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NUMERICAL APPROXIMATION AND ANALYSIS FOR PARTIAL

INTEGRODIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE

WENLIN QIU, XIANGCHENG ZHENG, XU XIAO AND HONG WANG

We consider the numerical analysis for a partial integrodifferential equation of hyperbolic type. The

central difference formula and the second-order convolution quadrature are applied to construct the

numerical scheme, where the convolution quadrature method could accommodate the complicated case

that the explicit form of the memory kernel is not available. We propose a novel analysis to prove the

finite-time stability of the numerical solutions and specify the condition that ensures the long time stability.

We also prove error estimates for the numerical scheme based on a newly developed approximate result of

convolution quadrature for convolution of nonsmooth functions. Finally, we extend the developed methods

to construct and analyze a numerical scheme for the corresponding nonlinear problems. Numerical

experiments are performed to substantiate the theoretical findings.

1. Introduction

This work considers numerical approximation of the following partial integrodifferential equation of

hyperbolic type proposed in, e.g., [1; 2; 6; 8; 20; 25]:

(1) u′′(t)+ Au(t)− (´ ∗ Au)(t)= f (t, u(t)), t > 0,

subject to the initial conditions

(2) u(0)= u0, u′(0)= u1.

Here A is a positive self-adjoint densely defined linear operator on the Hilbert space H , u0, u1 ∈ H are

given data, and ´(t)∈ L1(R+) is a scalar memory kernel. By [4, Theorems 9 and 11], there exists a unique

positive self-adjoint operator A1/2 such that (A1/2)2 = A. The ∗ represents the convolution defined by

(3) (´ ∗È)(t) :=
∫ t

0
´(t − s)È(s) ds, t g 0.

Integrodifferential equations such as (1)–(2) with f (t, u(t)) = f (t) arise in several fields such as the

linear viscoelasticity or heat conduction with memory, and the operator A usually takes the form of

the negative Laplacian, the Stokes operator, or the biharmonic operator, etc., equipped with appropriate
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boundary conditions [18; 19; 20]. The kernel ´ is assumed to satisfy the following conditions in the

aforementioned works:

(4) ´(t)g 0 is nonincreasing, locally absolutely continuous on (0,∞) with
∫∞

0
´(t) dt < 1.

Some typical examples of such kernels are the weak singular kernel [13; 21]

(5) ´(t)= µ0

t³−1

0(³)
e−Ät , t > 0, Ä > 0, 0< ³ < 1, µ0 ∈ (0, Ä³),

and the smooth kernel [24]

(6) ´(t)= e−t(1 − e−t)

t
.

There exist several theoretical studies for the linear case of problem (1)–(2) on the existence and

decay properties of the solutions [1; 2; 5; 6; 8; 16; 20], and some numerical studies have also been

considered. For instance, Pani et al. [17] considered the interpolation quadrature to solve (1) with a

smooth kernel. Then, Larsson et al. considered the continuous Galerkin method [11] and discontinuous

Galerkin method [12] for the linear case of (1)–(2) with weak singular kernels. Karaa and Pani developed

the mixed finite element method [9] and the discontinuous Galerkin method [10] for the linear case of

(1)–(2) with smooth kernels.

For nonlinear problems, a pioneering work investigated the attenuated Westervelt equation [3], which,

compared with the problem (1)–(2), contained an additional nonlinear term k(u2)′′ for some k > 0 and the

two specific kernels, i.e., the tempered fractional kernel and the Mittag-Leffler type kernel. The existence

and regularity of the solutions were rigorously proved via sophisticated analysis, which in turn supported

the error estimates of the numerical discretization based on the trapezoidal rule and A-stable convolution

quadrature (CQ).

Despite the aforementioned significant progress, these works rely on properties of the kernel, which

are not always available. For instance, a class of variable-order fractional kernels was considered in, for

instance, [7], to account for the varying nature of nonlocalities, which varied the order of the operators in

the Laplace domain such that the explicit form of the resulting kernel and thus its properties were in general

not available. For such complicated problems, Xu applied the Laplace transform for model (1)–(2) to split

the solution into two parts, and the CQ in which the underlying multistep method was the trapezoidal rule

was utilized for temporal discretization [25]. For nonlinear problems, it is difficult to apply the Laplace

transform method, which motivates us to develop a direct and CQ-based computation method.

We consider a direct discretization scheme for model (1)–(2) where the second-order difference and

CQ schemes are applied for approximating the second-order time derivative and the convolution term,

respectively, which is feasible to treat nonlinear problems without explicit expressions of kernels. The

main contributions are enumerated as follows:

• We prove the finite-time stability of the numerical solutions to the linear case of problem (1)–(2) based

only on the imposed properties of the Laplace transform of the kernel, and specify the condition that ensures

the long-time stability of the numerical solutions. In particular, a novel norm is introduced (see (25)),

which captures the structure of the scheme and thus significantly simplifies the analysis procedure.
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• We prove error estimates for the numerical scheme of the linear case of problem (1)–(2). A key

ingredient lies in developing a new approximate result of CQ for the convolution of nonsmooth functions

(see Lemma 4.2) by technical derivations, which accounts for the possible singularity of the solutions

caused by that of the memory kernel.

• We extend the developed methods to construct and analyze a numerical scheme for the nonlinear

problem (1)–(2), which circumvents the limitation of the Laplace transform method and generalizes the

application of the proposed numerical discretization method for more complicated problems.

The rest of this paper is organized as follows: We propose a discrete-in-time scheme for the linear

problem in Section 2. The stability analysis of numerical solutions is given in Section 3. Section 4

presents the error estimates for the proposed scheme. In Section 5, we extend the developed methods

to construct a numerical scheme of the semilinear problem. Numerical experiments are carried out to

substantiate the theoretical results in Section 6.

2. Discrete-in-time scheme for linear problem

Define the norms ∥w∥ =
√

ïw,wð and ∥w∥m = ∥Am/2w∥ for m = 1, 2, 3, 4, and define

(7) b(t) :=
∫ ∞

t

´(q) dq and b0 := b(0)=
∫ ∞

0

´(q) dq,

where ´(t) is given in (4). Based on the assumptions in (4), b(t) is nonnegative, nonincreasing and convex

on (0,∞). We then follow the ideas in [18; 25] to apply the integration by parts to obtain

Au(t)− (´ ∗ Au)(t)= (1 − b0)Au(t)+ b(t)Au0 + (b ∗ Au′)(t).

This reformulation eliminates the negative sign in the convolution term in (1) that facilitates the analysis.

Then for f (t, u(t))= 0, we first consider the linear case of problem (1)–(2), and rewrite (1) as

(8) u′′(t)+ (1 − b0)Au(t)+ b(t)Au0 + (b ∗ Au′)(t)= 0.

To discretize (8), we set the time step size k and consider (8) at tn = nk

(9) u′′(tn)+ (1 − b0)Au(tn)+ bn Au0 + (b ∗ Au′)(tn)= 0, n g 1,

where bn =
∫∞

tn
´(s) ds. Then we discretize the terms in (9) one by one. Let un = u(tn) and

(10) ¶t u
n = un − un−1

k
, ¶

(2)
t un = ¶t(¶t u

n+1), ũn = un+1 + 2un + un−1

4
, ūn = un+1 − un−1

2k
.

We approximate u′′(tn) by ¶
(2)
t un with the remainder expressed by the Taylor expansion

(11)

u′′(tn)− ¶(2)t un = −1

6k2

(∫ tn+1

tn

(tn+1 − t)3u′′′′(t) dt +
∫ tn

tn−1

(t − tn−1)
3u′′′′(t) dt

)

≡ [Rt,1]n, n g 2,

u′′(t1)− ¶(2)t u1 = −1

2k2

(∫ t2

t1

(t2 − t)2u′′′(t) dt +
∫ t1

0

t2u′′′(t) dt

)
≡ [Rt,1]1.
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Then we follow [17] to approximate Au(tn) by Aũn with the remainder expressed by the Taylor expansion

(12) Au(tn)− Aũn = −1

4

(∫ tn+1

tn

(tn+1 − t)Au′′(t) dt +
∫ tn

tn−1

(t − tn−1)Au′′(t) dt

)

≡ [Rt,2]n, n g 1.

To approximate the convolution term b ∗ Au′, we adopt the following second-order CQ [14; 15] for the

convolution b ∗ϕ:

(13) Q̃tn (ϕ)= Qtn (ϕ)+Çn0(k)ϕ(0), where Qt(ϕ)=
∑

0ftpft

Ép(k)ϕ(t − tp),

with the quadrature weights Én(k) being the coefficients of the power series

(14) b̂

(
·(z)

k

)
=

∞∑

n=0

Én(k)z
n, |z|< 1; ·(z)= (3 − z)(1 − z)

2
, z ∈ C,

where b̂(s) represents the Laplace transform of b(t). The starting weight in (13) is given in order to

maintain the second-order accuracy

(15) Çn0(k)= (b ∗ 1) (tn)−
n∑

p=0

Ép(k).

Based on [15], ·(z) satisfies the following conditions:

(i) ·(z) is analytic and without zeros in a neighborhood of the closed unit disc |z| f 1, with the exception

of a zero at z = 1;

(ii) |arg ·(z)| f Ã/2 for |z|< 1 and 1
k
·(e−k)= 1 + O(k2).

Then the convolution term b ∗ Au′ is approximated by integrating the second-order CQ with the leapfrog

scheme

(b ∗ Au′)(tn)= Q̃tn (Aū)+ [Rt,3]n,

with ū0 := u1, the initial value of u′, and the error

(16) [Rt,3]n = ((b ∗ Au′)(tn)− Q̃tn (Au′))+ Q̃tn (A(u
′ − ū))

=: [Rt,3,1]n + [Rt,3,2]n.

Invoking (11)–(13) in (9) we have

(17) ¶
(2)
t un + (1 − b0)Aũn + bn Au0 + Q̃tn (Aū)= [Rt ]n, n g 1,

where [Rt ]n = −
∑3

j=1[Rt, j ]n . The initial data (2) provides

(18) ¶t u
1 −

(
u1 + k

2
u2

)
= 1

2k

∫ k

0

(k − t)2u′′′(t) dt ≡ [Rt ]0, u0 = u0,
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where u2 := u′′(0)= −Au0 from (8). Let U n be the approximated solution of un with U 0 = ū0. Then we

drop the truncation errors in (17) and (18) to get the discrete-in-time scheme

¶
(2)
t U n + (1 − b0) AŨ n + bn Au0 + Q̃tn (AU )= 0, n g 1,(19)

¶tU
1 = u1 + k

2
u2, U 0 = u0.(20)

Throughout this paper, C denotes a positive constant that is independent of the time step size but may

assume different values at different occurrences.

3. Numerical stability

We first establish the finite-time stability of the numerical solution, and then specify the condition that

ensures the long-time stability. We follow [15] to make conventional assumptions for the Laplace transform

of b for the sake of numerical analysis:

Assumption A: b̂(s) is analytic in a sector |arg(s − c)|< Ã − ¹ with ¹ < Ã/2 and c ∈ R, and satisfies

|b̂(s)| f M |s|−µ for some M <∞ and µ > 0.

Theorem 3.1. Suppose (4) and Assumption A hold. Then for T <∞ with N + 1 = T/k, the finite-time

stability holds

∥U n∥ +∥¶tU
n∥ f C(T )(∥u0∥2 + k2 ∥u0∥3 + ∥u1∥ + k∥u1∥2), 1 f n f N + 1.

Proof. First, we take the inner product of (19) with U n to get

(21)
1

2k3
(∥U n+1∥2 − ∥U n−1∥2 − 2ïU n,U n+1ð + 2ïU n−1,U nð)

+ bnïAu0,U
nð + 1 − b0

8k
(∥U n+1∥2

1 − ∥U n−1∥2
1)

+ 1 − b0

8k
(2ïA1/2U n, A1/2U n+1ð − 2ïA1/2U n−1, A1/2U nð)

+
n∑

p=0

Ép(k)ïA1/2U n−p, A1/2U nð +Çn0(k)ïAu1,U
nð = 0,

where we use the results that

(22) ï¶(2)t U n,U nð = 1

2k3
(∥U n+1∥2 − ∥U n−1∥2 − 2ïU n,U n+1ð + 2ïU n,U n−1ð)

= 1

2k3
(∥U n+1 − U n∥2 − ∥U n − U n−1∥2),

and that

(23) ïAŨ n,U nð = 1

8k
(∥U n+1∥2

1 − ∥U n−1∥2
1 − 2ïA1/2U n, A1/2U n+1ð + 2ïA1/2U n, A1/2U n−1ð)

= 1

8k
(∥U n+1 + U n∥2

1 − ∥U n + U n−1∥2
1).
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Then summing (21) for n from 1 to M for some M f N , we have

(24) ∥U M∥2
A = ∥U 0∥2

A − 2k3

M∑

n=1

bnïAu0,U
nð + 2k3É0(k)ïA1/2u1, A1/2u1ð

− 2k3

M∑

n=0

n∑

p=0

Ép(k)ïA1/2U n−p, A1/2U nð − 2k3

M∑

n=1

Çn0(k)ïAu1,U
nð,

in which U 0 = u1 and the norm ∥ · ∥A is defined as

(25) ∥V n∥A :=

√
∥V n+1 − V n∥2 + (1 − b0)k

2

4
∥(V n+1 + V n)∥2

1, n g 0.

By using [23, Lemma 3.1], we have

(26)

M∑

n=0

n∑

p=0

Ép(k)ïA1/2U n−p, A1/2U nð g 0.

Using (26), (20) and Cauchy–Schwarz inequality, (24) implies

∥U M∥2
A f ∥U 0∥2

A + 2k3

M∑

n=1

bn∥Au0∥∥U n∥ + 2k2É0(k)∥Au1∥∥U 1∥A + 2k3

M∑

n=1

|Çn0(k)|∥Au1∥∥U n∥,

which, together with

(27) ∥U n∥ f ∥U n+1 − U n∥ +∥U n − U n−1∥
2k

f ∥U n∥A + ∥U n−1∥A

2k
,

leads to

(28) ∥U M∥2
A f ∥U 0∥2

A + k∥u0∥2

(
k

M∑

n=1

bn(∥U n∥A + ∥U n−1∥A)

)

+ k∥u1∥2

(
k

M∑

n=1

|Çn0(k)|(∥U n∥A + ∥U n−1∥A)+ 2kÉ0(k)∥U 1∥A

)
.

Define ∥U J ∥A := max0fnfN ∥U n∥A, and (28) leads to

∥U J ∥2
A f ∥U 0∥A∥U J ∥A + k∥u0∥2

(
k

J∑

n=1

bn(∥U n∥A + ∥U n−1∥A)

)

+ k∥u1∥2

(
k

J∑

n=1

|Çn0(k)|(∥U n∥A + ∥U n−1∥A)+ 2kÉ0(k)∥U 1∥A

)

f ∥U 0∥A∥U J ∥A + 2k∥u0∥2

(
k

J∑

n=1

bn

)
∥U J ∥A + 2k∥u1∥2

(
k

J∑

n=1

|Çn0(k)| + kÉ0(k)

)
∥U J ∥A,
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which naturally implies

(29) ∥U J ∥A f ∥U 0∥A + 2k∥u0∥2

(
k

J∑

n=1

bn

)
+ 2k∥u1∥2

(
k

J∑

n=1

|Çn0(k)| + kÉ0(k)

)

f ∥U 0∥A + 2k∥u0∥2

(
k

N∑

n=1

bn

)
+ 2k∥u1∥2

(
k

N∑

n=1

|Çn0(k)| + kÉ0(k)

)
.

By (7), the properties of b(t) and (4), we have

(30) k

N∑

n=1

bn f T b0,

and from (14) with
·(0)

k
= 3

2k
, we also have

(31) É0(k)= b̂(
·(0)

k
)=

∫ ∞

0

e−(3/(2k))t b(t) dt f 2b0

3
k.

Inserting (30)–(31) into (29) and utilizing (25), we have

(32) ∥U M∥A f ∥U J ∥A f ∥U 1 − U 0∥ +
√

1 − b0

2
k∥U 1 + U 0∥1

+ 2T b0k∥u0∥2 + 4b0

3
k3 ∥u1∥2 + 2k2

( N∑

n=1

|Çn0(k)|
)

∥u1∥2

f k∥u1∥ + k2

2
∥u0∥2 +

√
1 − b0

2
k

(
2∥u0∥1 + k∥u1∥1 + k2

2
∥u0∥3

)

+ 2T b0k∥u0∥2 + 4b0

3
k3 ∥u1∥2 + 2k2

( N∑

n=1

|Çn0(k)|
)

∥u1∥2,

where we used (20), i.e.,

(33) U 1 = U 0 + ku1 + k2

2
u2 = u0 + ku1 − k2

2
Au0.

By |Çn0(k)| f Ct
µ−1
n k [15], we have c∗

N :=
∑N

n=1 |Çn0(k)| f C(T ) such that (32) leads to

(34) ∥U M∥A f k

(
√

1 − b0 ∥u0∥1 +
(

2T b0 + k

2

)
∥u0∥2 +

√
1 − b0

4
k2 ∥u0∥3 + ∥u1∥

+
√

1 − b0

2
k∥u1∥1 + 2k

(
2b0

3
k + c∗

N

)
∥u1∥2

)
:= k8(u0, u1).

Then (25) and (34) give

(35) ∥U M+1 − U M∥ f k8(u0, u1), ∥¶tU
M+1∥ f8(u0, u1),
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and we use the property of A to obtain

(36)
2√

1 − b0

8(u0, u1)g ∥(U M+1 + U M)∥1 g c′∥U M+1 + U M∥.

Combining (35) and (36), we further arrive at

(37) ∥U M+1∥ f ∥U M+1 + U M∥ +∥U M+1 − U M∥
2

f
(

k

2
+ 1

c′√1 − b0

)
8(u0, u1).

Thus the proof is completed by combining (35) and (37). □

Based on the above proof, we shall extend to establish the long-time stability of numerical solutions

for the model (1)–(2) with exponential decay kernels such as (5) and (6), an important class of kernels

that satisfy (4) and Assumption A.

Theorem 3.2. Let U n be numerical solution of (19)-(20) for n g 0. Under (4), Assumption A and the

exponential decay condition

´(t)= e−Ät´0(t) for some 0< Ä <∞ such that ´0(t)g 0 is nonincreasing,

then the following long-time stability holds if the derivative initial condition u1 = 0

∥U n∥ +∥¶tU
n∥ f C(∥u0∥2 + k2 ∥u0∥3), n g 1.

Proof. Let ∥U K ∥A := maxng0 ∥U n∥A where K might be a finite number or infinity. Then similar to the

analysis of (29), we apply u1 = 0 to get

(38) ∥U M∥A f ∥U K ∥A f ∥U 0∥A + 2k∥u0∥2

(
k

K∑

n=1

bn

)
.

We use the exponential decay condition in this theorem to obtain

(39) k

∞∑

n=1

bn f
∫ ∞

0

b(t) dt =
∫ ∞

0

(∫ ∞

t

e−ÄseÄs´(s) ds

)
dt

f
∫ ∞

0

´0(t)

∫ ∞

t

e−Äs ds dt = 1

Ä

∫ ∞

0

´(t) dt <
1

Ä
.

Furthermore, (33) with u1 = 0 implies

(40) ∥U 0∥A f ∥U 1 − U 0∥ +
√

1 − b0

2
k∥U 1 + U 0∥1

f k2

2
∥u0∥2 +

√
1 − b0

2
k

(
2∥u0∥1 + k2

2
∥u0∥3

)
.
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Invoking (39) and (40) in (38), we obtain

(41) ∥U M∥A f k

(
2

Ä
+ k

2

)
∥u0∥2 +

√
1 − b0

2
k

(
2∥u0∥1 + k2

2
∥u0∥3

)

:= k80(u0).

The rest of the proof could be performed in analogous of (34)-(37), which completes the proof. □

4. Regularity assumption and error estimate

We shall give the regularity assumptions and error estimates for the linear case of the problem (1)–(2).

Regularity assumption. To establish the convergence, we give some necessary assumptions about the reg-

ularity of the solutions motivated from the ordinary differential equation analogue of (1) with f = 0, that is,

(42)
u′′(t)+ ¼u(t)− ¼

∫ t

0

´(t − s)u(s) ds = 0, t g 0,

u(0)= u0, u′(0)= u1.

Here ¼ is some positive constant. And then, by defining w(t)= u′′(t), we yield for t g 0,

(43) u(t)= u0 + tu1 +
∫ t

0

(t − s)w(s) ds.

By putting (43) into (42), we thus get

w(t)= −¼
(

u0 + tu1 +
∫ t

0

(t − s)w(s) ds

)
+¼

∫ t

0

´(t − s)

(
u0 + su1 +

∫ s

0

(s − Ä)w(Ä) dÄ

)
ds, t g 0.

If t → 0+, we have

u0 + tu1 +
∫ t

0

(t − s)w(s) ds → u0, ¼

∫ t

0

´(t − s)u0 ds = ¼u0

∫ t

0

´(s) ds,

¼

∫ t

0

´(t − s)

(
su1 +

∫ s

0

(s − Ä)w(Ä) dÄ

)
ds → ¼

∫ t

0

´(t − s)o(1) ds.

Hence, for the kernels (5) and (6), noting that ´(t) ∈ L1(0,∞), we get the asymptotic behavior of u′′(t)
as follows:

(44) u′′(t)= w(t)≃ −¼u0 + ¼u0

∫ t

0

´(s) ds + ¼
∫ t

0

´(s)o(1) ds, t → 0+.

Based on this asymptotic behavior, we assume that

(45) ∥u′′(t)∥ +∥Au′′(t)∥ f C, ∥u′′′(t)∥ +∥Au′′′(t)∥ f C |´(t)|, ∥u′′′′(t)∥ f C |´ ′(t)|.

Error estimate. We derive auxiliary estimates to support the error estimate of the time-discrete scheme

(19)–(20). We first cite the following classical approximate result of the convolution quadrature Q̃t

from [15].
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Lemma 4.1. Under (4) and Assumption A, for 1 f n f N ,

|Q̃tn (ϕ)− (b ∗ϕ)(tn)| f Ctµ−1
n k2 for ϕ ∈ C2[0, T ].

For the case that ϕ′′(t) is singular at the initial point t = 0, we propose an alternative approximate

result in the following lemma.

Lemma 4.2. Under (4) and Assumption A, the following approximate result holds for 1 f n f N :

|Q̃tn (ϕ)− (b ∗ϕ)(tn)| f Ck2 |ϕ′(0)| + Ck2

∫ tn

0

|ϕ′′(ϑ)| dϑ.

Proof. We introduce the notation r(t) = (1 ∗ ϕ′)(t), Ek[ϕ](t) = Qt(ϕ) − (b ∗ ϕ)(t) and Ẽk[ϕ](t) =
Q̃t(ϕ)− (b ∗ϕ)(t). Then we apply Ẽk[1](t)= 0 to obtain

Ẽk[ϕ](tn)= Ẽk[r ](tn)+ϕ(0)Ẽk[1](tn)= Ek[r ](tn)+ r(0)Çn0(k)= Ek[r ](tn),

and we apply r(t)= r ′(0)t + (t ∗ r ′′)(t) to find that

(46) Ek[r ](tn)= r ′(0)Ek[t](tn)+ Ek[(t ∗ r ′′)](tn)
= r ′(0)Ek[t](tn)+ (Ek[t] ∗ r ′′)(tn),

where µ is determined via the properties of b̂ in Assumption A. We first estimate the first right-hand side

term of (46). By [15, Theorem 5.2] and the assumptions of this lemma, we have

(47) |Ek[t´−1](x)| f Cxµ−1k´ for 0< ´ f 2, k f x f T .

We apply (47) with ´ = 2 and x = tn to get

(48) |Ek[t](tn)| f Ctµ−1
n k2 for n g 1.

To bound the second right-hand side term of (46), we apply (47) to obtain

(49) |Ek[t](Ä )| f CÄµ−1k2 for k f Ä f tn,

while for 0 f Ä < k, we follow the definition to obtain

(50) |Ek[t](Ä )| =
∣∣∣∣É0(k)Ä −

∫ Ä

0

b(Ä −ϑ)ϑ dϑ

∣∣∣∣f
2b0

3
k2 + b0

2
k2 = 7b0

6
k2.

Therefore, (49) and (50) provide

(51) |(Ek[t] ∗ r ′′)(tn)| f
∫ k

0

|Ek[t](Ä )||r ′′(tn − Ä)| dÄ +
∫ tn

k

|Ek[t](Ä )||r ′′(tn − Ä)| dÄ

f 7b0

6
k2

∫ tn

tn−1

|r ′′(ϑ)| dϑ + Ck2

∫ tn−1

0

(tn −ϑ)µ−1|r ′′(ϑ)| dϑ.

To determine µ, we obtain from (7) that b̂(s) = b0

s
− 1

s

∫∞
0
´(t)e−st dt , which implies |b̂(s)| f C |s|−1

such that µ= 1 in Assumption A. We thus invoke µ= 1 in (48) and (51) to complete the proof. □

Next, we shall derive the error estimate of the scheme (19)–(20).
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Lemma 4.3. The following estimate holds for 1 f n f N + 1:

∥un − U n∥ +∥¶t(u
n − U n)∥ f C

(
∥[Rt ]0∥ + k∥[Rt ]0∥1 + k

N∑

n=1

∥[Rt ]n∥
)
.

Proof. Define ¸n = un − U n and we subtract (17)–(18) from (19)–(20) to get the error equations

¶
(2)
t ¸n + (1 − b0)A ˜̧n +

n∑

p=0

Ép(k)A ¯̧n−p = [Rt ]n, 1 f n f N ,(52)

¶t¸
1 = [Rt ]0, ¸0 = 0.(53)

We take the inner product of (52) with ¯̧n and use (22)–(23) to get

(54)
1

2k3
(∥¸n+1∥2 − ∥¸n−1∥2 − 2ï¸n, ¸n+1ð + 2ï¸n−1, ¸nð)

+ 1 − b0

8k
(∥¸n+1∥2

1 − ∥¸n−1∥2
1)+

1 − b0

8k
(2ïA1/2¸n, A1/2¸n+1ð − 2ïA1/2¸n−1, A1/2¸nð)

+
n∑

p=0

Ép(k)ïA1/2 ¯̧n−p, A1/2 ¯̧nð = ï[Rt ]n, ¯̧nð.

With the definition of ∥ · ∥A, we sum (54) for n from 1 to M to get

∥¸M∥2
A = ∥¸0∥2

A − 2k3

M∑

n=0

n∑

p=0

Ép(k)(A
1/2 ¯̧n−p, A1/2 ¯̧n)+ 2k3

M∑

n=1

([Rt ]n, ¯̧n),

based on which we follow the analysis of (26) to find

(55) ∥¸M∥2
A f ∥¸0∥2

A + k2

M∑

n=1

∥[Rt ]n∥(∥¸n∥A + ∥¸n−1∥A).

Let L be such that ∥¸L∥A := max0fnfN ∥¸n∥A, and (55) provides

(56) ∥¸L∥A f ∥¸0∥A + 2k2

L∑

n=1

∥[Rt ]n∥ f ∥¸0∥A + 2k2

N∑

n=1

∥[Rt ]n∥.

Furthermore, we apply (25) and (53) to find

(57) ∥¸0∥A f ∥¸1∥ +
√

1 − b0

2
k∥¸1∥1 = k∥[Rt ]0∥ +

√
1 − b0

2
k2 ∥[Rt ]0∥1.

Combining (56) and (57) we obtain

(58) ∥¸M∥A f k∥[Rt ]0∥ +
√

1 − b0

2
k2 ∥[Rt ]0∥1 + 2k2

N∑

n=1

∥[Rt ]n∥.
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Analogous to the analysis of (35)–(37), we have

(59) ∥¸M+1∥ +∥¶t¸
M+1∥ f C

(
∥[Rt ]0∥ +

√
1 − b0

2
k∥[Rt ]0∥1 + 2k

N∑

n=1

∥[Rt ]n∥
)
,

which completes the proof. □

Based on Lemma 4.3, we intend to prove the convergence order based on reasonable regularity

assumptions of the solutions to problem (1)–(2).

Theorem 4.4. Under the regularity assumptions in (45), for 1 f n f N + 1, it holds that

∥un − U n∥ +∥¶t(u
n − U n)∥ f C

(
k2

∫ T

0

´(t) dt

)
+ C

((
k

∫ 2k

0

´(t) dt

)
+
(

k2

∫ T

k

|´ ′(t)| dt

))
.

Remark 4.5. It is worth mentioning that for smooth kernels ´ such as (6), this theorem implies the

second-order accuracy

∥un − U n∥ +∥¶t(u
n − U n)∥ f Ck2,

while for nonsmooth kernels, the accuracy may be deteriorated. For instance, for the weak singular

kernel (5), the above theorem implies the accuracy of 1 +³ order

∥un − U n∥ +∥¶t(u
n − U n)∥ f Ck2 + Ck

∫ 2k

0

t³−1 dt + Ck2

∫ T

k

t³−2 dt f Ck1+³.

Proof. At first, (45) and (18) lead to

(60) ∥[Rt ]0∥ +
√

1 − b0

2
k∥[Rt ]0∥1 f C

(
k

∫ k

0

´(t) dt + k2

∫ k

0

´(t) dt

)
.

Then we apply (11) and (45) to find that

(61) k

N∑

n=1

∥[Rt,1]n∥ = k∥[Rt,1]1∥ + k

N∑

n=2

∥[Rt,1]n∥

f C

(
k

∫ 2k

0

´(t) dt + k2

∫ T

k

|´ ′(t)| dt

)
,

and we use (12) and (45) to obtain

k

N∑

n=1

∥[Rt,2]n∥ f Ck2.

It remains to estimate [Rt,3]n in (16). First, Lemma 4.2 and (45) imply

(62) k

N∑

n=1

∥[Rt,3,1]n∥ f C(T )k2 ∥Au′′(0)∥ + C(T )k2

∫ T

0

∥Au′′′(t)∥ dt

f C(T )

(
1 +

∫ T

0

´(t) dt

)
k2.
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We then combine the Taylor expansion with the integral remainder

A(u′ − ū)(tn)= −1

4k

(∫ tn+1

tn

(tn+1 − t)2 Au′′′(t) dt +
∫ tn

tn−1

(t − tn−1)
2 Au′′′(t) dt

)

with (45) to obtain

(63) k

N∑

n=1

∥[Rt,3,2]n∥ f k

N∑

n=1

n∑

p=1

|Én−p(k)|∥A(u′ − ū)(tp)∥

f
(

k

N∑

n=1

max
0fpfn−1

|Ép(k)|
)

k

2

∫ T

0

∥Au′′′(t)∥ dt

f Ck2

( N∑

n=1

max
0fpfn−1

|Ép(k)|
)∫ T

0

´(t) dt.

Following from Assumption A and [15, (4.2) and Theorem 4.1] that

(64) |É0(k)| f Ckµ, |Én(k)| f Ck(tn)
µ−1, 1 f n f N ,

which implies that the summation on the right-hand side of (63) is bounded. Then we invoke (60)–(64) in

(59) to get the desired result. □

5. A nonlinear extension

Based on the discussion of the linear problem, we extend the developed methods and results to numerically

study the nonlinear problem (1)

(65) u′(t)+ Au(t)− (´ ∗ Au)(t)= f (t, u(t)), t > 0,

which satisfies the initial condition (2), and the semilinear source term is Lipschitz continuous with the

Lipschitz constant L > 0

(66) ∥ f (t, u)− f (t, v)∥ f L ∥u − v∥.

Similar to the analysis of (8), we rewrite (65) as

(67) u′′(t)+ (1 − b0)Au(t)+ b(t)Au0 + A(b ∗ u′)(t)= f (t, u(t)), t g 0.

Then we discretize (67) at t = tn via (11)–(15) to obtain

(68) ¶
(2)
t un + (1 − b0)Aũn + bn Au0 +

n∑

p=0

Ép(k)Aūn−p +Çn0(k)Au1 = f (tn, un)+ [Rt ]n

with 1 f n f N , where [Rt ]n is defined by (17). Moreover, (68) subjects to

(69) ¶t u
1 =

(
u1 + k

2
u∗

2

)
+ [Rt ]0, u0 = u0,
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where u∗
2 =−Au0+ f (0, u0) is obtained by (67). We then drop the truncation errors to get the time-discrete

scheme

¶
(2)
t U n + (1 − b0)AŨ n + bn Au0 +

n∑

p=0

Ép(k)AU n−p +Çn0(k)Au1 = f (tn,U
n), 1 f n f N ,(70)

¶tU
1 = u1 + k

2
u∗

2, U 0 = u0.(71)

We then prove the stability of the time-discrete scheme (70)–(71).

Theorem 5.1. Let U n be the numerical solution of the time-discrete scheme (70)–(71). Then we have

∥U n∥ f C

(
∥u0∥2 + k2 ∥u0∥3 + ∥u1∥ + k∥u1∥2 + k

N∑

n=1

∥ f (tn, u0)∥
)
, 1 f n f N + 1.

Proof. We apply the triangle inequality and (66) to arrive at

(72) ∥ f (tn,U
n)∥ f ∥ f (tn,U

n)− f (tn,U
0)∥ +∥ f (tn,U

0)∥
f L ∥U n − U 0∥ +∥ f (tn,U

0)∥ f L (∥U n∥ +∥U 0∥)+ ∥ f (tn,U
0)∥.

We incorporate this with a similar analysis as (27) to get

∥U M∥2
A f ∥U 0∥2

A + 2k3

M∑

n=1

bn∥Au0∥∥U n∥ + 2k2É0(k)∥Au1∥∥U 1∥A

+ 2k3

M∑

n=1

|Çn0(k)|∥Au1∥∥U n∥ + 2k3

M∑

n=1

∥ f (tn,U
n)∥∥U n∥

f ∥U 0∥2
A + k2

M∑

n=1

bn∥u0∥2(∥U n−1∥A + ∥U n∥A)

+ 2k2É0(k)∥u1∥2∥U 1∥A + k2c∗
N ∥u1∥2(∥U n−1∥A + ∥U n∥A)

+ k2

M∑

n=1

(
L (∥U n∥ +∥U 0∥)+ ∥ f (tn,U

0)∥
)
(∥U n−1∥A + ∥U n∥A).

Let ∥U J ∥A := max0fnfM ∥U n∥A such that

∥U J ∥A f ∥U 0∥A + 2k2

J∑

n=1

bn∥u0∥2 + 2k2É0(k)∥u1∥2 + 2k2c∗
N ∥u1∥2

+ 2k2

J∑

n=1

(
L (∥U n∥ +∥u0∥)+ ∥ f (tn, u0)∥

)

f ∥U 0∥A + 2k2

M∑

n=1

bn∥u0∥2 + 2k2É0(k)∥u1∥2 + 2k2c∗
N ∥u1∥2

+ 2k2

M∑

n=1

(
L (∥U n∥ +∥u0∥)+ ∥ f (tn, u0)∥

)
,
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and we incorporate this with (30) and (31) to further get

(73) ∥U M∥A f k∥u1∥ + k2

2
∥u0∥2 +

√
1 − b0

2
k

(
2∥u0∥1 + k∥u1∥1 + k2

2
∥u0∥3

)

+ 2kT b0∥u0∥2 + 2k2 2b0

3
k∥u1∥2 + 2k2c∗

N ∥u1∥2

+ 2k2

N∑

n=1

(L ∥u0∥ +∥ f (tn, u0)∥)+ 2L k2

N∑

n=1

∥U n∥

:= k

(
81(u0, u1)+ 2L k

M∑

n=1

∥U n∥
)
.

By similar analysis as (35)–(37), (73) yields

(74) ∥U M+1∥ f
(

k

2
+ 1

c′√1 − b0

)(
81(u0, u1)+ 2L k

M∑

n=1

∥U n∥
)
.

Then we apply the discrete Grönwall inequality to complete the proof. □

We then derive the error estimate of the time-discrete scheme (70)–(71).

Lemma 5.2. Let un and U n satisfy (68)–(69) and the time-discrete scheme (70)–(71), respectively. Then

for 1 f n f N + 1

∥un − U n∥ +∥¶t(u
n − U n)∥ f C(T )

(
∥[Rt ]0∥ + k∥[Rt ]0∥1 + k

n∑

m=1

∥[Rt ]m∥
)
.

Proof. Based on (68)–(71), we obtain the error equations in terms of ¸n = un − U n

¶
(2)
t ¸n + (1 − b0)A ˜̧n +

n∑

p=0

Ép(k)A ¯̧n−p = f (tn, un)− f (tn,U
n)+ [Rt ]n, n g 1,(75)

¶t¸
1 = [Rt ]0, ¸0 = 0.(76)

Analogous to the proof of Lemma 4.3, we obtain

∥¸L∥A f ∥¸0∥A + 2k2

N∑

n=1

∥[Rt ]n∥ + 2k2

M∑

n=1

∥ f (tn, un)− f (tn,U
n)∥,

where ∥¸L∥A := max0fnfM ∥¸n∥A. Then, we use (57) and (66) to get

(77) ∥¸M∥A f k∥[Rt ]0∥ +
√

1 − b0

2
k2∥[Rt ]0∥1 + 2k2

N∑

n=1

∥[Rt ]n∥

+ 2L k2

M∑

n=1

∥¸n∥ := k

(
82(u0, u1)+ 2L k

M∑

n=1

∥¸n∥
)
,
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which in turn implies

∥¸M+1∥ f C

(
82(u0, u1)+ 2L k

M∑

n=1

∥¸n∥
)
.

We incorporate this with the discrete Grönwall inequality to obtain

(78) max
1fnfN+1

∥¸n∥ f C(T )82(u0, u1),

and we invoke (78) in the right-hand side of (77) and adopt similar analysis as (34)–(37) to get

∥¸M+1∥ +∥¶t¸
M+1∥ f C(T )82(u0, u1).

The proof is thus completed. □

Finally, we combine the analysis in Theorem 4.4 and the conclusion of Lemma 5.2 to obtain the

following convergence result.

Theorem 5.3. Let un and U n satisfy (68)–(69) and the time-discrete scheme (70)–(71), respectively. Then

under the regularity assumptions in (45), it holds for 1 f n f N + 1

∥un − U n∥ +∥¶t(u
n − U n)∥ f C(T )

(
k2

∫ T

0

´(t) dt

)
+ C(T )

((
k

∫ 2k

0

´(t) dt

)
+
(

k2

∫ T

k

|´ ′(t)| dt

))
.

6. Numerical experiments

We perform numerical examples to substantiate the analysis of the time-discrete schemes. We consider

a concrete problem of the form (1) or (65) in one space dimension with the spatial domain �= (0, 1)

and the operator A = −d2/dx2 with boundary conditions u(t, 0)= u(t, 1)= 0 for t ∈ (0, T ]. We apply

the second-order center difference for spatial discretization with a uniform mesh size h = 1/M for some

M > 0, and we define the discrete L2 norm for the finite difference method as in [26]:

∥U n∥ =

√√√√h

M−1∑

j=1

|U n
j |2.

Let the time step size k = T/(N +1) with N g 1 and tN+1 = T . To illustrate the convergence of proposed

schemes, we define the spatial error in L2 norm at tN+1 = T and the corresponding temporal convergence

order as

E2(N + 1)= ∥U N+1 − U 2(N+1)∥, Rate = log2

E2(N + 1)

E2(2(N + 1))
.

We shall consider smooth and nonsmooth kernels ´(t) in the following examples.

A weak singular kernel. We consider the weak singular kernel (5) with µ0 = Ä³/2. By (7), we have

b(t)= 0(³, Ät)

2
, b̂(s)= b0

s
− (1 + s/Ä)−³

2s
,
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³ = 0.25 ³ = 0.5 ³ = 0.95

N E2(N + 1) rate E2(N + 1) rate E2(N + 1) rate

32 1.1027 ·10−3 − 1.2056 ·10−3 − 1.0619 ·10−3 −
64 4.5125 ·10−4 1.289 3.9058 ·10−4 1.626 2.7041 ·10−4 1.973

128 1.9591 ·10−4 1.204 1.3180 ·10−4 1.567 6.8386 ·10−5 1.983

256 8.5399 ·10−5 1.198 4.5700 ·10−5 1.528 1.7244 ·10−5 1.988

512 3.6869 ·10−5 1.212 1.6069 ·10−5 1.508 4.3421 ·10−6 1.990

Table 1. Example 6.1: L2 errors and temporal convergence rates with different ³.

where the upper incomplete gamma function

0(³, y) := 1

0(³)

∫ ∞

y

t³−1e−t dt

with 0(³, 0)= 1. Then we provide the approach to compute the quadrature weights. By (14), we have

the representation [23]

(79) Én(k)= 1

2Ã i

∮

|z|=1

z−n−1b̂

(
·(z)

k

)
dz = ℜ

(
1

Ã

∫ Ã

0

Gn(y) dy

)
,

in which i2 =−1, ℜ indicates the real part of a complex number and Gn(y)= einy b̂
(
·(e−iy)

k

)
. In subsequent

numerical implementations, we apply the composite rectangle formula to approximate the last integral

of (79). Specifically, given J = N 2, the quadrature weights Én(k) are generated by

(80) Én(k)≈ ℜ
(

1

Ã

(J −1∑

j=0

Gn

(
y j + y j+1

2

))
1y

)
,

where y j = j1y with 1y = Ã/J and j = 0, 1, 2, . . . ,J .

Example 6.1 (the linear case). Let the initial conditions u0(x)= sin(Ãx) and u1(x)= sin(2Ãx) in (1),

h = 1
128

, T = 1 and Ä = 5. We list the L2 errors and temporal convergence rates in Table 1, from which

we observe that the convergence rate is approximately 1 + ³ that is consistent with the estimates in

Theorem 4.4.

To demonstrate the finite-time and long-time stability proved in Section 3, we present max0fnfN+1 ∥U n∥
under h = 1

128
, k = 0.1, u0 = sin(Ãx) and different u1 and ³ in Table 2, which shows that the numerical

solution may diverge with the increment of N (and thus T = Nk) if u1 ̸= 0. When u1 = 0, the numerical

solution is stable for large N , which indicates the long-time stability of the numerical solution and thus

validates the theorems in Section 3.

Example 6.2 (the nonlinear case). Let the initial conditions u0(x)= sin(Ãx) and u1(x)= sin(2Ãx) with

f (t, u)= u − u3 in (65). We set h = 1
128

, T = 1 and Ä = 5, and list L2 errors and temporal convergence

rates in Table 3, which indicates the 1 +³ accuracy as predicted in Theorem 5.3.
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³ = 0.1 ³ = 0.5 ³ = 0.9

N u1 = sin(2Ãx) u1 = 0 u1 = sin(2Ãx) u1 = 0 u1 = sin(2Ãx) u1 = 0

2 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1

4 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1

8 1.2710 ·100 1.0965 ·100 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1

16 1.8653 ·100 1.7085 ·100 8.4259 ·10−1 8.2922 ·10−1 7.0711 ·10−1 7.0711 ·10−1

32 1.9507 ·100 1.7085 ·100 9.3824 ·10−1 8.2922 ·10−1 7.0711 ·10−1 7.0711 ·10−1

64 4.1844 ·100 1.7085 ·100 1.7257 ·100 8.2922 ·10−1 7.0711 ·10−1 7.0711 ·10−1

128 8.0698 ·100 1.7085 ·100 3.6807 ·100 8.2922 ·10−1 7.0711 ·10−1 7.0711 ·10−1

256 1.6150 ·101 1.7085 ·100 7.6179 ·100 8.2922 ·10−1 1.0862 ·100 7.0711 ·10−1

512 3.2341 ·101 1.7085 ·100 1.5504 ·101 8.2922 ·10−1 2.2483 ·100 7.0711 ·10−1

1024 6.4737 ·101 1.7085 ·100 3.1280 ·101 8.2922 ·10−1 4.5731 ·100 7.0711 ·10−1

Table 2. Example 6.1: values of max0fnfN+1 ∥U n∥ with different ³ and derivative initial

conditions u1.

A smooth kernel. We choose the smooth kernel (6) and shall give ˆ́(s) by means of Laplace and Stieltjes

transforms. Define the piecewise continuous function

³0(x)=





0, x = 0,

x, 0< x f 1,

1, 1< x <∞,

and let

´0(t) :=
∫ ∞

0

e−xt d³0(x)

such that

´0(t)=
∫ 1

0

e−xt dx = 1 − e−t

t
.

From [22, Chapter 8], we have

̂́
0(s)=

∫ ∞

0

d³0(x)

s + x
= log

(
1 + 1

s

)
.

³ = 0.1 ³ = 0.5 ³ = 0.9

N E2(N + 1) rate E2(N + 1) rate E2(N + 1) rate

64 3.4089 ·10−4 − 4.1244 ·10−4 − 2.7405 ·10−4 −
128 1.4278 ·10−4 1.255 1.4108 ·10−4 1.548 7.0160 ·10−5 1.966

256 6.6698 ·10−5 1.098 4.9327 ·10−5 1.516 1.7919 ·10−5 1.969

512 3.1762 ·10−5 1.070 1.7425 ·10−5 1.501 4.5745 ·10−6 1.970

1024 1.5061 ·10−5 1.076 6.1791 ·10−6 1.496 1.1686 ·10−6 1.969

Table 3. Example 6.2: L2 errors and temporal convergence rates with different ³.
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T = 0.2 T = 1 T = 4

N E2(N + 1) rate E2(N + 1) rate E2(N + 1) rate

32 3.9702 ·10−5 − 5.8641 ·10−3 − 6.2497 ·10−2 −
64 1.0717 ·10−5 1.889 1.6584 ·10−3 1.822 8.8076 ·10−3 2.827

128 2.7897 ·10−6 1.942 4.3955 ·10−4 1.916 1.1642 ·10−3 2.919

256 7.1196 ·10−7 1.970 1.1303 ·10−4 1.959 4.8802 ·10−4 1.254

512 1.7985 ·10−7 1.985 2.8651 ·10−5 1.980 1.3746 ·10−4 1.828

Table 4. Example 6.3: L2 errors and temporal convergence rates under different T .

Thus, (6) gives ´(t)= e−t´0(t), which leads to ˆ́(s)= ̂́
0(s + 1). Note that

∫ ∞

0

´(t) dt = ˆ́(0)= log 2< 1,

which implies that (6) satisfies (4). Furthermore, we apply (7) to obtain

b(t)=
∫ ∞

t

´(s) ds =
∫ ∞

0

´(s) ds −
∫ t

0

´(s) ds = ˆ́(0)−
∫ t

0

´(s) ds

= ˆ́(0)− (´ ∗ 1)(t)= log(2)− (´ ∗ 1)(t),

which yields

(81) b̂(s)= b0

s
− 1

s
ˆ́(s)= log 2

s
− 1

s
log

(
1 + 1

s + 1

)
= 1

s
log

2(s + 1)

s + 2
.

Inserting (81) into (79) we obtain the weights Én(k) by the approximate method (80).

Example 6.3 (the linear case). Let u0(x) = sin(Ãx) and u1(x) = sin(2Ãx) for model (1), and we set

h = 1
128

. In Table 4, we test L2 errors and temporal convergence rates, which indicate that the proposed

k = 0.01 k = 0.1 k = 1

N u1 = sin(2Ãx) u1 = 0 u1 = sin(2Ãx) u1 = 0 u1 = sin(2Ãx) u1 = 0

2 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 2.8706 ·100 2.7822

4 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 3.7904 ·100 2.7822

8 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 9.5557 ·100 2.7822

16 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 7.0711 ·10−1 2.2250 ·101 2.7822

32 7.0711 ·10−1 7.0711 ·10−1 1.5768 ·100 7.0711 ·10−1 4.7803 ·101 2.7822

64 7.0711 ·10−1 7.0711 ·10−1 5.7869 ·100 7.0711 ·10−1 9.8916 ·101 2.7822

128 7.0711 ·10−1 7.0711 ·10−1 1.5719 ·101 7.0711 ·10−1 2.0114 ·102 2.7822

256 8.2968 ·10−1 7.0711 ·10−1 3.6143 ·101 7.0711 ·10−1 4.0559 ·102 2.7822

512 3.8432 ·100 7.0711 ·10−1 7.7033 ·101 7.0711 ·10−1 8.1450 ·102 2.7822

1024 1.1529 ·101 7.0711 ·10−1 1.5881 ·102 7.0711 ·10−1 1.6323 ·103 2.7822

Table 5. Example 6.3: values of max0fnfN+1 ∥U n∥ under different k and derivative

initial conditions u1.
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f (t, u)= u − u3 f (t, u)= sin u f (t, u)= e−u cos u

N E2(N + 1) rate E2(N + 1) rate E2(N + 1) rate

32 5.6500 · 10−3 − 5.2910 · 10−3 − 5.8688 · 10−3 −
64 1.5964 · 10−3 1.823 1.4956 · 10−3 1.823 1.6624 · 10−3 1.820

128 4.2317 · 10−4 1.916 3.9640 · 10−4 1.916 4.4184 · 10−4 1.912

256 1.0883 · 10−4 1.959 1.0194 · 10−4 1.959 1.1433 · 10−4 1.950

512 2.7589 · 10−5 1.980 2.5839 · 10−5 1.980 2.9353 · 10−5 1.962

Table 6. Example 6.4: L2 errors and temporal convergence rates under different nonlinear terms.

scheme could achieve the second-order temporal accuracy for T not large enough. For large T , the

convergence order is not stable, which may be caused by the loss of long-time stability of numerical

solutions as we will show in Table 5.

In Table 5 we compute max0fnfN+1 ∥U n∥ under h = 1
128

, u0 = sin(Ãx) and different u1 and k, from

which we observe that when u1 ̸= 0, the numerical solution exhibits instability with the increment of N .

When the derivative initial condition u1 = 0, the numerical solution is stable for large N , which is

consistent with Theorem 3.2.

Example 6.4 (the nonlinear case). Let the initial conditions u0(x)= sin(Ãx) and u1(x)= sin(2Ãx) in (65)

with h = 1
128

, T = 1 and different source term f (t, u). We present L2 errors and temporal convergence

rates of the scheme (70)–(71) in Table 6, which indicates its second-order temporal accuracy proved in

Theorem 5.3.

7. Concluding remarks

We investigated the numerical approximation for a nonlinear hyperbolic-type partial integrodifferential

equation. For the linear case of this equation, we discretized it by the central difference formula for space

and the second-order convolution quadrature for time, where smooth and nonsmooth memory kernels

were considered. The stability and convergence were deduced by means of the energy argument. Then we

extended the theoretical results to the corresponding nonlinear problem. Numerical experiments support

the theoretical findings.

There are several places in this work that could be improved. For instance, in numerical experiments

the composite rectangle formula is used to calculate the weights Én(k) for simplicity. Indeed, the fast

Fourier transform method is a more efficient technique to obtain weights, and we will adopt this to

develop the fast solution method in the future work. The proof of the regularity of the solutions is not

straightforward, and we will investigate this challenging issue in the near future.
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