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Abstract: This paper proposes a novel learning progression contributing to K-12 AI education 

by providing a framework that outlines learning trajectories for younger students. It identifies 

potential entry points and offers a clear description of increasing levels of core AI concepts. To 

ensure reliable student placement during validation of this LP, we compared the actual 

difficulties of assessment items, used for collecting evidence of student learning, against 

hypothesized item difficulties by generating Wright maps. We further explored variations in 

students' progression within different classroom contexts. Findings from the validation process 

revealed a consistent increase in students’ progression across LP levels from pre- to post-tests 

for most constructs. Classroom comparisons indicated significant differences in students' 

progression levels for certain constructs. Further exploration through analysis of classroom 

videos highlighted differences in instructional strategies, likely attributed to the teacher's 

content-matter expertise, impacting student understanding of the content and hence their 

progression on the LP.  

Introduction 
Over the past decade, technology has continued to permeate our lives and evolve at a rapid pace, touching almost 

every aspect of our existence, particularly with the ever-present influence of Artificial Intelligence (AI). To 

understand what AI is and how this innovative technology functions, AI education has started to make its way 

into the K-12 educational landscape (DeLyser & Vargas-Vite, 2021). Despite some K-12 curriculum development 

efforts that have begun to incorporate AI concepts (Judd, 2020; Payne 2019), there is limited research into how to 

effectively measure students’ understanding of these concepts and their application.  

As AI's prevalence continues to grow, Wong and colleagues (2020) assert that K-12 students must acquire 

proficiency in three key dimensions of AI literacy: concepts, applications, and ethics/safety. Within this context, 

researchers have identified competencies in AI ethics, decision-making, data analysis, sensors, and data-driven 

learning. These competencies serve as the foundation for developing frameworks in curriculum design and 

learning paths. Furthermore, AI4K12, designed as a joint initiative between the Association for the Advancement 

of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA), has identified five “big 

ideas” pivotal to AI education: (a) perception, (b) representation and reasoning, (c) learning, (d) natural interaction, 

and (e) societal impact (Touretzky et al., 2019). These frameworks are helpful in designing K-12 AI curricula; 

however, the field needs a description of learning trajectories and guiding standards for younger students 

(Ottenbreit-Leftwich et al., 2023). Guiding frameworks can help provide insight regarding what topics to consider, 

however, researchers have recently started to map pathways that will inform ways to better engage young K-12 

learners with ideas about AI. There needs to be more focus on choosing concepts that are developmentally 

appropriate for young learners, as well as defining learning trajectories. An essential element of these trajectories 

is using reliable assessment items which can help to measure student understanding at each level of the expected 

learning trajectory and must undergo psychometric and cognitive testing to ensure they are reliable and valid. 

This is pivotal in measuring a student's grasp of the construct in the progression (Wiliam, 2010). In our study, we 

designed a hypothetical AI learning progression (LP), drawing from domain specific research, validated 

assessments, prior implementations of our AI curriculum (Chakraburty et al., 2023), and expert input. Next, we 

validated this LP in two classrooms, while considering potential cultural influences. The general aim of this 

research is to design and validate a hypothetical LP to support upper elementary school students to learn and apply 
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 AI concepts. We address this through three research questions: (1) How does the progression of upper elementary 

students' knowledge of AI concepts unfold? (2) Where do the students lie on the progression before and after the 

curriculum intervention?, and  (3) To what extent does students’ progression differ depending on different 

classroom contexts?  

Literature review: Learning Progressions  
Learning Progressions (LP) start with a few foundational ideas in a specific content area that are classified into 

progress variables (Wilson & Scalise, 2006). These foundational ideas are generative disciplinary ideas that are 

built and refined over time. They consist of different levels describing the development of students’ understandings 

that are research-based (Duncan & Rivet, 2018). Learning progressions have been developed for many areas of 

science, such as  complex systems (Cisterna et al., 2020), genetics (Shea & Duncan, 2013), and physical science 

(Kaldaras et al., 2021). Learning progressions have a lower anchor representing initial understanding and an upper 

anchor representing expert understanding with several points in between. Given the complexity of content in AI 

and the inadequacy of current efforts for delivering and measuring AI learning, especially among younger learners, 

a more coherent approach to understanding students’ development of AI knowledge is needed. LPs contribute to 

educational coherence in three distinct ways. First, they map the development of students' understanding, guiding 

their progression from basic to advanced thinking, establishing developmental coherence. This foundational 

understanding then facilitates the alignment of educational content, fostering horizontal coherence, while also 

bridging the gap between classroom-level assessments and broader evaluations, promoting vertical coherence. To 

further advance this field, we need research to expand the use of LP-based interventions and to enhance teachers' 

understanding and implementation of LPs (Jin et al., 2019).   

To prepare students to step into the world of AI, they need to be introduced to these complex concepts 

early. In their study, Ottenbreit-Leftwich et al. (2023) discuss the significant challenges associated with designing 

a curriculum that introduces AI content to fourth and fifth grade students. One challenge they identify is students’ 

prior knowledge about AI, including naïve ideas, by investigating their everyday experiences and ideas about AI. 

This highlights possible entry points to designing a learning trajectory for AI learning for younger students. Wong 

et al. (2020) argue that although there are lessons to be learned from university-level AI education, they cannot be 

completely implemented at a K-12 level in the same way. We argue that an AI LP that defines the learning 

trajectory across multiple grade-bands from elementary to high school would ensure students’ preparation for 

higher level AI courses including preparation as citizens with fundamental AI literacy. With younger learners’ 

experiencing AI devices and media representations at an early stage of their lives, they bring various pre-existing 

perceptions and ideas. It is important to critically assess student understanding of AI concepts to better evaluate 

their current perceptions of AI and to design a developmentally appropriate curriculum (Long & Magerko, 2020). 

These LPs are initially hypothesized based on expert targets and empirical evidence. To understand these 

instructional targets and how students are making progress in achieving them, reliable assessments are needed. 

These hypothetical models require testing and validation through iterative revision and refinement (Duncan & 

Hmelo-Silver, 2009). Validation of hypothetical LPs can occur through cross-sectional studies documenting 

knowledge and reasoning development across multiple grades (Mohan, Chen, & Anderson, 2009) or through 

longitudinal teaching sequences (Songer et al., 2009). It's essential to empirically evaluate LPs as the development 

of students' AI understanding isn't inevitable (Duncan & Rivet, 2018). In the field of AI, we need frameworks to 

support students in progressively developing more advanced AI knowledge and reasoning. In this study, we 

designed a hypothetical LP by conducting cognitive analysis, using data such as students' scores on assessment 

items from previous PrimaryAI curriculum studies (Chakraburty et al., 2022), classroom observation videos, 

existing research, and expert consultations. The second part of the study validates this LP in two upper-elementary 

classrooms with different cultures, grounded in socio-constructivist theories. We examine how learners understand 

complex AI concepts in relation to the LP progression and explore potential differences based on teachers' 

strategies and their impact on students' learning.  

  

Data sources and analysis  
To understand the functionality of our data collection instrument, we created Wright-maps for two scales that 

underwent psychometric testing. These maps illustrate both person abilities and item difficulties on the same scale, 

enabling visual examination on a single graph. We employed the Rasch model to generate these maps and estimate 

item difficulties. The scales were developed using assessment items from two years of data collection (n=105) in 

six Midwest classrooms during the implementation of our AI curriculum for upper-elementary students. To 

validate our LP, we collected data from two semi-urban schools in the Midwest (n=35). One school was taught 

by a content matter expert (a researcher on the team), while the other had limited content matter knowledge. Pre- 
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 and post-test scores placed students on the progression, and we conducted a frequency count of how many students 

progressed across the levels as the initial step of LP validation. Next, we used chi-square analysis to assess 

differences between the two classrooms for each construct. Additionally, we analyzed video data using interaction 

analysis (Jordan & Henderson, 1995) to examine teachers' instructional strategies and alignment with the content 

of the AI learning progression.  

  

Learning Progression design  
We initiated the development of the Learning Progression (LP) by researching domain standards and aligning it 

with the PrimaryAI curriculum. The curriculum, developed in accordance with AI4K12 standards, included 

lessons for each objective derived from these standards, aiming to teach distinct AI concepts. To create a learning 

progression that effectively supports the teaching of this content, it is crucial to establish clear distinctions among 

the various ideas targeted by these objectives. To articulate these levels and refine the progress variables further, 

we conducted a thorough review, which included analyzing classroom observation videos from prior intervention 

studies of the AI curriculum. We also performed a cognitive analysis to ensure that the progress variables 

accurately reflected increasing levels of sophistication in understanding AI concepts. To assess student 

understanding, we assigned assessment items from the AI curriculum to different LP levels. A team of content 

matter experts then reviewed the hypothetical LP to verify the content matter validity of the main ideas defined 

through various progress variables. We adapted lower anchor concepts from a previous study, and we refined 

higher levels through cognitive analysis. For example, an increase in sophistication may involve progressing from 

a basic understanding that computers use pixels to a more advanced comprehension of how pixels relate to RGB 

color bands in image processing. The LP is organized around six main ideas (Table 1). We conducted our data 

analysis in two stages. First, we examined whether items met their intended difficulty levels. Second, we 

investigated evidence from two classrooms to confirm the hypothesized progression of student understanding and 

to identify contributing factors to any differences in student progressions.  

Results  
Instrument functioning and Learning Progression Validation  
To examine instrument functioning for the validated items, we reviewed the Wright Maps (Figure 1) for two 

subscales, mapping assessment items to different constructs. We assessed item difficulties to ensure alignment 

with hypothesized values. The item prefixes (CV/ML) indicate the scale, and the number (1/2) denotes the 

item's position within that scale.  

 

Table 1  

Learning Progression in Artificial Intelligence  

Constructs  1- Basic  2- Developing  3- Proficient  

Data  

Collection  

Recall that humans use their 

senses to collect data.  

Identify that computers 

use different sensors 

(similar to humans) to 

collect data.  

Explain the relationship between 

data, learning, and decision-

making.  

Pixels Recognize that computers see 

images using pixels.  

Explain that each pixel 

has a number 

associated with it.  

Demonstrate the relationship 

between the numbers in the pixels 

and the color bands they represent 

(RGB).  

Edges Identify what an edge-detected 

image by a computer looks like.  

Describe how 

computers find edges 

by comparing the RGB 

number values and 

finding patterns.  

Explain how computers find and 

classify shapes using the detected 

edges.  

Feature  

Extraction  

Recognize that computers use 

rules called algorithms to classify 

the different shapes in an image.  

Identify that the more 

detailed an algorithm is 

the more accurate the 

classification of the 

shape/image is.  

Recognize that neural networks 

are used to combine different 

concepts like edge detection and 

feature extraction to see and 

classify pictures.  
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Learning   Identify that there are three 

different ways in which machines 

learn supervised, unsupervised, 

and reinforcement.  

Differentiate between 

the different types of 

machine learning.  

   

Compare and contrast the various 

applications that use different 

types of machine learning.  

Data and 

Bias 

Explain that the quality of the 

data is more important than the 

quantity of data in training a 

model.  

Identify what bias in 

data looks like.  

Explain the relationship between 

biased data and the decision-

making it leads to.  

  
We looked at item difficulties for the constructs: Construct 1: Data Collection; Construct 2: Pixels; Constructs 3 

& 4 combined: Edge Detection and Feature Extraction; Constructs 5 & 6 combined: Learning, Data, and Bias. We 

combined the last two constructs due to limitations in the number of items in the individual constructs and the 

interconnected nature of the concepts, preventing us from generating separate Wright Maps for each construct. 

Our aim was to have at least 4-5 items per construct to generate these maps. We observed that for Constructs 1 

(Data Collection) and 3 & 4 (Edge Detection and Feature Extraction), the actual order of item difficulty exactly 

matched the hypothesized order, confirming our conjecture. For Construct 2 (Pixels), two items did not match the 

hypothesized order. However, further investigation revealed that at least one item from each level followed the 

expected order, leading us to conclude that these items would ensure the reliable placement of students on the 

trajectory. For the last two constructs, (Learning and Data & Bias), four items were identified that did not match 

the expected order of difficulty. This was expected because as concepts become more complex, the nature of 

various topics within each idea may not strictly follow a linear progression. Understanding if the actual item 

difficulties matched the hypothesized item difficulties was an important step before we moved on to the validation 

of the progression since these items that were mapped to the different levels of the progression played an important 

role in the reliable placement of the students on the progression.  

 

Figure 1  

Wright Maps for all Constructs  
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We aimed to validate the LP by assessing students’ understanding using pre-test and post-test scores gathered 

during the implementation of the AI curriculum intervention. A total of 35 students completed the Computer 

Vision (CV) subscale tests, while 28 students completed the Machine Learning (ML) subscale tests. Items from 

the CV subscale were used for the first four constructs, and items from the ML subscale were used for the latter 

two. Our hypothesis was that, for each construct, students would progress to higher levels in the post-test 

compared to the pre-test. Additionally, we expected students to generally perform at lower levels in the later 

constructs compared to the earlier ones.  

Results indicated a consistent increase in levels for the first two constructs, Data Collection and Pixels, 

among all students. However, starting from the third construct, we observed a change in this trend, along with a 

decline in the number of students progressing across levels for certain constructs: Construct 3 (Edges) and 

Construct 6 (Data & Bias) from levels 0 to 3. The results for the last construct (Data & Bias) were not surprising, 

as the curriculum didn't emphasize the concept of bias extensively and only briefly touched upon the importance 

of data quality over quantity. We are actively working on incorporating more classroom activities related to this 

construct for future iterations. We also examined how many students progressed across levels from pre to post-

tests (see Table 2). We observed a similar trend of initial progress across levels for the first few constructs, followed 

by a reduction in the number of individuals progressing across levels, or in certain cases, even dropping levels as 

the ideas behind the constructs became more complex (left to right in Table 2). This suggests that as ideas become 

more intricate, we need to provide additional curriculum resources and support to address the nuanced learning of 

these abstract concepts.  
 

Table 2  

Progression across levels before and after curriculum  

Level  Feature  Learning  Data &  

Progression  Data Collection  Pixels  Edge  Extraction  Bias  

Same Level  17  13  21  18  10      23  

1 level up  14  8  7  0  7      2  

2 levels up  4  13  3  15  7      0  

3 levels up  1 1  2  

1 level down   3 2 2 3 

  

The two fundamental questions proposed by Duschl et al. (2011) for evaluating LPs are as follows: “How well 

developed is the identification of foundational knowledge that facilitates and advances pathways of reasoning and 

understanding? How thorough is the description of the teacher-mediated learning pathways?” (Duschl et al., 2011, 

p. 173). While validating LPs, the first question helps us understand the coherence of the curriculum, and the 

second question addresses the alignment between the curriculum, instruction, and assessment. In the validation of 

our LP, we examined two classrooms where the same curriculum was taught, and we assessed student learning 

using the same assessment items. However, differences in classroom context and teachers' expertise levels 
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 prompted us to explore how teachers' instructional choices might have impacted student progression in the two 

classrooms.  

Classroom comparison  
Evidence from LP validation should consider teachers' pedagogical content knowledge, which can impact their 

instructional strategies and, consequently, students' learning outcomes. In our study, the two classrooms we used 

for validation had different levels of teacher expertise. Jennifer was new to AI teaching, while Alison was an AI 

expert. We used chi-square tests to determine if there was a significant association between student progression 

levels and the two teachers. Out of the six constructs studied, there were significant associations between the 

constructs and classrooms for Feature Extraction and Learning), with χ 2(2)=8.40, p=.003;  χ 2(2)=9.77, p= .007, 

indicating a notable association between progression levels and classrooms, indicating that Alison’s students 

moved further along the LP on these constructs. To delve deeper into the differences observed in the constructs of 

Feature Extraction and Learning between teachers' classes, we conducted interaction analysis on lesson videos. 

We reviewed 110 minutes of video footage from both classrooms, selecting segments where lessons on the 

constructs of Feature Extraction and Learning were being taught. Due to space constraints, we discuss the results 

for Feature Extraction here. We present our findings from two activities in the following section, emphasizing the 

nuances of student responses across the two classrooms to highlight differences in their understanding of the 

discussed concepts and the role teachers play in eliciting these responses. The three LP levels of this construct are 

mentioned in Table 1.  

  

Activity 1: Quick, Draw   

The first activity featured the game Quick, Draw! by Google, where players drew objects, and the AI either 

correctly identified the drawing by recognizing patterns from its database of previously drawn examples of the 

same object, or the player ran out of time. This activity addressed the concept that: Computers use algorithms to 

classify shapes in an image.  

  We observed students actively engaging in the activity right from the beginning in both classes. In 

Jennifer's class, when the game failed to identify the objects some students drew, Jennifer addressed certain student 

concerns, such as “my panda... said it looks like sunglasses or a donut,” by probing them to understand why that 

might have happened. She asked, “What do sunglasses, pandas, and donuts have in common?” This led them to 

think about the common shape across the three objects, with one student remarking, “if that's a circle, it could be 

sunglasses or a doughnut.” Similarly, in Alison's class, student responses indicated that they also reached an 

understanding of a common shape that was being used to identify similar objects. One student said, “Well, I see a 

lot of rectangles; some look like a wallet... a rectangle is definitely a common shape.” However, we observed 

Alison further probe by saying, “think along the lines of edge detection and feature extraction.” This led the 

students to expand their thinking and grasp the nuances of how these shapes are classified. When discussing why 

the game might have mistaken a drawing of stairs as that of a chair, one student responded, “Just a little bit more 

of an extra edge piece makes it (a chair), stairs.”  Like the panda, sunglasses, and donut discussion in Jennifer’s 

class, students in Alison’s class also delved into the identification of common shapes across different images, such 

as rectangles representing a toaster or a wallet. However, we observed more sophisticated thinking and the 

discussion reaching a higher level of complexity in Alison’s class, where students connected this to prior concepts 

and identified how the addition of extra edges could transform an image from a chair into stairs.  

  

Activity 2: Dog vs Table  

In this second activity, the teachers engaged their classes in a discussion about establishing rules to distinguish 

between a picture of a dog and a table. This activity addressed the concept that: The more detailed an algorithm 

is the more accurate the classification of the shape/image is.  

In Jennifer’s class, student responses indicated that they were able to design different rules for the two 

objects. Some student responses were, “focus on the four legs for a dog,” “a table would have a flat surface,” “a 

dog would have two triangles for the ears.” Although Jennifer acknowledged these responses, she didn’t probe 

further to have a discussion on how these rules were similar to a certain extent but different because of the 

intricacies of the two images. There was no discussion in the class along the lines of comparing the rules of the 

two objects. In Alison’s classroom, the students started by designing rules for the two objects separately, similar 

to Jennifer’s class. Some of these rules were, “specifically talking about the head and its ears for the dog,” “the 

table has four legs.” Alison then asked them to compare these rules, which led to further responses like “The table 

has a flatter surface than the dog,” “dignified markings on the table compared to the dog.” The students then had 

a discussion on how the rules for the dog might not apply to a table but might apply to a cat when one student 

mentioned, “but the circle with two triangles could be a cat too.” This was quickly refuted by another student who 
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 said, “we can be more specific about the length of the ears...for a dog.” The discussion in Alison’s class once again 

touched upon the nuances of how to detail algorithms or rules for more accurate classification (e.g., dog vs. table; 

dog vs. cat), whereas in Jennifer’s class, the discussion stopped at creating different rules for various 

shapes/images, without delving into how these rules may vary and require different levels of detail for accurate 

classification. For both activities, students in both classrooms demonstrated a good understanding of the 

fundamental concepts of algorithms. However, it was evident that students in Alison’s classroom engaged in more 

sophisticated discussions, placing greater emphasis on the intricacies of rules, particularly when dealing with 

complex images, and drawing connections to previous concepts like edge-detection. Although the initial responses 

in both classes were similar, Alison’s discussion prompts encouraged students to think more elaborately about 

these concepts. This observation can be attributed to the abstract nature of the content being taught. Alison's strong 

grasp of the subject matter as a content-matter expert provided her with an advantage in handling the nuances of 

the concept compared to Jennifer. While Jennifer delivered the content as expected and demonstrated 

understanding, she couldn't make these seamless connections with the same ease.  

 

Conclusions and implications  
Our study concentrated on creating an AI learning progression for upper-elementary students. We validated it by 

assessing two classrooms with reliable items for varying understanding levels. During validation, we observed a 

consistent increase in student comprehension for four out of six constructs from pre- to post-tests. However, our 

results also indicated that as concepts grew more complex, progress across levels decreased, suggesting a potential 

need for additional resources to support the understanding of increasingly abstract concepts. This observation 

aligns with findings in the learning sciences literature, which highlight the nuanced nature of knowledge structure 

and the processes of learning (Duschl, 2008). This specifically holds true for AI learning, considering the relative 

“newness” and abstract nature of the domain. Our proposed LP provides a framework for designing and refining 

AI curricula and ensuring alignment with assessments and instructional strategies. Additionally, we conducted a 

comparative study across two different classroom settings to examine the impact of various contexts and 

instructional strategies on students' comprehension of complex AI concepts. We argue that learning is not 

inevitable, and the context and quality of teaching play a crucial role in student learning. To investigate this, we 

compared student progression between two classrooms: one taught by an AI expert (Alison) and one with limited 

AI teaching experience (Jennifer). This comparison revealed significant differences in students' progression levels 

for two of the more complex constructs: Feature Extraction and Learning. Analysis of classroom videos showed 

notable differences in instructional strategies, likely attributed to the teacher's expertise and hence ability to 

improvise teaching the content depending on need. This finding was expected, given the sophistication and 

nuanced nature of these concepts, which an AI expert can more effectively address. This highlights the importance 

of pedagogy, particularly in teaching AI concepts. Our findings underscore the need to define and elaborate on 

instructional progressions that can support students' understanding of these core AI ideas within our LP. The 

challenge lies in deciding what and how much to emphasize and what to exclude.  

Future research should focus on enhancing teachers' capacity and expertise in AI education by integrating 

pedagogical knowledge with AI understanding through instructional strategies guided by the LP. In our next phase 

of refining assessment items and curricula using this LP framework, we intend to design a broader range of 

assessment items and learning performances to gather additional evidence of student understanding before placing 

them on the progression. Our project has identified possible entry points (lower anchors) and defined the 

increasing levels of core AI ideas, making a novel contribution. This is particularly important as the AI education 

field for K-12 currently lacks a framework that describes learning trajectories guided by standards for younger 

students. Such a framework will also facilitate the development of coherent AI curricula, aiding students in 

building a sophisticated understanding of key AI concepts.  
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