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NUMERICAL APPROXIMATION AND ANALYSIS FOR PARTIAL
INTEGRODIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE

WENLIN QIU, XIANGCHENG ZHENG, XU XIAO AND HONG WANG

We consider the numerical analysis for a partial integrodifferential equation of hyperbolic type. The
central difference formula and the second-order convolution quadrature are applied to construct the
numerical scheme, where the convolution quadrature method could accommodate the complicated case
that the explicit form of the memory kernel is not available. We propose a novel analysis to prove the
finite-time stability of the numerical solutions and specify the condition that ensures the long time stability.
We also prove error estimates for the numerical scheme based on a newly developed approximate result of
convolution quadrature for convolution of nonsmooth functions. Finally, we extend the developed methods
to construct and analyze a numerical scheme for the corresponding nonlinear problems. Numerical
experiments are performed to substantiate the theoretical findings.

1. Introduction

This work considers numerical approximation of the following partial integrodifferential equation of
hyperbolic type proposed in, e.g., [1; 2; 6; 8; 20; 25]:

(1) u"(t) + Au(t) — (Bx Au)(t) = f(t,u(t)), >0,
subject to the initial conditions
2) u(0) =uo, u'(0)=uj.

Here A is a positive self-adjoint densely defined linear operator on the Hilbert space H, ug, u; € H are
given data, and () € L1(Ry) is a scalar memory kernel. By [4, Theorems 9 and 11], there exists a unique
positive self-adjoint operator A!'/% such that (A'/2)? = A. The  represents the convolution defined by

3) B )(1) = /Otﬁ(t _ Y (s)ds, 120,

Integrodifferential equations such as (1)-(2) with f (¢, u(t)) = f(¢) arise in several fields such as the
linear viscoelasticity or heat conduction with memory, and the operator A usually takes the form of
the negative Laplacian, the Stokes operator, or the biharmonic operator, etc., equipped with appropriate
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boundary conditions [18; 19; 20]. The kernel § is assumed to satisfy the following conditions in the
aforementioned works:

4) B(t) > 0 is nonincreasing, locally absolutely continuous on (0, co) with fOOO,B(t) dt <1.

Some typical examples of such kernels are the weak singular kernel [13; 21]

a—1

t
5) B(@) =y e, t>0,p>0,0<a<l, ye(0,p%),

')
and the smooth kernel [24]

—t —t
(6) B(t) = M'

There exist several theoretical studies for the linear case of problem (1)—(2) on the existence and
decay properties of the solutions [1; 2; 5; 6; 8; 16; 20], and some numerical studies have also been
considered. For instance, Pani et al. [17] considered the interpolation quadrature to solve (1) with a
smooth kernel. Then, Larsson et al. considered the continuous Galerkin method [11] and discontinuous
Galerkin method [12] for the linear case of (1)—(2) with weak singular kernels. Karaa and Pani developed
the mixed finite element method [9] and the discontinuous Galerkin method [10] for the linear case of
(1)-(2) with smooth kernels.

For nonlinear problems, a pioneering work investigated the attenuated Westervelt equation [3], which,
compared with the problem (1)—(2), contained an additional nonlinear term k(u?)” for some k > 0 and the
two specific kernels, i.e., the tempered fractional kernel and the Mittag-Leffler type kernel. The existence
and regularity of the solutions were rigorously proved via sophisticated analysis, which in turn supported
the error estimates of the numerical discretization based on the trapezoidal rule and A-stable convolution
quadrature (CQ).

Despite the aforementioned significant progress, these works rely on properties of the kernel, which
are not always available. For instance, a class of variable-order fractional kernels was considered in, for
instance, [7], to account for the varying nature of nonlocalities, which varied the order of the operators in
the Laplace domain such that the explicit form of the resulting kernel and thus its properties were in general
not available. For such complicated problems, Xu applied the Laplace transform for model (1)—(2) to split
the solution into two parts, and the CQ in which the underlying multistep method was the trapezoidal rule
was utilized for temporal discretization [25]. For nonlinear problems, it is difficult to apply the Laplace
transform method, which motivates us to develop a direct and CQ-based computation method.

We consider a direct discretization scheme for model (1)—(2) where the second-order difference and
CQ schemes are applied for approximating the second-order time derivative and the convolution term,
respectively, which is feasible to treat nonlinear problems without explicit expressions of kernels. The
main contributions are enumerated as follows:

o We prove the finite-time stability of the numerical solutions to the linear case of problem (1)—(2) based
only on the imposed properties of the Laplace transform of the kernel, and specify the condition that ensures
the long-time stability of the numerical solutions. In particular, a novel norm is introduced (see (25)),
which captures the structure of the scheme and thus significantly simplifies the analysis procedure.
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» We prove error estimates for the numerical scheme of the linear case of problem (1)—(2). A key
ingredient lies in developing a new approximate result of CQ for the convolution of nonsmooth functions
(see Lemma 4.2) by technical derivations, which accounts for the possible singularity of the solutions
caused by that of the memory kernel.

» We extend the developed methods to construct and analyze a numerical scheme for the nonlinear
problem (1)—(2), which circumvents the limitation of the Laplace transform method and generalizes the
application of the proposed numerical discretization method for more complicated problems.

The rest of this paper is organized as follows: We propose a discrete-in-time scheme for the linear
problem in Section 2. The stability analysis of numerical solutions is given in Section 3. Section 4
presents the error estimates for the proposed scheme. In Section 5, we extend the developed methods
to construct a numerical scheme of the semilinear problem. Numerical experiments are carried out to
substantiate the theoretical results in Section 6.

2. Discrete-in-time scheme for linear problem

Define the norms |w|| = /(w, w) and ||w||,, = ||A"/?>w| for m =1, 2, 3, 4, and define

) b(1) = / B(@)dg and by:=b(0) = /0 Bq)da.

where S (¢) is given in (4). Based on the assumptions in (4), b(¢) is nonnegative, nonincreasing and convex
on (0, co). We then follow the ideas in [18; 25] to apply the integration by parts to obtain

Au(t) — (B * Au)(t) = (1 — bo) Au(t) + b(t) Aug + (b * Au')(1).

This reformulation eliminates the negative sign in the convolution term in (1) that facilitates the analysis.
Then for f(¢, u(¢)) =0, we first consider the linear case of problem (1)—(2), and rewrite (1) as

8) u”(t) + (1 —bo) Au(t) + b(t) Aug + (b * Au')(t) = 0.
To discretize (8), we set the time step size k and consider (8) at ¢, = nk
) u” (ty) + (1 = bo) Au(ty) + by Aug + (b * Au')(t,) =0, n>1,
where b, = ftjo B(s)ds. Then we discretize the terms in (9) one by one. Let " = u(t,) and

n_ ,n—l1 n+1 2" n—1 n+1 _ ,,n—1
(10) (Stun:%’ 8t(2)un:8t(8tun+l)’ an U + Z +u ’ gt T

We approximate u”(z,) by (St(z)u” with the remainder expressed by the Taylor expansion
1 2) n —1 ft1 3 g R
u(tn) =8, u = o2 (thpr =) u (@) dt+ | (¢ —tp—1) u (1) dt
th In—1
(11 =[R1]", n=2,

-1 5] |
W' (t) —8Pu' = 2_k2</ (ty —)*u" (1) dt+/ *u” (1) dt) =[R 11"
151 0
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Then we follow [17] to approximate Au(t,) by Au" with the remainder expressed by the Taylor expansion

In

(12) Au(ty) — Au" = 7 (/ n+](tn+1 — AU () dr + (t — ty—1)Au" (1) dt)
In

th—1
=[R2]", n=1

To approximate the convolution term b * Au’, we adopt the following second-order CQ [14; 15] for the
convolution b * ¢:

(13) 2,9) = 2,@) + x0®)p©),  where 2,@)= Y w,(k)p(t —1p).

0<t,<t

with the quadrature weights w, (k) being the coefficients of the power series

(o.¢]

(14) 5(%)=};wn<k)z", z| < 1; “Z)ZW’ zeC,

where IS(S) represents the Laplace transform of b(¢). The starting weight in (13) is given in order to
maintain the second-order accuracy

(15) XnO(k):(b*l)(tn)_pr(k)-
p=0
Based on [15], ¢(z) satisfies the following conditions:

(i) ¢(z) is analytic and without zeros in a neighborhood of the closed unit disc |z| < 1, with the exception
ofazeroatz =1;

(i) larg¢(2)| < /2 for |z < 1and 1¢(e™*) =1+ O(K?).

Then the convolution term b % Au’ is approximated by integrating the second-order CQ with the leapfrog
scheme

(b* Au')(ta) = 2, (Ait) + [R, 31",
with #° := uy, the initial value of u’, and the error

(16) [R, 31" = ((b* Au)(ty) — 2, (Au')) + 2, (A’ — i)
=:[Ri3.1]" + [Ri32]".
Invoking (11)—(13) in (9) we have

(17) 57u" + (1 — bo) A" + by Aug + 2, (Ad) = [R/]", n=>1,

where [R;]" = _Z§:1[Rt,j]n~ The initial data (2) provides

k 1 [k
(18) St — (uy + =uy :—/(k—t)zu”/(t)th[R,]o, u® = u,
2 2k J,
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where uy :=u"(0) = —Aug from (8). Let U" be the approximated solution of " with U° =i, Then we
drop the truncation errors in (17) and (18) to get the discrete-in-time scheme

(19) 8PU" + (1 —bo) AU" + by Aug+ 2, (AU) =0, n=>1,
k
(20) 8,U1=u1+§u2, U = uy.

Throughout this paper, C denotes a positive constant that is independent of the time step size but may
assume different values at different occurrences.
3. Numerical stability

We first establish the finite-time stability of the numerical solution, and then specify the condition that
ensures the long-time stability. We follow [15] to make conventional assumptions for the Laplace transform
of b for the sake of numerical analysis:

Assumption A: l;(s) is analytic in a sector |arg(s — ¢)| < 7 — 6 with § < /2 and ¢ € R, and satisfies
|b(s)| < .4 |s|* for some .# < oo and u > 0.

Theorem 3.1. Suppose (4) and Assumption A hold. Then for T < oo with N + 1 =T/ k, the finite-time
stability holds

IU™ 1+ 118Ul < C(T)(lluoll2 + K> luolls + llui | + kllurll2),  1<n<N+1.

Proof. First, we take the inner product of (19) with U" to get

1 _ _
1) 2—k3(||U"“||2—||U" N2 —2¢um, umthy + 22Ut Uy
rn l—b() n+1y2 n—1y2
+ by (Aug, U )+8—k(||U T =101

+> w0 (AT AT + o (k) (Auy, T") =0,
p=0

where we use the results that

— 1
(22) 70", U = S (WU = U2 =2, U + 2407, U )
1 _
= 2—k3<||U"+1 —U"|P = u"=U"P,
and that

~ 1
(23) (AU”, Un> — 8_k(||Un+l||% _ ”Unfl“% —2<A1/2Un, Al/zUn+l> +2<A1/2Un, A1/2Unfl>)

1 _
= g(nU"*‘ +UMIF = U+ U5,
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Then summing (21) for n from 1 to M for some M < N, we have

M
@4)  IUME =015 =263 ) " bulAug, U") + 263w (k) (A" 2uy, AV ?uy)

n=1

M n M
233N w0, (AT, ARG — 23S o) (Auy, T,
n=0 p=0 n=1

in which U® = u; and the norm || - || 4 is defined as

(1 — bo)k?
4

(25) V™ |4 = \/ Vet — v 4 V"™ +VHIE, n=0.

By using [23, Lemma 3.1], we have

M

(26) D wp (AT, AVRDT) = 0.
n=0 p=0

Using (26), (20) and Cauchy—Schwarz inequality, (24) implies

M M
NUMIE < 1U°13 + 263D bull Auoll 1T [l + 2K2wo () [ Au 11U 14 + 263> a0 ()1 [ Aur 1T,

n=1 n=1
which, together with

U = Um0 = U UM+ 10" A

27 U <
(27) U] < T o

leads to

M
@8) UM% < IU°15 +k||uo||2<kzbn(||U"||A + ||U"—1||A))

n=1

M
+k||M1||2<kZ X0 U™ 4 4+ 10" ] 4) + 2k (k) ||U1||A>.

n=1

Define ||U” || 4 := maxo<,<n [|U"] 4, and (28) leads to

J
1O 1% < 1U°NAllU |14 +klluollz<k > ba(IU™ 4+ U™ ||A))

n=1
J

+klluy ||2(k2 X0 U L4+ 1T [1.4) + ko k) ||U1||A)

n=1

J J
< U°allU” 114 +2k||uo||2(kzbn) 107114 +2k||u1||2<kz | X0 ()| +ka)o(k)) 107114,
n=1 n=1



PARTIAL INTEGRODIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE 471

which naturally implies

J
(29) U714 < 1U°1a + 2k ||uo||z(k2bn> +2k||M1||2(kZ | X0 (6| —i—kwo(k))

n=1 n=1
N N

<1U°a +2k ||uo||z<k2bn) +2k||u1||2(kz | Xn0 (k)| +kwo(k))-
n=1 n=1

By (7), the properties of b(¢) and (4), we have
N
(30) kY by < Thy,
n=1

and from (14) with % = %, we also have

31) wo(k):l;(%o)):/Ooe_@/(zk))tb(t)dtS%k.
0

Inserting (30)—(31) into (29) and utilizing (25), we have

V1 —>b
2

0
(32) |UMa< U 4 <lU' -0+ kU + U,

N
4bg
+ 2T bok luoll2 + ==k lus ||2+zk2<2 IXno(k)|>||M1 I2

n=1

k> */1_—b°k< k> )

= kllurll + = lluolla + — 2lluolly + Kl 4 = lluolls

N
4b,
+ 2T bok lluolla + =2k 12 +2k2(2 |xno(k)|>||u1||z,

n=

—_

where we used (20), i.e.,
2 k2

k
(33) U' :U0+ku1+3u2:uo+ku1—3Auo.

By |xno(k)| < Ct" 'k [15], we have o= Zflv:] | xn0(k)| < C(T) such that (32) leads to

k 1 —=b
(34) ||UM||A§k<\/1—bolluo||1+(2T170+5>||u0||2+ I 12 oz + s |

JT=bo
2

2b
+ k||u1||1+2k(TOk+c7\,)||u1||2> =k P (ug, uy).

Then (25) and (34) give

(35) JUMH UM < k® (g, ur), 16U < ®(ug, uy),
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and we use the property of A to obtain

(36) ®(ug, uy) > (UM UMy > UM UM

2
1 —bgy
Combining (35) and (36), we further arrive at

2

(37) UM+ <

k 1
<=+ ——%= D (up, uy).
< < >t o «/1——170> (o, u1)
Thus the proof is completed by combining (35) and (37).

O

Based on the above proof, we shall extend to establish the long-time stability of numerical solutions
for the model (1)—(2) with exponential decay kernels such as (5) and (6), an important class of kernels

that satisfy (4) and Assumption A.

Theorem 3.2. Let U" be numerical solution of (19)-(20) for n > 0. Under (4), Assumption A and the

exponential decay condition

B(t) = e P By(t) for some 0 < p < oo such that Bo(t) > 0 is nonincreasing,

then the following long-time stability holds if the derivative initial condition u; =0

IU™ |+ 18, U™ || < C(lluolla +k* luollz), n > 1.

Proof. Let |[UX || 4 := max,>¢ |U"|| 4 where K might be a finite number or infinity. Then similar to the

analysis of (29), we apply u; = 0 to get

K
(38) IUM 4 < 10K N4 < 1014 +2k||M0||2<kan)-

n=1

We use the exponential decay condition in this theorem to obtain

(39) kan < / Oob(t)dt = f OO( / Ooe—pseps B(s) ds) dt
=1 0 0 t

S/ ﬁo(t)/ e /”dsdtz—/ B dt < —.
0 t P Jo 1Y

Furthermore, (33) with #; = 0 implies

1 —=b
(40) ||UO||A5||Ul—U°||WLTOkHUon”1

k2 Jl——la()k( k2 )

< — 2 —
= 5 ol +— leolly + = llueoll3
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Invoking (39) and (40) in (38), we obtain

2k VT=hy k?
(41) IUMa <k =+ )lluoll2+ k\ 2l[uollt + = lluoll3
p 2 2 2
= k(b()(l/t()).
The rest of the proof could be performed in analogous of (34)-(37), which completes the proof. ]

4. Regularity assumption and error estimate

We shall give the regularity assumptions and error estimates for the linear case of the problem (1)—(2).

Regularity assumption. To establish the convergence, we give some necessary assumptions about the reg-
ularity of the solutions motivated from the ordinary differential equation analogue of (1) with f =0, that is,

@) () + ru(t) — A/O Bt —s)u(s)ds=0, t>0,

u©) =ug, u'(0)=u.
Here A is some positive constant. And then, by defining w(r) = u”(r), we yield for t > 0,
t
43) u(t) =ug+tu +/(t—s)w(s) ds.
0

By putting (43) into (42), we thus get
t t N
w(t) = —A(uo-i-tul +/ (t—s)w(s) ds) +kf B —s) (uo +suy +/ (s—1t)w(r) dr) ds, t=>0.
0 0 0
If t — 0T, we have

uo—i-tul—’,—/(t—s)w(s)ds—)uo, k/ ,B(t—s)uods:)»uo/ B(s)ds,
0 0 0

t s t
Af ﬁ(t—s)(sul —I—f (S—‘L')w(‘t)d‘l,'> ds—))\/ B —s)o(l)ds.
0 0 0

Hence, for the kernels (5) and (6), noting that B(¢) € L'(0, 00), we get the asymptotic behavior of u” ()
as follows:

t t
(44) u” (1) = w(t) >~ —Aug +ku0/ B(s)ds +A/ B(s)o(l)ds, t— 0%,
0 0
Based on this asymptotic behavior, we assume that
(45) " O+ 1Au" (O] < C, " O+ 1A O < CIB@®)],  [u”" O] < CIB'@)I.

Error estimate. We derive auxiliary estimates to support the error estimate of the time-discrete scheme
(19)—(20). We first cite the following classical approximate result of the convolution quadrature Q;
from [15].
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Lemma 4.1. Under (4) and Assumption A, for 1 <n <N,
12, (@) — (b* @) (tn)| < Ctl"'k>  for € C*[0, T

For the case that ¢”(¢) is singular at the initial point = 0, we propose an alternative approximate
result in the following lemma.

Lemma 4.2. Under (4) and Assumption A, the following approximate result holds for 1 <n < N:
In
12,0) ~ G x0)(0)] = CR IO+ [ o)l av.
0

Proof We introduce the notation r(t) = (1 x¢")(1), Ex[e]t) = 2,(¢) — (b x ¢)(¢) and Ek[go](t) =
Q,((p) — (b*¢)(t). Then we apply Ek[l](t) = 0 to obtain

Erl@1(ta) = Ex[r1(tn) + 90 Ex[11(ty) = Ex[r1(tx) +7(0) xuo (k) = Ex[r1(t),
and we apply r(¢) =r’(0)t + (¢ xr”)(¢) to find that
(46) Er[r](ty) = r' (0)Ex[t1(ty) + Ex[(t xr")1(2,)
=r"(0) Ex[t](ta) + (Ex[t] 5 ") (10),

where u is determined via the properties of b in Assumption A. We first estimate the first right-hand side
term of (46). By [15, Theorem 5.2] and the assumptions of this lemma, we have

(47) |E([tP " 1(x0) < Cx* kP for 0<B <2, k<x<T.
We apply (47) with 8 =2 and x =1, to get

(48) |E([£1(t)] < Ct* k% for n > 1.

To bound the second right-hand side term of (46), we apply (47) to obtain

(49) |Ex[t](t)| < CT* k> for k<t <t,,

while for 0 < 7 < k, we follow the definition to obtain

(50) |Exlt]1(D)| = |wok)T —/ b(t — )0 dz?‘ < %kZ + @kZ = @k?
0 3 2 6
Therefore, (49) and (50) provide
k In
51) (Bl %) 1) < f EIO)]F 6 — 1)l d + /k EO P (6 — 1)l d

T " fn
6°k2/ Ir ”(0)|d19+0k2/ (tn — D" ()] do.
th—1 0

To determine w, we obtain from (7) that IS(S) = % — % fOOO,B(t)e_‘” dt, which implies |l;(s)| <Cls|™!
such that 4 = 1 in Assumption A. We thus invoke ;& = 1 in (48) and (51) to complete the proof. O

Next, we shall derive the error estimate of the scheme (19)—(20).
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Lemma 4.3. The following estimate holds for 1 <n < N + 1:

N
IW"—UW+W&W"—UWHSC<M&PH+kM&Pm+k§:MRJW)

n=1

Proof. Define n" = u" — U" and we subtract (17)—(18) from (19)—(20) to get the error equations

(52) 570" + (1= b)Aii" + ) " w, (A" P =[R]", 1<n<N,
p=0
(53) sm'=[R1°, n"=0.

We take the inner product of (52) with " and use (22)—(23) to get

1 _ _
%(Ilnn“llz—lln" N2 =20, ™y + 2" ™)

1—by, , e
+ g U= D +

(54)

1—by
8k

+ ) wp (A2 APy = ([R)]
p=0

With the definition of || - || 4, we sum (54) for n from 1 to M to get

M n M
M2 = 10013 - 263 30 ) w0, AV, AV + 263 Y (R 7,
n=0 p=0 n=1

In

based on which we follow the analysis of (26) to find

M
(55) ™ 15 < 115+ &2 D IR A" 1a + 10" la)-

n=1

Let L be such that |4 := maxo<s<n 17"l 4, and (55) provides

L N
(56) In“lla < 17%0la+26> > IR < 10°0la+26> ) IR

n=1 n=1

Furthermore, we apply (25) and (53) to find

V1—=bg

0 ~1—0b
3 k||nl||1=k||[th]°||+T

0
(57) 17°04 < 'l + K IR 11

Combining (56) and (57) we obtain

N
J1—=b
TR IR+ 26 Y IR,

n=1

(58) In™lla <kI[R°) +

QA2 A2y — 0 (A2 A2y

481

7).
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Analogous to the analysis of (35)—(37), we have

VI=by

N
(59) ™+ 18 < c(n[Rt]"n + kIR +2k ) ||[Rt]"||>,
n=1

which completes the proof. O

Based on Lemma 4.3, we intend to prove the convergence order based on reasonable regularity
assumptions of the solutions to problem (1)—(2).

Theorem 4.4. Under the regularity assumptions in (45), for 1 <n < N + 1, it holds that

T 2k T
lu = U+ 118 (" = UMl SC(kZ/ ﬂ(t)dt>+C<<k ﬂ(t)dt)+(k2/ Iﬁ'(t)ldt))-
0 0 k

Remark 4.5. It is worth mentioning that for smooth kernels B such as (6), this theorem implies the
second-order accuracy

" — U™ || + |8, (" — UM)|| < Ck?,

while for nonsmooth kernels, the accuracy may be deteriorated. For instance, for the weak singular
kernel (5), the above theorem implies the accuracy of 1+ « order

2k T
lu" — U + |18 " — U™ < Ck2+Ck/ t"“ldt+Ck2/ %72 dt < Ck'te.
0 k

Proof. At first, (45) and (18) lead to

VT—=b g g
(60) IR +TOkII[Rz]OII1 < C(kfo ﬁ(t)dtJrkaO ﬂ(t)dt)-
Then we apply (11) and (45) to find that
N N
(61) K NRT T =K IR 1+ Y[R T
n=1 n=2

2k T
< C(k B(t) dr+k2/ |ﬁ’<r)|dr),
0 k

and we use (12) and (45) to obtain
N

kY IR Y < CR.

n=1

It remains to estimate [R; 3]" in (16). First, Lemma 4.2 and (45) imply

N T
(62) kY IR 311"l < C(THE [ Au" 0] + C(T)i? /O 1AW ()| dt

n=1
T
§C(T)<1+/ ﬂ(z)dr)kz.
0
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We then combine the Taylor expansion with the integral remainder

AW —u)(t,) = E('/Hl(t,,H —0)2Au" (1) dt+fn(t—tn_1)2AuW(t) dt)

with (45) to obtain

N N n
(63) kY MRz <k DD lonp (O] AW — i) (2y)]
n=1

n=1 p=1

N k T
"
< (k}lﬁ%r;lg;_lwp(k)o > | 1A onar
n=

N T
Ck? k / dt.
< (EOSTEZ‘_I"”P( >|) | B di

Following from Assumption A and [15, (4.2) and Theorem 4.1] that
(64) lwo (k)| < CKH, |wa (k)| < Ck(t)*~', 1<n<N,

which implies that the summation on the right-hand side of (63) is bounded. Then we invoke (60)—(64) in
(59) to get the desired result. O

5. A nonlinear extension

Based on the discussion of the linear problem, we extend the developed methods and results to numerically
study the nonlinear problem (1)

(65) u'(t) + Au(t) — (Bx Au)(t) = f(t,u(t)), >0,

which satisfies the initial condition (2), and the semilinear source term is Lipschitz continuous with the
Lipschitz constant .Z > 0

(66) I f@ u) = fE o)l <ZLu—v.
Similar to the analysis of (8), we rewrite (65) as
(67) u”(t) + (1 —bo)Au(t) +b(t)Aug+ Abxu')(t) = f(t,u)), t>0.

Then we discretize (67) at t = ¢,, via (11)—(15) to obtain

©8) 87U+ (1—b) A" + by Aug+ Y wp(K) AT + xo(k) Auy = f (b, u") + [R,]"
p=0

with 1 <n < N, where [R,]" is defined by (17). Moreover, (68) subjects to

k
(69) Su' = (ul + §u§> +[R 1% u® =uy,
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where u5 = —Aug+ f (0, up) is obtained by (67). We then drop the truncation errors to get the time-discrete
scheme

(70)  87U" + (1 = bo)AU" + byAug+ Y w, () AU" P + yuo(k) Ay = f(t,, U"), 1<n <N,
p=0

k
(71) s U! :u1+§u;, U = uy.

We then prove the stability of the time-discrete scheme (70)—(71).

Theorem 5.1. Let U" be the numerical solution of the time-discrete scheme (70)—(71). Then we have

N
1" < C(Iluollz+kzlluoll3+ e+l llz + K 1Lf s uo)ll), l<n<N+1

n=1

Proof. We apply the triangle inequality and (66) to arrive at

(72) Il f tns U< N f (8, U™ = f(t, UD+ 1 f (80, UO
< ZNU" = U N+ I f (ta, U < 20U+ 10D + 11 f (1, UO.

We incorporate this with a similar analysis as (27) to get

M
IUMIG < HUCIS +262 D bull Auoll 1" [| + 2k (k) || Auy | [ U [ 4

n=1

M M
262 0 GO A [T 4263 f s UDIIT"

n=1 n=1

M
< NU°NA +K2D " balluoll2(1U™ 4+ 1U"11a)
n=1

+ 262w () [l 121U 1 a + K2 llut 21U a4+ 11U (1 4)

M
HE2 (LAU+ N1 + 1 G U AT a4+ 1T (1)
n=1
Let |U7 || 4 := maxo<p<p |U"| 4 such that

J
1O N4 < 1U°a+26> ) balluolly + 2k2wo (k) [lus |2 + 2k>cl lu |12

n=1

J
+262 3 (L AU |+ ol + 11 f . o))

n=1

M
< NU°Na+26> D balluolla + 2K wo (k) llurll2 + 2k>cy [l l2

n=1
M

+262 Y (LAU™ |+ lluol) + 11f ta. uo) ).

n=1
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and we incorporate this with (30) and (31) to further get

k2 Jl——ly()k( k2 )

(73) UM 4 = kllurll+ = lluoll2 + — 2lluoll +Kllurlly + = lluoll3

2b
+2kao||uo||z+zk270k||u1||2+zk2c;||u1||2

N N
+ 262 32 Nuoll + 11 f s w0 ) + 2262 > U

n=1 n=1

M
= k(cbl(uo, uy) + 2.2k Z ||U”||>.

n=1

By similar analysis as (35)—(37), (73) yields

M
k 1
74 UM < (=4 — (@ , 2%k u'l).
(74) || ||_(2+C/m)( 1o, ) +2.2k Y | ||)

Then we apply the discrete Gronwall inequality to complete the proof. (I

n=1

We then derive the error estimate of the time-discrete scheme (70)—(71).

Lemma 5.2. Let u" and U" satisfy (68)—(69) and the time-discrete scheme (70)—(71), respectively. Then
forl<n<N+1

lu" — U™ | + 18, " — UM)|| < C<T>(||[Rt]°|| AN TES DY ||[RIJ’"||>.

m=1

Proof. Based on (68)—(71), we obtain the error equations in terms of n" =u" — U"

(75) 8PN+ (L —b) AT + Y wp(AT" P = ftg u") — fta. U+ R, n =1,
p=0

(76) sm' =[R1°, n°=0.

Analogous to the proof of Lemma 4.3, we obtain

N M
In"lla < In°a 426> D NIRA" I 4262 Y " 11Lf (b ") = f (1 U],

n=1 n=1

where |[n% |4 := maxo<,<p |7"]la. Then, we use (57) and (66) to get

JI=b al
a7 ™l < kIRl + T‘)kznmonl +262 ) IR

n=1
M M
+2.2K Y [In"l :=k(<1>z<uo, ) +22k Y ||n”||>,

n=1 n=1
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which in turn implies
M

I+ < C(<b2<u0, W) +2.2ky ||n"||).

n=1

We incorporate this with the discrete Gronwall inequality to obtain

(78) max "] < C(T)®2(uo, u1),
1<n<N+1

and we invoke (78) in the right-hand side of (77) and adopt similar analysis as (34)—(37) to get
™M+ 180 ™) < C(T) @2 (o, un).
The proof is thus completed. ]

Finally, we combine the analysis in Theorem 4.4 and the conclusion of Lemma 5.2 to obtain the
following convergence result.

Theorem 5.3. Let u" and U" satisfy (68)—(69) and the time-discrete scheme (70)—(71), respectively. Then
under the regularity assumptions in (45), it holds for 1 <n < N + 1

T 2k T
" — U]+ 18, " — UM < cm(k2 f B(1) dt) + cm((k B() dz) + (k2 f B 0] dz)).
0 0 k

6. Numerical experiments

We perform numerical examples to substantiate the analysis of the time-discrete schemes. We consider
a concrete problem of the form (1) or (65) in one space dimension with the spatial domain € = (0, 1)
and the operator A = —d?/dx? with boundary conditions u(t, 0) = u(t, 1) = 0 for ¢ € (0, T]. We apply
the second-order center difference for spatial discretization with a uniform mesh size h = 1/M for some
M > 0, and we define the discrete L? norm for the finite difference method as in [26]:

M—1
h Z U,
j=1

Let the time step size k =T /(N +1) with N > 1 and ¢ty = T. To illustrate the convergence of proposed
schemes, we define the spatial error in Ly norm at ty4 = T and the corresponding temporal convergence
order as

1" =

Ey(N +1)

E>x(N+1)= U —y*N+tD)| Rate=log, ————— ——.
2( )= I 2 E2Q(N+ 1)

We shall consider smooth and nonsmooth kernels 8(¢) in the following examples.

A weak singular kernel. We consider the weak singular kernel (5) with yy = p*/2. By (7), we have

(e, . by (1 o
b(r) = (azpt), b(s)=?0—( +~;£p) ,
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a=0.25 a=0.5 o =0.95
N EN+1) rate E,(N+1) rate E,(N+1) rate
32 1.1027-107% — 1.2056-1073 — 1.0619-1073 —

64 4.5125-107* 1.289 3.9058-107* 1.626 2.7041-107* 1.973
128 1.9591-107* 1.204 1.3180-10~* 1.567 6.8386-107 1.983
256 8.5399-1073 1.198 4.5700-107° 1.528 1.7244 107> 1.988
512 3.6869-1075 1.212 1.6069 -1075 1.508 4.3421-107° 1.990

Table 1. Example 6.1: L, errors and temporal convergence rates with different c.

where the upper incomplete gamma function

1 ® 1
[(a, y):= —/ t* e dt
L) Jy
with I'(«, 0) = 1. Then we provide the approach to compute the quadrature weights. By (14), we have

the representation [23]

(79) on) = —— f z—"—lé(@) dz = m(i f "Gy dy),
21 lz|=1 k T Jo

in which i = —1, % indicates the real part of a complex number and G, (y) = e ];(;(eT—'V)) In subsequent
numerical implementations, we apply the composite rectangle formula to approximate the last integral
of (79). Specifically, given # = N 2, the quadrature weights w, (k) are generated by

J—1
~ ol ] Yj T Yj+1
(80) a)n(k)»th(;(E :G,l(%))Ay),

Jj=0
where y; = jAy with Ay=n/ ¢ and j =0,1,2,..., 7.

Example 6.1 (the linear case). Let the initial conditions ug(x) = sin(rx) and u;(x) = sin(27x) in (1),
h= 11%, T =1and p =5. We list the L, errors and temporal convergence rates in Table 1, from which
we observe that the convergence rate is approximately 1 + « that is consistent with the estimates in
Theorem 4.4.

To demonstrate the finite-time and long-time stability proved in Section 3, we present maxo<,<ny+1 ||U" ||
under h = % k =0.1, up = sin(;rx) and different 1 and « in Table 2, which shows that the numerical
solution may diverge with the increment of N (and thus T = Nk) if u; 0. When u; = 0, the numerical
solution is stable for large N, which indicates the long-time stability of the numerical solution and thus

validates the theorems in Section 3.

Example 6.2 (the nonlinear case). Let the initial conditions ug(x) = sin(;rx) and u;(x) = sin(27x) with

f(t,u) =u—uin (65). We set h = ﬁ, T =1and p =35, and list L, errors and temporal convergence

rates in Table 3, which indicates the 1 + « accuracy as predicted in Theorem 5.3.
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a=0.1 a=0.5 a=0.9

N  u; =sin(2rx) u; =0 u; =sin(2mwx) u; =0 up = sin(2mwx) u; =0

2 7.0711-107" 7.0711-107! 7.0711-10~" 7.0711-107! 7.0711-10°'  7.0711-107!

4 7.0711-10°" 7.0711-107! 7.0711-10°" 7.0711-107" 7.0711-10°"  7.0711-107!

8 1.2710-10°  1.0965-10° 7.0711-10°" 7.0711-107! 7.0711-10°"  7.0711-107!
16 1.8653-10°  1.7085-10° 8.4259-10~' 8.2922.107! 7.0711-10°'  7.0711-107!
32 1.9507-10°  1.7085-10° 9.3824-10"! 8.2922.107! 7.0711-10°"  7.0711-107!
64 4.1844.10° 1.7085-10° 1.7257-10°  8.2922.10~! 7.0711-10°"  7.0711-107!
128 8.0698-10°  1.7085-10° 3.6807-10°  8.2922.107! 7.0711-107'  7.0711-107!
256 1.6150-10" 1.7085 -10° 7.6179-10° 8.2922.107! 1.0862-10°  7.0711-107!
512 3.2341-10" 1.7085-10° 1.5504-10'  8.2922.107! 2.2483-10°  7.0711-107!
1024  6.4737-10! 1.7085-10° 3.1280-10'  8.2922-107! 4.5731-10°  7.0711-107!

Table 2. Example 6.1: values of maxo<,<y+1 ||U"|| with different & and derivative initial
conditions uq.

A smooth kernel. We choose the smooth kernel (6) and shall give ,3 (s) by means of Laplace and Stieltjes
transforms. Define the piecewise continuous function
0, x=0,
ap(x)=1{x, O0<x<l1,
1, 1<x<oo,

and let o
Bo(t) i=/0 e dag(x)

such that

1—e!

t

Bo(s) =/°°d“°(x) =1og(1+1).
0o S+x s

1
Bo(t) = / e dx =
0

From [22, Chapter 8], we have

a=0.1 a=0.5 a=09
N E,(N+1) rate E,(N+1) rate E,(N+1) rate
64 3.4089-107% — 4.1244-107% — 2.7405-107% —

128  1.4278-107* 1.255 1.4108-107* 1.548 7.0160-107> 1.966
256 6.6698-107° 1.098 4.9327-107° 1.516 1.7919-107> 1.969
512 3.1762-107° 1.070 1.7425-1073 1.501 4.5745-107° 1.970
1024 1.5061-107° 1.076 6.1791-107° 1.496 1.1686-107° 1.969

Table 3. Example 6.2: L, errors and temporal convergence rates with different «.



PARTIAL INTEGRODIFFERENTIAL EQUATIONS OF HYPERBOLIC TYPE 489

T=02 T=1 T =4
N EN+1) rate E,(N+1) rate E,(N+1) rate
32 3.9702-107° — 5.8641-1073 — 6.2497-1072 —

64 1.0717-107 1.889 1.6584-1073 1.822 8.8076-1073 2.827
128 2.7897-107% 1.942 4.3955-10~* 1.916 1.1642-1073 2.919
256 7.1196-107 1.970 1.1303-10~* 1.959 4.8802-107* 1.254
512 1.7985-1077 1.985 2.8651-107 1.980 1.3746-10~* 1.828

Table 4. Example 6.3: L, errors and temporal convergence rates under different 7'.
Thus, (6) gives B(r) = e~ " By(r), which leads to B(s) = B?)(s + 1). Note that

/Ooﬂ(t)dt=;§(0)=1og2< 1,
0

which implies that (6) satisfies (4). Furthermore, we apply (7) to obtain

b(r>=f ﬂ(s)ds=f0 ﬂ(s)ds—/0ﬂ<s>ds=/§<0>—/0ﬁ(s)ds

= B(0) — (B 1)(1) =log(2) — (B 1)(1),
which yields

b 14 log2 1 1 1 2 1
0 og <1+_>: IOgM
) s+2

(81) b(s) = — — —B(s) = —— — ~log
S R) S S

Inserting (81) into (79) we obtain the weights w, (k) by the approximate method (80).

Example 6.3 (the linear case). Let ug(x) = sin(rx) and u;(x) = sin(2rx) for model (1), and we set

h= 11%. In Table 4, we test L, errors and temporal convergence rates, which indicate that the proposed

k=0.01 k=0.1 k=1
N  u; =sin(2mx) u =0 uy = sin(2mwx) u =0 uy =sin(Qrx) wu; =0
2 7.0711-10~" 7.0711-10! 7.0711-10~" 7.0711-10! 2.8706-10°  2.7822
4 7.0711-10~" 7.0711-10! 7.0711-10~" 7.0711-10"! 3.7904-10°  2.7822
8 7.0711-10~" 7.0711-107! 7.0711-10~" 7.0711-107! 9.5557-10°  2.7822

16 7.0711-10"  7.0711-107! 7.0711-10""  7.0711-107! 2.2250-10! 2.7822
32 7.0711-10""  7.0711-10~! 1.5768-10°  7.0711-10~! 4.7803 -10! 2.7822
64 7.0711-10""  7.0711-10~! 5.7869-10°  7.0711-107! 9.8916-10! 2.7822
128 7.0711-10""  7.0711-10~! 1.5719-10"  7.0711-10~! 2.0114-10>  2.7822
256 8.2968-10~! 7.0711-107! 3.6143-10'  7.0711-107! 4.0559-10>  2.7822
512 3.8432.10°  7.0711-107! 7.7033-10'  7.0711-107! 8.1450-10%>  2.7822
1024 1.1529-10'  7.0711-107! 1.5881-10>  7.0711-107! 1.6323-10°  2.7822

Table 5. Example 6.3: values of maxo<,<n+1 ||U"|| under different k and derivative
initial conditions u.
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f(t,u):u—u3 f(t,u) =sinu f{t,u)=e"cosu
N E,(N+1) rate E,(N+1) rate E,(N+1) rate
32 5.6500-1073 — 5.2910-1073 - 5.8688 - 1073 —

64 1.5964-107% 1.823 1.4956-1073 1.823 1.6624-1073  1.820
128 4.2317-107* 1.916 3.9640-10~* 1.916 4.4184-107* 1.912
256 1.0883-10~* 1.959 1.0194-107* 1.959 1.1433-107%  1.950
512 2.7589-107° 1.980 2.5839-1075  1.980 2.9353-107° 1.962

Table 6. Example 6.4: L, errors and temporal convergence rates under different nonlinear terms.

scheme could achieve the second-order temporal accuracy for T not large enough. For large T, the
convergence order is not stable, which may be caused by the loss of long-time stability of numerical
solutions as we will show in Table 5.

In Table 5 we compute maxo<,<ny+1 ||U"] under h = ﬁ ug = sin(rrx) and different u; and k, from
which we observe that when u; #~ 0, the numerical solution exhibits instability with the increment of N.
When the derivative initial condition #; = 0, the numerical solution is stable for large N, which is
consistent with Theorem 3.2.

Example 6.4 (the nonlinear case). Let the initial conditions ug(x) = sin(;rx) and u (x) = sin(27x) in (65)
with h = ﬁ, T =1 and different source term f (¢, u). We present L, errors and temporal convergence
rates of the scheme (70)—(71) in Table 6, which indicates its second-order temporal accuracy proved in
Theorem 5.3.

7. Concluding remarks

We investigated the numerical approximation for a nonlinear hyperbolic-type partial integrodifferential
equation. For the linear case of this equation, we discretized it by the central difference formula for space
and the second-order convolution quadrature for time, where smooth and nonsmooth memory kernels
were considered. The stability and convergence were deduced by means of the energy argument. Then we
extended the theoretical results to the corresponding nonlinear problem. Numerical experiments support
the theoretical findings.

There are several places in this work that could be improved. For instance, in numerical experiments
the composite rectangle formula is used to calculate the weights w, (k) for simplicity. Indeed, the fast
Fourier transform method is a more efficient technique to obtain weights, and we will adopt this to
develop the fast solution method in the future work. The proof of the regularity of the solutions is not
straightforward, and we will investigate this challenging issue in the near future.
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