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We present a MATLAB implementation of the symmetric rank-one (SC-SR1) method that solves trust-region
subproblems when a limited-memory symmetric rank-one (L-SR1) matrix is used in place of the true Hessian
matrix, which can be used for large-scale optimization. The method takes advantage of two shape-changing
norms [Burdakov et al. 2017; Burdakov and Yuan 2002] to decompose the trust-region subproblem into two
separate problems. Using one of the proposed norms, the resulting subproblems have closed-form solutions.
Meanwhile, using the other proposed norm, one of the resulting subproblems has a closed-form solution while
the other is easily solvable using techniques that exploit the structure of L-SR1 matrices. Numerical results
suggest that the SC-SR1 method is able to solve trust-region subproblems to high accuracy even in the so-
called “hard case” When integrated into a trust-region algorithm, extensive numerical experiments suggest
that the proposed algorithms perform well, when compared with widely used solvers, such as truncated
conjugate-gradients.
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1 INTRODUCTION

At each iteration of a trust-region method for minimizing a general nonconvex function f(x), the
so-called trust-region subproblem must be solved to obtain a step direction:

1
mini}gﬁze Qp) tgp+ EpTBp subject to ||p|| <6, (1)
peR”

where g £ Vf (xx), B is an approximation to V2 f (xx), § is a positive constant, and || - || is a given
norm. In this article, we describe a MATLAB implementation for solving the trust-region subprob-
lem (1) when B is a limited-memory symmetric rank-one (L-SR1) matrix approximation of
V2£(xx). In large-scale optimization, solving (1) represents the bulk of the computational effort
in trust-region methods (besides function and derivative evaluations). The norm used in Equa-
tion (1) not only defines the trust region shape but also determines the difficulty of solving each
subproblem.

The most widely used norm chosen to define the trust-region subproblem is the two-norm. One
reason for this choice of norm is that the necessary and sufficient conditions for a global solution
to the subproblem defined by the two-norm are well known [Gay 1981; Moré and Sorensen 1983;
Sorensen 1982]; many methods exploit these conditions to compute high-accuracy solutions to the
trust-region subproblem (see, e.g., Erway and Gill [2010], Erway et al. [2009], Erway and Marcia
[2014], Gould et al. [2010], Brust et al. [2017], and Moré and Sorensen [1983]). The infinity-norm is
sometimes used to define the subproblem; however, when B is indefinite, as can be the case when
B is a L-SR1 matrix, the subproblem is NP-hard [Murty and Kabadi 1987; Vavasis 1992]. For more
discussion on norms other than the infinity-norm we refer the reader to Conn et al. [2000].

In this article, we consider the trust-region subproblems defined by shape-changing norms orig-
inally proposed in Burdakov and Yuan [2002]. Generally speaking, shape-changing norms are
norms that depend on B; thus, in the quasi-Newton setting where the quasi-Newton matrix B is
updated each iteration, the shape of the trust region changes each iteration. One of the earliest ref-
erences to shape-changing norms is found in Goldfarb [1980] where a norm is implicitly defined by
the product of a permutation matrix and a unit lower triangular matrix that arise from a symmetric
indefinite factorization of B. Perhaps the most widely-used shape-changing norm is the “elliptic
norm” given by ||x|[4 £ x? Ax, where A is a positive-definite matrix (see, e.g., Conn et al. [2000]). A
well-known use of this norm is found in the Steihaug method [Steihaug 1983] and, more generally,
truncated preconditioned conjugate-gradients (CG) [Conn et al. 2000]; these methods reformu-
late a two-norm trust-region subproblem using an elliptic norm to maintain the property that the
iterates from preconditioned CG are increasing in norm. Other examples of shape-changing norms
include those defined by vectors in the span of B (see, e.g., Conn et al. [2000]).

The shape-changing norms proposed in Burdakov and Yuan [2002] and Burdakov et al. [2017]
have the advantage to allow one to break the trust-region subproblem into two separate sub-
problems. Using one of the proposed shape-changing norms, the solution of the subproblem
then has a closed-form solution. In the other proposed norm, one of the subproblems has a
closed-form solution while the other is easily solvable. The publicly available LMTR codes [Bur-
dakov et al. 2018] solve trust-region subproblems (1) defined by these shape-changing norms
and the limited-memory broyden-fletcher-goldfarb-shanno (L-BFGS) updates of B. To our
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knowledge, there are no other implementations for solving trust-region subproblems defined by
these shape-changing norms.

1.1 Overview of the Proposed Method

In this article, we develop a MATLAB implementation for solving trust-region (TR) subproblems
defined by the two shape-changing norms described in Burdakov and Yuan [2002] when L-SR1
approximations to the Hessian are used instead of L-BFGS approximations. For limited-memory
algorithms a re-scaling strategy (i.e., effectively re-initializing the Hessian approximation at each
iteration) is often important for the practical performance of the method. Yet, because the structure
of L-SR1 matrices can be exploited to reduce the memory usage even further when a constant
initialization is used (i.e., no re-scaling), we provide an option to chose between such strategies.
Moreover, our implementation enables the testing and addition of new solvers by swapping out the
respective TR subproblem algorithm. In this way, we conduct numerical experiments on large-scale
CUTEst problems [Gould et al. 2003], comparing the shape-changing methods to truncated CG and
an {;-norm based algorithm. The proposed method, called the shape-changing SR1 method (SC-
SR1), enables high-accuracy subproblem solutions by exploiting the structure of L-SR1 matrices.

This article is organized as follows: In Section 2, we review L-SR1 matrices, including the com-
pact representation for these matrices and a method to efficiently compute their eigenvalues and
a partial eigenbasis. In Section 3, we demonstrate how the shape-changing norms decouple the
original trust-region subproblem into two problems and describe the proposed solver for each
subproblem. Finally, for each shape-changing norm, we show how to construct a global solution
to Equation (1) from the solutions of the two decoupled subproblems. Optimality conditions are
presented for each of these decoupled subproblems in Section 4. In Section 5, we demonstrate the
accuracy of the proposed solvers and compare them on a collection of large-scale optimization
problems. Concluding remarks can be found in Section 6.

1.2 Notation

In this article, the identity matrix of dimension d is denoted by I; = [e;] - - - |e4], and depending
on the context the subscript d may be suppressed. Integer k > 0 represents the iteration index.
Bold uppercase symbols represent matrices while lowercase symbols represent vectors. Lowercase
Greek letters represent scalars.

2 L-SR1 MATRICES

Suppose f : R"™ — R is a smooth objective function and {x;},i =0, ...k, is a sequence of iterates,
then the symmetric rank-one (SR1) matrix is defined using pairs (s;, y;), where

Si = Xi+1 —X; and yi = Vf(Xi+1) - Vf(Xi),

and V f denotes the gradient of f. Specifically, given an initial matrix By, B, is defined recursively

as

(yx =~ Bisi)(yx — Brsi)”
(V& — Brsk) sk

Bt B By + (2)
provided (yx — Bisk)Tsi # 0. In practice, By = B(()k) is often taken to be a scalar multiple of
the identity matrix that re-scales By each iteration; for the duration of this article we assume
that By = yxL yx € R. L-SRimatrices store and make use of only the m most-recently computed
pairs {(s;,yi)}, where m < n (for example, Byrd et al. [1994] suggest m € [3, 7]). For simplicity
of notation, let us consider the case when k > m + 1 (so that enough pairs have been stored
to perform m updates) and when the update (2) is well defined for all k (i.e., no division by zero).
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Otherwise, all of our discussion is still accurate, though the number of pairs involved in computing
the approximation would be less than m.

The SR1 update is a member of the Broyden class of updates (see, e.g., Nocedal and Wright [2006]).
Similarly to widely used updates such as the broyden-fletcher-goldfarb-shanno (BFGS) and the
davidon-fletcher-powell (DFP) updates, this update can yield indefinite matrices. In practice it
is common to impose the curvature condition on BFGS and DFP updates, ensuring positive definite
matrices [Nocedal and Wright 2006], even though this is not absolutely necessary in a trust-region
algorithm. For SR1 matrices there does not appear to exist a similar condition that guarantees pos-
itive definiteness, which means that the updates are typically defined so that they can incorpo-
rate negative curvature information without restrictions. In fact, the SR1 update has convergence
properties superior to other widely used positive-definite quasi-Newton matrices such as BFGS;
in particular, Conn et al. [1991] give conditions under which the SR1 update formula generates a
sequence of matrices that converge to the true Hessian. (For more background on the SR1 update
formula, see, e.g., Griva et al. [2009], Kelley and Sachs [1998], Khalfan et al. [1993], Nocedal and
Wright [2006], Sun and Yuan [2006], and Wolkowicz [1994].)

2.1 Compact Representation

The compact representation of SR1 matrices can be used to compute the eigenvalues and a partial
eigenbasis of these matrices. In this section, we review the compact formulation of SR1 matrices.
To begin, we define the following matrices:

Sk
Yk

[so s1 82 -~ sp_q] € R,
[Yo yi y2 =+ vk ] € RPK

The matrix SzYk € R**k can be written as the sum of the following three matrices:

>

SzYk =Lg + Dr + Ry,

where Ly is strictly lower triangular, Dy is diagonal, and Ry is strictly upper triangular. Then, Bx
can be written as
Bi = yil + WM ¥, ®)

where Wi € R™* and My € R**_In particular, ¥} and My, are given by
-1
Y = Yr—vSk and My = (Dk + L+ LZ - ykS,fSk) . (4)

The right side of Equation (3) is the compact representation of By; this representation is due to
Byrd et al. [1994, Theorem 5.1]. Since we assume that updates are made when the SR1 matrix By
is well defined, My exists [Byrd et al. 1994, Theorem 5.1]. For notational simplicity, we assume Wy
has full column rank; when W does not have full column rank, we refer to Burdakov et al. [2017]
for the modifications needed for computing the eigenvalues, which we also review in Section 2.2.
Notice that the computation of My is computationally admissible, since it is a very small symmetric
square matrix.

2.2 Limited-Memory Updating

For large optimization problems, limited-memory approaches store only a small number of vectors
to define the L-SR1 representations. Depending on the initialization strategy, specifically whether
Yk varies between iterations or is constant (yx = y) the matrices in Reference (4) can be effec-
tively stored and updated. We will describe these techniques in subsequent sections. By setting
the parameter m < n limited-memory techniques enable inexpensive computations and replace
or insert one column at each iteration in Y, and Sk. Let an underline below a matrix represent the
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matrix with its first column removed. That is, S, represents Sy without its first column. With this
notation, a column update of a matrix, say, S, by a vector sy is defined as follows:

[Sksk] ifk<m

collUpdate (Si. 1) = {[ S sk] ifk>m’
2k -

This column update can be implemented efficiently, without copying large amounts of memory,
by appropriately updating a vector that stores index information (“mldx”). A function to do so is
described in Procedure 1:

PROCEDURE 1: Limited-memory column updating of S;. by the vector s

Function: [S;,mldx]=colUpdate(Sg, s, mldx, m, k);
1: if k = 0 then
2:  mldx « zeros(m, 1);

: end if

: if k < m then

mldx(k + 1) «— k+ 1;

Sk, mIdx(k + 1)) « sg;

: else if m < k then

km < mldx(1);

mldx(1 : (m — 1)) « mldx(2 : m);

10:  mldx(m) « kpm;

11:  Sp(:, mIdx(m)) « si;

12: end if

13: return Sy, mldx;

R e A A

Note that this procedure does not copy (or overwrite) large blocks of memory as would com-
mands such as {Sg(:,1 : (m — 1)) < Sg(:,2 : m); Sg(:, m) « si} but instead accesses the relevant
locations using a stored vector of indices. Certain matrix products can also be efficiently updated.
As such, the product SzYk does not have to be re-computed from scratch. To describe the matrix
product updating mechanism, let an overline above a matrix represent the matrix with its first row

removed. That is, SIZYk represents S,fYk without its first row. With this notation, a product update
of, say, SzYk, by matrices Sk, Y and vectors s, y is defined as

SzYk Szyk
s,fYk szyk
(SZYk) SiVk

T T
stk S Yk

l ifk<m
prodUpdate (SzYk, Sks Yis Sks Yk) 2

ifk>m

This product update can be implemented without recomputing potentially large multiplications
by storing previous products and information about the column order in Sy and Y. In particular,
updating the matrix product is based on storing SzYk, Sk, Yk and the vector “mldx” Although a
different order is possible, we apply the product update after column updates of Sg, Yi have been
done previously. In such a situation the vector, which stores the appropriate index information
(“mldx”) is defined at such a point.

Note that such a product update is computationally much more efficient than recomputing the
product from scratch. Specifically, when m < k, the direct product SzYk is done at O(m?n) multi-
plications. However, Procedure 2 does this update with O(2mn) multiplications in lines 6 and 7, by
reusing previous values from line 5. Moreover, when the product is symmetric, e.g., Procedure 2 is
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PROCEDURE 2: Limited-memory product update SzYk (Sk, Yk are column updates to Sg, Yi)

Function: [SzYk]:prodUpdate(Sng, Sk, Yi, sk, Yk, mldx, m, k);
1: if kK < m then
20 SPYr(L:(k+1),k+1) « Sp(:mldx(1: (k + 1)) yg;
3 SIYp(k+1,1: k) — s Y, mldx(1 : k));
4: else if m < k then
50 S Yp(1:(m=1),1:(m—1)) « S Y(2:m,2:m);
6: SzYk(l s m,m) — Si(, mIdx(1 : m)Tyy;
7 SEYi(m, 15 (m=1)) — s{ Y (:, mldx(1 : (m = 1)));
8: end if
9: return SzYk;

invoked by prodUpdate(Ssz, Sk, Sk Sk, Sk, mldx, m, k), then Si(:, mIdx(1 : m)"sj can be stored in
line 6 and reused in line 7 (thus only one matrix-vector product is needed, instead of two). Since
limited-memory updating of the L-SR1 matrices varies for the chosen initialization strategy, we
describe the cases of non-constant initializations yx and constant y; = y next.

2.2.1 Limited-memory Updating of Equation (4) Using Non-constant y,. When y; varies for ev-
ery iteration, Wy is best implicitly represented by storing Sy and Yy instead of explicitly forming it
(forming W explicitly incurs additional O(mn) memory locations in Wi = Yj — yxSk). By storing
the previous m pairs {s;, yi}fz_kl_m in the limited-memory matrices Sy = [ Sg—pm - Sk-1 | € R™™
and Yi = [ Yk-m - Yk-1 | € R™™ the matrix-vector product ‘I’,Zg (for a vector g) is done as

Yig=Yig- 1 (Sig) :

2.2.2  Limited-memory Updating of Equation (4) Using Constantyy = y. When y; = y is constant,
then Y; and Sy do not have to be stored separately. Instead the limited-memory method stores m
previous vectors {g; =y; — Js; fz_kl_m, concatenated in the matrix

Vi = [lpkfm l/"kfl] € R™™,

Matrix vector products are directly computed as ‘Pzgk. Subsequently, My from Equation (4) can
be updated efficiently by noting that

M e = (D + L + L] - 78IS ) ex = Wlsi.

Because of these simplifications an L-SR1 algorithm with constant initialization strategy can be
implemented with about half the memory footprint (storing only W as opposed to Y, Sy (and pre-
vious small products)). However, often the ability to rescale the computations via a non-constant
Yk parameter can be advantageous in solving large-scale optimization problems. We provide an op-
tion to choose between constant or non-constant initialization strategies in our implementations.

2.3 Eigenvalues

In this subsection, we demonstrate how the eigenvalues and a partial eigenbasis can be computed
for SR1 matrices. In general, this derivation can be done for any limited-memory quasi-Newton
matrix that admits a compact representation; in particular, it can be done for any member of the
Broyden convex class [Brust 2018; Brust et al. 2019; Erway and Marcia 2015]. This discussion is
based on Burdakov et al. [2017].
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Consider the problem of computing the eigenvalues of B, which is assumed to be an L-SR1
matrix, obtained from performing m rank-one updates to By = yI. For notational simplicity, we
drop subscripts and consider the compact representation of B:

B =yl+¥M¥Y’. ®)

The “thin” QR factorization of ¥ can be written as ¥ = QR, where Q € R™™ and R € R™™ is
invertible, because, as it was assumed above, ¥ has full column rank. Then

B = yI+ QRMRT Q7. (6)

The matrix RMRT € R™ ™ is of a relatively small size, and thus, it is computationally inexpensive
to compute its spectral decomposition. We define the spectral decomposition of RMR” as UAUT,
where U € R™™ is an orthogonal matrix whose columns are made up of eigenvectors of RMR”
and A = diag(il, o Am)isa diagonal matrix whose entries are the associated eigenvalues.
Thus,
B = yI + QUAUTQT. (7)
Since both Q and U have orthonormal columns, P £ QU € R™™ also has orthonormal columns.
Let P, denote the matrix whose columns form an orthonormal basis for (PH)l. Thus, the spectral
decomposition of B is defined as B = PAYPT, where
[A 0 ] ’ @®)

0 ylhom

>

P2 [P; P.| and A,

with A, = diag(Ay,...,A,) and A = diag(Ay, ..., Ap) = A +yl € R™™,

We emphasize three important properties of the eigendecomposition. First, all eigenvalues of B
are explicitly obtained and represented by A, . Second, if desired, then one need only compute the
m eigenvectors of B represented by P||. In particular, since ¥ = QR, then

P =QU = ¥R 'U. 9)

If P needs to only be available to compute matrix-vector products, then one can avoid explic-
itly forming P by storing ¥, R, and U. Third, the eigenvalues given by the parameter y can be
interpreted as an estimate of the curvature of f in the space spanned by the columns of P .

While there is no reason to assume the function f has negative curvature throughout the entire
subspace P, in this article, we consider the case y < 0 for the sake of completeness.

For the duration of this article, we assume the first m eigenvalues in A, are ordered in increasing
values, i.e., A = diag(Ay,...,A;,) where A1 < Ay < ... < A, and that r is the multiplicity of A4,
ie, Ay = Ay =--- =1, <Ay For details on updating this partial spectral decomposition when a
new quasi-Newton pair is computed, see Erway and Marcia [2015].

2.4 Implementation

In the above presentation, the QR factorization was used for ease of readability to find a partial
spectral decomposition of B. However, there are other approaches that may be better suited for
different applications. An alternative approach to computing the eigenvalues of B is presented
in Lu [1996] that replaces the QR factorization of ¥ with the SVD and an eigendecomposition of a
m X m matrix and ¢ X t matrix, respectively, where t < m. (For more details, see Lu [1996].)
However, experiments in Brust et al. [2019] indicate that the QR version of this computation out-
performs the SVD approach. When W7 W is positive definite (i.e., ¥ is full rank), the Cholesky
factorization of WT¥ = RTR provides the same R needed to form P in Equation (9) [Burdakov
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et al. 2017]. Since W is not explicitly formed when a non-constant initialization y = yi is used (in
this case W is defined by storing Y, S) the product matrix W7 W is represented by

viy = YTy — 2yYTs + y%sTs (10)

(in Equation (10) the matrices Y'Y, Y'S and S”S are stored and updated). In contrast, with a con-
stant initialization y; = j the product W7 ¥ can be directly updated.

For the algorithm proposed in this article, it is necessary to be able to compute the eigenvalues
of B and to be able to compute products with P||. However, in our application, it could be the case
that ¥ is not full rank; in this case, it is preferable to use the LDLT decomposition [Golub and Van
Loan 1996] of T W as proposed in Burdakov et al. [2017]. Specifically,

v i1 = LDLY,

where IT is a permutation matrix. If ¥ is rank deficient, i.e., rank(¥) = r < m, then at least one
diagonal entry of D is zero. (In computer arithmetic, it will be relatively small.) In the proposed
algorithm, we use the following criteria to determine whether entries in D are sufficiently large:
The ith entry of D, i.e., d;, is sufficiently large provided that

d; > 1078 x [T w7 wI1];;. (11)

Now, let J to be the set of indices that satisfy Equation (11), i.e., r = |J|. Furthermore, define D+ to
be the matrix D having removed any rows and columns indexed by an element not in J and L; to
be the matrix L having removed columns indexed by an element not in J. Then,

YW ~ IL;D;L{T" = IR{RIT",
where R+ £ ‘/DTLZ € R™™_ Furthermore,
B~ yI+Q:R;JII'MIRI Q]  with Q; 2 (WI); R;' € R™, (12)

where (WII). is the matrix WIT having deleted any columns indexed by an element not in J, and
R; € R™ is the matrix R; having removed columns indexed by elements not in J. Notice that the
matrix RTHTMHRz € R"™" is full rank.

Thus, the eigenvalue decomposition UAU” is now computed not for RMR as in Section 2.3,
but for R{II" MIIR: . Furthermore, P} in Equation (9) is computed as

P| = Q:U = (¥II); R;'U (13)
when a constant initialization is used (since ¥ is explicitly formed), and as
P =Q;U = (YI); R;'U -y (SI); R;'U (14)

when a non-constant initialization is used.

Algorithm 1 details the computation of the elements needed to form Py, using the LDL” decom-
position. It produces A, Ry, U, and IL. There are several pre-processing and post-processing steps
in this algorithm. Namely, lines 7 and 9 are used to remove any spurious complex round-off error,
line 10 is to order the eigenvalues and associated eigenvectors, and line 12 sets any small eigen-
value (in absolute value) to zero. An alternative to forming and storing R; is to maintain R; and
the index set J. Moreover, since it is typically more efficient to update the product Y7 ¥ instead
of forming it from scratch, the argument “¥ vV ¥7¥” is used to enable passing either of the two
inputs, depending on the context.
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ALGORITHM 1: Computing R;, A, U, and IT using the LDLT decomposition

Function: [Ry, A, U, I, J]=ComputeSpectral(¥ v ¥7¥, M1, y, 7);
1: Compute the LDLT decomposition of W7 W and store the factors L and D matrices, and store II (as a
vector with the permutation information);
: Find the indices of elements of D that are sufficiently large using (11) and store as J;
: Form D+ by storing the rows and columns of D corresponding to indices of J;
: Form L+ by storing the columns of L corresponding the indices of J;
: R—;- — \/D_IL{’
: T RyIT MIIRY;
. Compute the spectral decomposition UAUT of (T + T7)/2;
: Form Ry by storing the columns of Ry corresponding to columns of J;
. A — real(A)

O 0 N TR W

10: Order the entries in A from low to high and rearrange the columns of U accordingly to maintain the
spectral decomposition of (T + T)/2;

1: A—A+ vk

12: if |A;i| < 7 for any i then

13: Ajj « 0;

14: end if

15: return Ry, A, U, IT;

The output of Algorithm 1 includes the factors of P (see Equation (13)), i.e., Ry, U, and II, as
well as J. For the method proposed in Section 3, products with P| are computed as a sequence of
explicit matrix-vector products with the factors of P||. In practice, the permutation matrix IT is not
stored explicitly; instead, the permutation is applied implicitly using a vector that maintains the
order of the columns after the permutation matrix is applied. Thus, products with P|| are computed
using only matrix-vector products together with a rearranging of columns.

3 PROPOSED METHOD

The proposed method is able to solve the L-SR1 trust-region subproblem to high accuracy, even
when B is indefinite. The method makes use of the eigenvalues of B and the factors of P|. To
describe the method, we first transform the trust-region subproblem (1) so that the quadratic ob-
jective function becomes separable. Then, we describe the shape-changing norms proposed in
Burdakov and Yuan [2002] and Burdakov et al. [2017] that decouples the separable problem into
two minimization problems, one of which has a closed-form solution while the other can be solved
very efficiently. Finally, we show how these solutions can be used to construct a solution to the
original trust-region subproblem.

3.1 Transforming the Trust-region Subproblem

Let B = PA,P” be the eigendecomposition of B described in Section 2.2. Letting v = P”p and
gp = PTg, the objective function Q(p) in Equation (1) can be written as a function of v:

1 1
Q(p)=g'p+ P Bp=gpv+ oV AV Eq(v).
With P = [P” P l], we partition v and gp as follows:

M
Vi

PTp
vV = PTp = [ ] =
P%p

e =8 ]
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where v|,g| € R™ and v,,g, € R". Then

_ o STl VI L Y[or T]|A V|
qiv) = [g” gJ_] v +2 [V“ VJ_] YInm] VJ_]
1
= g”v” +gIvL - (V”AVH +ylvell )
= qy(vy) +qu (VL), (15)

where )
A A y
g1 (vi) = gvi+ ZvjAvy and qu(vi) 2 give+ S lvall”.
Thus, the trust-region subproblem (1) can be expressed as

migitnize q(v) = {qy (v) +qL (v} (16)

Note that the function g(v) is now separable in v| and v,. To completely decouple Equation
(16) into two minimization problems, we use a shape-changing norm so that the norm constraint
|[Pv]| < 6 decouples into separate constraints, one involving v| and the other involving v .

3.2 Shape-changing Norms

Consider the following shape-changing norms proposed in Burdakov and Yuan [2002] and Bur-
dakov et al. [2017]:

>

Iplipz 2 masx (P pllz. IPTpllz) = max (I1vyls vsll) (17)

A

& max (|IP] plles P plz) = max (vl IV ]1z) (18)

We refer to them as the (P, 2) and the (P, o) norms, respectively. Since p = Pv, the trust-region
constraint in Equation (16) can be expressed in these norms as

[[Pvlp2 <6 if and only if [lvyll. £ éand|[vi |2 <6,
[IPV]lp,c0 < & if and only if IVillo < 8 and [[vi]lz < 6.
Thus, from Equation (16), the trust-region subproblem is given for the (P, 2) norm by

minimize ¢ (v) = minimize q (v|) + mlmmlze qL(vy), (19)
[IPvllp,2 <8 lvyllz<8 I tvi) lvellz<

and using the (P, c0) norm it is given by

minimize q(v) = minimize g (v)) + minimize g, (v,). (20)
[[Pv]lp,e0 <& vy llo <& villz<é

As shown in Burdakov et al. [2017], these norms are equivalent to the two-norm, i.e.,

Lol < lpllez < ol
—IIPll2 = Plir,2 = |[Pll2
v
1
— < < .
el Ipls

Note that the latter equivalence factor depends on the number of stored quasi-Newton pairs m and
not on the number of variables (n).

Notice that the shape-changing norms do not place equal value on the two subspaces, since the
region defined by the subspaces is of different size and shape in each of them. However, because
of norm equivalence, the shape-changing region insignificantly differs from the region defined by
the two-norm, the most commonly-used choice of norm.

We now show how to solve the decoupled subproblems.
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3.3 Solving for the Optimal v’
The subproblem

minimize ¢, (v.)=glv, + X||VJ_||§ (21)
Ivillz<8 2

appears in both Equations (19) and (20); its optimal solution can be computed by formula. For the

quadratic subproblem (21) the solution v’ must satisfy the following optimality conditions found

in Gay [1981], Moré and Sorensen [1983], and Sorensen [1982] associated with Equation (21): For

some o € RY,

(y +o7)vi =—g., (22a)

o (V4 1l~ 8) = 0, (22b)
vl <6, (220)

y+0l >0 (22d)

Note that the optimality conditions are satisfied by (v¥, o) given by

—%gl ify >0and |g,ll, <dlyl.
vl =4{du ify <0and|lg.]l2 =0, (23)
—”g%”zg . otherwise,
and
. 0 ify >0and |lg.|l, < 6lyl,
L= leall . ’ (24)
=t oy otherwise,

where u € R"™™ is any unit vector with respect to the two-norm.

3.4 Solving for the Optimal VT‘

In this section, we detail how to solve for the optimal v*“‘ when either the (P, c0)-norm or the (P, 2)-
norm is used to define the trust-region subproblem.

(P, 0)-norm solution. If the shape-changing (P, 0)-norm is used in Equation (16), then the sub-
problem in vy is

1
L T T
minimize gy (v|) =g, v) + 2V Avy. (25)
llvill <o

The solution to this problem is computed by separately minimizing m scalar quadratic problems
of the form

o A 2 .
minimize  q).i([vy) = el il + 5 ([wily) . 1<i<m, (26)

The minimizer depends on the convexity of q| ;, i.e., the sign of A;. The solution to Equation (26)
is given as follows:

—[g+9i if [g+9i <8and A; >0,
c if [g”]i =0,1; =0,
[Vidi = Y —sen([gy] )8 if [gy], %0, A =0, (27)
+6 if [g”]i =0, A; <0,
__9 ;
TeT ] [gH]i otherwise,
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where ¢ is any real number in [-§, §] and “sgn” denotes the signum function (see Burdakov et al.
[2017] for details).

(P, 2)-norm solution: If the shape-changing (P, 2)-norm is used in Equation (16), then the sub-
problem in v is
1
o T T
minimize Vi) =g v+ -vyAvy. (28)
inimize g (Vi) = gy + 5 vy AV

%

Il
1983; Sorensen 1982] associated with Equation (28): For some ai‘ € R",

The solution vj must satisfy the following optimality conditions [Gay 1981; Moré and Sorensen

(A + O'lTI)VTl =-g|, (29a)

ai (Ivjlle = 8) = o, (290)
vyl <6, (29¢)
Ai+oj20 for1<i<m. (29d)

A solution to the optimality conditions (29a)-(29d) can be computed using the method found
in Brust et al. [2017]. For completeness, we outline the method here; this method depends on the
sign of A;. Throughout these cases, we make use of the expression of v as a function of o). That
is, from the first optimality condition (29a), we write

vy (o) == (A+oyD) " gy (30)

with o # —A; for 1 <i < m.

Case 1 (A; > 0). When A; > 0, the unconstrained minimizer is computed (setting ol’l‘ =0):

v (0) = —A""gy. (31)

If v||(0) is feasible, i.e., [|v) (0) |l2 < J, then vl*| = v||(0) is the global minimizer; otherwise, aﬁ is the
solution to the secular equation (35) (discussed below). The minimizer to the problem (28) is then
given by

VT‘ = - (A + O'lTI)_l g (32)

Case 2 (A, = 0). If g|| is in the range of A, i.e,, [g)]; = 0 for 1 < i < r, then set o = 0 and let
vy (0) = —ATgy,
where T denotes the pseudo-inverse. If ||v)(0)||; < 6, then
vi = v (0)=-A'g
satisfies all optimality conditions (with O"T = 0). Otherwise, i.e., if either [g]; # 0 for some 1 < i <

ror ||A+g|| |2 > &, then V’ﬁ is computed using Equation (32), where O'IT solves the secular equation
in Equation (35) (discussed below).

Case 3 (A; < 0): If g is in the range of A — 4L, i.e,, [g)]; = 0 for 1 < i < r, then we set o] = —4;
and

vi () =-(A-AD g
If [|v(=A1)llz < 6, then the solution is given by

V’ﬁ =v|(=A1) + aey, (33)
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where a = /62 — ||lv(—=A1)]|. (This case is referred to as the “hard case” [Conn et al. 2000; Moré

and Sorensen 1983].) Note that Vl*| satisfies the first optimality condition (29a):
(A - All) VTl = (A - /111) (V|| (—/11) + 0(61) = -8
The second optimality condition (29b) is satisfied by observing that
Ivill; = vy (=205 + &® = 6%
Finally, since cfﬁ‘ = —A; > 0 the other optimality conditions are also satisfied.

However, if [g)]; # 0 for some 1 < i < r or [|[(A - All)+g|| |2 > &, then Vl*| is computed using

Equation (32), where o) solves the secular equation (35).

The secular equation. We now summarize how to find a solution of the so-called secular equation.
Note that from Equation (30),

B N
vy (ol ;(Aiw”)f

If we combine the terms above that correspond to the same eigenvalues and remove the terms
with zero numerators, then for oy # —A;, we have

¢ =2
a’;
Iviopll; = ), ——.
2 Z:; (i + o))?
where a; # 0 fori = 1,...,¢ and A; are distinct eigenvalues of B with A <Ay < -+ < Ap. Next,
we define the function
1 1 _
-3 ifo #—-A; wherel1 <i<¢
5
o1 (o) =9 NS (di +0y)? (34)
! therwi
—-= otherwise.
1)
From the optimality conditions (29b) and (29d), if Ul”l‘ # 0, then UIT solves the secular equation
$) (o) =0, (35)

with o] > max{0,—4;}. Note that ¢ is monotonically increasing and concave on the interval
[-A4, 00); thus, with a judicious choice of initial O'ﬁ, Newton’s method can be used to efficiently
compute oﬁ in Equation (35) (see Brust et al. [2017]).

More details on the solution method for subproblem (28) are given in Brust et al. [2017].

3.5 Computing p*
Given v* = [VT| v* ], the solution to the trust-region subproblem (1) using either the (P, 2) or the
(P, 00) norms is

l:f’< =Pv' = P”VTl + PJ_Vj_. (36)
(Recall that using either of the two norms generates the same v’ but different VTl.) It remains to

show how to form p* in Equation (36). Matrix-vector products involving P are possible using
Equation (13) or Equation (14), and thus PHV’ﬂ can be computed; however, an explicit formula
to compute products P, is not available. To compute the second term, P, v’}, we observe that
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v%, as given in Equation (23), is a multiple of either g, = PIg or a vector u with unit length,
PIC,’
IPTe; ll2
i € {1,2,...,k + 2} is the first index such that ||PTe;||, # 0. (Such an e; exists, since rank(P,) =

n — m.) Thus, we obtain

depending on the sign of y and the magnitude of g, . In the latter case, define u = , where

p =P (VTI - Pﬁw*) +w, (37)
where
g ify>o0and flg.l, <yl
w' = mei ify <0and|g.|l2 =0, (38)

- ”;+”2 g  otherwise.

Algorithm 2 summarizes the computation of w*.

ALGORITHM 2: Computing w*

Function: [w”, f5, hasBeta]=ComputeW(g,d,y, [|gLll2.TL, ¥, Ry, U, 7, [varargin = {S,Y}]);
1: if y > 0and ||g. ||z < 6y then
22 f « —(1/y), hasBeta « 1;
3w e fg
4: elseif y < 0and|/g |2 < 7 then
5.  Find the first index i such that ||PJT_ei ll2 # 0;
6:  f « 0, hasBeta « 0;
7
8
9

w* — (§/IIPLejll2)e;:
. else
B — ~(6/l1g. |l2), hasBeta — 1;
10:  w* « fg;
11: end if
12: return w*;

The quantities ||g, ||, and ||PIe,- ||2 are computed using the orthogonality of P, which implies

2
leill; + lg.lI? = llgll?. and [IP]esl}? + [IPTes||? = 1. (39)

Then ||g. [l2 = +/llgll? - llg)|I? and [|PTe;|l, = /1 - ||Pﬁei||§. Note that v*_is never explicitly com-

puted. Since ¥ is either explicitly computed when a constant initialization is used or represented
through S and Y, the optional input [varargin = {S, Y}] can be used to pass S, Y if ¥ is represented
implicitly.

4 THE PROPOSED ALGORITHMS

In this section, we summarize Section 3 in two algorithms that solve the trust-region subproblem
using the (P, o) and the (P, 2) norms. The required inputs depend on the initialization strategy
and often include g, S, Y, y, and §, which define the trust-region subproblem (including the L-SR1
matrix). The input 7 is a small positive number used as a tolerance. The output of each algorithm is
p”, the solution to the trust-region subproblem in the given shape-changing norm. In Algorithm 3,
we detail the algorithm for solving Equation (1) using the (P, c0) norm to define the subproblem;
Algorithm 4 solves the subproblem using the (P, 2) norm.

Both algorithms accept either the matrices that hold the quasi-Newton pairs, S and Y, or factors
for the compact formulation ¥ and M™!. To reflect this option, the second and third input parame-
ters are labeled “S vV ¥” and “Y V M~!” in both algorithms. If the inputs are the quasi-Newton pairs
S,Y, then the input parameter flag must be “0,” and then factors for the compact formulation are
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computed; if the inputs are factors for the compact formulation, flag must be “1,” and then ¥ and
M~ are set to the second and third inputs. Another option is to pass the product ¥ ¥ and the
matrix M~ along with S and Y. This can be particularly advantageous when the matrix ¥ ¥ is
updated, instead of recomputed (by using, e.g., Procedure 2).

ALGORITHM 3: The SC-SR1 algorithm for the shape-changing (P, c0) norm

Function: [p*]=sc_sr1_infty(g, SV ¥, Y Vv M y, 6, flag, [varargin = {¥7¥, M~1}])
1: Pick r suchthat0 <7 < 1;
2: if flag= 0 then

3 S—SvW¥andY <« YVML

4 if isempty(varargin) then

5: Compute ¥ and M~! as in (4)

6

7

8

9

else
¥ v ¥TY  varargin{1} and M~! « varargin{2};
end if
. else
100 YeSVEM!e—yYvMmMT
11: end if
12: [Ry, A, U, I, J]=ComputeSpectral(¥ v vy M1, Y 0);
13: m«|J|;
14: g« Pﬂg using (13);

15: [lgLll < llglZ = llgyll%

16: if ||g. || < 7 then

172 lgell < 0;

18: end if

19: fori=1tomdo

20:

21: if |[g“]l| <6 |[A]ii| and [A]ii > 7 then
22: [vli < —lgyli/[Aliis

23:  elseif [[g)]i| < 7 and [[A];;| < 7 then
24: [V”], — 5/2;

25:  elseif [[g)];| > r and [[A];;]| < r then
26: [vli < —sgn ([gn]i) 8;

27:  elseif [[g)]i| < 7 and [A];; < —7 then
28: [V”]i «— 6

29:  else

o vyl e = (6/]lgylil) Ley I

31:  endif

32: end for

33: [w",f,hasBeta]=ComputeW(g,d, v, llgL ll2, IL, ¥, Ry, U, 7, [varargin = {S, Y}]);
34: if hasBeta = 1 then

35 p* e Py(v - fgp+w

36: else

37: p* — P”(V” - Pﬁw*) +w*

38: end if

39: return p*

The computation of p* in both Algorithms 3 and 4 is performed as in Equation (37) using two
matrix-vector products with P‘f and Py, respectively, to avoid matrix-matrix products. Products

with P are done using the factors ¥, R, and U (see Section 2.3).
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ALGORITHM 4: The SC-SR1 algorithm for the shape-changing (P, 2) norm

Function: [p*]=sc_sr1_2(g, SV ¥, YV M7, y, 8, flag, [varargin = {¥T¥, M~1}])

1:
2:

45:

Pick 7 such that 0 < 7 < 1;
if flag= 0 then
Se—SVv¥andY < YVMI
if isempty(varargin) then
Compute ¥ and M™! as in (4)
else
¥ v ¥TY  varargin{1} and M~! « varargin{2};
end if

: else

Ye—SV¥,M!e—YVMY

: end if
¢ [Ry, A, U, T1, J]=ComputeSpectral(¥ v ¥7¥, M1, y, 7);

: g < P gusing (13), and llg. || < /llgl} - ligy 1% ;

: if ||g. || < 7 then

llgll < 0;

: end if
: if [A];; > 7 then

if [[A™'g) |l < S then
o < 0;
else
Use Newton’s method with oy = 0 to find oy, a solution to (30);
end if .
v == (Z+ol) g

: elseif |[A];1| < 7 then

Define r to be the first i such that |A;;| > 7;
if |g;i| < rforl <i <rand ||ATgH || < 6 then
o 0;
v« —ATg);
else
& =max;([g)li/d — Aii);
Use Newton’s method with oy = & to find oy, a solution to (30);
-1
v« = (A+o]) g
end if

: else

Define r to be the first i such that |[A];; | > 7;
if |g;i| < rfor1 <i <r then
o = ~[Aln, v (A= [A]uD)' g;;
if ||v]| < § then
@ — 5= IV
V| =V + aey, where e, is the first standard basis vector;
else
6 — max;([gl:/6 — [Alis);
Use Newton’s method with oy = max(&, 0) to find oy, a solution to (30);
-1
v == (A+ol) g
end if
else
6 «— max;([g)l:/6 — [Alis);
Use Newton’s method with oy = max(&, 0) to find o}, a solution to (30);
v — —(A+o D)7 g;
end if

: end if
: [w*,p.hasBeta]=ComputeW(g, &, y, llg.ll2. I, ¥, Ry, U, 7, [varargin = {S, Y}]);
: if hasBeta = 1 then

p* — Py(vy - fgp +w

: else

P« Py(v - Pﬁ‘w*) +w*

: end if
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Besides the optional arguments, the MATLAB implementation of both algorithms have an addi-
tional input and output variable. The additional input variable is a verbosity setting; the additional
output variable is a flag that reveals whether there were any detected runtime errors.

As described in Section 2.2 the limited-memory updating techniques vary with the choice of

2
initialization strategy Bf)k) = yxl. A commonly used value is y; = % [Barzilai and Borwein
Kk Yk

1988]. Recall from Section 2.3 that yy is the eigenvalue for the large n — m-dimensional subspace,
spanned by the eigenvector in P,. At a local minimum all eigenvalues of VZf(x) will be non-
negative, motivating non-negative values of yj. For our implementation we tested three different
strategies, one of which uses a constant initialization (C Init.)

max (min (M ) 1) C Init
o Ymax | » nit.

0 Yo ’
2
Ye = ”s}iLyl,lc @if szyk > 0) Init. 1 (40)
max lyi—q I ly I Init. 2
T vea e . 2.

Observe that Init. 2 includes the additional parameter g > 0, which determines the number of pairs
{si,yi} to use. For C Init., the parameter yy,ax ensures that the constant initialization, which uses
S0, Yo does not exceed this threshold value. In the experiments the parameter is set as ymax =
1 x 10

4.1 Computational Complexity

We estimate the cost of one iteration using the proposed method to solve the trust-region subprob-
lem defined by shape-changing norms (17) and (18). We make the practical assumption that y > 0.
Computational savings can be achieved by reusing previously computed matrices and not forming
certain matrices explicitly. We begin by highlighting the case when a non-constant initialization
strategy is used. First, we do not form ¥ = Y — yS explicitly. Rather, we compute matrix-vector
products with ¥ by computing matrix-vector products with Y and S. Second, to form ¥7W¥, we
only store and update the small m x m matrices Y'Y, STY, and SS. This update involves only
3m vector inner products. Third, assuming we have already obtained the Cholesky factorization
of WTW associated with the previously stored limited-memory pairs, it is possible to update the
Cholesky factorization of the new W7 W at a cost of O(m?) [Bennett 1965; Gill et al. 1974].

We now consider the dominant cost for a single subproblem solve. The eigendecomposition
R:IT'MITR; = UAUT costs O(m?) = (’"TZ)O(mn), where m < n. To compute p* in Equation
(37), one needs to compute v* from Section 3.4 and w* from Equation (38). The dominant cost
for computing v* and w* is forming W7 g, which requires 2mn operations. Note that both VTl and

Pﬁw* are typically computed from Pﬁg, whose main operation is W' g. Subsequently, computing
P (v’l“ —Pﬁw*) incurs O(2mn) additional multiplications, as this operation reduces to ¥f for a vector

f. Thus, the dominant complexity is O(2mn + 2mn) = O(4mn). The following theorem summarizes
the dominant computational costs.

THEOREM 4.1. The dominant computational cost of solving one trust-region subproblem for the
proposed method is 4mn floating point operations.

We note that the floating point operation count of O(4mn) is the same cost as for L-BFGS [Nocedal
1980].

If a constant initialization is used, then the complexity can essentially be halved, because the
mat-vec applies ¥'g and ¥f (for some vector f) each take O(mn) multiplications for a total of
O(2mn).
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4.2 Characterization of Global Solutions

It is possible to characterize global solutions to the trust-region subproblem defined by shape-
changing norm (P, 2)-norm. The following theorem is based on well-known optimality conditions
for the two-norm trust-region subproblem [Gay 1981; Moré and Sorensen 1983].

THEOREM 4.2. A vector p* € R" such that ||Pﬁp*||2 < 8 and ||PTp*|l, < 6, is a global solution of
(1) defined by the (P, 2)-norm if and only if there exists unique o 2 0 and g} > 0 such that

(B+Cy)p +g=0. of ([Plp’

—s)=0, ot ([Pip,-s) =0, (41)
where C) 2 o1+ (ol’l‘ - UI)P”Pﬁ, the matrix B + C is positive semi-definite, and P = [P} P_] and
A =diag(Ar, ..., Am) = A+ yI are as in Equation (8).

When run in the “verbose” mode, sc_sr1_2.m returns values needed to establish the optimality
of p* using this theorem. In particular, the code computes O'IT, which, depending on the case, is
either 0, the absolute value of the most negative eigenvalue, or obtained from Newton’s method.
The code also computes o} using Equation (24), and ||PT p*|| is computed by noting that ||PLp* ||§ =
llp*ll2 - ||Pﬁp*||§. The variables opt1, opt2, and opt3 contain the errors in each of the equations
in Equation (41); spd_check finds the minimum eigenvalue of (B + C|) in Equation (41), enabling
one to ensure (B + C)) is positive definite; and o) and o] are displayed to verify that they are

nonnegative.

5 NUMERICAL EXPERIMENTS

In this section, we report on numerical experiments with the proposed SC-SR1 algorithm imple-
mented in MATLAB to solve limited-memory SR1 trust-region subproblems. The experiments are
divided into solving the TR subproblems with Algorithms 3 and 4, and general unconstrained min-
imization problems, which use the TR subproblem solvers, using 62 large-scale CUTEst problems
[Gould et al. 2003].

5.1 (P,2)-norm Results

The SC-SR1 algorithm was tested on randomly generated problems of size n = 10° to n = 107,
organized as five experiments when there is no closed-form solution to the shape-changing trust-
region subproblem and one experiment designed to test the SC-SR1 method in the “hard case.”
These six cases only occur using the (P, 2)-norm trust region. (In the case of the (P, o) norm, v’ﬁ
has the closed-form solution given by Equation (27).) The six experiments are outlined as follows:

(E1) B is positive definite with ||v|(0)[|; > .

(E2) B is positive semidefinite and singular with [g)]; # 0 for some 1 < i <r.

(E3) B is positive semidefinite and singular with [g)]; = 0 for 1 <i < r and ||ATg||||2 > 4.
(E4) B is indefinite and [g)]; = 0 for 1 < i < r with ||(A - AII)Tg”Hg > 4.

(E5) B is indefinite and [g)]; # 0 forsome 1 <i <r.

(E6) B is indefinite and [g]; = 0 for 1 < i < r with [|v(=A1)|l2 < & (the “hard case”).

For these experiments, S, Y, and g were randomly generated and then altered to satisfy the
requirements described above by each experiment. In experiments (E2) and (E5), § was chosen as
a random number. (In the other experiments, § was set in accordance with the experiments’ rules.)
All randomly generated vectors and matrices were formed using the MATLAB randn command,
which draws from the standard normal distribution. The initial SR1 matrix was set to By = yI,
where y = |10 * randn(1)|. Finally, the number of limited-memory updates m was set to 5, and r
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Table 1. Experiment 1: B is Positive Definite with [[v(0)[|2 > &

n opt 1 opt 2 opt 3 min(A(B + Cy)) aﬁ oy % time
1x10% | 2.45e-14 | 0.00e+00 | 2.45e-14 4.33e+01 1.09e+01 | 5.89e+02 | 1.63e+01 | 9.97e-03
1x10% [ 1.21e-13 | 2.82e-16 | 4.26e-13 3.25e+01 8.14e+00 | 1.98e+03 | 1.22e+01 | 1.55e-03
1x10° | 5.32e-13 | 2.28e-16 | 1.40e-13 2.19e+01 5.47e+00 | 5.05e+03 | 8.14e+00 | 4.49e-03
1x10° | 3.56e-12 | 5.51e-16 | 2.05e-11 1.44e+01 3.61e+00 | 9.57e+03 | 5.32e+00 | 8.03e-02
1x107 | 1.46e-11 | 1.16e-11 | 3.64e-11 4.07e+01 1.02e+01 | 5.52e+04 | 1.52e+01 | 9.66e-01

Table 2. Experiment 2: B is Positive Semidefinite and Singular and [g]; # 0 for Some 1 <i <r

n opt 1 opt 2 opt 3 min(A(B + Cy)) aﬁ oy % time
1x10% | 1.14e-14 | 0.00e+00 | 0.00e+00 9.19e+00 9.19e+00 | 5.45e+02 | 1.82e+01 | 3.24e-03
1x10% [ 4.24e-14 [ 1.39e-11 | 1.29e-13 6.55e+00 6.55e+00 | 3.86e+02 | 5.33e-01 | 2.81e-03
1x10° | 4.02e-13 | 9.37e-14 | 2.04e-12 2.81e+00 2.81e+00 | 8.56e+02 | 1.16e+01 | 1.80e-02
1x10° | 2.53e-12 | 3.54e-15 | 3.55e-11 2.65e+00 2.65e+00 | 2.07e+03 | 1.86e+01 | 8.18e-02
1x107 [ 1.77e-11 | 1.61e-11 | 2.44e-10 4.90e+00 4.90e+00 | 6.29e+03 | 9.44e+00 | 9.51e-01

Table 3. Experiment 3: B is Positive Semidefinite and Singular with [g)]; = 0
for1 <i<rand ||ATg\|||2 > 6

n opt 1 opt 2 opt 3 min(A(B + Cy)) o'ﬁ o Y time
1x10% | 1.38e-14 | 1.35e-09 | 1.21e-14 1.99e+00 1.99e+00 | 1.45e+02 | 2.80e+00 | 3.84e-03
1x10% | 7.38e-14 | 2.98e-17 | 4.35e-13 8.60e+00 8.60e+00 | 3.80e+03 | 1.29e+01 | 2.03e-03
1x10° [ 1.73e-13 | 8.84e-17 | 4.17e-12 3.19e+00 3.19e+00 | 3.19e+03 | 4.67e+00 | 6.31e-03
1x10° | 2.04e-12 | 1.22e-11 | 4.25e-11 8.57e+00 8.57e+00 | 2.97e+04 | 1.28e+01 | 7.37e-02
1x 107 | 3.98e-11 | 7.53e-11 | 2.42e-10 4.47e+00 4.47e+00 | 2.25e+04 | 6.63e+00 | 9.42e-01

Table 4. Experiment 4: B is Indefinite and [g)]; = 0 for 1 < i < r with [|(A - )LlI)Tg”Hg >4

n opt 1 opt 2 opt 3 min(A(B +Cy)) JH ol % time
1x10° | 1.95e-14 | 2.57e-16 | 0.00e+00 2.34e+00 3.09e+00 | 2.38e+02 | 3.04e+00 | 3.03e-03
1x10% [ 8.69e-14 | 2.16e-16 | 0.00e+00 2.18e+00 2.59e+00 | 4.63e+02 | 2.91e+00 | 6.16e-03
1x10° | 2.52e-13 | 4.65e-17 | 1.72e-12 1.33e+01 1.34e+01 | 2.15e+04 | 1.98e+01 | 6.44e-03
1x10° [ 4.45e-12 | 1.24e-12 | 1.91e-11 7.02e+00 7.21e+00 | 2.58e+04 | 1.04e+01 | 6.93e-02
1x107 [ 2.52e-11 | 5.27e-10 | 7.46e-11 1.02e+00 1.27e+00 | 1.71e+04 | 8.35e-01 | 9.23e-01

was set to 2. In the five cases when there is no closed-form solution, SC-SR1 uses Newton’s method
to find a root of ¢|. We use the same procedure as in Brust et al. [2017, Algorithm 2] to initialize
Newton’s method, since it guarantees monotonic and quadratic convergence to o*. The Newton
iteration was terminated when the ith iterate satisfied ||¢(c")|| < eps - [|¢(c®)|| + veps, where
o denotes the initial iterate for Newton’s method and eps is machine precision. This stopping
criteria is both a relative and absolute criteria, and it is the only stopping criteria used by SC-SR1.

To report on the accuracy of the subproblem solves, we make use of the optimality conditions
found in Theorem 4.2. For each experiment, we report the following: (i) the norm of the residual of
the first optimality condition, opt 1 = [|[(B + C)p” + g||2; (ii) the first complementarity condition,
opt 2 £ |0'|"|‘(||Pﬁp* [l = 8)I; (iii) the second complementarity condition, opt 3 £ ||0'j(||PIp* ll2=9)l;
(iv) the minimum eigenvalue of B + C; (v) o (vi) o}; (vii) y; and (viii) time. The quantities (i)-
(vi) are reported to check the optimality conditions given in Theorem 4.2. Finally, we ran each
experiment five times and report one representative result for each experiment.

Tables 1-6 show the results of the experiments. In all tables, the residual of the two optimality
conditions opt 1, opt 2, and opt 3 are on the order of 1 x 107'° or smaller. Columns 4 in all

*
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Table 5. Experiment 5: B is Indefinite and [g)]; # 0 for Some 1 < i <r

n opt 1 opt 2 opt 3 min(A(B + C)) Uﬁ oy Y time
1x10% | 9.11e-15 | 5.14e-16 | 4.35e-15 7.54e-01 1.16e+00 | 1.37e+01 | 2.27e+01 | 5.60e-03
1x10* | 6.04e-14 | 8.71e-12 | 1.25e-13 1.88e+00 2.23et+00 | 1.47e+02 | 4.15e+00 | 1.75e-03
1x10° | 3.16e-13 | 3.27e-11 | 2.36e-12 6.23e-01 1.24e+00 | 3.86e+02 | 4.89e+00 | 7.91e-03
1x10° | 1.19e-12 | 0.00e+00 | 2.82e-11 3.01e+00 3.59e+00 | 1.89e+03 | 1.77e+01 | 7.00e-02
1x107 | 5.25e-11 | 1.02e-14 | 1.30e-10 7.37e-01 1.43e+00 | 4.32e+03 | 1.48e+01 | 9.40e-01

Table 6. Experiment 6: B is Indefinite and [g)]; = 0 for 1 < i < r with [|v|(=A1)||2 < & (the “Hard Case”)

n opt 1 opt 2 opt 3 min(A(B + Cy)) aﬁ oy Y time
1x10% | 1.58e-14 | 1.21e-17 | 2.83e-14 0.00e+00 1.09e-01 | 1.45e+02 | 1.19e+00 | 2.06e-03
1x10* | 9.07e-14 | 2.65e-17 | 2.62e-13 0.00e+00 3.19e-01 | 4.49e+02 | 9.14e+00 | 1.31e-03
1X10° | 8.34e-13 | 8.80e-17 | 1.86e-12 0.00e+00 1.67e-01 | 1.45e+03 | 5.04e+00 | 4.45e-03
1x10° | 3.87e-12 | 7.21e-17 | 5.46e-12 0.00e+00 1.30e-01 | 3.57e+03 | 3.31e+00 | 6.77e-02
1x107 | 4.19e-11 | 1.30e-17 | 3.05e-10 0.00e+00 2.68e-02 | 2.81e+04 | 1.19e+01 | 9.45e-01

tables show that (B + C))) are postiive semidefinite. Columns 6 and 7 in all the tables show that oﬁ'
and o} are nonnegative. Thus, the solutions obtained by SC-SR1 for these experiments satisfy the
optimality conditions to high accuracy.

Also reported in each table are the number of Newton iterations. In the first five experiments no
more than four Newton iterations were required to obtain o to high accuracy (Column 8). In the
hard case, no Newton iterations are required, since oﬁ = —A;. This is reflected in Table 6, where
Column 4 shows that al’l‘ = —\; and Column 8 reports no Newton iterations.)

The final column reports the time required by SC-SR1 to solve each subproblem. Consistent with
the best limited-memory methods, as n gets large, the time required to solve each subproblem
appears to grow linearly with n, as predicted in Section 4.1.

Additional experiments were run with g; — 0. In particular, the experiments were rerun with
g scaled by factors of 1072,107%,107%, 1078, and 10710, All experiments resulted in tables similar to
those in Tables 1-6: The optimality conditions were satisfied to high accuracy, no more than three
Newton iterations were required in any experiment to find crﬁ', and the CPU times are similar to
those found in the tables.

5.2 (P,c)-norm Results

The SC-SR1 method was tested on randomly generated problems of size n = 103 to n = 10, orga-
nized as five experiments that test the cases enumerated in Algorithm 3. Since Algorithm 3 pro-
ceeds componentwise (i.e., the components of g and A determine how the algorithm proceeds),
the experiments were designed to ensure at least one randomly chosen component satisfied the
conditions of the given experiment. The five experiments are below:

(E1) |lgyli| < 8 [Alii] and [A];; > 7.
(E2) |[gH l-| < rand |[A]i] < 7.
(E3) |[gH l-| > rand |[A];] < 7.
(E4) |[g” i| < rand[A];; < —1.
(E5) |[g)]:| > 8 I[Alii| and [|AL;]l > 7.
For these experiments, S, Y, and g were randomly generated and then altered to satisfy the

requirements described above by each experiment. In (E2)-(E4), § was chosen as a random
number (in the other experiments, it was set in accordance with the experiments’ rules). All

e e —
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Table 7. Results Using the (P, c0) Norm

n Y time
Experiment 1 | 1x 10° | 8.76e+00 | 1.34e-03
1%x10%* | 1.80e-01 | 1.21e-03
1X10° | 7.39e+00 | 6.71e-03
1%x10° | 2.13e-02 | 1.12e-01
1% 107 | 1.11e+01 | 1.51e+00
Experiment 2 | 1 x 10% | 4.47e+00 | 1.05e-03
1x 10* | 6.38e+00 | 8.74e-04
1x10° | 1.10e+00 | 7.37e-03
1X10° | 2.74e+00 | 7.94e-02
1x 107 | 8.30e-01 | 1.39e+00
Experiment 3 | 1 X 10° | 2.09e+01 | 1.07e-03
1x10* | 4.67e+00 | 9.63e-04
1x10° | 1.39e+01 | 6.63e-03
1x10° | 1.76e+01 | 7.38e-02
1x 107 | 1.51e+01 | 1.45e+00
Experiment 4 | 1x 10° | 1.08e+01 | 1.43e-03
1x10% | 1.34e+01 | 1.06e-03
1X10° | 7.43e+00 | 1.23e-02
1x10° | 3.16e+00 | 9.00e-02
1X 107 | 2.22e+00 | 1.41e+00
Experiment 5 | 1x 10° | 1.04e+01 | 1.15e-03
1x 10* | 1.74e+01 | 9.40e-04
1x10° | 4.38e+00 | 1.15e-02
1X10° | 5.21e+00 | 9.05e-02
1x107 | 2.01e+00 | 1.40e+00

randomly generated vectors and matrices were formed using the MATLAB randn command, which
draws from the standard normal distribution. The initial SR1 matrix was set to By = yI, where
Y = |10 % randn(1)|. Finally, the number of limited-memory updates m was set to 5, and for
simplicity, the randomly chosen i (that defines [E1]-[E5]) was chosen to be an integer in the
range [1 5].

Table 7 displays the results of the five experiments. Each experiment was run five times; the
results of the third iteration are stored in Table 7. In all cases, the results of the third iteration were
representative of all the iterations. The first column of the table denotes the experiment, the second
column displays the size of the problem, and the third column reports the value of y. Finally, the
forth column reports the time taken to obtain the solution.

5.3 Trust-region Algorithm

In this experiment, we embed the TR subproblem solvers in a trust-region algorithm to solve un-
constrained optimization problems. In particular, we implemented our subproblem solvers in an
algorithm that is based on Nocedal and Wright [2006, Algorithm 6.2]. A feature of this algorithm
is that the L-SR1 matrix is updated by every pair {(sl-,yi)}ff:k_mJr1 as long as |sl.T(y,- — Bysi)| >
[Isillz]ly; — Bisill2ésr1 (updates are skipped if this condition is not met). In case a full memory
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strategy is used (i.e., m = oo) then a SR-1 matrix is updated by almost every pair {(s;,y;)} to
help achieve the superlinear convergence rate of quasi-Newton methods, in contrast to updating
the matrix only when a step is accepted. An outline of our trust-region method implementation
(Algorithm 5) is included in the Appendix. In our comparisons we use the following four algorithms
to solve the TR subproblems:

TR:SC-INF  Algorithm 3

TR:SC-L2  Algorithm 4

TR:L2 {,-norm [Brust et al. 2017, Algorithm 1]

tr:CG truncated CG [Conn et al. 2000, Algorithm 7.5.1]

(tr:CG was implemented in MATLAB by the authors, while TR:L2 is a minor modification of obs.m
publicly available at https://github.com/johannesbrust/OBS). Initially, we included a fifth algo-
rithm, LSTRS [Rojas et al. 2008], which performed markedly inferior to any of the above solvers
and is thus not reported as part of the outcomes in this section. We also found that Init. 2 per-
formed significantly better than Init. 1 and therefore report the outcomes with Init. 2 below. Be-
cause the limited-memory updating mechanism is different whether a constant or non-constant
initialization strategy is used, we describe our results separately for C Init. and Init. 2. As part of
our comparisons we first select the best algorithm using only C Init. and only using Init. 2. Sub-
sequently, we compare the best algorithms to each other. To find default parameters for our best
algorithms, Figures 6, 7, and 8 report results for a considerable range of m and q values.

All remaining experiments are for the general unconstrained minimization problem,

minimize f(x), (42)
x€eR”

where f : R" — R. We consider this problem solved once ||V f(x¢)||e < €. Our convergence toler-
ance is set to be ¢ = 5x 10~*. With y fixed, a L-SR1 algorithm can be implemented by only storing
the matrices ¥ and M;l. In particular, with a fixed y = yx in Equation (4) then M;lek = ‘I’Zsk, so
that updating the symmetric matrix M;l only uses O(nm) multiplications. In this way, the overall
computational complexity and memory requirements of the L-SR1 method are reduced as com-
pared to non-constant initializations. However, using a non-constant initialization strategy can
adaptively incorporate additional information, which can be advantageous. Therefore, we com-
pare the best algorithms for constant and non-constant initialization strategies in Sections 5.4, 5.5,
and 5.6. Parameters in Algorithm 5 are set as follows: ¢; = 9 X 1074, ¢, = 0.75,¢c3 = 0.8, ¢4 = 2,
s =0.1,¢5 = 0.75,¢; = 0.5, and esp; = 1 X 1075,

Extended performance profiles as in Mahajan et al. [2012] are provided. These profiles are an
extension of the well known profiles of Dolan and Moré [2002]. We compare total computational
time for each solver on the test set of problems. The performance metric ps(r) with a given number
of test problems n, is

card {p : 7, s < 7} tp,s
ps(T) = and Tp,s =~ . s
ny min fp ;
1<i<S, i#s

where t,  is the “output” (i.e., time) of “solver” s on problem p. Here S denotes the total number of
solvers for a given comparison. This metric measures the proportion of how close a given solver is
to the best result. The extended performance profiles are the same as the classical ones for 7 > 1.In
the profiles, we include a dashed vertical grey line to indicate 7 = 1. The solvers are compared on
62 large-scale CUTEst problems, which are the same problems as in Burdakov et al. [2017]. Prior
to detailed experiments we include a reference comparison of all solvers on number of function
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Fig. 1. Comparison of best algorithms with C Init. (constant initialization), which are selected from
Figure 6.

calls and time when the same memory parameter is used across all solvers m = 7 (note that this
setting may not correspond to the best value for a specific solver)

Additionally, Appendix A.3 includes supplementary comparisons on quadratics and the Rosen-
brock objectives.

5.4 Comparisons with Constant Initialization Strategy (C Init.)

This experiment compares the algorithms when the constant initialization C Init. from Equation
(40) is used. Because the memory allocation is essentially halved (relative to a non-constant initial-
ization) the memory parameter m includes larger values, too (such as m = 24). For each individual
solver, we first determine its optimal m parameter in Figure 6. After selecting the best parameters,
these best solvers are then compared in Figure 1. Observe that TR:L2 obtains the best results in this
comparison. The limited-memory parameter m is relatively large for all solvers, however, since a
constant initialization is used larger memory values are permissible.

5.5 Comparisons with Non-constant Initialization Strategy (Init. 2)

Since Init. 2 depends on the parameter g, Figures 7 and 8 test each algorithm on a combination
of m and g values. A comparison of the best values for each algorithm is in Figure 2. Observe
that TR:SC-INF and TR:SC-L2 obtain the overall best results. All algorithms use a small memory
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Time (Init. 2)
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Fig. 2. Comparison of best algorithms with Init.2 (non-constant initialization), which are selected as the best
ones from Figures 7 and 8.

0.2

parameter m = 5. Since Init. 2 is a non-constant initialization these algorithms store Si, Yy to
implicitly represent Wy, and thus the memory allocations scale with 2m.

5.6 Comparisons of Best Outcomes

The overall best algorithms from Figures 1 and 2 are compared in Figures 3 and 4. This declares that
the best performing algorithm over the sequence of experiments is TR:SC-INF with the indicated
parameter values.

5.7 Comparison with L-BFGS-B

In a final comparison, we include the best algorithm from the preceeding section and a widely
distributed method. Specifically, we use L-BFGS-B [Zhu et al. 1997] and a translation of the soft-
ware into C with an interface to MATLAB. L-BFGS-B is a limited-memory quasi-Newton algorithm
based on a compact representation, like the methods described in this article. We consider L-BFGS-
B a state-of-the-art unconstrained algorithm when the problem is unbounded. For both algorithms
we set the memory parameter m = 5, the convergence tolerance ¢ = 5 x 107 and the total num-
ber of permissible iterations 25,000. The number of function evaluations and computational times
for the same 62 large-scale CUTEst problems as in the preceding sections (i.e., the problems in
Burdakov et al. [2018]) are reported in Figure 5. We observe that the proposed shape-changing
L-SR1 algorithm converged on 93% (i.e., 58/62) problems when compared to 90% (i.e., 56/62) for

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 48. Publication date: December 2022.



MATLAB Software for Limited-memory SR1 Trust-region Methods 48:25
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Fig. 3. Comparison of the number of function calls and computational time for the four algorithms
{TR:SC-INF, TR:SC-L2, TR:L2, trCG} when a constant initialization (C Init.) or non-constant initialization
(Init. 2) is used. The memory parameter m = 7 is the same across all solvers and g = 7 for Init. 2.

L-BFGS-B and the given parameters. Overall, the shape-changing algorithm used fewer function
calls yet often higher computational times than L-BFGS-B. An implementation of the proposed al-
gorithms in a lower-level language could yield further reductions in computational cost. However,
the proposed method obtains robust results on the tested large-scale problems and may provide
further advantages when function calls are expensive. Detailed comparisons of L-SR1 and L-BFGS
algorithms are directions for future research.

6 CONCLUDING REMARKS

In this article, we presented a high-accuracy trust-region subproblem solver for when the Hessian
is approximated by L-SR1 matrices. The method makes use of special shape-changing norms that
decouple the original subproblem into two separate subproblems. Numerical experiments using the
(P, 2) norm verify that solutions are computed to high accuracy in cases when there are no closed-
form solutions and also in the “hard case.” Experiments on large-scale unconstrained optimization
problems demonstrate that the proposed algorithms perform well when compared to widely used
methods, such as truncated CG or an £, TR subproblem algorithm.
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Fig. 4. Overall comparison of best algorithms by selecting winners in Figures 1(C Init.) and 2 (Init. 2). Observe
that TR:SC-INF with non-constant initialization strategy outperforms the best algorithm with a constant ini-
tialization (TR:L2). In sum, the trust-region algorithm with the proposed shape-changing infinity subproblem
solver (TR:SC-INF) obtains the best results among the comparisons on 62 large-scale CUTEst problems.
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Fig. 5. Comparison of the number of function calls and computational time for the best algorithm from
Section 5.6 and L-BFGS-B with memory parameter m = 5.
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This appendix lists our implementation of the L-SR1 trust-region algorithm from the numerical
experiments in Section 5.3. This trust-region algorithm uses the trust-region radius adjustments
from Nocedal and Wright [2006, Algorithm 6.2] and the subproblem solvers in Algorithms 3 and

4, as well as the orthonormal basis method from Brust et al. [2017].

A.1  Experiments to Determine Default Parameters with Constant Initialization

(C Init.)

ALGORITHM 5: L-SR1 Shape-Changing Trust-region Algorithms (LSR1_SC)

Function: [xg, gk, fk, out]=LSR1_SC(x, f(x), Vf(x), pars)

1: Set constants from pars: 0 < ¢; < 1X 10_3,0 <, 0<e03<1,1<0e¢4,0<05<02,0<¢6<1,0<¢7<10<e,
0<m,0<q,0 < g1, ALG « pars.whichSub, INIT « pars.whichInit, SAVE « pars.storePsiPsi, ;

2: Initialize k « 0, kjp, < 0, X < X, 0 < yx, 0 < Ymax, iInVMg « [], mldx < 1 : m, iEx « 0;
3 fi = (k). gk — V()
4t [Xg+15 Bk+1> fie+1] < lineSearch(x, gk, f);
5 Sk ¢ Xk+1 — Xk» Yk < 8Bk+1 ~ 8k
6: if INIT = C.Init. then

7 % Constant initialization

8 yx « max(min(|lyolI*/s{ Yo, Ymax)s 1)

9: WY —[];

10: else
11: % Non-constant initialization.

122y~ llyelP/sfyx

130 Sp [ Yg « [1.Dg & [J,Lg « [, Te « [1,SSk « [, YYi < [I;
14: end if

15: if SAVE = 1 then

16: Y —[];

17: end if

18: by — s (yk = YkSk)

19: if esrillsk ll21lyx — yrskllz < abs(bg) then
20: km — km +1;

21: invMy (kp, ki) < bi;

22: if INIT = C.Init. then

23: [¥, mldx] = colUpdate(¥g, Yk — Yr Sk, mldx, m, k) % From Procedure 1
24: else

25: [Yg, ~] = colUpdate(Y, yx, mldx, m, k);
26: [Sk, mldx] = colUpdate(Sk, si, mldx, m, k);
27: Dy (km, km) = SZYk;

28: Lic(km, km) = s{yis

29: Tie(kms km) = siyks

30: Sk (ks km) = s} sics

31: YY i (km, km) = yZYk;

32: end if

33: end if

34: 5 — 2lIskel;

35 k— k+1;

36: while (¢ < ||gx [l) and (k < maxIt) do

37:  Choose TR subproblem solver to compute sy (e.g., Algorithms 3 and 4, £,-norm, truncated CG);

38: % For example: sc_sr1_infty with ¥7¥ updating
39: sg  sc_srl_infty(gg,Sk(;, mldx(1 : kpp)), Yi(:, mIdx(1 : k1)), Yis Ok, 1,0, - ..
YW, (1: kpp, 1t k) invMp(1 2k, 12 ki));

400 Xpyr & Xk + 8k fre1 ¢ f&rr1), 81 — VK1)
41: if INIT = C.Init then

42: ba(1: k) — Wi (;, mIdx(1 : kpp)) T sps

43: else

44: % Non-constant initialization, stores additionally bily, b2,
45: b1(1: kp) — Yp(, mIdx(1 : ko)) spes
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b2x(1: kpp) — Sg(, mIdx(1 : k) sy
br(1: k) & b1r(1: ki) — yrb2x (1 : kn)s
end if
(sBs)g « Ykslsk + %bk(l k) T(InvMg (1 : ks 12 k)\bre(1 2 ko))
if INIT = Init. 2 then
% Other non-constant initialization strategies can be implemented here

Yk

— max(llyr-qI*/s{_,Yk-g- - - = ly&l*/yisk)

end if

Pk <

fkﬂ_fk .
sng+(s Bs)i’

if ¢; < pj then
Xie+1 < Xke+15
Bk+1 < Bk+1s
Srew1 < fras

else

Xk+1 < Xk
end if
if c; < py then
if [[sk|l2 < c30) then

els

Og < Ok
€
O — ¢4k

end if
else if ¢5 < pp < ¢¢ then

Sk
else
Sk

— ;s

— ¢70k;

end if

Vi —
by —

Bi+1 — 8k:
SLYk + (sBs)ks

if espy sk 211y = yiesk llz < abs(bg) then
if INIT = C.Init. then

els

[Wg, mldx]| = colUpdate(Wg, yr — Yk Sk, mldx, m, k);
if (k;;, < m) then
km — km +1;
end if
invMg(1: (kypp — 1), k) <« br(1: (kjy — 1));
invMg (kpm, 1: (kpy — 1)) <« bg(1: (kpy — 1));
invMy (km, ki) < b;
if SAVE = 1 then
% Update and store the product ‘I’]Z‘I‘k
YW, (1:kpm,1:ky,)=prodUpdate(W¥s, Yi, Yi, Yk — Y&Sks Yk — Yk Sk, mldx, m, k);
end if
e
% Non-constant initialization
[Yg, ~] = colUpdate(Y, yx, mldx, m, k);
[Sk, mldx]| = colUpdate(Sk, si, mldx, m, k);
Ty = prodUpdate(Tg, Sk, 0, sk, Vi, mldx, m, k);
YY;. = prodUpdate(YYg, Yi, Yk, Yi» Vi, mldx, m, k);
if (k;, < m) then
km — km +1;
end if
Di(km» km) < sLyk;
Li(km, 1: (kpy — 1)) < b1 (1: (kpy — 1));
SSk(1: (km = 1), k) <= b24(1: (kpm — 1))
SSi(km, 1: (kyy — 1)) «— b2, (1: (ks — 1));
SSk(km» km) < SZSk;
invMg(1 ¢ kpm, 1 : kp) — Dr(1 ¢ kpm, 1 ¢ ki) + Le(1 ¢ ko 1 2 k) + L(1 2 kg, 1
— YiSSk(1: kpm, 12 kp);
if SAVE = 1 then
% Update and store the product ‘I’Z\Pk with non-constant initialization
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105: W1 ko1 k) = YYR( 2 ka1 2 k) = (T ko 12 k) + Tie(1 2 kg 12 k)T
F L1k 1 k) + L1 ks 12 k)T + yiSSk(l tkms 1 km);

106: end if

107: end if

108: end if

1090 X <« Xp41, 8k < Bk+ts Sk < fran k= k+ 1
110: end while

111: out.numiter « k, out.ng « ||gx[;

112: return Xxg, g, fx, out

A.2 Experiments to Determine Default Parameters with Non-constant Initialization
(Init. 2)

Time (TR:SC-INF (C Init.)) Time (TR:SC-L2 (C Init.))

—_— =5
- -m=7
........ m=14
————24
6 8 1 2 3 4 5 6
T T
Time (trCG (C Init.))
1, T T 3
g o — - ——————_——_— -l.-;
T e T T e T Y
———m=5 | ]
_-—m=T
........ m=14| |
————n =24
5 10 15
T

Fig. 6. Comparison of the computational times for the four algorithms {TR:SC-INF, TR:SC-L2, TR:L2, trCG}
when a constant initialization (C Init.) is used, and the limited memory parameter is m = [5,7, 14, 24].
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Time (TR:SC-INF (Init. 2)),¢ =5 Time (TR:SC-INF (Init. 2)),q =7 Time (TR:SC-INF (Init. 2)),q =12

Fig. 7. Comparison of the computational times for the four algorithms {TR:SC-INF, TR:SC-L2, TR:L2, trCG}
when the non-constant initialization (Init. 2) is used, and the parameters are ¢ = [5,7, 12] and m = [5,7, 12].

A.3 Experiments on Quadratics and the Rosenbrock Functions

In this set of experiments we vary the problem dimension as n = [5 X 102,1 X 10,5 x 10%,1 x
10%,5% 10%,1 % 10%, 3 X 10°], set the memory parameter m = 5, use Init. 2 for all solvers and set the
maximum iterations as maxIt = 500. In Table 8, we let f(x) be the Rosenbrock function defined by
f(x) = X (x2i —x3, )%+ (1—x%,_,)*. We initialize the trust-region algorithm (Algorithm 5) from
the starting point [xg]; = 30,[X¢]2.n, = 0 (with this initial point the gradient norm ||V f(x)|l, =
10%). Table 8 reports the outcomes of using the trust-region algorithm with these three different
subproblem solvers.

In Table 9, we let f(x) be quadratic functions defined by f(x) = g'x + %(XT(g{)I + QDQ7)x).
In particular, we let Q € R™ be a rectangular matrix and D € R™" be a diagonal matrix. We
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Time (TR:SC-INF (Init. 2)),m =5 Time (TR:SC-INF (Init. 2)),m =7 Time (TR:SC-INF (Init. 2)),m = 12

T T

1 2 3 4 5 6 1 1.5 2 25 3 3.5
T T T

Time (TR:L2 (Init. 2)),m =5 Time (TR:L2 (Init. 2)),m =7 Time (TR:L2 (Init. 2)),m = 12

——q=5 —q=3
-=-q=T --q=12
........ ¢=10 g = 18
4 5 6 7 4 6 8
T T T

ps(T

1 2 3 4 1 2 3 4 X
T T T

Fig. 8. Comparison of the computational times for the four algorithms {TR:SC-INF, TR:SC-L2, TR:L2, trCG}
when the non-constant initialization (Init. 2) is used, and the parameters are m = [5,7,12] and ¢ = [ceil(2/3-
mj), mj, floor(3/2-m;)],1 <i < 3.

initialize the trust-region algorithm (Algorithm 5) from the starting point x, = 0. We generate
Q = rand(n,r), D = diag(rand(r, 1)), and g = randn(n, 1), after initializing the random number
generator by the command rng(‘default’). Moreover, we set r = 10, ¢ = 100 and the maximum
number of iterations as maxIt = 500. All other parameters of the method are as before. Table 9 re-
ports the outcomes of using the trust-region algorithm with the three different subproblem solvers.

Remarkably, observe in the outcomes of Tables 8 and 9 that a limited memory trust-region
algorithm using our subproblem solvers is able to solve large optimization problems, with n =
1 X 10°, within seconds. Moreover, we observe that the proposed algorithms (Algorithms 3 and 4)
may require fewer iterations on some problems than a £,-norm method and use less computational
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Table 8. Results of Solving Problem (42) with the Rosenbrock Objective Function

n TR:SC-INF (Alg. 3) TR:SC-L2 (Alg. 4) TRL2

k nA Time Vil | & nA Time Vi)l | & nA Time IV f(xp)ll

5%x10° | 40 26 2.00e-02 7.18e-05 |46 29 1.59e-02 3.11e-05 |36 24 1.34e-02 2.89e-06
1x10° [ 38 24 1.13e-02 2.23e-05 | 41 24 1.28e-02 3.83e-05|32 22 1.14e-02 2.02e-05
5x10° | 42 31 3.02e-02 1.17e-05 |38 29 2.75e-02 6.38e-05 |43 26 4.26e-02 5.03e-05
1x10* | 46 30 5.22e-02 4.57e-07 | 40 28 4.20e-02 5.80e-05 | 48 29 6.30e-02 8.87e-05
5x10% | 47 33 2.14e-01 1.01e-06 | 39 28 1.73e-01 1.22e-05 |54 35 2.85e-01 6.92e-05
1x10° | 40 31 3.94e-01 6.82e-05 |58 39 4.81e-01 1.06e-05| 44 27 4.97e-01 1.57e-08
3x10° | 60 39 2.74e+00 1.63e-06 | 53 33 2.49e+00 3.52e-06 | 68 43 3.53e+00 1.70e-05

The maximum number of iterations are maxIt = 500 and the convergence tolerance is || Vf(xg)|leo < 1% 107, The
memory parameter is m = 5. The column nA denotes the number of “accepted” search directions, which corresponds
to line 55 in Algorithm 5 being true. Observe that all algorithms converged to the prescribed tolerances on all problem
instances.

Table 9. Results of Solving Problem (42) with Quadratic Objective Functions

n TRSC-INF (Alg. 3) TRSC-L2 (Alg. 4) TR:L2 (¢, [Brust et al. 2017])

k nA Time IVFx)ll | & nA Time IVfx)ll | kK nA Time IVl
5x10% | 8 6 .75e-02 .56e-06 | 8 6 .66e-02 .56e-06 6 4 89e-02 .03e-06
1x10% | 8 6 .25e-03 .06e-05 | 8 6 .51e-03 .06e-05 6 4 67e-03 .11e-05

.96e-05 | 2 79e-02 .71e-05

1x10* | 23 18 3.86e-02
5x10* | 45 33 2.16e-01
1x10° | 62 49 5.04e-01
3x10° |20 15 8.99e-01

The maximum number of iterations are set as maxIt = 500 and the convergence tolerance || Vf(xz)|loo < 1% 107%. The
memory parameter is m = 5. The column nA denotes the number of “accepted” search directions (line 55 in Algorithm
5 is true). Observe that Algorithms 3 and 4 converged on all problems. Moreover, Algorithms 3 and 4 were fastest on
the on the largest two problem instances.

.58e-05 | 60 46 .28e-01 .71e-05 | 27 21 20e-01 .13e-05
.80e-05 | 79 64 .86e-01 .72e-05 | 500 494 05e+00 4.09e-04
.49e-05 | 22 17 8.37e-01 3.86e-05| 26 17 11e+00 9.97e-05

5 2 6
7 7 4
5%10% | 21 15 2.47e-02 1 15 2.83e-02 9.14e-05| 16 10
3 3 5
2 2 9
5 5 9

2. 8

6. 5

2. 3
.79e-05 | 23 18 .65e-02 .21e-05 | 19 14 3.65e-02 4.28e-05

1. 9

4. 4

1.

w O = N o~ O

time. Future research, can investigate the effectiveness of a L-SR1 trust-region algorithm for non-
convex objective functions and improve on the efficiency of the implementation.
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