setting ATjymp = D ;ifnce" creates a directional
beam at 6, Vf,,, with spectral copies at 0, = sinfl(mod
(sinf, —2q ! fc +1,2)— )\q 2.....D as seen in Fig. 3(a,b).
When f— << |A7'Jump| < each spectral copy exhibits
partial dispersion within its respective spectral segment. When
|ATjump| > ﬁ, each spectral copy maps to its entire angular
segment in at least one mapping cycle, as seen in Fig. 3(c,d).

B. Superposition of the D sub-arrays: Spatial filtering

Section III-A obtains the beamforming gain G(6, f,,) (8)
and frequency-angle mapping 67, of grating lobes (9) for the D
identical uniform TTD sub-arrays that constitute the Staircase
TTD codebook. Since these D sub-arrays are uniformly sepa-
rated in space (\./2 antenna spacing), time (A7) and phase
(Adstep), as shown in Fig. 2, the effective phase separation
between adjacent sub-arrays can be expressed as 7, (fy,),
where l:[Io(fmu) = 2fmATstep + (fm/fc) sin 0 + Aqsstep/']r-
Thus, the overall beamforming gain G(0, f,,) of the entire
Staircase TTD codebook can be expressed as the exponentially
weighted sum of é(@, fm)> as shown in (10), which can be

simplified to obtain (11):

D
—jm(g— olJm) & a 2
GO, fm) = |Ze Jm(g=1)¥o(f ).ngD[m]a(D”

(10)
q=1

. sin (D7/2)%,(fm)) |2

GO, fm) =GO, f1n) . - ‘
(0, ) = GO fn) - | (72000 (o)) (10

Spatial filter: F'(0,fpm,)
in s olJm 2

The term F(0, f,) = ’% represents the

frequency-spatial filter response that results from the superpo-
sition of the D TTD sub-arrays, uniformly separated in phase,
space and time. The filter (0, f,,) is centred at angle 6, ( f.,),
which corresponds to the gain maximizing trajectory about
which the filter’s spatial response is symmetric, and can be
obtained by solving ¥, (f,,) = 2z, z € Z, as follows:

Oo(fm) = sin™ (1 — mod (2feATstep + A‘b;“p jf +1 2}{6 ))
"1d)

The step delay ATy, makes the filter’s spatial response
frequency-dependent as seen in Fig. 4(a). This is reminiscent
of dispersive rainbow beam codebooks constructed using uni-
form TTD arrays in [6]-[9]. Further, the 3dB angular width
of the filter for a given f,, is given by Asinf = 2x0.886
[10, Chapt 22.7]. Thus, for each frequency, the filter retains
beam patterns corresponding to roughly one spectral segment
of angular width Asinf ~ % out of the D spectral copies
present in the parent beam-pattern é(@, fm) as shown in
Fig. 4(b,d), thereby resulting in the sub-band-specific spatial
responses shown in Fig. 4(c,e). Through the systematic design
of grating lobe parameters (D, ATjump, APjump) and filter
parameters (ATstep, Apstep), We can achieve the required
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directional sub-band-specific beams.

IV. TWO-STAGE DESIGN OF SUB-BAND-BEAMS

In this section, we propose the two-stage design of the Stair-
case codebook parameters ATjymp, APjump, ATstep, APstep
and D defined in (4) and (5), to construct sub-band-specific
beams to simultaneously communicate with K users located
at sinusoidally equidistant angles 6(?) Vg € {1,..., K} in the
sector [01,05], with uniform (BW/K) sub-band assignment
to each user, as shown in Fig. 5(a). The K UE angles #(%)
Vg € {1, ..., K} are given as follows:

90 = gin~! (Sin 01 + (g — 1)me[2(_slmal> 4

A. Sub-band beam design with uniform Staircase codebooks

Stage I: The first step towards designing the required beam
pattern is constructing K directional grating lobes exactly at
the required angles 09 Vg € {1,...,K} in (13), as shown
in Fig. 5(b). We know that the angular separation between
adjacent grating lobes is % Jf; , where D € Z is the step size of
the uniform Staircase codebook. Hence, in order to fit exactly
K grating lobes in [, 65], we must select D as the smallest
integer satisf%/g}g 7|sinfy — sin 6| > (K — 1)3, where v =

1+ g}’v ~ 3K, is the beam-squint? correction factor. Thus,

D can be computed as follows:

B 2(K —1)
| | sin 6y — sin 6y]

(14)

Further, setting ATjymp = %}“91

D grating lobes at 052 Vi =1,...,D, given as follows, out of

which 9,(12|q:1,...,1< fall in the range [0y, 02].

2
HL(;Z =sin~! (mod <Sin91 + (¢ — 1)5 +1, 2) - 1)
15)
Stage II: The next step is to design the frequency-spatial fil-
ter F'(0, f,,) to achieve the desired sub-band-specific filtering
of the grating lobes as shown in Fig. 5(b). For given grating

and A@jump = 0 creates

2Upon setting ATjump = 7%, all spectral copies except the first

copy at 67, exhibit beam-squint. Heénce, the angular separation between the

first and K" grating lobes is 2(55” where v = i (fc + % - %)

Spatial filtering of grating lobes
9

Resulting beam pattern
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Fig. 6: Effect of spatial filter parameters {ATstep,Adstep} On sub-
band-beam patterns for D = 5, ATjump = 2.16/ fo, Adjump = 0.

lobes at 0§Qt|i:1w D, the choice of filter parameters A7y
and Agge, determines the exact sub-band-angle mapping
achieved, as is seen in the examples in Fig. 6. In order
to ensure K equal sub-bands that map to the K angles
922|q:1,m,;<, we need to design A7y, and Agge, in a
manner as to make the filter-centre trajectory 6, ( f,,,) intersect
the K grating lobes at the centres of the respective sub-bands,
as shown in Fig. 5(b).

For example, to achieve the beam pattern in Fig. 5(a), the
first sub-band centred at f(Y) = f. — BW/2 + BW/(2K)
must map to 0((12 = 0, whereas the K*" sub-band centred
at fU = f, + BW/2 — BW/(2K) must map to 0%) =
02. Consequently, ATgtep, and Asiep 3 can be obtained as
follows:

10sinbs(fm) fWsin6y — £U sin 6,
ATste = —= = (16)
T2 Ofm 2f.(K — 1) 2%
U
A¢St€p =7 f (Sil’l 02 + 2chTstep) )

B. Mapping discrepancies with uniform Staircase codebooks

The first step to generating directional sub-band-specific

beams mapped to angles 0(‘7)|q:1mK as shown in (13),

3A¢step is obtained by solving Go(f(K)) = 05 in (12) with a substitution
of A7step from (16), which upon simplification gives (17).

3381

Authorized licensed use limited to: UCLA Library. Downloaded on December 15,2024 at 23:03:47 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE Global Communications Conference: Wireless Communications

90 _| {30 90 | 130
= c
£ =l 425
50 RZ 50 =
= S {20 ~ S| {20
Y o ? 2
s 0 iM15 T 0 H B
ES <] > ]
<M 10 £ 10
-50 3 -50 s
] B a5

-90 -90
5.9 6 6.1 5.9 6 6.1
Frequency (Hz) «10'° Frequency (Hz) «101°

(@ K=3D=4 (b) K=3,D =331

Fig. 7: (a) Uniform Staircase codebook (4),(5) enforces D € Z,
resulting in discrepancy between target (shown in red) and actual
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b 91(.)and Adjump = 0. This

results in grating lobes at angles ;. |i=1,.. x as shown in
(15). Since the uniform Staircase codebook constrains the
(uniform) step-size D to be an integer, designing D as per
(14) results in a mismatch or discrepancy between the target
and actual angular levels, i.e. (7 # Ga‘?t Vg € {2,...,K},
as can be seen in Fig. 7(a), where the target sub-band-angle
map is shown in red. This can be verified by substituting
D = [%1 into (15) and comparing with (13).
Thus, staircase TTD codebooks with uniform step-size suf-
fer from mapping discrepancies which inhibit our ability to
achieve the desired sub-band-angle map.

involves setting ATjymp = —

C. Alternative Staircase to overcome mapping discrepancies

In this section, we formulate a Staircase TTD codebook with
non-uniform step-size, relaxing the requirement of D being
an integer. The uniform Staircase TTD codebook described
in (4) and (5) can be visualized as having element-wise
increments of A7y, with wrapping around by a magnitude of
—(ATjump — DATgep) occurring at every nth array element
satisfying mod(n — 1, D) = 0. This wrapping around is
triggered by the array index m and results in a Staircase
codebook with uniform integer step-size D.

Instead, we can define a new Staircase TTD codebook
where the wrapping around is triggered every time a certain
magnitude threshold is exceeded, in the following manner.

Tp, = mod ((n — 1)ATstep, DATstep — ATjump)
¢n = mod ((Tl - 1)A¢stepa DAd)step - A¢jump)

This new formulation results in a Staircase TTD codebook

with non-uniform step-size. Thus, the parameter D, which now

controls only the angular spacing between grating lobes, is no

longer constrained to be an integer, and can be selected as:
2(K —1)

D= 1
v (sinfy — sin 6;) (19)

(18)

With ATjyump = 7%’“91, the actual grating lobes now coin-

cide with the target angular levels (0 = 00 ¢ = 1,.... K,
thereby resolving the mapping discrepancy as seen in Fig. 7(b).

Table I summarises the Staircase TTD codebook design to
achieve sub-band-specific beams shown in Fig. 5(a).
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D. Constraints on achievable sub-band-angle mappings

The Staircase TTD codebook formulation described in Sec.
IV-C can realize sub-band-beams that map to sinusoidally
equidistant angles (13) in a specified sector [f1, f3] in mono-
tonically increasing (f; < 62) or monotonically decreasing
(61 > 02) patterns. For a given array size Np, a sub-band
angle map occupying the sector [f7, 65] can be realized only
if the following condition, which ensures that the array is large
enough to induce wrapping around, holds:

2K —1)

['y (sinfy — sinby) 20)

W<NT

Further, cyclic rotations of the monotonic sub-band-angle
maps as shown in Fig. 8 are possible only when v|sin 6y —
sinf| > 2(K —1)/(K + 1), and can be achieved by merely
changing the filter parameter A¢sep, keeping all other code-
book parameters fixed. For example, we can map the first
sub-band centred at f1) = f, — BW/2 + BW/(2K) to
angle 04, i € {1,..,K} by setting A¢gicp a5 Adgrep =
-7 (% sin () + 2f(1)ATstep>.

c

Given: K UE at angles 09 |,_1 i € [61,02], 61 # 02

BW
2K fe

BS has Nt x 1 Analog TTD array. v =1 + % -

Design TTD delays and phase shifts 7, ® € RN7*! as follows:
_ 2(K-1) . ) ____Dsin6y . . _
L D= mma—smey’ ATiump =~ 727, 3 Ajump =0

2. ATstep, Astep based on (16) and (17).

3 Tn = mod ((n — 1)ATstep, DATstep — ATjump)

¢n = mod ((n — 1)Adstep, DAGstep — Adjump)

9@ = 9((:25 = sin~! (sin 01+ (¢ — 1)75in ef(:slin 91) }qzl K

TABLE I: Staircase TTD codebook design to realize sub-band-
specific beams described in Sec. II and shown in Fig. 5.

V. NUMERICAL RESULTS

This section studies the performance of sub-band-beams
designed using the Staircase TTD codebook for the system
model described in Sec. II, in terms of the spectral efficiency
of the 1 BS and K UE network. We present performance
comparison with state-of-the-art methods, namely, the iterative
weighted Least Squares optimization algorithm (JPTA iter.)
presented in [4] with 20 training iterations, and the closed-
form Least Squares solution (mmFlexible) proposed by [5].
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Fig. 9: Performance evaluation of Staircase TTD sub-band-specific beams for multi-user data communication. Here, f. = 60GHz, BW =
2GHz, K =5, Ny = 32, 01,60, € (=75°,75°), and SNR = 10dB unless specified otherwise.

All methods are compared with the theoretical upper bound
represented by the ideal best-case beam. The BS operates at
fe = 60GHz with M;,; = 4096 subcarriers. We consider
BW =2GHz, Ny = 32, K = 5, and Signal-to-Noise Ratio
(SNR) of 10d B, unless specified otherwise. Spectral efficiency
results are averaged over all realizable beam patterns as per
Table I for {6,602} € [—75°,75°].

Fig. 9(a) studies spectral efficiency as a function of the
number of users K (or sub-bands), for {6,602} € [—75°,75°].
JPTA iter [4] performs the best for all K, closely followed by
mmPFlexible [5]. For K = 2, Staircase TTD suffers noticeable
degradation compared to JPTA iter and mmFlexible. However,
as the number of users increases (K > 4), the performance
of Staircase TTD matches up to that of JPTA iter and
mmPFlexible. This can be explained by studying the achieved
beamforming gain sliced at the target angles H(k)|k:1w,K
(eqn. (13)), denoted by By (f) and defined as follows.

Bu(fm) = GOW, frn) V=1, K, Vfm
where G(0, fp,) is the beamforming gain function defined in
(11). Fig. 10(a) and Fig. 10(b) depict the on-target beam-
forming gain By (fm)|k=1,....x for K = 2 and K = 5 users

respectively, for {01,602} = {—30°,40°}. For K = 2, the
average on-target gain achieved by Staircase TTD is lower

2L

than both mmFlexible and JPTA iter. However, when K = 5,
Staircase TTD achieves comparable on-target gain to both
mmFlexible and JPTA iter. This is because the beam design
methodology of Staircase TTD, which involves aligning the
on-target-gain maxima with the respective sub-band centres,
is not target-gain optimal for smaller K (< 4), and is hence
outperformed by the optimization rooted mmFlexible and
JPTA iter. However, a higher K places stricter constraints
on beam optimization, making the optimal solution converge
to the beam design methodology of Staircase TTD as K
increases. This can be seen in Fig. 10(b), where Staircase TTD
not only achieves comparable average on-target gain to JPTA
iter and mmFlexible, but also has its gain maxima aligned
with those of JPTA iter and mmFlexible when K = 5. This
explains the observations made from Fig. 9(a).

Fig. 9(b) and Fig. 9(c) study the effect of BW and BS
array size Nrp, respectively, on the spectral efficiency for
K = 5 users. When BW/f. < 5%, Staircase TTD achieves
comparable performance to both JPTA iter and mmFlexible.
For BW/ f. > 5%, Staircase TTD is seen to exhibit greater
robustness to beam squint effects compared to mmFlexible,
but is outperformed by JPTA iter. In Fig 9(c), Staircase
TTD has comparable spectral-efficiency to both JPTA iter
and mmFlexible for Np < 64. Staircase TTD matches up to
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Fig. 10: On-target beamforming gain By (fm) (eqn. (21)): achieved
gain at target angles 0 V k=1,.,K, with {0;,0,} =
{—30°,40°}, fo = 60GHz, BW = 2GHz, and Ny = 32.

JPTA iter and considerably outperforms mmFlexible as Np in-
creases thereafter. Fig. 9(d) shows that Staircase TTD achieves
comparable performance to both JPTA iter and mmFlexible
across SNRs for K = 5, Ny = 32, and BW = 2GHz.
Therefore, in summary, Staircase TTD achieves comparable
performance to that of JPTA iter and mmFlexible when
K > 4, BW/f. < 5% and Ny < 64, while outperforming
mmFlexible when BW/ f. > 5% and Np > 64.

VI. FUTURE WORK

While this work focuses on analog codebook design for sub-
band-beam synthesis and theoretical performance evaluation
in terms of spectral efficiency, our future work would study
the practical challenges in RF front-end design to enable
the prescribed sub-band-multiplexed multi-user data commu-
nication in realistic multi-user networks. In particular, we
would study the impact of TTD hardware constraints, namely,
delay range constraints [11], limited phase shifter resolution,
and non-linearity of circuit delays [12], on the performance
of sub-band-beams. In addition, a study of cross-sub-band
interference and its mitigation is imperative for enabling sub-
band-specific multi-user communication. Further, we would
also study analog Staircase TTD codebooks with multi-stage

frequency-spatial filtering, and multi-RF chain Staircase code-
books to realize beam patterns with arbitrary sub-band-angle
mapping for highly flexible user-resource assignment.

VII. CONCLUSIONS

This paper proposes a structured, closed-form design of
analog TTD codebook based on dual-stage frequency-spatial
filter design to realize directional sub-band-beams to support
simultaneous multi-user data communication. By implement-
ing sub-band-selective filtering of directional grating lobes, it
achieves beams with the required sub-band-angle mapping. It
also delineates constraints on achievable sub-band-angle maps
using the proposed codebook. The proposed method, besides
espousing a conceptual visualization of sub-band-beam design,
presents a low-cost and low-complexity analog TTD codebook
design that matches the performance of optimization-rooted
state-of-the-art approaches in large networks and exhibits
reasonable robustness to beam-squint at large bandwidths.
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