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Figure 1: Screenshot from Betty’s Brain Open Ended Learning Environment (OELE) and Student’s Web Camera.

Abstract

While understanding Self-Regulated Learning (SRL) in Open-Ended
Learning Environments (OELEs), it is crucial to examine the in-
terplay between students’ cognitive processes and affective states,
especially learning centered emotions like delight, engagement,
boredom, frustration and confusion. These affective states are par-
ticularly challenging to detect using facial expressions in middle
school students, primarily due to the scarcity of relevant databases.
This study introduces a novel approach that utilizes the EmoNet
framework, enhanced with self-attention networks, to detect and
analyze learning-centered emotions. We investigated the emotional
and cognitive dynamics of 41 middle school students within an
OELE. Our findings demonstrate distinct emotional patterns that
significantly correlate with students’ performance levels across var-
ious cognitive processes. By creating and analyzing a dataset from
ten students, the proposed model achieved a test accuracy of 85%,
indicating a substantial improvement over existing state-of-the-art
models. These results lay the groundwork for future educational
tools capable of adapting to a combination of students’ affective and
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cognitive states thus enhancing their overall learning experiences
that influence their educational outcomes.
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1 Introduction

Self-regulated learning (SRL) requires students to effectively inte-
grate and coordinate their Cognitive, Affective, Metacognitive, and
Motivation (CAMM) processes [9]. These processes are crucial in
determining students’ engagement with the learning environment
and their learning performance in Computer-Based Learning Envi-
ronments (CBLEs) [41]. Effective regulation of CAMM processes
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helps students maintain a productive learning path, navigate chal-
lenges, and optimize their academic outcomes. The complexity of
these tasks demands that students develop strategies to monitor
their progress and adapt accordingly [46].

Students’ emotions (affective states) and cognitive processes are
closely intertwined within the framework of SRL. Studies have
noted that emotions like confusion, frustration, and boredom sig-
nificantly impact students’ engagement, learning behaviors, persis-
tence, and performance [14, 16]. While emotions like delight and
flow (engagement) can positively influence performance, others
can hinder it. Understanding these relationships can help develop
more supportive and adaptive learning environments [8, 15].

Cognitive disequilibrium arises when students face uncertainty
and difficulties during learning, leading to affective states like con-
fusion, frustration, and boredom. Confusion is often the initial
response to challenging tasks, which can either propel deeper en-
gagement or escalate to frustration if unresolved. Prolonged frustra-
tion can diminish engagement and lead to boredom. This dynamic
interplay underscores the need to map these affective states to stu-
dents’ learning performance [14, 16]. Research shows unresolved
confusion and frustration can negatively impact learning outcomes,
particularly when not effectively managed [10].

While traditional methods for recognizing students’ emotions
in learning environments often rely on manual observation or self-
reports, both approaches have biases [31, 32]. Round-robin observa-
tion can miss key moments, and self-reports can lead to inaccuracies
because students may not feel comfortable indicating negative emo-
tions like frustration [42]. Moreover, current state-of-the-art deep
learning methods in computer vision are primarily trained on lim-
ited demographics (adults and undergraduate students), making
it challenging to analyze the interplay of cognitive processes and
emotions for younger students at a fine-grained level [7, 18]. No
comprehensive database exists containing class labels of children’s
learning-centered emotions. Therefore, a novel methodology is re-
quired to detect and understand learning-centered emotions, which
will allow educators to tailor interventions and ensure effective
emotional and cognitive regulation.

To address these challenges, our work employs a multimodal ap-
proach that integrates video data (capturing affective states through
facial expressions) and interaction log data (capturing cognitive pro-
cesses through mouse and keyboard interactions). By time-aligning
these data sources, we can comprehensively analyze the interplay
between cognitive and affective states, leading to more accurate
and meaningful insights. Our overall contributions in this paper
include:

o A Novel Emotion Detection Methodology: This paper presents
a novel methodology for detecting learning-centered emo-
tions (engagement/flow, frustration, confusion, delight, and
boredom) in middle school students using facial expressions.

o Distribution of Emotions Across Cognitive Processes: The paper
also analyzes the distribution of emotions between high and
low performers for each cognitive process, offering deeper
insights into how these emotions influence performance.

The rest of this paper is organized as follows. We first present a
literature review of the theoretical background for understanding
the relationship between affective states and cognitive processes
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in SRL. Next, the methodology section details the proposed emo-
tion recognition framework and data analysis techniques. This is
followed by the results section, where findings on the distribution
of emotions across cognitive processes are presented. Finally, the
paper discusses implications for designing more adaptive learning
environments and concludes with suggestions for future research.

2 Literature Review

In Self-Regulated Learning (SRL), cognitive processes can involve
the systematic acquisition and processing of information to meet
learning objectives. Winne’s Information Processing Theory identi-
fies five core cognitive operations — searching, monitoring, assem-
bling, rehearsing, and translating — which learners apply sequen-
tially in their learning tasks [45]. The CAMM framework broadens
SRL’s definition by considering the interplay between Cognitive, Af-
fective, Metacognitive, and Motivation processes [9]. Open-ended
Learning Environments (OELEs), such as Betty’s Brain and oth-
ers, provide inquiry-based learning experiences that challenge stu-
dents to set goals, devise plans, and engage in active reflection.
These cognitive strategies are analyzed to understand how students
seek information, refine their knowledge, and evaluate progress
[22]. However, learners often struggle to simultaneously acquire
knowledge and regulate their learning, highlighting the need for
scaffolding in OELEs [3, 9].

As explained by Pekrun’s control-value theory, academic emo-
tions are linked to perceived control and value, which in turn
are linked to positive and negative affective states and students’
learning performance. The theory underscores how emotions im-
pact motivation, engagement, and achievement [34]. D’Mello and
Graesser’s affective dynamics in learning environments mainly fo-
cus on the importance of confusion, frustration, and boredom [16].
Therefore, state-of-the-art emotion recognition and tracking meth-
ods based on deep learning techniques and computer vision can
play an important role in understanding student learning. However,
their application in OELEs remains limited due to training biases
and data scarcity [5, 43].

Recent advances in deep learning-based affect models have pri-
marily targeted adult learners, with a notable deficiency in exten-
sive datasets for training models to recognize emotions pertinent
to children’s learning. Research efforts have aimed to generate
emotion-related datasets across various educational settings, includ-
ing open-ended learning environments [29], traditional classrooms
[40], embodied learning contexts [44], and x-reality or game-based
educational platforms [30]. When data is collected using Closed-
Circuit Television (CCTV) footage in computer science labs [6, 36],
the distribution of this data diverges from that obtained via a laptop
webcam in a computer-based study setting [2, 3], where the focus
is on individual students. Moreover, the spectrum of emotional
states exhibited in game-based learning is different from that in
conventional educational contexts, with the former displaying more
physical engagement in conjunction with facial expressions [8, 17].
Conversely, learners remain relatively stationary when working
on computer-based OELEs, with the upper body playing a more
significant role in inferring emotional states. To date, no existing
methodologies or research has concentrated on analyzing children’s
facial expressions as they work in OELEs. While emotions can also



Relating Students Cognitive Processes and Learner-Centered Emotions

be detected through alternative modalities, such as speech and phys-
iological signals, these approaches are less viable in OELEs due to
minimal verbal interaction. Physiological measurements may also
be deemed to be intrusive in e-learning contexts.

The relationship between cognitive processes and emotions has
been studied to understand how emotions shape learning behaviors
using interaction log data combined with the human observation
protocol Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP)
protocol [11]. Recognizing affective states at a fine-grained level
is essential to understand students’ emotions more accurately and
tailor interventions accordingly. Current methods are based on
manual observations and self-reports, which are prone to biases
and inaccuracies [27, 32].

Emotion recognition for basic emotions is well-explored in the
literature, with several state-of-the-art methods demonstrating high
accuracy on standard facial expression databases. Some architec-
tures that perform well include EmoFAN, AffectNet, Face Single
Shot MultiBox Detector (Face SSD), and High-speed emotion recog-
nition (HSEMotion) [13, 24, 26, 28, 39]. Additionally, methods like
bidirectional Long Short-Term Memory (LSTM) can utilize tempo-
ral data for emotion prediction. However, these databases primarily
focus on adults, and some, like Acted Facial Expressions In The
Wild (AFEW), consist of acted images [24].

While these models are well-trained to extract low-level features
from faces for emotion recognition, they cannot be directly used for
recognizing emotions in children. There are several methods specif-
ically aimed at recognizing basic emotions in children, but they are
not trained on large databases, nor are their weights available for
further training [1, 13, 21, 26]. None of these models, however, are
applied for learning-centered emotion recognition.

In the education domain, several methods rely on Support Vector
Machines (SVMs) or basic Convolutional Neural Networks (CNN)
models for recognizing children’s faces and have not utilized trans-
fer learning to make the models more robust [19]. State-of-the-art
methods like Inception or transfer learning from well-trained mod-
els are used for learning-centered emotion recognition, and there
are some databases for adults focused on learning-centered emo-
tions, but these are predominantly for undergraduate or graduate
students [1, 7, 18].

Hence, to address these gaps, we propose a novel methodology
that accurately detects learning-centered emotions like engagement,
frustration, confusion, delight, and boredom using facial expres-
sions. In addition, we explore the distribution of emotions among
high- and low-performing students, leveraging this fine-grained
emotional data to enhance our understanding of cognitive-affective
transitions. Ultimately, this will contribute to developing adaptive,
affect-aware learning environments.

3 Learning Environment and Data

Betty’s Brain, an OELE designed for middle school students, uses a
learning-by-teaching approach to help students learn their science
by building a causal model of a scientific process and, at the same
time, by developing their cognitive and metacognitive abilities to
become better learners [22, 25].

Figure 1 depicts the system interface, which provides learners
with a variety of resources and tools for knowledge acquisition,
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Table 1: Cognitive Processes and Description

Cognitive Process Actions/Description

Information Acquisition Reading hypertext resource pages (Read)
Solution Construction Building and refining causal maps (Build)
Solution Assessment Engaging in quiz-related activities (Quiz)

model construction, and model evaluation. The system components
include a science book, which is a collection of hypermedia re-
source pages that provide the subject knowledge for constructing
the causal model. Learners read relevant pages of the science book
to learn about relevant science concepts and the causal (cause-and-
effect) relationships between these concepts. Students then teach
their agent by using a visual causal map construction and viewing
tool.

The system provides additional tools to assess the causal map’s
correctness using the query and quiz features. Quiz results help
students check the correctness of their causal maps by uncovering
errors and omissions in their current causal map. Proficient learners
use this feedback to find and correct errors, but other students often
have difficulties in translating their quiz results into productive,
actionable information [22]. Students may also choose to find pages
in the science book that help them review the knowledge corre-
sponding to incorrect or incomplete answers before they continue
to build their causal map. In essence, the quizzes allow students to
track their learning progress and, therefore, their understanding of
the required science knowledge.

We analyzed the cognitive processes of 41 students, consisting
of 12 males and 29 females, learning about climate change topics in
our study using interactive log data extracted from the Betty’s Brain
environment in Comma-Separated Value (CSV) format. Addition-
ally, we collected web camera data to analyze facial expressions and
emotions. The inclusion criteria, such as excluding students with
corrupted data or those absent on any day of the study, resulted
in a final sample size of 41 students. Each student, aged between
10 and 12, worked approximately 40 minutes per day on Betty’s
Brain, generating a total of around 5000 minutes of screen-recording
videos over the three days of the study. The video data, captured
through Open Broadcaster Software (OBS) using the laptop’s we-
bcam, maintained a resolution of 1092614 at a frame rate of 30
frames per second. The students’ final map scores, calculated by
subtracting incorrect causal links from correct ones, were collected
and documented. We performed a median split of the final map
scores, resulting in 16 high performers and 17 low performers. The
Institutional Review Board’s approval was obtained, and all neces-
sary participant consent procedures and formalities were diligently
followed. A Sample image screenshot of a student using the Betty’s
Brain learning environment is shown in Figure 1.

3.1 Cognitive Processes

As discussed earlier, we considered students’ Reading the science
book, Building the causal map, and Quizing to check the correctness
of their map as the primary activities students conducted in the
Betty’s Brain environment. All of these actions are collected with
timestamps and additional contextual information in the system



ICMI °24, November 04-08, 2024, San Jose, Costa Rica

logs. Kinnebrew et al. [22] mapped these actions to higher-level
cognitive processes within the Betty’s Brain learning environment,
(1) Information Acquisition (IA), (2) Solution Construction (SC), and
(3) Solution Assessment (SA). The description of cognitive processes
and their mapping are provided in Table 1.

3.2 Affective States

In general, basic emotion recognition is well-defined and frequently
used, but in education, we focus on emotions that are more specifi-
cally known as academic or learning-centered emotions. The most
dominant learning-centered emotions observed during the learn-
ing process are engagement (flow), confusion, frustration, delight,
and boredom. These represent affective states compared to mere
emotions. Confusion and boredom are epistemic affective states,
while engagement is a cognitive-affective state. Frustration and
delight are achievement emotions [14, 15]. The definitions as per
the literature [15, 33] are provided below for a better understanding
of the classification model.

o Engagement/Flow: A state of high concentration and positive
valence where learners are fully immersed in their task and
find the challenge both stimulating and manageable.

o Confusion: A state of moderate arousal and negative emo-
tions where learners experience uncertainty or a lack of
clarity in comprehending the material.

o Frustration: A state of high arousal and negative emotions
where learners feel blocked or overwhelmed by the task at
hand.

o Delight: High arousal and positive emotions resulting from
the joy or satisfaction of overcoming challenges and success-
fully grasping the material.

o Boredom: A state characterized by low arousal and negative
emotions where learners feel disengaged or uninterested in
the learning material.

4 Methodology

Figure 2 shows the complete methodology. The EmoNet model [24]
is well-trained on various databases and exhibits state-of-the-art
performance. This model includes valence and arousal class labels
along with basic emotions, which are used in the literature to map
to learning-centered emotions [15, 16]. Since the initial layers are
adept at recognizing low-level features, we used this model as a
backbone and trained the final layers with annotated images of
learning-centered emotions. Additionally, facial action units play
a crucial role in identifying peak emotions, so we incorporated a
facial action unit detector with transformers [20] as a self-attention
network to enhance classification accuracy further. The complete
details of the method and annotation process are presented below.

4.1 EmoNet Backbone

The EmoNet model is pre-trained on a large dataset of basic facial
emotions and is designed for robust emotion classification. Its ar-
chitecture is a deep convolutional neural network (EmoFAN) [24],
and the feature extractor layers are denoted as: Feature Extrac-
tor: f(x,0F) where x represents a facial image from the learning-
centered emotion dataset, and OF are the weights learned from the
pre-trained EmoNet model. By retaining these weights, the feature
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extractor captures valuable features (like facial landmarks and ex-
pressions) relevant to basic emotion detection, which can then be
mapped to learning-centered emotions.

Remove Final Layers: The final classification layers of EmoFAN
(EmoNet) are specifically designed for basic emotions. Removing
these layers and replacing them with new fully connected layers
enables the model to specialize in learning-centered emotions like
confusion, frustration, boredom, engagement, and delight. The new
layers are defined as: Classifier: g(z, 0¢c), where z represents the
output of the high-level features by the feature extractor, and 6 are
the weights of the new classifier layers. These weights are explicitly
learned for the classification of learning-centered emotions.

Transfer Learning: For feature extraction, we froze the feature
extractor layers f(x, 0r) to retain their pre-trained weights and
prevent them from being updated during training.

Custom Layers Training: Trained only the new classifier layers
g(z,0c) on the learning-centered emotion dataset. This allowed
the model to adapt to new emotion labels without modifying the
foundational feature extraction layers (Equation 1):

nelian (9(f(x,0F),0c),y) 1)

where y represents the target labels for learning-centered emotions,
and L is the loss function which is categorical cross-entropy. This
is used to measure the difference between the predicted and actual
emotion classes.

4.2 Incorporating Facial Action Units (FAUs)

ROI Attention Module: In this we have Region-of-Interest (ROI)
maps that focus on specific facial regions relevant to the FAUs,
comparing the predicted attention maps against ground truth maps
derived from facial landmarks. The ground truth maps are manually
annotated based on facial landmarks.

Eatt map = Ls (Fm(f (x)) — Am(x)) @

The Huber loss (Ls) measures discrepancies between predicted
maps (Fpr(f(x))) and ground truth maps (An, (x)).

Self-Attention Network: Using a Vision Transformer (ViT) model
[20], we applied a self-attention mechanism to identify relevant
facial action units. Each attention head is trained to focus on im-
portant facial regions. The attention output A can be described
as:

KT

A = softmax \% (3)

k

where:

e O,K,V: Query (Q): Represents the features that need to
be evaluated for their importance in predicting learning-
centered emotions. It allows the model to query specific
facial regions. Key (K): Contains information about potential
attention regions (e.g., facial action units) that the model
should focus on. Value (V): Holds the actual data from the
facial image that the attention mechanism ultimately uses
to refine predictions.

e di.: The dimensionality of the key vectors is used to scale
the dot product, helping stabilize gradients.
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Figure 2: Complete flow of the methodology.

Fine-Tune with FAUs: The attention features (weights) from the
ViT model was added to the new fully connected layers of EmoNet.
This involves concatenating or combining the attention features
with the original feature map, yielding a richer representation:

z' = concat (z, A) (4)

Then, fine-tuned the model on the created learning-centered emo-
tion dataset by optimizing both the facial action unit model and the
final classification layers of EmoNet:
. ’
omin L (9(,0c).y) ()
where Oy;T represents the weights of the ViT attention model. The
loss function now optimizes both the ViT weights fy;T and classifier
weights Oc to accurately classify learning-centered emotions. This
combination of features from the ViT attention mechanism and
EmoNet’s original feature extractor is to improve classification
accuracy.

We used the 12th Gen Intel® Core™ i9-12900F processor clocked
at 2.40 GHz, coupled with the NVIDIA GeForce RTX 4070 graph-
ics card and a total of 32GB RAM for our emotion recognition
architecture.

4.3 Annotation

Annotating learning-centered emotions is a labor-intensive task.
To partially alleviate the task, much like D’Mello et al. [15], we used
Russell’s circumplex [37] of emotions to identify discrete emotions
on a valence-arousal scale in the education domain; these methods
are not specifically applied to OELEs involving children of the age
group considered in this study. Therefore, we manually annotated
10 instances of each learning-centered emotion and ran the HSE-
motion model [38, 39] to find the valence and arousal values. From
this, we used the same model for the same person with the same
valence arousal values to find out all other instances across the
days. This way we generated many instances for each class label
that we collected into separate folders. We manually verified it
and deleted the ambiguous image frames from the folders. This
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semi-automated emotion annotation process reduced the annota-
tion time. We did it separately for each student because the valence
arousal values varied as the expression of these emotions varied
among the students.

This semi-automated annotation for 10 students’ data produced
~ 13500 image frames, ensuring an equal division of gender (5
males and 5 females) and diverse demographic backgrounds, in-
cluding 3 white Americans, 3 African Americans, 2 Hispanics, and
2 Asians. We intentionally selected participants through purposeful
sampling to address the imbalance in the training data, particularly
concerning demographic diversity, and to ensure a more balanced
representation. Two different annotators independently verified
each emotion using facial expressions, and the inter-rater reliability,
measured by Cohen’s Kappa, was 0.91. For training the model we
used the instances where both annotators were in full agreement
(x = 1) for each learning-centered emotion. We also performed
manual verification for facial action units using a semi-automated
approach. We employed three different methods to identify the
action units: iMotions [12], Facial Action Unit (FAU) Detector with
transformer [20], and FG-Net [47]. While iMotions detects 22 AUs,
FAU detector and FG-Net both considered 12 AUs. To ensure con-
sistency, we used the subset of 12 AUs mentioned in [20] and [47]
for classification. The detection threshold for these AUs was set
at 0.8 instead of the standard 0.4, and classifications were made
accordingly. For image frames where all three methods consistently
detected the same AUs, these results were considered as ground
truth for the self-attention model. These frames were then manually
verified by two different annotators for 500 random instances before
using them as ground truth, and both agreed that the classifications
were accurate.

This cognitive process-related data is then cross-referenced with
the CSV file generated from emotion recognition. The latter con-
tains frame numbers, timestamps, and corresponding 5 class labels
based on the system timestamp. The objective is to amalgamate
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these files, resulting in a comprehensive dataset that provides in-
sights into the total instances of each emotion label for every in-
stance of the cognitive process during its specific duration. Here,
each instance of emotion refers to each frame.

5 Results and Inferences

We discuss two sets of results. Our first set of results provide a com-
parative analysis of the performance of the different approaches
we use for emotion recognition and classification. We tested our
methods on the annotated data because ground truth was needed
for training and testing. We used approximately 13,500 annotated
images, of which 73% were engagement (9,855 images), 9% con-
fusion (1,215), 8% boredom (1,080), 7% frustration (945), and 3%
delight (405). As the data was imbalanced, we used data augmenta-
tion to increase the number of instances of each emotion to match
the amount for engagement. Specifically, we applied nine differ-
ent data augmentation techniques, to address the class imbalance
[43]. Furthermore, we performed student-independent 10-fold cross-
validation (ensuring students in the training set were not present in
the test set) to evaluate the model’s generalizability [6, 43]. For the
second part of the results, the proposed model was tested on data
from all 41 students, without applying any data augmentation. For
the second set of analyses, we looked at the differences between
the affect distributions of the high and low performers across the
three primary cognitive processes: Information Acquisition, Solu-
tion Construction, and Solution Assessment.

Learning centered Emotion Recognition: The performance
metrics of the proposed model are given in Table 2. The overall
accuracy of the model is 85%. Engagement is the most accurately
recognized learning-centered emotion with an F1-score of 0.90.
Misclassification primarily occurred between confusion and frus-
tration (10% of confusion instances are predicted as frustration)
and between frustration and boredom (4% of frustration instances
are misclassified as boredom). Boredom’s performance is relatively
balanced, but 8% of boredom instances are misclassified under en-
gagement. The overall precision (0.83), recall (0.80), and F1-score
(0.78) demonstrate reasonable classification accuracy, but there’s
room for improvement, particularly in distinguishing closely re-
lated emotions like frustration and confusion. In our ablation study,
we placed greater emphasis on precision over recall, particularly in
the educational context, where providing incorrect feedback based
on misclassified emotions like frustration can be more disruptive
to the learning process than missing an instance of frustration.
This approach aligns with the literature, which underscores the
importance of precision in educational interventions [8, 15, 23, 35].

Table 2: Performance Metrics for learning-centered emotion

Emotion Precision Recall F1-score
Confusion 0.81 0.78 0.74
Frustration 0.78 0.75 0.71

Boredom 0.76 0.75 0.73

Engagement 0.91 0.88 0.90

Delight 0.89 0.85 0.81

Overall 0.83 0.80 0.78
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Valence-Arousal Mapping: For the same set of images that were
tested for learning-centered emotions, we ran the analysis for
valence-arousal and classified the quadrants they fall into according
to Russell’s circumplex model [37]. We used the specific ranges of
valence and arousal values defined in the literature to accurately
identify each affective state [3, 4, 15, 17]. For instance, engagement,
as a learning-centered emotion, has a small positive arousal and
a positive valence value, indicating that engagement falls into the
first quadrant. We mapped all five learning-centered emotions to
valence-arousal quadrants as defined in the literature and found
that 92% of learning-centered emotion instances align correctly.
Deviations were found in engagement (3%) and confusion (4%),
where confusion instances were near neutral or in the third quad-
rant. Engagement expressions occasionally fell slightly below the
neutral arousal line but remained primarily positive valence.

Facial Action Unit: Among the open-source action unit recogni-
tion methods (weights) available, FAU Detection [20] and FG-Net
[47] use larger datasets compared to other methods. FAU Detection
leverages three datasets: Denver Intensity of Spontaneous Facial
Action (DISFA), EmotioNet, and Binghamton-Pittsburgh 3D Dy-
namic Spontaneous Facial Expression Database (BP4D), whereas
FG-Net only uses DISFA and BP4D. iMotions, a commercially avail-
able software that we purchased, uses AFFDEX 2.0 [12], which has
been trained and tested on multiple databases, including AffectNet.

We experimented with different thresholds for facial action unit
recognition using iMotions, FAU Detection, and FG-Net. We tested
thresholds of 0.4 (the standard used by iMotions), 0.6, and 0.8. Over-
all, the highest rate of misclassification or disagreement was ob-
served in FG-Net (37%), whereas both iMotions and FAU Detection
had 21% disagreements across all thresholds.

Although we selected a threshold of 0.8 with complete agreement
across image frames from the three models for training the self-
attention model, we chose FAU Detection with transformers over
FG-Net for the self-attention network. iMotions performed well,
likely because it is trained on several databases compared to other
models, but we did not have access to AFFDEX weights to include
them in this methodology.

Model Comparison: The HSEmotion model [38, 39], which is
open-source and trained on comprehensive emotion recognition
datasets like AffectNet, EmotiW challenges (AFEW, Video level
Group AFfect (VGAF), and EngageWild), and Affective Behavior
Analysis in-the-wild (ABAW) challenges (Learning from Synthetic
Data and Multi-task Learning), served as a comparison for the
proposed EmoNet with Self-Attention model. HSEmotion achieved
a mean Average Precision (mAP) of 0.71, while EmoNet with Self-
Attention achieved a significantly higher mAP of 0.83.

Ablation: To evaluate the effectiveness of the Self-Attention
mechanism, we also compared EmoNet with and without Self-
Attention, where the latter resulted in an mAP of 0.78, while the
inclusion of Self-Attention increased it to 0.83.

Testing different thresholds for facial action unit detection fur-
ther impacted classification accuracy, with average detection ac-
curacies of 76%, 81%, and 85% at thresholds of 0.4, 0.6, and 0.8
respectively.

Layer ablation studies showed that reducing the EmoNet back-
bone by one layer decreased the average F1-score to 0.74, whereas
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Figure 3: Distribution of Learning-Centered Emotions.

adding two layers maintained it at 0.78. Regarding ground truth an-
notation, using a single annotator resulted in an average detection
accuracy of 81%, but having two annotators improved this to 85%.
These comparisons demonstrate that the proposed EmoNet with
Self-Attention consistently outperforms other configurations and
models, highlighting the importance of incorporating Self-Attention
and optimizing thresholds and annotation processes.

Distribution of High and Low Performers’ Cognitive Pro-
cesses:

Figure 3 illustrates the distribution of learning-centered emo-
tions across three cognitive processes: Information Acquisition (IA),
Solution Construction (SC), and Solution Assessment (SA). The bar
chart shows clear differences between the affect state distributions
of the high- and low-performing students within each category.
As discussed earlier, we used a median split of the students’ final
map scores to define the high and low performer split. These map
scores were derived by comparing the students’ progress against an
expert map, as detailed in the system log files generated during the
map-building stage. High Performers exhibited a consistent pattern
of high engagement across all cognitive processes, underscoring
their ability to remain focused and on task. For instance, during the
Information Acquisition phase, engagement peaked significantly at
1,333,300 instances, overshadowing other emotions such as bore-
dom, which registered 216,660 instances, and confusion at 199,995
instances. This trend of predominant engagement continued in the
Solution Construction and Solution Assessment phases, although
the gap narrowed with other emotions, such as frustration and
boredom. Low performers, also showed high levels of engagement.
However, they did experience notably longer instances of bore-
dom, especially during the Information Acquisition phase, where
it nearly doubled compared to high performers. This indicated a
disengagement from the learning task, presumably because the
students had difficulty in understanding and keeping their interest
in the learning material. However, this difference narrowed for the
Solution Assessment phase. The data underscored a crucial contrast
between high and low performers: although both groups showed
high levels of engagement, high performers had greater periods of
engagement than low performers. This difference translated to pro-
portionally greater periods of boredom among the low performers,
and this may have adversely affected their learning outcomes. We
conducted a Chi-square test of independence to show the difference
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in the affect distributions of high- and low-performers. The test
resulted in a significant difference with a p-value of < 0.001. Table
3 summarizes these results.

Table 3: Consolidated Chi-Square Test Results for Cognitive
Processes

CP Chi-square Dof Note on Expected Frequencies
IA 145587.85 4 Significant variances observed
SC 124215.49 4 Variations across categories
SA 193449.75 4 Highest discrepancies noted
All  442167.21 4 Consistent significant differences

CP: Cognitive Processes; DoF: Degrees of freedom

Significance of Results Across Processes: The Chi-Square tests
conducted for the "TA," "SC," and "SA" processes, as well as the
overall aggregation, consistently revealed significant disparities in
emotional distributions between high and low performers, each
with a p-value of < 0.001. These results emphasize a strong asso-
ciation between students’ performance levels and their emotional
responses during different cognitive processes.

IA (Read), SC (Build), and SA (Quiz) Processes: In each specific
process—Read, Build, and Quiz—the high Chi-square statistics in-
dicate that the actual emotional distributions deviate significantly
from what would be expected if there were no association between
performance levels and emotional outcomes. The Read process
showed notable differences, particularly with a Chi-square statis-
tic of 145587.85, suggesting that reading activities might elicit
strong emotional disparities. Similarly, the Build and Quiz pro-
cesses demonstrated significant emotional variance, with the Quiz
process exhibiting the most pronounced differences, indicated by a
Chi-square value of 193449.75.

Overall Emotional Distribution: The overall test, combining all
processes, produced a Chi-square statistic of 442167.21, affirming
that the observed patterns are not isolated to specific types of
cognitive tasks but are pervasive across all examined educational
interactions.

5.1 Discussion

Emotion Transition: Both high and low performers experience bore-
dom, frustration, and confusion during the learning process, though
the frequency of these emotions, especially boredom, which rep-
resents disengagement varying significantly between the groups.
According to the literature on the dynamics of learning-centered
emotions, an engaged student encountering cognitive disequilib-
rium typically transitions into a state of confusion, which can esca-
late to frustration and, if unaddressed, lead to boredom [16]. Our
analysis of the CSV file containing emotion data with timestamps
reveals that low performers tend to progress from frustration to bore-
dom more swiftly compared to high performers. In contrast, high
performers actively engage in coping mechanisms such as laughter
and peer interaction, which help them quickly return to an engaged
state.

This resilience was particularly evident during the 45-minute
sessions involving extensive reading and model building, which are
likely to induce confusion and frustration when students cannot
understand the material they are reading or successfully translate
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that reading to correct map links. Overall, our data shows that
while confusion and frustration were prominent in both groups,
low performers tended to transition into boredom and remain in
a state of boredom more often than the high performers. Despite
these challenges, moments of delight were also observed for both
groups; however, high performers, who were more successful in
building correct causal maps and, therefore, got better results on
the quizzes, experienced more frequent instances of delight.
Emotion Detection: In emotion recognition, particularly in learning
environments, confusion and frustration are commonly misclassi-
fied due to overlapping facial action units (AUs) that exhibit similar
physical manifestations. Literature suggests a range of AUs associ-
ated with these emotions, which may contribute to their frequent
misclassification.

From the manual annotation and also while verifying the semi-
automatically annotated emotions, it was observed that both con-
fusion and frustration share AUs, for example, brow lowerer and
head forward. Confusion often involves AUs like the brow lowerer
(indicative of deep thinking or difficulty understanding), which can
be mistaken for frustration, which also utilizes brow lowerer but
typically in a more intense form paired with other indicators like lip
tightener or nose wrinkler, signaling annoyance or dissatisfaction.
The facial action units present in the lower part of the face for con-
fusion will have more positive valence than that of frustration, and
the model that we used for the self-attention network did not use all
22 action units; hence, the chances of misclassification were high.
Similarly, frustration is associated with AUs like hands on head or
scratching head, which indicate a higher level of distress or exasper-
ation. These AUs can occasionally appear during intense cognitive
effort, typically in states of confusion, leading to misclassification.

Delight is characterized by unique AUs that are distinctly differ-
ent from those associated with negative emotions like confusion or
frustration. These typically include the cheek raiser and lip corner
puller. These AUs are part of a genuine smile, commonly known
as the Duchenne smile (AU6), which is difficult to confuse with
expressions of confusion or frustration. However, a cheek raiser is
also observed during the engagement, and hence, there is a slight
misclassification of delight with engagement. Boredom can often
be misclassified with engagement as sometimes boredom is just a
resting face with a lack of strong facial movements. Boredom some-
times does not typically involve intense facial expressions, which
makes its AUs subtle and easy to confuse with engagement class
label. Also, cheek puffer is seen in both frustration and boredom,
which causes a lot of misclassification when this is observed and
requires temporal data to classify the emotion correctly.

Contextual Similarity: In educational settings, both emotions
often arise from similar contexts (e.g., challenging tasks or obsta-
cles), which makes distinguishing based purely on facial cues more
challenging without considering contextual factors such as task
difficulty or individual learner responses over time.

5.2 Limitations

There are several limitations in this study. Since the annotations are
made for static images, fleeting facial expressions can sometimes
be misclassified. For instance, a closed eye might be considered
boredom (sleeping) when it could simply be a case of blinking.
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However, when analyzing a sequence of frames, such instances do
not significantly impact the results. The self-attention mechanism
uses facial action units that could capture mixed emotions, like a
student laughing out of frustration, which may then be classified
as a positive emotion. But this may not happen quite often. Our
data is also limited to a specific demographic and a single learning
environment. However, the literature indicates that even for 41 stu-
dents, sharing classification weights based on facial expressions is
rare. The database of primary and middle school students is under-
standably smaller than Affect databases due to privacy and security
concerns. Finally, temporal data is not considered in this study.
Although peak emotions may not last long, affective states remain
longer compared to basic emotions. For instance, confusion may
peak during cognitive disequilibrium, but the state likely begins
before the peak and persists even after the expression diminishes.

6 Conclusion

In this study, we developed a method leveraging the EmoNet model
as a backbone, enhanced by a self-attention network, to predict
learning-centered emotions accurately. This approach was applied
to data collected from an OELE where we analyzed the facial expres-
sions of 41 middle school students engaged in cognitive tasks such
as reading, building causal maps, and assessing their knowledge
through quizzes. Our method utilized the robust feature extraction
capabilities of EmoNet, integrating it with a self-attention mecha-
nism that focuses on relevant facial action units, thereby improving
the specificity of emotion recognition in educational contexts. We
documented each student’s emotional response, linking these af-
fective states to their cognitive activities within the OELE, thereby
mapping how emotions like engagement, confusion, frustration,
boredom, and delight fluctuate during different learning phases.

The results of our study were statistically significant, indicating
clear differences in the frequency of emotional instances between
high and low performers across various cognitive states. For in-
stance, high performers demonstrated consistently high engage-
ment, particularly noted in the Solution Construction phase with
1,066,640 instances of engagement. In contrast, low performers
showed a marked increase in boredom during the Information Ac-
quisition phase, with boredom nearly doubling compared to high
performers, reaching 449,990 instances.

In the future, the emotion recognition model will be refined by
retraining it across diverse learning environments and demographic
settings to enhance its robustness and applicability, while also incor-
porating temporal analysis into the methodology to more accurately
capture and analyze fleeting emotions. These improvements aim to
reduce misclassifications and enhance the model’s ability to distin-
guish between quickly changing emotional states, providing more
reliable and nuanced insights into students’ learning experiences.
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