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Figure 1: Screenshot from Betty’s Brain Open Ended Learning Environment (OELE) and Student’s Web Camera. 

Abstract 
While understanding Self-Regulated Learning (SRL) in Open-Ended 
Learning Environments (OELEs), it is crucial to examine the in-
terplay between students’ cognitive processes and a�ective states, 
especially learning centered emotions like delight, engagement, 
boredom, frustration and confusion. These a�ective states are par-
ticularly challenging to detect using facial expressions in middle 
school students, primarily due to the scarcity of relevant databases. 
This study introduces a novel approach that utilizes the EmoNet 
framework, enhanced with self-attention networks, to detect and 
analyze learning-centered emotions. We investigated the emotional 
and cognitive dynamics of 41 middle school students within an 
OELE. Our �ndings demonstrate distinct emotional patterns that 
signi�cantly correlate with students’ performance levels across var-
ious cognitive processes. By creating and analyzing a dataset from 
ten students, the proposed model achieved a test accuracy of 85%, 
indicating a substantial improvement over existing state-of-the-art 
models. These results lay the groundwork for future educational 
tools capable of adapting to a combination of students’ a�ective and 
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cognitive states thus enhancing their overall learning experiences 
that in�uence their educational outcomes. 
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1 Introduction 
Self-regulated learning (SRL) requires students to e�ectively inte-
grate and coordinate their Cognitive, A�ective, Metacognitive, and 
Motivation (CAMM) processes [9]. These processes are crucial in 
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helps students maintain a productive learning path, navigate chal-
lenges, and optimize their academic outcomes. The complexity of 
these tasks demands that students develop strategies to monitor 
their progress and adapt accordingly [46]. 

Students’ emotions (a�ective states) and cognitive processes are 
closely intertwined within the framework of SRL. Studies have 
noted that emotions like confusion, frustration, and boredom sig-
ni�cantly impact students’ engagement, learning behaviors, persis-
tence, and performance [14, 16]. While emotions like delight and 
�ow (engagement) can positively in�uence performance, others 
can hinder it. Understanding these relationships can help develop 
more supportive and adaptive learning environments [8, 15]. 

Cognitive disequilibrium arises when students face uncertainty 
and di�culties during learning, leading to a�ective states like con-
fusion, frustration, and boredom. Confusion is often the initial 
response to challenging tasks, which can either propel deeper en-
gagement or escalate to frustration if unresolved. Prolonged frustra-
tion can diminish engagement and lead to boredom. This dynamic 
interplay underscores the need to map these a�ective states to stu-
dents’ learning performance [14, 16]. Research shows unresolved 
confusion and frustration can negatively impact learning outcomes, 
particularly when not e�ectively managed [10]. 

While traditional methods for recognizing students’ emotions 
in learning environments often rely on manual observation or self-
reports, both approaches have biases [31, 32]. Round-robin observa-
tion can miss key moments, and self-reports can lead to inaccuracies 
because students may not feel comfortable indicating negative emo-
tions like frustration [42]. Moreover, current state-of-the-art deep 
learning methods in computer vision are primarily trained on lim-
ited demographics (adults and undergraduate students), making 
it challenging to analyze the interplay of cognitive processes and 
emotions for younger students at a �ne-grained level [7, 18]. No 
comprehensive database exists containing class labels of children’s 
learning-centered emotions. Therefore, a novel methodology is re-
quired to detect and understand learning-centered emotions, which 
will allow educators to tailor interventions and ensure e�ective 
emotional and cognitive regulation. 

To address these challenges, our work employs a multimodal ap-
proach that integrates video data (capturing a�ective states through 
facial expressions) and interaction log data (capturing cognitive pro-
cesses through mouse and keyboard interactions). By time-aligning 
these data sources, we can comprehensively analyze the interplay 
between cognitive and a�ective states, leading to more accurate 
and meaningful insights. Our overall contributions in this paper 
include: 

• A Novel Emotion Detection Methodology: This paper presents 
a novel methodology for detecting learning-centered emo-
tions (engagement/�ow, frustration, confusion, delight, and 
boredom) in middle school students using facial expressions. 

• Distribution of Emotions Across Cognitive Processes: The paper 
also analyzes the distribution of emotions between high and 
low performers for each cognitive process, o�ering deeper 
insights into how these emotions in�uence performance. 

The rest of this paper is organized as follows. We �rst present a 
literature review of the theoretical background for understanding 
the relationship between a�ective states and cognitive processes 

in SRL. Next, the methodology section details the proposed emo-
tion recognition framework and data analysis techniques. This is 
followed by the results section, where �ndings on the distribution 
of emotions across cognitive processes are presented. Finally, the 
paper discusses implications for designing more adaptive learning 
environments and concludes with suggestions for future research. 

2 Literature Review 
In Self-Regulated Learning (SRL), cognitive processes can involve 
the systematic acquisition and processing of information to meet 
learning objectives. Winne’s Information Processing Theory identi-
�es �ve core cognitive operations � searching, monitoring, assem-
bling, rehearsing, and translating � which learners apply sequen-
tially in their learning tasks [45]. The CAMM framework broadens 
SRL’s de�nition by considering the interplay between Cognitive, Af-
fective, Metacognitive, and Motivation processes [9]. Open-ended 
Learning Environments (OELEs), such as Betty’s Brain and oth-
ers, provide inquiry-based learning experiences that challenge stu-
dents to set goals, devise plans, and engage in active re�ection. 
These cognitive strategies are analyzed to understand how students 
seek information, re�ne their knowledge, and evaluate progress 
[22]. However, learners often struggle to simultaneously acquire 
knowledge and regulate their learning, highlighting the need for 
sca�olding in OELEs [3, 9]. 

As explained by Pekrun’s control-value theory, academic emo-
tions are linked to perceived control and value, which in turn 
are linked to positive and negative a�ective states and students’ 
learning performance. The theory underscores how emotions im-
pact motivation, engagement, and achievement [34]. D’Mello and 
Graesser’s a�ective dynamics in learning environments mainly fo-
cus on the importance of confusion, frustration, and boredom [16]. 
Therefore, state-of-the-art emotion recognition and tracking meth-
ods based on deep learning techniques and computer vision can 
play an important role in understanding student learning. However, 
their application in OELEs remains limited due to training biases 
and data scarcity [5, 43]. 

Recent advances in deep learning-based a�ect models have pri-
marily targeted adult learners, with a notable de�ciency in exten-
sive datasets for training models to recognize emotions pertinent 
to children’s learning. Research e�orts have aimed to generate 
emotion-related datasets across various educational settings, includ-
ing open-ended learning environments [29], traditional classrooms 
[40], embodied learning contexts [44], and x-reality or game-based 
educational platforms [30]. When data is collected using Closed-
Circuit Television (CCTV) footage in computer science labs [6, 36], 
the distribution of this data diverges from that obtained via a laptop 
webcam in a computer-based study setting [2, 3], where the focus 
is on individual students. Moreover, the spectrum of emotional 
states exhibited in game-based learning is di�erent from that in 
conventional educational contexts, with the former displaying more 
physical engagement in conjunction with facial expressions [8, 17]. 
Conversely, learners remain relatively stationary when working 
on computer-based OELEs, with the upper body playing a more 
signi�cant role in inferring emotional states. To date, no existing 
methodologies or research has concentrated on analyzing children’s 
facial expressions as they work in OELEs. While emotions can also 

576



Relating Students Cognitive Processes and Learner-Centered Emotions ICMI ’24, November 04–08, 2024, San Jose, Costa Rica 

be detected through alternative modalities, such as speech and phys-
iological signals, these approaches are less viable in OELEs due to 
minimal verbal interaction. Physiological measurements may also 
be deemed to be intrusive in e-learning contexts. 

The relationship between cognitive processes and emotions has 
been studied to understand how emotions shape learning behaviors 
using interaction log data combined with the human observation 
protocol Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP) 
protocol [11]. Recognizing a�ective states at a �ne-grained level 
is essential to understand students’ emotions more accurately and 
tailor interventions accordingly. Current methods are based on 
manual observations and self-reports, which are prone to biases 
and inaccuracies [27, 32]. 

Emotion recognition for basic emotions is well-explored in the 
literature, with several state-of-the-art methods demonstrating high 
accuracy on standard facial expression databases. Some architec-
tures that perform well include EmoFAN, A�ectNet, Face Single 
Shot MultiBox Detector (Face SSD), and High-speed emotion recog-
nition (HSEMotion) [13, 24, 26, 28, 39]. Additionally, methods like 
bidirectional Long Short-Term Memory (LSTM) can utilize tempo-
ral data for emotion prediction. However, these databases primarily 
focus on adults, and some, like Acted Facial Expressions In The 
Wild (AFEW), consist of acted images [24]. 

While these models are well-trained to extract low-level features 
from faces for emotion recognition, they cannot be directly used for 
recognizing emotions in children. There are several methods specif-
ically aimed at recognizing basic emotions in children, but they are 
not trained on large databases, nor are their weights available for 
further training [1, 13, 21, 26]. None of these models, however, are 
applied for learning-centered emotion recognition. 

In the education domain, several methods rely on Support Vector 
Machines (SVMs) or basic Convolutional Neural Networks (CNN) 
models for recognizing children’s faces and have not utilized trans-
fer learning to make the models more robust [19]. State-of-the-art 
methods like Inception or transfer learning from well-trained mod-
els are used for learning-centered emotion recognition, and there 
are some databases for adults focused on learning-centered emo-
tions, but these are predominantly for undergraduate or graduate 
students [1, 7, 18]. 

Hence, to address these gaps, we propose a novel methodology 
that accurately detects learning-centered emotions like engagement, 
frustration, confusion, delight, and boredom using facial expres-
sions. In addition, we explore the distribution of emotions among 
high- and low-performing students, leveraging this �ne-grained 
emotional data to enhance our understanding of cognitive-a�ective 
transitions. Ultimately, this will contribute to developing adaptive, 
a�ect-aware learning environments. 

3 Learning Environment and Data 
Betty’s Brain, an OELE designed for middle school students, uses a 
learning-by-teaching approach to help students learn their science 
by building a causal model of a scienti�c process and, at the same 
time, by developing their cognitive and metacognitive abilities to 
become better learners [22, 25]. 

Figure 1 depicts the system interface, which provides learners 
with a variety of resources and tools for knowledge acquisition, 

Table 1: Cognitive Processes and Description 

Cognitive Process Actions/Description 

Information Acquisition Reading hypertext resource pages (Read) 
Solution Construction Building and re�ning causal maps (Build) 
Solution Assessment Engaging in quiz-related activities (Quiz) 

model construction, and model evaluation. The system components 
include a science book, which is a collection of hypermedia re-
source pages that provide the subject knowledge for constructing 
the causal model. Learners read relevant pages of the science book 
to learn about relevant science concepts and the causal (cause-and-
e�ect) relationships between these concepts. Students then teach 
their agent by using a visual causal map construction and viewing 
tool. 

The system provides additional tools to assess the causal map’s 
correctness using the query and quiz features. Quiz results help 
students check the correctness of their causal maps by uncovering 
errors and omissions in their current causal map. Pro�cient learners 
use this feedback to �nd and correct errors, but other students often 
have di�culties in translating their quiz results into productive, 
actionable information [22]. Students may also choose to �nd pages 
in the science book that help them review the knowledge corre-
sponding to incorrect or incomplete answers before they continue 
to build their causal map. In essence, the quizzes allow students to 
track their learning progress and, therefore, their understanding of 
the required science knowledge. 

We analyzed the cognitive processes of 41 students, consisting 
of 12 males and 29 females, learning about climate change topics in 
our study using interactive log data extracted from the Betty’s Brain 
environment in Comma-Separated Value (CSV) format. Addition-
ally, we collected web camera data to analyze facial expressions and 
emotions. The inclusion criteria, such as excluding students with 
corrupted data or those absent on any day of the study, resulted 
in a �nal sample size of 41 students. Each student, aged between 
10 and 12, worked approximately 40 minutes per day on Betty’s 
Brain, generating a total of around 5000 minutes of screen-recording 
videos over the three days of the study. The video data, captured 
through Open Broadcaster Software (OBS) using the laptop’s we-
bcam, maintained a resolution of 1092*614 at a frame rate of 30 
frames per second. The students’ �nal map scores, calculated by 
subtracting incorrect causal links from correct ones, were collected 
and documented. We performed a median split of the �nal map 
scores, resulting in 16 high performers and 17 low performers. The 
Institutional Review Board’s approval was obtained, and all neces-
sary participant consent procedures and formalities were diligently 
followed. A Sample image screenshot of a student using the Betty’s 
Brain learning environment is shown in Figure 1. 

3.1 Cognitive Processes 
As discussed earlier, we considered students’ Reading the science 
book, Building the causal map, and Quizing to check the correctness 
of their map as the primary activities students conducted in the 
Betty’s Brain environment. All of these actions are collected with 
timestamps and additional contextual information in the system 
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logs. Kinnebrew et al. [22] mapped these actions to higher-level 
cognitive processes within the Betty’s Brain learning environment, 
(1) Information Acquisition (IA), (2) Solution Construction (SC), and 
(3) Solution Assessment (SA). The description of cognitive processes 
and their mapping are provided in Table 1. 

3.2 A�ective States 
In general, basic emotion recognition is well-de�ned and frequently 
used, but in education, we focus on emotions that are more speci�-
cally known as academic or learning-centered emotions. The most 
dominant learning-centered emotions observed during the learn-
ing process are engagement (�ow), confusion, frustration, delight, 
and boredom. These represent a�ective states compared to mere 
emotions. Confusion and boredom are epistemic a�ective states, 
while engagement is a cognitive-a�ective state. Frustration and 
delight are achievement emotions [14, 15]. The de�nitions as per 
the literature [15, 33] are provided below for a better understanding 
of the classi�cation model. 

• Engagement/Flow: A state of high concentration and positive 
valence where learners are fully immersed in their task and 
�nd the challenge both stimulating and manageable. 

• Confusion: A state of moderate arousal and negative emo-
tions where learners experience uncertainty or a lack of 
clarity in comprehending the material. 

• Frustration: A state of high arousal and negative emotions 
where learners feel blocked or overwhelmed by the task at 
hand. 

• Delight: High arousal and positive emotions resulting from 
the joy or satisfaction of overcoming challenges and success-
fully grasping the material. 

• Boredom: A state characterized by low arousal and negative 
emotions where learners feel disengaged or uninterested in 
the learning material. 

4 Methodology 
Figure 2 shows the complete methodology. The EmoNet model [24] 
is well-trained on various databases and exhibits state-of-the-art 
performance. This model includes valence and arousal class labels 
along with basic emotions, which are used in the literature to map 
to learning-centered emotions [15, 16]. Since the initial layers are 
adept at recognizing low-level features, we used this model as a 
backbone and trained the �nal layers with annotated images of 
learning-centered emotions. Additionally, facial action units play 
a crucial role in identifying peak emotions, so we incorporated a 
facial action unit detector with transformers [20] as a self-attention 
network to enhance classi�cation accuracy further. The complete 
details of the method and annotation process are presented below. 

4.1 EmoNet Backbone 
The EmoNet model is pre-trained on a large dataset of basic facial 
emotions and is designed for robust emotion classi�cation. Its ar-
chitecture is a deep convolutional neural network (EmoFAN) [24], 
and the feature extractor layers are denoted as: Feature Extrac-
tor: 5 (G, \� ) where G represents a facial image from the learning-
centered emotion dataset, and \� are the weights learned from the 
pre-trained EmoNet model. By retaining these weights, the feature 

extractor captures valuable features (like facial landmarks and ex-
pressions) relevant to basic emotion detection, which can then be 
mapped to learning-centered emotions. 

Remove Final Layers: The �nal classi�cation layers of EmoFAN 
(EmoNet) are speci�cally designed for basic emotions. Removing 
these layers and replacing them with new fully connected layers 
enables the model to specialize in learning-centered emotions like 
confusion, frustration, boredom, engagement, and delight. The new 
layers are de�ned as: Classi�er: 6(I, \⇠ ), where I represents the 
output of the high-level features by the feature extractor, and \⇠ are 
the weights of the new classi�er layers. These weights are explicitly 
learned for the classi�cation of learning-centered emotions. 

Transfer Learning: For feature extraction, we froze the feature 
extractor layers 5 (G, \� ) to retain their pre-trained weights and 
prevent them from being updated during training. 

Custom Layers Training: Trained only the new classi�er layers 
6(I, \⇠ ) on the learning-centered emotion dataset. This allowed 
the model to adapt to new emotion labels without modifying the 
foundational feature extraction layers (Equation 1): 

min L (6(5 (G, \� ), \⇠ ),~) (1) 
\⇠ 

where ~ represents the target labels for learning-centered emotions, 
and L is the loss function which is categorical cross-entropy. This 
is used to measure the di�erence between the predicted and actual 
emotion classes. 

4.2 Incorporating Facial Action Units (FAUs) 
ROI Attention Module: In this we have Region-of-Interest (ROI) 
maps that focus on speci�c facial regions relevant to the FAUs, 
comparing the predicted attention maps against ground truth maps 
derived from facial landmarks. The ground truth maps are manually 
annotated based on facial landmarks. 

⇢att map = !X (�" (5 (G)) � �< (G)) (2) 

The Huber loss (!X ) measures discrepancies between predicted 
maps (�" (5 (G))) and ground truth maps (�< (G)). 

Self-Attention Network: Using a Vision Transformer (ViT) model 
[20], we applied a self-attention mechanism to identify relevant 
facial action units. Each attention head is trained to focus on im-
portant facial regions. The attention output � can be described 
as: ! 

& ) 
� = softmax p + (3) 

3: 

where: 
• &,  ,+ : Query (Q): Represents the features that need to 
be evaluated for their importance in predicting learning-
centered emotions. It allows the model to query speci�c 
facial regions. Key (K): Contains information about potential 
attention regions (e.g., facial action units) that the model 
should focus on. Value (V): Holds the actual data from the 
facial image that the attention mechanism ultimately uses 
to re�ne predictions. 

• 3: : The dimensionality of the key vectors is used to scale 
the dot product, helping stabilize gradients. 
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Figure 2: Complete �ow of the methodology. 

Fine-Tune with FAUs: The attention features (weights) from the 
ViT model was added to the new fully connected layers of EmoNet. 
This involves concatenating or combining the attention features 
with the original feature map, yielding a richer representation: 

I 0 = concat (I, �) (4) 

Then, �ne-tuned the model on the created learning-centered emo-
tion dataset by optimizing both the facial action unit model and the 
�nal classi�cation layers of EmoNet: � �

min L 6(I 0 , \⇠ ),~ (5) 
\⇠ ,\ViT 

where \ViT represents the weights of the ViT attention model. The 
loss function now optimizes both the ViT weights \ViT and classi�er 
weights \⇠ to accurately classify learning-centered emotions. This 
combination of features from the ViT attention mechanism and 
EmoNet’s original feature extractor is to improve classi�cation 
accuracy. 

We used the 12th Gen Intel® Core™ i9-12900F processor clocked 
at 2.40 GHz, coupled with the NVIDIA GeForce RTX 4070 graph-
ics card and a total of 32GB RAM for our emotion recognition 
architecture. 

4.3 Annotation 
Annotating learning-centered emotions is a labor-intensive task. 
To partially alleviate the task, much like D’Mello et al. [15], we used 
Russell’s circumplex [37] of emotions to identify discrete emotions 
on a valence-arousal scale in the education domain; these methods 
are not speci�cally applied to OELEs involving children of the age 
group considered in this study. Therefore, we manually annotated 
10 instances of each learning-centered emotion and ran the HSE-
motion model [38, 39] to �nd the valence and arousal values. From 
this, we used the same model for the same person with the same 
valence arousal values to �nd out all other instances across the 
days. This way we generated many instances for each class label 
that we collected into separate folders. We manually veri�ed it 
and deleted the ambiguous image frames from the folders. This 

semi-automated emotion annotation process reduced the annota-
tion time. We did it separately for each student because the valence 
arousal values varied as the expression of these emotions varied 
among the students. 

This semi-automated annotation for 10 students’ data produced 
⇡ 13500 image frames, ensuring an equal division of gender (5 
males and 5 females) and diverse demographic backgrounds, in-
cluding 3 white Americans, 3 African Americans, 2 Hispanics, and 
2 Asians. We intentionally selected participants through purposeful 
sampling to address the imbalance in the training data, particularly 
concerning demographic diversity, and to ensure a more balanced 
representation. Two di�erent annotators independently veri�ed 
each emotion using facial expressions, and the inter-rater reliability, 
measured by Cohen’s Kappa, was 0.91. For training the model we 
used the instances where both annotators were in full agreement 
(^ = 1) for each learning-centered emotion. We also performed 
manual veri�cation for facial action units using a semi-automated 
approach. We employed three di�erent methods to identify the 
action units: iMotions [12], Facial Action Unit (FAU) Detector with 
transformer [20], and FG-Net [47]. While iMotions detects 22 AUs, 
FAU detector and FG-Net both considered 12 AUs. To ensure con-
sistency, we used the subset of 12 AUs mentioned in [20] and [47] 
for classi�cation. The detection threshold for these AUs was set 
at 0.8 instead of the standard 0.4, and classi�cations were made 
accordingly. For image frames where all three methods consistently 
detected the same AUs, these results were considered as ground 
truth for the self-attention model. These frames were then manually 
veri�ed by two di�erent annotators for 500 random instances before 
using them as ground truth, and both agreed that the classi�cations 
were accurate. 

This cognitive process-related data is then cross-referenced with 
the CSV �le generated from emotion recognition. The latter con-
tains frame numbers, timestamps, and corresponding 5 class labels 
based on the system timestamp. The objective is to amalgamate 
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these �les, resulting in a comprehensive dataset that provides in-
sights into the total instances of each emotion label for every in-
stance of the cognitive process during its speci�c duration. Here, 
each instance of emotion refers to each frame. 

5 Results and Inferences 
We discuss two sets of results. Our �rst set of results provide a com-
parative analysis of the performance of the di�erent approaches 
we use for emotion recognition and classi�cation. We tested our 
methods on the annotated data because ground truth was needed 
for training and testing. We used approximately 13,500 annotated 
images, of which 73% were engagement (9,855 images), 9% con-
fusion (1,215), 8% boredom (1,080), 7% frustration (945), and 3% 
delight (405). As the data was imbalanced, we used data augmenta-
tion to increase the number of instances of each emotion to match 
the amount for engagement. Speci�cally, we applied nine di�er-
ent data augmentation techniques, to address the class imbalance 
[43]. Furthermore, we performed student-independent 10-fold cross-
validation (ensuring students in the training set were not present in 
the test set) to evaluate the model’s generalizability [6, 43]. For the 
second part of the results, the proposed model was tested on data 
from all 41 students, without applying any data augmentation. For 
the second set of analyses, we looked at the di�erences between 
the a�ect distributions of the high and low performers across the 
three primary cognitive processes: Information Acquisition, Solu-
tion Construction, and Solution Assessment. 

Learning centered Emotion Recognition: The performance 
metrics of the proposed model are given in Table 2. The overall 
accuracy of the model is 85%. Engagement is the most accurately 
recognized learning-centered emotion with an F1-score of 0.90. 
Misclassi�cation primarily occurred between confusion and frus-
tration (10% of confusion instances are predicted as frustration) 
and between frustration and boredom (4% of frustration instances 
are misclassi�ed as boredom). Boredom’s performance is relatively 
balanced, but 8% of boredom instances are misclassi�ed under en-
gagement. The overall precision (0.83), recall (0.80), and F1-score 
(0.78) demonstrate reasonable classi�cation accuracy, but there’s 
room for improvement, particularly in distinguishing closely re-
lated emotions like frustration and confusion. In our ablation study, 
we placed greater emphasis on precision over recall, particularly in 
the educational context, where providing incorrect feedback based 
on misclassi�ed emotions like frustration can be more disruptive 
to the learning process than missing an instance of frustration. 
This approach aligns with the literature, which underscores the 
importance of precision in educational interventions [8, 15, 23, 35]. 

Table 2: Performance Metrics for learning-centered emotion 

Emotion Precision Recall F1-score 
Confusion 0.81 0.78 0.74 
Frustration 0.78 0.75 0.71 
Boredom 0.76 0.75 0.73 

Engagement 0.91 0.88 0.90 
Delight 0.89 0.85 0.81 
Overall 0.83 0.80 0.78 

Valence-Arousal Mapping: For the same set of images that were 
tested for learning-centered emotions, we ran the analysis for 
valence-arousal and classi�ed the quadrants they fall into according 
to Russell’s circumplex model [37]. We used the speci�c ranges of 
valence and arousal values de�ned in the literature to accurately 
identify each a�ective state [3, 4, 15, 17]. For instance, engagement, 
as a learning-centered emotion, has a small positive arousal and 
a positive valence value, indicating that engagement falls into the 
�rst quadrant. We mapped all �ve learning-centered emotions to 
valence-arousal quadrants as de�ned in the literature and found 
that 92% of learning-centered emotion instances align correctly. 
Deviations were found in engagement (3%) and confusion (4%), 
where confusion instances were near neutral or in the third quad-
rant. Engagement expressions occasionally fell slightly below the 
neutral arousal line but remained primarily positive valence. 

Facial Action Unit: Among the open-source action unit recogni-
tion methods (weights) available, FAU Detection [20] and FG-Net 
[47] use larger datasets compared to other methods. FAU Detection 
leverages three datasets: Denver Intensity of Spontaneous Facial 
Action (DISFA), EmotioNet, and Binghamton-Pittsburgh 3D Dy-
namic Spontaneous Facial Expression Database (BP4D), whereas 
FG-Net only uses DISFA and BP4D. iMotions, a commercially avail-
able software that we purchased, uses AFFDEX 2.0 [12], which has 
been trained and tested on multiple databases, including A�ectNet. 

We experimented with di�erent thresholds for facial action unit 
recognition using iMotions, FAU Detection, and FG-Net. We tested 
thresholds of 0.4 (the standard used by iMotions), 0.6, and 0.8. Over-
all, the highest rate of misclassi�cation or disagreement was ob-
served in FG-Net (37%), whereas both iMotions and FAU Detection 
had 21% disagreements across all thresholds. 

Although we selected a threshold of 0.8 with complete agreement 
across image frames from the three models for training the self-
attention model, we chose FAU Detection with transformers over 
FG-Net for the self-attention network. iMotions performed well, 
likely because it is trained on several databases compared to other 
models, but we did not have access to AFFDEX weights to include 
them in this methodology. 

Model Comparison: The HSEmotion model [38, 39], which is 
open-source and trained on comprehensive emotion recognition 
datasets like A�ectNet, EmotiW challenges (AFEW, Video level 
Group AFfect (VGAF), and EngageWild), and A�ective Behavior 
Analysis in-the-wild (ABAW) challenges (Learning from Synthetic 
Data and Multi-task Learning), served as a comparison for the 
proposed EmoNet with Self-Attention model. HSEmotion achieved 
a mean Average Precision (mAP) of 0.71, while EmoNet with Self-
Attention achieved a signi�cantly higher mAP of 0.83. 

Ablation: To evaluate the e�ectiveness of the Self-Attention 
mechanism, we also compared EmoNet with and without Self-
Attention, where the latter resulted in an mAP of 0.78, while the 
inclusion of Self-Attention increased it to 0.83. 

Testing di�erent thresholds for facial action unit detection fur-
ther impacted classi�cation accuracy, with average detection ac-
curacies of 76%, 81%, and 85% at thresholds of 0.4, 0.6, and 0.8 
respectively. 

Layer ablation studies showed that reducing the EmoNet back-
bone by one layer decreased the average F1-score to 0.74, whereas 

580



Relating Students Cognitive Processes and Learner-Centered Emotions ICMI ’24, November 04–08, 2024, San Jose, Costa Rica 

Figure 3: Distribution of Learning-Centered Emotions. 

adding two layers maintained it at 0.78. Regarding ground truth an-
notation, using a single annotator resulted in an average detection 
accuracy of 81%, but having two annotators improved this to 85%. 
These comparisons demonstrate that the proposed EmoNet with 
Self-Attention consistently outperforms other con�gurations and 
models, highlighting the importance of incorporating Self-Attention 
and optimizing thresholds and annotation processes. 

Distribution of High and Low Performers’ Cognitive Pro-
cesses: 

Figure 3 illustrates the distribution of learning-centered emo-
tions across three cognitive processes: Information Acquisition (IA), 
Solution Construction (SC), and Solution Assessment (SA). The bar 
chart shows clear di�erences between the a�ect state distributions 
of the high- and low-performing students within each category. 
As discussed earlier, we used a median split of the students’ �nal 
map scores to de�ne the high and low performer split. These map 
scores were derived by comparing the students’ progress against an 
expert map, as detailed in the system log �les generated during the 
map-building stage. High Performers exhibited a consistent pattern 
of high engagement across all cognitive processes, underscoring 
their ability to remain focused and on task. For instance, during the 
Information Acquisition phase, engagement peaked signi�cantly at 
1,333,300 instances, overshadowing other emotions such as bore-
dom, which registered 216,660 instances, and confusion at 199,995 
instances. This trend of predominant engagement continued in the 
Solution Construction and Solution Assessment phases, although 
the gap narrowed with other emotions, such as frustration and 
boredom. Low performers, also showed high levels of engagement. 
However, they did experience notably longer instances of bore-
dom, especially during the Information Acquisition phase, where 
it nearly doubled compared to high performers. This indicated a 
disengagement from the learning task, presumably because the 
students had di�culty in understanding and keeping their interest 
in the learning material. However, this di�erence narrowed for the 
Solution Assessment phase. The data underscored a crucial contrast 
between high and low performers: although both groups showed 
high levels of engagement, high performers had greater periods of 
engagement than low performers. This di�erence translated to pro-
portionally greater periods of boredom among the low performers, 
and this may have adversely a�ected their learning outcomes. We 
conducted a Chi-square test of independence to show the di�erence 

in the a�ect distributions of high- and low-performers. The test 
resulted in a signi�cant di�erence with a p-value of < 0.001. Table 
3 summarizes these results. 

Table 3: Consolidated Chi-Square Test Results for Cognitive 
Processes 

CP Chi-square Dof Note on Expected Frequencies 
IA 145587.85 4 Signi�cant variances observed 
SC 124215.49 4 Variations across categories 
SA 193449.75 4 Highest discrepancies noted 
All 442167.21 4 Consistent signi�cant di�erences 

CP: Cognitive Processes; DoF: Degrees of freedom 

Signi�cance of Results Across Processes: The Chi-Square tests 
conducted for the "IA," "SC," and "SA" processes, as well as the 
overall aggregation, consistently revealed signi�cant disparities in 
emotional distributions between high and low performers, each 
with a p-value of < 0.001. These results emphasize a strong asso-
ciation between students’ performance levels and their emotional 
responses during di�erent cognitive processes. 

IA (Read), SC (Build), and SA (Quiz) Processes: In each speci�c 
process—Read, Build, and Quiz—the high Chi-square statistics in-
dicate that the actual emotional distributions deviate signi�cantly 
from what would be expected if there were no association between 
performance levels and emotional outcomes. The Read process 
showed notable di�erences, particularly with a Chi-square statis-
tic of 145587.85, suggesting that reading activities might elicit 
strong emotional disparities. Similarly, the Build and Quiz pro-
cesses demonstrated signi�cant emotional variance, with the Quiz 
process exhibiting the most pronounced di�erences, indicated by a 
Chi-square value of 193449.75. 

Overall Emotional Distribution: The overall test, combining all 
processes, produced a Chi-square statistic of 442167.21, a�rming 
that the observed patterns are not isolated to speci�c types of 
cognitive tasks but are pervasive across all examined educational 
interactions. 

5.1 Discussion 
Emotion Transition: Both high and low performers experience bore-
dom, frustration, and confusion during the learning process, though 
the frequency of these emotions, especially boredom, which rep-
resents disengagement varying signi�cantly between the groups. 
According to the literature on the dynamics of learning-centered 
emotions, an engaged student encountering cognitive disequilib-
rium typically transitions into a state of confusion, which can esca-
late to frustration and, if unaddressed, lead to boredom [16]. Our 
analysis of the CSV �le containing emotion data with timestamps 
reveals that low performers tend to progress from frustration to bore-
dom more swiftly compared to high performers. In contrast, high 
performers actively engage in coping mechanisms such as laughter 
and peer interaction, which help them quickly return to an engaged 
state. 

This resilience was particularly evident during the 45-minute 
sessions involving extensive reading and model building, which are 
likely to induce confusion and frustration when students cannot 
understand the material they are reading or successfully translate 
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that reading to correct map links. Overall, our data shows that 
while confusion and frustration were prominent in both groups, 
low performers tended to transition into boredom and remain in 
a state of boredom more often than the high performers. Despite 
these challenges, moments of delight were also observed for both 
groups; however, high performers, who were more successful in 
building correct causal maps and, therefore, got better results on 
the quizzes, experienced more frequent instances of delight. 
Emotion Detection: In emotion recognition, particularly in learning 
environments, confusion and frustration are commonly misclassi-
�ed due to overlapping facial action units (AUs) that exhibit similar 
physical manifestations. Literature suggests a range of AUs associ-
ated with these emotions, which may contribute to their frequent 
misclassi�cation. 

From the manual annotation and also while verifying the semi-
automatically annotated emotions, it was observed that both con-
fusion and frustration share AUs, for example, brow lowerer and 
head forward. Confusion often involves AUs like the brow lowerer 
(indicative of deep thinking or di�culty understanding), which can 
be mistaken for frustration, which also utilizes brow lowerer but 
typically in a more intense form paired with other indicators like lip 
tightener or nose wrinkler, signaling annoyance or dissatisfaction. 
The facial action units present in the lower part of the face for con-
fusion will have more positive valence than that of frustration, and 
the model that we used for the self-attention network did not use all 
22 action units; hence, the chances of misclassi�cation were high. 
Similarly, frustration is associated with AUs like hands on head or 
scratching head, which indicate a higher level of distress or exasper-
ation. These AUs can occasionally appear during intense cognitive 
e�ort, typically in states of confusion, leading to misclassi�cation. 

Delight is characterized by unique AUs that are distinctly di�er-
ent from those associated with negative emotions like confusion or 
frustration. These typically include the cheek raiser and lip corner 
puller. These AUs are part of a genuine smile, commonly known 
as the Duchenne smile (AU6), which is di�cult to confuse with 
expressions of confusion or frustration. However, a cheek raiser is 
also observed during the engagement, and hence, there is a slight 
misclassi�cation of delight with engagement. Boredom can often 
be misclassi�ed with engagement as sometimes boredom is just a 
resting face with a lack of strong facial movements. Boredom some-
times does not typically involve intense facial expressions, which 
makes its AUs subtle and easy to confuse with engagement class 
label. Also, cheek pu�er is seen in both frustration and boredom, 
which causes a lot of misclassi�cation when this is observed and 
requires temporal data to classify the emotion correctly. 

Contextual Similarity: In educational settings, both emotions 
often arise from similar contexts (e.g., challenging tasks or obsta-
cles), which makes distinguishing based purely on facial cues more 
challenging without considering contextual factors such as task 
di�culty or individual learner responses over time. 

5.2 Limitations 
There are several limitations in this study. Since the annotations are 
made for static images, �eeting facial expressions can sometimes 
be misclassi�ed. For instance, a closed eye might be considered 
boredom (sleeping) when it could simply be a case of blinking. 

However, when analyzing a sequence of frames, such instances do 
not signi�cantly impact the results. The self-attention mechanism 
uses facial action units that could capture mixed emotions, like a 
student laughing out of frustration, which may then be classi�ed 
as a positive emotion. But this may not happen quite often. Our 
data is also limited to a speci�c demographic and a single learning 
environment. However, the literature indicates that even for 41 stu-
dents, sharing classi�cation weights based on facial expressions is 
rare. The database of primary and middle school students is under-
standably smaller than A�ect databases due to privacy and security 
concerns. Finally, temporal data is not considered in this study. 
Although peak emotions may not last long, a�ective states remain 
longer compared to basic emotions. For instance, confusion may 
peak during cognitive disequilibrium, but the state likely begins 
before the peak and persists even after the expression diminishes. 

6 Conclusion 
In this study, we developed a method leveraging the EmoNet model 
as a backbone, enhanced by a self-attention network, to predict 
learning-centered emotions accurately. This approach was applied 
to data collected from an OELE where we analyzed the facial expres-
sions of 41 middle school students engaged in cognitive tasks such 
as reading, building causal maps, and assessing their knowledge 
through quizzes. Our method utilized the robust feature extraction 
capabilities of EmoNet, integrating it with a self-attention mecha-
nism that focuses on relevant facial action units, thereby improving 
the speci�city of emotion recognition in educational contexts. We 
documented each student’s emotional response, linking these af-
fective states to their cognitive activities within the OELE, thereby 
mapping how emotions like engagement, confusion, frustration, 
boredom, and delight �uctuate during di�erent learning phases. 

The results of our study were statistically signi�cant, indicating 
clear di�erences in the frequency of emotional instances between 
high and low performers across various cognitive states. For in-
stance, high performers demonstrated consistently high engage-
ment, particularly noted in the Solution Construction phase with 
1,066,640 instances of engagement. In contrast, low performers 
showed a marked increase in boredom during the Information Ac-
quisition phase, with boredom nearly doubling compared to high 
performers, reaching 449,990 instances. 

In the future, the emotion recognition model will be re�ned by 
retraining it across diverse learning environments and demographic 
settings to enhance its robustness and applicability, while also incor-
porating temporal analysis into the methodology to more accurately 
capture and analyze �eeting emotions. These improvements aim to 
reduce misclassi�cations and enhance the model’s ability to distin-
guish between quickly changing emotional states, providing more 
reliable and nuanced insights into students’ learning experiences. 
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