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Abstract—Ising problem is an NP-hard combinatorial op-
timization problem. Recently, networks of mutually coupled,
nonlinear, self-sustaining oscillators known as Oscillator Ising
Machines (OIMs) were shown to heuristically solve Ising prob-
lems. The phases of the oscillators in OIMs can be modeled
as systems of Ordinary Differential Equations (ODEs) known
as Generalized Kuramoto (Gen-K) models. In this paper, we
solve Gen-K ODE systems efficiently using cleverly designed
fixed point operations. To demonstrate this idea, we fabricated a
prototype chip containing 33 spins with programmable all-to-all
connectivity. We test this design using Multi-Input Multi-Output
decoding problems, and show that the OIM emulator achieves
near-optimal Symbol Error Rates (SER).

Index Terms—Ising, Kuramoto, oscillators, OIM, emulation,
fixed point, MIMO

I. INTRODUCTION

Ising problem is an NP-hard combinatorial optimization

problem [1, 2]. The objective is to minimize a cost function

with terms of the form Ji,jsisj , where Ji,j is a real number,

and si and sj are binary variables which can be either −1
or +1. Note that the ‘si’s are known as spins, and the cost

function is known as the Ising Hamiltonian.1

Recently, it was shown that networks of mutually coupled,

nonlinear, self-sustaining oscillators known as Oscillator Ising

Machines (OIMs) heuristically solve Ising problems [3]. OIMs

in fact minimize a Lyapunov function that is strongly related to

the Ising Hamiltonian of the couplings between the oscillators

[3].

A major hurdle to realize well performing Oscillator Ising

Machines is implementing programmable couplings that are

immune to variations of components. We circumvent this issue

by emulating OIMs digitally. It is known that the phases

of the oscillators in OIMs can be modeled as systems of

Ordinary Differential Equations (ODEs) known as Generalized

Kuramoto (Gen-K) models [3–5]. Thus, we emulate OIMs by

directly solving the underlying ODEs in hardware.

To demonstrate this idea, we taped-out a prototype in-

tegrated circuit with 33 spins and all-to-all programmable

connectivity in TSMC-65nm process. We test this chip on

Multi-Input Multi-Output (MIMO) decoding problems (which

have known mappings to equivalent Ising forms [6]), and show

that it achieves near-optimal Symbol Error Rates (SERs) [7].

The rest of the paper is organized as follows. In Section II,

we present techniques to efficiently solve Gen-K ODE systems

in hardware by exploiting fixed point operations. This is

followed by a description of the exact algorithm implemented

in the prototype integrated circuit (Section III). The layout

and the results of the tests on MIMO problems are provided

in Section IV. We conclude the paper in Section V.

1The Ising Hamiltonian is of the form (−1/2)
∑

i,j Ji,jsisj , where

the variables are the same as defined above. We assume that Ji,i = 0, and
Ji,j = Jj,i for all i, j.

II. EFFICIENTLY SOLVING GEN-K ODE SYSTEMS USING

FIXED POINT OPERATIONS

As stated in Section I, the phases of the oscillators in OIMs

can be modeled using Gen-K ODE systems. They are of the

form (i ∈ {1, 2, . . . , N})

dϕi(t)

dt
= −

N
∑

j=1

Ji,j · Fc

(

ϕi(t)− ϕj(t)
)

− Fs

(

ϕi(t)
)

. (1)

Here, ϕi(t) are the phases of the oscillators, and Ji,j are

elements of J, the coupling matrix of the spins.2 Moreover,

Fc

(

.
)

is a certain ‘coupling function’ that operates on the

differences of the phases, and Fs

(

.
)

is a suitably chosen ’syn-

chronization function’ that forces the phases to be binarized

(i.e., forces 2πϕi to be a multiple of π) [3]. For example,

Fc

(

ψ
)

≜ sin
(

2π · ψ
)

, and Fs

(

ϕ
)

≜ sin
(

2π · 2ϕ
)

.

We solve the above ODE system using a method called as

Forward Euler (FE) [8]. Given a time step parameter h, we

evaluate

ϕi ← ϕi −

N
∑

j=1

hJi,j · Fc

(

ϕi − ϕj
)

− hFs

(

ϕi
)

, (2)

for a suitably chosen number of iterations.3 To efficiently

solve the above equation, we define Fc

(

ψ
)

≜ +1 if (ψ mod
1) < 0.5, and −1 if (ψ mod 1) ≥ 0.5. Moreover, we

define Fs

(

ϕ
)

≜ −1 if (ϕ mod 0.5) < 0.25, and +1 if

(ϕ mod 0.5) ≥ 0.25.

The above functions can be easily evaluated using fixed

point formats [9]. Let ϕi in (2) be represented as an n-bit

number of the form 0 • b1b2 . . . bn, where the fixed point is

placed before the most significant bit (MSB) (i.e., b1). Note

that the decimal equivalent of the above form is
∑n

i=1 bi2
−i.

It ranges from 0 (when ∀i, bi = 0) to 1−1/2n (when ∀i, bi =
1). Hence, it is clear that the above fixed point format stores

(ϕi mod 1) with n bits of precision.

Let ψ ≜ ϕi − ϕj . Note that (ψ mod 1) = ((ϕi − ϕj) mod
1) = ((ϕi mod 1)− (ϕj mod 1)) mod 1. Thus, (ψ mod 1) is

merely the fixed point subtraction of the two phases. Moreover,

denoting the MSB of ψ as b1(ψ), it can be easily verified that

Fc

(

ϕi−ϕj
)

= Fc

(

ψ
)

= +1 if b1(ψ) = 0, and −1 if b1(ψ) =
1. The above can be extended to Fs

(

.
)

as well. Denoting the

penultimate MSB of ϕ as b2(ϕ), we have Fs

(

ϕ
)

= −1 if

b2(ϕ) = 0, and +1 if b2(ϕ) = 1. We can thus efficiently

evaluate the RHS of (2) using a fixed point format.

III. DESIGNING A CUSTOM INTEGRATED CIRCUIT TO

SOLVE GEN-K ODE SYSTEMS

In this section, we focus on designing an integrated circuit

to digitally emulate a 33-spin OIM system with all-to-all

2We assume that the diagonal entries of J are zero.
3Note that the RHS in (2) must be calculated for all i before the phases

are updated.
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Algorithm 1: Euler’s method implemented on the

prototype chip.

// The following pseudocode is run thrice concurrently (once per set).

// Let p ∈ {0, 1, 2} be the unique index of each set.

// Unless stated otherwise, all the variables are local to the set.

1 ϕ⃗set,p ← rand
(

N/3
)

// Initialize the phases of the set to random numbers

2 ϕ⃗set,q ← ϕ⃗set,p // ϕ⃗set,q holds the phases of Sq , initialized to ϕ⃗set,p

3 ϕ⃗next,p ← ϕ⃗set,p // ϕ⃗next,p holds the RHS of (2) for i ∈ Sp

4 t← 0 // Variable to keep track of time

5 while t < tstop do // Repeat until t reaches a predefined parameter tstop
6 for clk ∈ {0, 1, 2} do

// Note: one iteration of the loop executes in one clock in hardware.

7 ϕ⃗next,p ← ϕ⃗next,p + {Σ
(i)
j∈Sq

: i ∈ Sp}

// Note: the above command uses ϕ⃗set,p and ϕ⃗set,q

8 if clk ̸= 2 then // Computation of RHS of (2) is not yet complete

9 ϕ⃗set,q ← ϕ⃗set,q of S(p+1) mod 3

// Get the ‘next’ set of phases; it is not local to the pth set

10 else // RHS of (2) has been computed, result is available in ϕ⃗next,p

11 ϕ⃗set,p ← ϕ⃗next,p, ϕ⃗set,q ← ϕ⃗next,p // Store the phases

12 t← t + h // h is the time step parameter

connectivity. Essentially, we initialize the phases to random

numbers, then repeatedly evaluate (2) for many time steps.

Note that we distribute the computation required for one

time step over 3 clock cycles to save on die area. First, we

divide the N (= 33) phases into three sets S0, S1, and S2

with N/3 (= 11) phases each. By abusing the notation, (2)

can be rewritten as ϕi ← ϕi+Σ
(i)
j∈S0

+Σ
(i)
j∈S1

+Σ
(i)
j∈S2

, where

Σ
(i)
j∈Sq

are terms that couple ϕi to the phases of Sq .4 Thus, we

divide the coupling matrix into 9 blocks as shown in Fig. 1.

In each clock cycle, set Sp calculates Σ
(i)
j∈Sq

for all i ∈ Sp as

shown in Fig. 1. The above idea is concretized in Alg. 1. We

omit its detailed explanation for brevity.

IV. LAYOUT, AND MEASUREMENT RESULTS

The design described in the previous section was taped-out

in TSMC 65-nm process. The layout of the prototype chip is

shown in Fig. 2, it occupies an area of 1.5× 2.0 = 3mm2.

We evaluate the prototype chip using MIMO decod-

ing problems, generated as explained in [10]. Here, chan-

nels of closely spaced users are assumed to be correlated;

this is considered as a better approximation in real-world

scenarios than conventional Rayleigh Fading models [7].

4There are in fact (N − 1) coupling terms (since ∀i, Ji,i = 0) and 1
synchronization term in (2). However, we merely consider the synchronization
term to be the (i, i)th coupling term for the ease of exposition.
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Fig. 1: A map of the blocks

of J used in various clock

cycles. Fig. 2: The layout of the chip.

Fig. 3: SER vs SNR plots of

many MIMO decoders.

Fig. 3 shows SER vs Signal

to Noise Ratio (SNR) plots of

the OIM-emulator, as well as

other decoders such as Zero-

Forcing Equalization (ZF), Lin-

ear Minimum Mean Squared

Error (LMMSE), and sphere

decoder (an exact algorithm)

[7, 11].5 It is evident that the

OIM-emulator achieves near-

optimal SERs. Note that the

chip consumes approximately 300mW (at 120MHz clock)

when it is busy, and we spend about 120 µJ to ‘solve’ a given

MIMO decoding problem.

V. CONCLUSION

We presented a novel approach that digitally emulates

a programmable OIM using fixed point operations. Unlike

analog OIMs, this emulator is nearly immune to variation of

components and performs optimally. This prototype acts as a

baseline for future analog/digital OIM designs that might trade

off attributes such as quality of solutions, number of bits of

programmability, energy per solution, etc.

REFERENCES

[1] E. Ising, “Beitrag zur Theorie des Ferromagnetismus,” Zeitschrift für

Physik, vol. 31, no. 1, pp. 253–258, 1925.
[2] F. Barahona, “On the computational complexity of Ising spin glass

models,” J. of Phys. A: Math. and Gen., vol. 15, no. 10, p. 3241, 1982.
[3] T. Wang, L. Wu, P. Nobel, and J. Roychowdhury, “Solving combinatorial

optimisation problems using oscillator based Ising machines,” Natural

Computing, vol. 20, no. 2, pp. 287–306, 2021, DOI link.
[4] Y. Kuramoto, “Self-entrainment of a population of coupled non-linear

oscillators,” in International Symposium on Mathematical Problems in

Theoretical Physics. Springer, 1975, pp. 420–422.
[5] P. Bhansali and J. Roychowdhury, “Gen-Adler: The generalized Adler’s

equation for injection locking analysis in oscillators,” in Proc. IEEE

ASP-DAC, January 2009, pp. 522–227.
[6] M. Kim, D. Venturelli, and K. Jamieson, “Leveraging quantum annealing

for large MIMO processing in centralized radio access networks,” in
Proc. of the ACM Spc. Int. Grp. on Data Comm., Aug 2019, DOI Link.

[7] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. Boston:
McGraw Hill, 2008.

[8] K. E. Atkinson, An Introduction to Numerical Analysis, 2nd ed. New
York: John Wiley & Sons, 1989.

[9] C. Kormanyos, Real-Time C++: Efficient Object-Oriented and Template

Microcontroller Programming. Springer, 2018, DOI Link.
[10] M. Goutay, F. A. Aoudia, and J. Hoydis, “Deep Hypernetwork-based

MIMO Detection,” in 21st International Workshop on Signal Processing

Advances in Wireless Communications (SPAWC). IEEE, 2020, pp. 1–5.
[11] B. Hassibi and H. Vikalo, “On the expected complexity of sphere

decoding,” in Conf. Record of Thirty-Fifth Asilomar Conf. on Signals,

Systems and Computers, vol. 2. IEEE, 2001, pp. 1051–1055.

5A few important parameters of the emulator are: (1) N = 33, (2) ‘ϕ’s
and ‘Ji,j ’s are 24 bit registers (3) h = 1/26—assuming maxi,j Ji,j = 1,
(4) number of iterations of the while loop in Alg. 1 is 1024. Note that we

initially set Fs

(

ϕ
)

≜ 0 for the first (7/8) × 1024 = 896 iterations of the
while loop. Moreover, we repeat the emulation of Alg. 1 by reusing the final
phases of previous emulations as initial conditions; this whole process itself
is repeated multiple times with random initial conditions.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on December 10,2024 at 23:09:52 UTC from IEEE Xplore.  Restrictions apply. 


