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Abstract: This paper proposes a novel learning progression contributing to K-12 Al education
by providing a framework that outlines learning trajectories for younger students. It identifies
potential entry points and offers a clear description of increasing levels of core Al concepts. To
ensure reliable student placement during validation of this LP, we compared the actual
difficulties of assessment items, used for collecting evidence of student learning, against
hypothesized item difficulties by generating Wright maps. We further explored variations in
students' progression within different classroom contexts. Findings from the validation process
revealed a consistent increase in students’ progression across LP levels from pre- to post-tests
for most constructs. Classroom comparisons indicated significant differences in students'
progression levels for certain constructs. Further exploration through analysis of classroom
videos highlighted differences in instructional strategies, likely attributed to the teacher's
content-matter expertise, impacting student understanding of the content and hence their
progression on the LP.

Introduction

Over the past decade, technology has continued to permeate our lives and evolve at a rapid pace, touching almost
every aspect of our existence, particularly with the ever-present influence of Artificial Intelligence (Al). To
understand what Al is and how this innovative technology functions, Al education has started to make its way
into the K-12 educational landscape (DeLyser & Vargas-Vite, 2021). Despite some K-12 curriculum development
efforts that have begun to incorporate Al concepts (Judd, 2020; Payne 2019), there is limited research into how to
effectively measure students’ understanding of these concepts and their application.

As Al's prevalence continues to grow, Wong and colleagues (2020) assert that K-12 students must acquire
proficiency in three key dimensions of Al literacy: concepts, applications, and ethics/safety. Within this context,
researchers have identified competencies in Al ethics, decision-making, data analysis, sensors, and data-driven
learning. These competencies serve as the foundation for developing frameworks in curriculum design and
learning paths. Furthermore, AI4K12, designed as a joint initiative between the Association for the Advancement
of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA), has identified five “big
ideas” pivotal to Al education: (a) perception, (b) representation and reasoning, (c) learning, (d) natural interaction,
and (e) societal impact (Touretzky et al., 2019). These frameworks are helpful in designing K-12 Al curricula;
however, the field needs a description of learning trajectories and guiding standards for younger students
(Ottenbreit-Leftwich et al., 2023). Guiding frameworks can help provide insight regarding what topics to consider,
however, researchers have recently started to map pathways that will inform ways to better engage young K-12
learners with ideas about Al. There needs to be more focus on choosing concepts that are developmentally
appropriate for young learners, as well as defining learning trajectories. An essential element of these trajectories
is using reliable assessment items which can help to measure student understanding at each level of the expected
learning trajectory and must undergo psychometric and cognitive testing to ensure they are reliable and valid.
This is pivotal in measuring a student's grasp of the construct in the progression (Wiliam, 2010). In our study, we
designed a hypothetical Al learning progression (LP), drawing from domain specific research, validated
assessments, prior implementations of our Al curriculum (Chakraburty et al., 2023), and expert input. Next, we
validated this LP in two classrooms, while considering potential cultural influences. The general aim of this
research is to design and validate a hypothetical LP to support upper elementary school students to learn and apply
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Al concepts. We address this through three research questions: (1) How does the progression of upper elementary
students' knowledge of Al concepts unfold? (2) Where do the students lie on the progression before and after the
curriculum intervention?, and (3) To what extent does students’ progression differ depending on different
classroom contexts?

Literature review: Learning Progressions

Learning Progressions (LP) start with a few foundational ideas in a specific content area that are classified into
progress variables (Wilson & Scalise, 2006). These foundational ideas are generative disciplinary ideas that are
built and refined over time. They consist of different levels describing the development of students’ understandings
that are research-based (Duncan & Rivet, 2018). Learning progressions have been developed for many areas of
science, such as complex systems (Cisterna et al., 2020), genetics (Shea & Duncan, 2013), and physical science
(Kaldaras et al., 2021). Learning progressions have a lower anchor representing initial understanding and an upper
anchor representing expert understanding with several points in between. Given the complexity of content in Al
and the inadequacy of current efforts for delivering and measuring Al learning, especially among younger learners,
a more coherent approach to understanding students’ development of Al knowledge is needed. LPs contribute to
educational coherence in three distinct ways. First, they map the development of students' understanding, guiding
their progression from basic to advanced thinking, establishing developmental coherence. This foundational
understanding then facilitates the alignment of educational content, fostering horizontal coherence, while also
bridging the gap between classroom-level assessments and broader evaluations, promoting vertical coherence. To
further advance this field, we need research to expand the use of LP-based interventions and to enhance teachers'
understanding and implementation of LPs (Jin et al., 2019).

To prepare students to step into the world of Al, they need to be introduced to these complex concepts
early. In their study, Ottenbreit-Leftwich et al. (2023) discuss the significant challenges associated with designing
a curriculum that introduces Al content to fourth and fifth grade students. One challenge they identify is students’
prior knowledge about Al, including naive ideas, by investigating their everyday experiences and ideas about Al.
This highlights possible entry points to designing a learning trajectory for Al learning for younger students. Wong
et al. (2020) argue that although there are lessons to be learned from university-level Al education, they cannot be
completely implemented at a K-12 level in the same way. We argue that an Al LP that defines the learning
trajectory across multiple grade-bands from elementary to high school would ensure students’ preparation for
higher level Al courses including preparation as citizens with fundamental Al literacy. With younger learners’
experiencing Al devices and media representations at an early stage of their lives, they bring various pre-existing
perceptions and ideas. It is important to critically assess student understanding of Al concepts to better evaluate
their current perceptions of Al and to design a developmentally appropriate curriculum (Long & Magerko, 2020).
These LPs are initially hypothesized based on expert targets and empirical evidence. To understand these
instructional targets and how students are making progress in achieving them, reliable assessments are needed.
These hypothetical models require testing and validation through iterative revision and refinement (Duncan &
Hmelo-Silver, 2009). Validation of hypothetical LPs can occur through cross-sectional studies documenting
knowledge and reasoning development across multiple grades (Mohan, Chen, & Anderson, 2009) or through
longitudinal teaching sequences (Songer et al., 2009). It's essential to empirically evaluate LPs as the development
of students' Al understanding isn't inevitable (Duncan & Rivet, 2018). In the field of Al, we need frameworks to
support students in progressively developing more advanced Al knowledge and reasoning. In this study, we
designed a hypothetical LP by conducting cognitive analysis, using data such as students' scores on assessment
items from previous PrimaryAl curriculum studies (Chakraburty et al., 2022), classroom observation videos,
existing research, and expert consultations. The second part of the study validates this LP in two upper-elementary
classrooms with different cultures, grounded in socio-constructivist theories. We examine how learners understand
complex Al concepts in relation to the LP progression and explore potential differences based on teachers'
strategies and their impact on students' learning.

Data sources and analysis

To understand the functionality of our data collection instrument, we created Wright-maps for two scales that
underwent psychometric testing. These maps illustrate both person abilities and item difficulties on the same scale,
enabling visual examination on a single graph. We employed the Rasch model to generate these maps and estimate
item difficulties. The scales were developed using assessment items from two years of data collection (n=105) in
six Midwest classrooms during the implementation of our Al curriculum for upper-elementary students. To
validate our LP, we collected data from two semi-urban schools in the Midwest (n=35). One school was taught
by a content matter expert (a researcher on the team), while the other had limited content matter knowledge. Pre-
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and post-test scores placed students on the progression, and we conducted a frequency count of how many students
progressed across the levels as the initial step of LP validation. Next, we used chi-square analysis to assess
differences between the two classrooms for each construct. Additionally, we analyzed video data using interaction
analysis (Jordan & Henderson, 1995) to examine teachers' instructional strategies and alignment with the content
of the Al learning progression.

Learning Progression design

We initiated the development of the Learning Progression (LP) by researching domain standards and aligning it
with the PrimaryAl curriculum. The curriculum, developed in accordance with AI4K12 standards, included
lessons for each objective derived from these standards, aiming to teach distinct Al concepts. To create a learning
progression that effectively supports the teaching of this content, it is crucial to establish clear distinctions among
the various ideas targeted by these objectives. To articulate these levels and refine the progress variables further,
we conducted a thorough review, which included analyzing classroom observation videos from prior intervention
studies of the Al curriculum. We also performed a cognitive analysis to ensure that the progress variables
accurately reflected increasing levels of sophistication in understanding Al concepts. To assess student
understanding, we assigned assessment items from the Al curriculum to different LP levels. A team of content
matter experts then reviewed the hypothetical LP to verify the content matter validity of the main ideas defined
through various progress variables. We adapted lower anchor concepts from a previous study, and we refined
higher levels through cognitive analysis. For example, an increase in sophistication may involve progressing from
a basic understanding that computers use pixels to a more advanced comprehension of how pixels relate to RGB
color bands in image processing. The LP is organized around six main ideas (Table 1). We conducted our data
analysis in two stages. First, we examined whether items met their intended difficulty levels. Second, we
investigated evidence from two classrooms to confirm the hypothesized progression of student understanding and
to identify contributing factors to any differences in student progressions.

Results

Instrument functioning and Learning Progression Validation

To examine instrument functioning for the validated items, we reviewed the Wright Maps (Figure 1) for two
subscales, mapping assessment items to different constructs. We assessed item difficulties to ensure alignment
with hypothesized values. The item prefixes (CV/ML) indicate the scale, and the number (1/2) denotes the
item's position within that scale.

Table 1
Learning Progression in Artificial Intelligence
Constructs 1- Basic 2- Developing 3- Proficient
T T T T
Recall that humans use their Ident%fy that computers Explain the relationship between
Data senses to collect data. use different sensors ) o
. A data, learning, and decision-
Collection (similar to humans) to .
making.
collect data.
T T T T
Pixels Recognize that computers see Explain that each pixel Demonstrate the relationship
images using pixels. has a number between the numbers in the pixels
associated with it. and the color bands they represent
(RGB).
T T T T
Edges Identify what an edge-detected Describe how Explain how computers find and

image by a computer looks like. ~ computers find edges  classify shapes using the detected
by comparing the RGB  edges.
number values and
finding patterns.

T T T T
Feature Recognize that computers use Identify that the more =~ Recognize that neural networks

Extraction  rules called algorithms to classify detailed an algorithm is are used to combine different
the different shapes in an image.  the more accurate the ~ concepts like edge detection and
classification of the feature extraction to see and
shape/image is. classify pictures.

ICLS 2024 Proceedings 180 © ISLS



Learning Identify that there are three Differentiate between =~ Compare and contrast the various
different ways in which machines the different types of applications that use different

learn supervised, unsupervised, machine learning. types of machine learning.
| | and reinforcement. | | |
Data and Explain that the quality of the Identify what bias in Explain the relationship between
Bias data is more important than the data looks like. biased data and the decision-
quantity of data in training a making it leads to.
model.

We looked at item difficulties for the constructs: Construct 1: Data Collection; Construct 2: Pixels; Constructs 3
& 4 combined: Edge Detection and Feature Extraction; Constructs 5 & 6 combined: Learning, Data, and Bias. We
combined the last two constructs due to limitations in the number of items in the individual constructs and the
interconnected nature of the concepts, preventing us from generating separate Wright Maps for each construct.
Our aim was to have at least 4-5 items per construct to generate these maps. We observed that for Constructs 1
(Data Collection) and 3 & 4 (Edge Detection and Feature Extraction), the actual order of item difficulty exactly
matched the hypothesized order, confirming our conjecture. For Construct 2 (Pixels), two items did not match the
hypothesized order. However, further investigation revealed that at least one item from each level followed the
expected order, leading us to conclude that these items would ensure the reliable placement of students on the
trajectory. For the last two constructs, (Learning and Data & Bias), four items were identified that did not match
the expected order of difficulty. This was expected because as concepts become more complex, the nature of
various topics within each idea may not strictly follow a linear progression. Understanding if the actual item
difficulties matched the hypothesized item difficulties was an important step before we moved on to the validation
of the progression since these items that were mapped to the different levels of the progression played an important
role in the reliable placement of the students on the progression.

Figure 1
Wright Maps for all Constructs
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We aimed to validate the LP by assessing students’ understanding using pre-test and post-test scores gathered
during the implementation of the Al curriculum intervention. A total of 35 students completed the Computer
Vision (CV) subscale tests, while 28 students completed the Machine Learning (ML) subscale tests. Items from
the CV subscale were used for the first four constructs, and items from the ML subscale were used for the latter
two. Our hypothesis was that, for each construct, students would progress to higher levels in the post-test
compared to the pre-test. Additionally, we expected students to generally perform at lower levels in the later
constructs compared to the earlier ones.

Results indicated a consistent increase in levels for the first two constructs, Data Collection and Pixels,
among all students. However, starting from the third construct, we observed a change in this trend, along with a
decline in the number of students progressing across levels for certain constructs: Construct 3 (Edges) and
Construct 6 (Data & Bias) from levels 0 to 3. The results for the last construct (Data & Bias) were not surprising,
as the curriculum didn't emphasize the concept of bias extensively and only briefly touched upon the importance
of data quality over quantity. We are actively working on incorporating more classroom activities related to this
construct for future iterations. We also examined how many students progressed across levels from pre to post-
tests (see Table 2). We observed a similar trend of initial progress across levels for the first few constructs, followed
by a reduction in the number of individuals progressing across levels, or in certain cases, even dropping levels as
the ideas behind the constructs became more complex (left to right in Table 2). This suggests that as ideas become
more intricate, we need to provide additional curriculum resources and support to address the nuanced learning of
these abstract concepts.

Table 2
Progression across levels before and after curriculum
Level Feature Learning Data &
Progression Data Collection Pixels Edge Extraction Bias
Same Level 17 13 21 18 10 23
1 level up 14 8 7 0 7 2
2 levels up 4 13 3 15 7 0
3 levels up 1 1 2
1 level down 3 2 2 3

The two fundamental questions proposed by Duschl et al. (2011) for evaluating LPs are as follows: “How well
developed is the identification of foundational knowledge that facilitates and advances pathways of reasoning and
understanding? How thorough is the description of the teacher-mediated learning pathways?” (Duschl et al., 2011,
p. 173). While validating LPs, the first question helps us understand the coherence of the curriculum, and the
second question addresses the alignment between the curriculum, instruction, and assessment. In the validation of
our LP, we examined two classrooms where the same curriculum was taught, and we assessed student learning
using the same assessment items. However, differences in classroom context and teachers' expertise levels
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prompted us to explore how teachers' instructional choices might have impacted student progression in the two
classrooms.

Classroom comparison

Evidence from LP validation should consider teachers' pedagogical content knowledge, which can impact their
instructional strategies and, consequently, students' learning outcomes. In our study, the two classrooms we used
for validation had different levels of teacher expertise. Jennifer was new to Al teaching, while Alison was an Al
expert. We used chi-square tests to determine if there was a significant association between student progression
levels and the two teachers. Out of the six constructs studied, there were significant associations between the
constructs and classrooms for Feature Extraction and Learning), with y %(2)=8.40, p=.003; y %(2)=9.77, p= .007,
indicating a notable association between progression levels and classrooms, indicating that Alison’s students
moved further along the LP on these constructs. To delve deeper into the differences observed in the constructs of
Feature Extraction and Learning between teachers' classes, we conducted interaction analysis on lesson videos.
We reviewed 110 minutes of video footage from both classrooms, selecting segments where lessons on the
constructs of Feature Extraction and Learning were being taught. Due to space constraints, we discuss the results
for Feature Extraction here. We present our findings from two activities in the following section, emphasizing the
nuances of student responses across the two classrooms to highlight differences in their understanding of the
discussed concepts and the role teachers play in eliciting these responses. The three LP levels of this construct are
mentioned in Table 1.

Activity 1: Quick, Draw

The first activity featured the game Quick, Draw! by Google, where players drew objects, and the Al either
correctly identified the drawing by recognizing patterns from its database of previously drawn examples of the
same object, or the player ran out of time. This activity addressed the concept that: Computers use algorithms to
classify shapes in an image.

We observed students actively engaging in the activity right from the beginning in both classes. In
Jennifer's class, when the game failed to identify the objects some students drew, Jennifer addressed certain student
concerns, such as “my panda... said it looks like sunglasses or a donut,” by probing them to understand why that
might have happened. She asked, “What do sunglasses, pandas, and donuts have in common?” This led them to
think about the common shape across the three objects, with one student remarking, “if that's a circle, it could be
sunglasses or a doughnut.” Similarly, in Alison's class, student responses indicated that they also reached an
understanding of a common shape that was being used to identify similar objects. One student said, “Well, I see a
lot of rectangles; some look like a wallet... a rectangle is definitely a common shape.” However, we observed
Alison further probe by saying, “think along the lines of edge detection and feature extraction.” This led the
students to expand their thinking and grasp the nuances of how these shapes are classified. When discussing why
the game might have mistaken a drawing of stairs as that of a chair, one student responded, “Just a little bit more
of an extra edge piece makes it (a chair), stairs.” Like the panda, sunglasses, and donut discussion in Jennifer’s
class, students in Alison’s class also delved into the identification of common shapes across different images, such
as rectangles representing a toaster or a wallet. However, we observed more sophisticated thinking and the
discussion reaching a higher level of complexity in Alison’s class, where students connected this to prior concepts
and identified how the addition of extra edges could transform an image from a chair into stairs.

Activity 2: Dog vs Table
In this second activity, the teachers engaged their classes in a discussion about establishing rules to distinguish
between a picture of a dog and a table. This activity addressed the concept that: The more detailed an algorithm
is the more accurate the classification of the shape/image is.

In Jennifer’s class, student responses indicated that they were able to design different rules for the two
objects. Some student responses were, “focus on the four legs for a dog,” “a table would have a flat surface,” “a
dog would have two triangles for the ears.” Although Jennifer acknowledged these responses, she didn’t probe
further to have a discussion on how these rules were similar to a certain extent but different because of the
intricacies of the two images. There was no discussion in the class along the lines of comparing the rules of the
two objects. In Alison’s classroom, the students started by designing rules for the two objects separately, similar
to Jennifer’s class. Some of these rules were, “specifically talking about the head and its ears for the dog,” “the
table has four legs.” Alison then asked them to compare these rules, which led to further responses like “The table
has a flatter surface than the dog,” “dignified markings on the table compared to the dog.” The students then had
a discussion on how the rules for the dog might not apply to a table but might apply to a cat when one student
mentioned, “but the circle with two triangles could be a cat too.” This was quickly refuted by another student who
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said, “we can be more specific about the length of the ears...for a dog.” The discussion in Alison’s class once again
touched upon the nuances of how to detail algorithms or rules for more accurate classification (e.g., dog vs. table;
dog vs. cat), whereas in Jennifer’s class, the discussion stopped at creating different rules for various
shapes/images, without delving into how these rules may vary and require different levels of detail for accurate
classification. For both activities, students in both classrooms demonstrated a good understanding of the
fundamental concepts of algorithms. However, it was evident that students in Alison’s classroom engaged in more
sophisticated discussions, placing greater emphasis on the intricacies of rules, particularly when dealing with
complex images, and drawing connections to previous concepts like edge-detection. Although the initial responses
in both classes were similar, Alison’s discussion prompts encouraged students to think more elaborately about
these concepts. This observation can be attributed to the abstract nature of the content being taught. Alison's strong
grasp of the subject matter as a content-matter expert provided her with an advantage in handling the nuances of
the concept compared to Jennifer. While Jennifer delivered the content as expected and demonstrated
understanding, she couldn't make these seamless connections with the same ease.

Conclusions and implications

Our study concentrated on creating an Al learning progression for upper-elementary students. We validated it by
assessing two classrooms with reliable items for varying understanding levels. During validation, we observed a
consistent increase in student comprehension for four out of six constructs from pre- to post-tests. However, our
results also indicated that as concepts grew more complex, progress across levels decreased, suggesting a potential
need for additional resources to support the understanding of increasingly abstract concepts. This observation
aligns with findings in the learning sciences literature, which highlight the nuanced nature of knowledge structure
and the processes of learning (Duschl, 2008). This specifically holds true for Al learning, considering the relative
“newness” and abstract nature of the domain. Our proposed LP provides a framework for designing and refining
Al curricula and ensuring alignment with assessments and instructional strategies. Additionally, we conducted a
comparative study across two different classroom settings to examine the impact of various contexts and
instructional strategies on students' comprehension of complex Al concepts. We argue that learning is not
inevitable, and the context and quality of teaching play a crucial role in student learning. To investigate this, we
compared student progression between two classrooms: one taught by an Al expert (Alison) and one with limited
Al teaching experience (Jennifer). This comparison revealed significant differences in students' progression levels
for two of the more complex constructs: Feature Extraction and Learning. Analysis of classroom videos showed
notable differences in instructional strategies, likely attributed to the teacher's expertise and hence ability to
improvise teaching the content depending on need. This finding was expected, given the sophistication and
nuanced nature of these concepts, which an Al expert can more effectively address. This highlights the importance
of pedagogy, particularly in teaching Al concepts. Our findings underscore the need to define and elaborate on
instructional progressions that can support students' understanding of these core Al ideas within our LP. The
challenge lies in deciding what and how much to emphasize and what to exclude.

Future research should focus on enhancing teachers' capacity and expertise in Al education by integrating
pedagogical knowledge with Al understanding through instructional strategies guided by the LP. In our next phase
of refining assessment items and curricula using this LP framework, we intend to design a broader range of
assessment items and learning performances to gather additional evidence of student understanding before placing
them on the progression. Our project has identified possible entry points (lower anchors) and defined the
increasing levels of core Al ideas, making a novel contribution. This is particularly important as the Al education
field for K-12 currently lacks a framework that describes learning trajectories guided by standards for younger
students. Such a framework will also facilitate the development of coherent Al curricula, aiding students in
building a sophisticated understanding of key Al concepts.
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