
1

On the Response Entropy of APUFs
Vincent Dumoulin, Wenjing Rao, and Natasha Devroye

Department of Electrical and Computer Engineering
University of Illinois Chicago

E-mail: vdumou2, wenjing, devroye @uic.edu

Abstract—A Physically Unclonable Function (PUF) is a hard-
ware security primitive used for authentication and key gen-
eration. It takes an input bit-vector challenge and produces a
single-bit response, resulting in a challenge-response pair (CRP).
The truth table of all challenge-response pairs of each manufac-
tured PUF should look different due to inherent manufacturing
randomness, forming a digital fingerprint. A PUF’s entropy (the
entropy of all the responses, taken over the manufacturing
randomness and uniformly selected challenges) has been studied
before and is a challenging problem. Here we explore a related
notion – the response entropy, which is the entropy of an arbitrary
response given knowledge of one (and later two) other responses.
This allows us to explore how knowledge of some CRP(s) impacts
the ability to guess another response.

The Arbiter PUF (APUF) is a well-known PUF architecture
based on accumulated delay differences between two paths. In
this paper, we obtain in closed form the probability mass function
of any arbitrary response given knowledge of one or two other
arbitrary CRPs for the APUF architecture. This allows us to
obtain the conditional response entropy and then to define and
obtain the size of the entropy bins (challenge sets with the same
conditional response entropy) given knowledge of one or two
CRPs. All of these results depend on the probability that two
different challenge vectors yield the same response, termed the
response similarity of those challenges. We obtain an explicit
closed form expression for this. This probability depends on the
statistical correlations induced by the PUF architecture together
with the specific known and to-be-guessed challenges. As a by-
product, we also obtain the optimal (minimizing probability of
error) predictor of an unknown challenge given access to one (or
two) challenges and the associated predictability.

Index Terms—Arbiter PUF, CRP correlation, entropy bins,
expected entropy, response entropy.

I. INTRODUCTION

PHYSICALLY Unclonable Functions (PUFs) are circuits
that can be integrated into chip designs to provide a low-

cost digital “fingerprint”. They show promise as hardware
security primitives for Internet of Things (IoT) devices that
need low-power cryptographic frameworks for authenticated
communication. PUF designs rely on randomness derived from
many types of process variations, such as gate/wiring delays,
designed to be the same across all chips, but inevitably differ-
ing due to random defects that occur during manufacturing
[1], [2]. This results in an uncontrollable, unique function
for each device, which is physically unclonable. With PUFs,
the “fingerprint” of a device is not some stored bit-stream,
but rather extracted from its unique input / output function,
that may be “challenged” with an input vector c 2 {0, 1}n,
which interacts with the random elements of a PUF instance
to produce a “response”, Rc 2 {±1}. The pair (c, Rc) is

called a challenge-response pair (CRP). A subset of CRPs,
usually randomly selected, can be used to uniquely identify or
authenticate a device. There are two classes of PUFs. In weak
PUFs the size of the truth table with respect to the number of
random elements is small and hence must be kept secret as it
is easily obtained via exhaustive evaluation; they are mostly
used for key-generation in cryptography. Strong PUFs offer a
huge number of CRPs, usually exponential in the number of
physical random elements, and are primarily used in device
authentication [1]. How good a PUF is is often measured by
their response bias, the uniqueness, and the entropy of the
PUFs, among other statistical metrics [3]–[5]. The arbiter PUF
(APUF), a well known strong PUF architecture, is the focus
of this paper, which is formally introduced in Section II.

A basic authentication framework for the APUF is as
follows. During an enrollment phase, which takes place in
a secure environment, a large set of random challenges are
passed to the APUFs input and the outputs are recorded to
create CRPs. This large set of CRPs (or a model of the PUF
obtained via Machine Learning from this set) is then stored on
the authentication server. During the authentication phase the
APUF is no longer guaranteed to be in a secure environment.
In order to authenticate a particular APUF according to various
protocols [6]–[9], a small set of challenges are used to query
the APUF by the server, so as to verify the APUF’s identity.

CRP correlation: The PUF community has nearly always
assumed the use of random CRP sets either in protocols or
analysis of PUF metrics, or to build multi-bit responses. It
has not deeply studied how challenges may be correlated, how
exposing one challenge (e.g. to an attacker) may impact how
predictable another challenge becomes.

We focus on presenting rigorous mathematical tools to
understand how much knowledge of one or two challenges
reveals about the remaining challenges in an arbiter PUF. We
propose to measure this using the response entropy, and the
conditional response entropy, or entropy of a response to a
challenge given (in the conditional setting) knowledge of one
or two other CRPs. This turns out to be a function of how
statistically correlated the CRPs of an APUF are. We explicitly
derive the response similarity P [Rc0 = Rc], which allows
us to characterize the conditional response entropy and the
associated "entropy bins" which contain all the challenges who
have the same conditional entropy given knowledge of one (or
two) CRPs.

Prior observations about the PUF CRP correlations:
Our method is based on the analytical derivation of the
probability that the responses to different challenges are the

2

same. This probability has been observed experimentally and
numerically in previous work. In particular, for APUFs, figures
such as [10, Figure 6, simulated], [11, Figure 12], comments
such as those in [12], and partial analytical derivations (non-
closed form integrals) as in [13] focus on the how likely the
responses to two challenges differing in one bit are to be
the same, and plot the probability that the response changes
as a function of the bit flip position (or two consecutive
bit positions [13]). However, to the best of our knowledge,
this bit flip probability as an explicit closed-form function of
the challenges and responses has never been derived and is
one of the contributions here. We furthermore provide closed-
form expressions for any two arbitrarily correlated challenges
c and c0 and not only ones that change in one or two bit
positions. We also propose explicit algorithms enumerating all
challenges with a desired response similarity to a given one
or two challenges.

Prior observations about the PUF entropy: In order for
PUFs to be able to uniquely identify many devices, one hopes
that the entropy of the PUFs manufactured in a particular
architecture is large. This PUF entropy, or the entropy of all
the responses (to all challenges) or a particular architecture has
been studied before and is usually experimentally obtained, as
it is difficult to analytically characterize.

In [14] they asked the question of how to select challenges
to maximize the entropy (of the corresponding responses) of
loop PUF outputs. They used an analytical model for the loop
PUF that assumes Gaussian delay elements as justified in
[15], and showed that n bits of entropy (equated with the
randomness or hardness of predicting a response given no
other responses) may be obtained from n challenges if and
only if the challenges constitute a Hadamard code. They do
not touch on the probability that two challenges result in the
same response as a function of the challenges. Later work
such as [16] focuses on estimating the probability distribution
of certain kinds of PUFs composed of delay elements and
finds the resulting Shannon entropy of the PUF is close to the
max-entropy, which is asymptotically quadratic in the number
of stages n. [17] presents a new approach for determining
the min-entropy of a PUF based on convolving histograms.
[18] analyzes the entropy of FPGA Lookup Table-based PUFs.
None of these works focus on conditional response entropy
estimation given knowledge of some challenges, but rather on
estimating the overall PUF entropy. There is also work on the
statistical analysis of PUFs [19], and characterizing the entropy
of “strong” PUFs [19], [20] but these have been experimental
and focus on the inherent qualities (bias, uniqueness and
reliability) of PUFs, and do not focus on how challenges
correlate the PUF responses.

Contributions: for APUF, we define and obtain:

• The response similarity between any pair of challenges c and
c0, P [Rc0 = Rc], often denoted by p. This response similarity
is expressed as a function of the similarity factor, a function
of the two challenges, and denoted as s. To the best of our
knowledge, this is the first time that a closed form, analytical
characterization of the probability that two or three challenges
will produce the same response for an APUF. This underpins

the Strict Avalanche Criterion (SAC) property for APUFs and
yields an alternative to the Monte Carlo simulations often used
in papers, e.g. [21] to simulate the probability that the response
flips if for example one challenge input bit flips. In fact, our
work provides a complete generalization of this single bit flip
probability (where only one bit is flipped with respect to a
base or anchor challenge) to the probability of flipping any
number of bits with respect to an anchor challenge.
• The similarity bins of any anchor challenge c, Bs(p, c): for
any given challenge (anchor) and a given response similarity
p, we develop an efficient algorithm to find the set of all
challenges that have the same given response similarity with
respect to the anchor.
• The response entropy and the conditional response entropy
of a challenge, conditioned on knowing one or two CRP(s).
From this we are able to compute the conditional minimum
response entropy and the conditional Shannon response en-
tropy using the closed form expression for the probability that
two or three challenges will produce the same response.
• The entropy bins of any anchor challenge or pair of
challenges c, BH(h, c): these are sets of challenges which
all have the same response conditional entropy given c. We
are able to calculate the size of each entropy bin exactly. Such
sets (entropy bins) can then be used to compute the expected
conditional entropy of a response.
• The expected conditional entropy: knowing the size of each
entropy bin allows us to calculate the expected conditional
response entropy (not the conditional PUF entropy, which is
more challenging [16]) when knowing one or two challenges.
• Our results yield an immediate application: finding the
optimal predictor (minimizing the probability of error) of the
response to one unknown challenge c0 given the response to
one (and later, extended to two) known challenge(s).

II. APUF ARCHITECTURE AND NOTATION

The APUF may be viewed as a Boolean function taking as
input a challenge vector c := (c1, c2, · · · cn) 2 {0, 1}n and
outputting a response Rc 2 {±1}. This response corresponds
to the output of a race resolution element, latch, or arbiter,
which detects which of two racing signals arrives first. The
two signals traverse n multiplexers in series, and in the i-th
stage, traverse the “parallel” paths (ti, ui) if the challenge bit
ci = 0, else traverse the “crossed” paths (ri, si) if the challenge
bit ci = 1. The response then is �1 if the upper entrance to the
arbiter arrives earlier than the lower, and is +1 otherwise - this
is modeled by whether the final accumulated delay difference
�n is positive or negative at the entrances of the arbiter.

In the interest of modeling this behavior analytically, in
stage i 2 [1, n] of the APUF the delays of the four possible
paths taken (parallel or crossed) are modeled as four random
delay elements, ti, ui, ri and si, which are all i.i.d. normal
random variables with mean µ and variance �

2, denoted as
⇠ N (µ, �

2). they are always selected in fixed pairs, and since
the response depends only on which signal arrives first, so
on the relative delay difference between the two racing paths.
The assumption that all have the same mean corresponds to the

3

fact that the manufacturing process aims to produce identical
MUXes, but due to process variation, they end up similar but
not identical, with a small spread around the mean. Gaussians
are good models for the inevitable manufacturing randomness,
as justified in [15], [22]. Truncated Gaussians may be more
suitable, but are less analytically tractable and not much better
for the small variance of the manufacturing delay.

The challenge bit ci 2 {0, 1} determines two factors: 1)
which path pair (ti, ui in parallel, or ri, si crossing) at stage i

is chosen, and 2) the sign of the accumulated delay difference
from all the previous stages before reaching i. The response
Rc is expressed as the sign of the accumulated delay difference
at the final stage �n. In general, the accumulated delay �i

is recursively defined involving the challenge c, the delay
elements ri, si, ti, ui of the current stage, and the accumulated
delay difference at stage i� 1, �i�1:

Rc = sign(�n) 2 {±1},

where �n is computed recursively for i 2 [1, n], as

�i =

⇢
+�i�1 + ti � ui, when ci = 0
��i�1 + si � ri, when ci = 1

, �0 = 0.

The recursive formula is not easy for modeling and analysis,
thus APUFs are frequently modeled by transforming the n-bit
input vector c into another n+1 bit vector �, the 4n random
variables into a vector w of size n + 1. The response is then
expressed as a linear threshold function of �,w, in a non-
recursive fashion as shown in [23]:

R� = sign(� · w) = sign

n+1X

i=1

�iwi

!
2 {±1}, (1)

where � := (�1, �2, · · · �n+1) 2 {±1}n+1 is a vector
depending solely on the challenge vector c, and w :=
(w1, w2, · · · wn+1) 2 Rn+1 is a vector depending only on the
delay random variables, and · denotes the inner product:

�i =

⇢
(�1)

Pn
i ck , 1  i  n,

+1 i = n + 1
(2)

wi =

8
>>>>>><

>>>>>>:

(t1 � u1)� (s1 � r1), i = 1

(ti�1 � ui�1) + (si�1 � ri�1)
+(ti � ui)� (si � ri), 2  i  n,

(tn � un) + (sn � rn), i = n + 1

(3)

This representation eases the analysis as it separates the �
(dependent only on the challenge) from w (dependent only on
the random delay elements), and the output is now expressed
as a linear threshold function. ML attacks against APUFs often
exploit this representation.

This transformation renders the wi’s Gaussian i.i.d., all with
the same variance except w1 and wn+1 (which have half the
variance as the others), as outlined in the following Lemma.

Lemma II.1. For the arbiter PUF whose output is described

Fig. 1: Illustration of the delay elements

by Eq. (1), and using the transformation in Eq. (3), then

w1 ⇠ N (0, 4�
2), wi ⇠ N (0, 8�

2)

for 2  i  n, wn+1 ⇠ N (0, 4�
2),

and wi, wj are independent for i 6= j.

The transformation between the vectors c and � is bijective.
For the rest of the paper we transform challenges c, c0 into
�,�0, which turns the APUF response into a linear threshold
function, which is easier to deal with.

III. RESPONSE SIMILARITY AND ENTROPY

Our technical contribution comes from the succinct deriva-
tion of the following two notions, which are then (in the fol-
lowing subsection) used to calculate the conditional response
entropy given knowledge of another CRP.

The “response similarity” between � and �0, P [R�0 =
R�], is the probability that they produce the same response.
The probability is taken over the random generation of the
delay elements, and NOT over the fixed challenges. The “sim-
ilarity bins” of an “anchor” challenge � are sets of challenges
with equal response similarity to an anchor challenge.

The main theoretical results solve these two problems for
an n-stage arbiter PUF (with minor modifications to any other
PUF that may be modeled as an n-stage linear threshold func-
tion as long as the randomness in the stages are independent
and Gaussian distributed):
• Problem 1: given challenge pair (�,�0), derive their

response similarity p = P [R� = R�0].
• Problem 2: given a CRP (�, R�), optimally predict the

target response R�0 of another challenge �0, and derive the
prediction accuracy (i.e. find P [R�0 |R�])

• Problem 3: given a challenge � (an “anchor”), derive all
the challenges with the same response similarity p to �,
Bs(p,�), or the same accuracy Ba(p,�) (and later, the
same entropy BH(p,�)).

Remark : The predictor works for a particular PUF instance
that is not “abnormal” [24] i.e. there are no dominant or
unusually large delay stages.

A. Response similarity and accuracy
1) Motivational example: Recall that R� =

sign
⇣P

n+1
i=1 �iwi

⌘
and R�0 = sign

⇣P
n+1
i=1 �

0
i
wi

⌘
,

where �i = (�1)
Pn

i (ck) and �
0
i

= (�1)
Pn

i (c0k), with

4

�n+1 = �
0
n+1 = 1 for all c, c0 from equations (1) – (2). We

now consider the following 3 challenges, among them the
likelihood of some pair resulting in the same response (over
an “average” PUF):

c =(00000) $ � =(+1,+1,+1,+1,+1,+1)

c0 =(10000) $ �0 =(-1,+1,+1,+1,+1,+1)

c00 =(00001) $ �000 =(-1,-1,-1,-1,-1,+1)

These challenges will lead to responses of the form (recalling
that �n+1 = 1 always):

R� =sign(+w1 + w2 + w3 + w4 + w5 + w6)

R�0 =sign(�w1 + w2 + w3 + w4 + w5 + w6)

R�00 =sign(�w1 � w2 � w3 � w4 � w5 + w6)

We can note the following: 1) � and �0 are most likely
to yield the same response because their corresponding R�

and R�0 differ only in w1; 2) � and �00 are very likely to
yield the opposite responses, because they have all the wi’s in
opposite signs, except for w6. All of these observations can
be confirmed by the following Theorem, where for the pair
(�,�0) the similarity factor s = S(�,�0) is defined, and is
a measure of how similar � and �0 are.

2) Main Theorem: This section’s main result is Theorem
III.1, which shows the formal solution to Problem 1.

All proofs of Lemmas may be found in the Appendix; the
main Theorem proof is shown in the text.

Theorem III.1 (Response similarity of APUFs.). For an
APUF with a pair of challenges �,�0 2 {±1}n+1 their
response similarity (i.e., the probability of R� = R�0) is

P [R� = R�0] =
1

2
+

1

⇡


arcsin

✓
2S(�,�0)

n
� 1

◆�

where

S(�,�0) :=
1

2
1�1=�

0
1
+

nX

i=2

1�i=�
0
i
+

1

2

is the “similarity factor” between � and �0. This takes on
values 2 [0, n] by steps of 0.5 depending on if �1 = �

0
1. Some-

times we drop the arguments and call it s (when evaluated,
as a number) for brevity. It indicates how many bits are the
“same” in � and �0: with �1 and �n+1 handled separately
as they have half the weight as the other wi’s according to
the APUF-specific transformation in (2).

Interpretation: you can see the response similarity (i.e.,
the probability of R� = R�0) as the expected number of
times (in %) that the response to challenge �0 will be the
same as the response to the anchor � where the expectation
is taken across multiple PUF instances. This is equivalent to
the probability (over the PUF generation process) that for a
given PUF, the two challenges will have the same response.

As an example of how to use this Theorem, consider
the previous example challenges �,�0

,�00 from Section
III-A1. For these, S(�,�0) = 4.5, P [Rc = Rc0] = 1

2 +
1
⇡

⇥
arcsin

�
9
5 � 1

�⇤
⇠ 0.8, and S(�,�00) = 1/2, P [Rc =

Rc0”] = 1
2 + 1

⇡

⇥
arcsin

�
1
5 � 1

�⇤
⇠ 0.2, aligning with the

intuitive arguments before.
3) Proof of Theorem III.1: We can write �1 :=

(�1,1, �1,2, · · · , �1,n, 1) and �2 := (�2,1, �2,2, · · · , �2,n, 1).
Recall that R�1 = sign

⇣P
n+1
i=1 �1,iwi

⌘
and R�2 =

sign
⇣P

n+1
i=1 �2,iwi

⌘
. Then, this proof follows using basics of

probability and Lemma III.2 below. We see that

P [R�1 = R�2] = 2P [�n(�1) > 0, �n(�2) > 0]

(a)
=

1

2
+

1

⇡

⇥
arcsin ⇢�n(�1)�n(�2)

⇤

where (a) follows by the multivariate Gaussian distribution
orthant probabilities (Lemma III.2 below), and where ⇢AB is
the correlation coefficient between random variables A and B:

⇢AB :=
E[AB]p

Var(A)
p

Var(B)
. (4)

Let define the set Sij indicates the set of indices for which
�i and �j are equal (excluding index n + 1):

S12 := {i 2 {1, 2, · · · n} : �1,i = �2,i}.

In the same way, it is possible to define the set Dij of
indices for which �i and �j are not equal/different:

D12 := {i 2 {1, 2, · · · n} : �1,i 6= �2,i}

So ⇢12 := ⇢�n(�1)�n(�2) may be calculated as

⇢12 =
E[�n(�1)�n(�2)]p

Var�n(�1)
p

Var�n(�2)

=
E[
⇣P

i2S12[(n+1) �iwi

⌘2
]� E[

�P
i2D12

�iwi

�2
]

p
4n�2

p
4n�2

=

P
i2S12[(n+1) E[|wi|2]�

P
i2D12

E[|wi|2]p
4n�2

p
4n�2

as Var(�n(�1)) = Var(�n(�2)) = 4n�
2. To further evaluate

the expression in Eq. (5) due to the (�,w) transforma-
tion/notation, we note that E[|wi|2] = 4�

2 for i 2 {2, · · · n}
but that E[|wi|2] = 2�2 for i = 1, n+1, by Lemma II.1. Since
index n + 1 is always in S12, we need to determine whether
index 1 should be in S12 or D12.

If �1,1 = �2,1 and hence index 1 also lies in S12, we have

⇢12 =
4�

2 + 4�
2(|(S12|� 1)� |D12|)

4n�2
=

|S12|� |D12|
n

.

(5)

If �1,1 = ��2,1 and hence index 1 is in D12, we have

⇢12 =
4�

2 + 4�
2(|S12|� (|D12|� 1))

4n�2
=

1 + |S12|� |D12|
.

n

Combining this with the “similarity factor” notation, we obtain
a succinct expression for ⇢12:

⇢12 =
2S(�1,�2)

n
� 1 =

(
2|S12|

n
� 1 if �1,1 = �2,1

2|S12|+1
n

� 1 if �1,1 6= �2,1
.

5

Lemma III.2. Let X ⇠ N (0, �
2), Y ⇠ N (0, �

2) with
correlation coefficient E[XY] = ⇢xy . Then,

P [X > 0, Y > 0] =
1

4
+

arcsin ⇢xy

2⇡
.

4) Application of Theorem III.1: : An “optimal predictor”
dR�2(R�1) to predict R�2 based on the known (�1, R�1)

One immediate application of Theorem III.1 is to find the
optimal predictor of the response R�2 to challenge �2 once
we know the response R�1 to challenge �1. To find this, note
that the conditional probability mass function

P [R�2 |R�1] =
P [R�2 , R�1]

P [R�1]
=

P [R�2 , R�1]

1/2

=

⇢
2P [R�2 = 1, R�1 = 1] = P [R�1 = R�2] if R�2 = R�1

2P [R�2 = 1, R�1 = �1] = 1� P [R�1 = R�2] O/W

may be derived immediately from Theorem III.1 and used to
obtain the following optimal predictor for R�2 based on R�1 ,
written as dR�2(R�1):

Corollary III.2.1. The optimal predictor for the response R�2

to an arbiter PUF challenged with �2 given knowledge of the
CRP (�1, R�1) is,

dR�2(R�1) = arg max
R�22{±1}

P [R�2 |R�1]

=

⇢
R�1 if P [R�1 = R�2] > 1� P [R�1 = R�2]
�R�1 if P [R�1 = R�2] < 1� P [R�1 = R�2]

(6)

where ties (when the two are exactly equal) may be broken
arbitrarily. The prediction accuracy given by

max{P [R�1 = R�2], 1� P [R�1 = R�2]}

with

P [R�1 = R�2] =
1

2
+

1

⇡


arcsin

✓
2s

n
� 1

◆�

1� P [R�1 = R�2] =
1

2
� 1

⇡


arcsin

✓
2s

n
� 1

◆�

where s = S(�1,�2).

As an example application of Corollary III.2.1, consider c =
00000 (as this is what is physically input to the PUF we present
it in this notation, but all calculations are done by transforming
c to � first), with Rc = +1 and say we wish to predict Rc0 , the
response to c0 = 00110. Since P [Rc = Rc0] ⇠ 0.7 > (1�0.7),
we should guess that Rc0 is also equal to +1 and this has a
probability of 0.7 of being correct.

This predictor maximizes the probability of correctly guess-
ing (in one guess) the value of R�0 based on knowledge of
R�, hence we term the predictor in (6) the optimal predictor
in this sense. Here, if we have one guess for R�0 based on
knowledge of R� this corresponds to guessing the dR�0(R�)
that maximizes P [R�0 |R�] as in (6).

B. Entropy
Recall the definitions of entropy of random variable (or

vector) X with probability mass function PX(x) taking on

values x 2 X and conditional entropy of random variable X

given random variable Y (with joint distribution PX,Y (x, y)
taking on values x, y 2 X ⇥ Y [25]:

H(X) := �
X

x2X
pX(x) log(pX(x))

H(X|Y = y) := �
X

x2X
pX|Y (x|y) log(pX|Y (x|y))

H(X|Y) := �
X

y2Y
pY (y)H(X|Y = y)

= �
X

x2X ,y2Y
pX,Y (x, y) log

✓
pX,Y (x, y)

pY (y)

◆

We define the PUF entropy H(
S

� R�) as the entropy of
the vector of responses

S
� R�, recalling that each response

is a binary random value. Note that the joint distribution
P (

S
� R�) is hard to capture analytically as orthant proba-

bilities of Gaussian random vectors are generally unsolved for
vectors of dimensions greater than 3, necessitating estimates
or bounds on this. The conditional PUF entropy is the PUF
entropy knowing one CRP: H(

S
� R�|R�1), which is equally

hard to obtain given our inability to characterize the Gaussian
orthant probabilities beyond dimension 3.

We thus study what we call response entropy, i.e. the
entropy of one response H(R�) and the conditional response
entropy H(R�2 |R�1) given knowledge of one CRP (�, R�).
Both the response entropy and the conditional response en-
tropy pertain to the entropy of one binary response and
hence take on values between 0 and 1. For the conditional
response entropy H(R�2 |R�1), this value will depend on
how correlated �1 and �2 are, something we characterized
precisely before using the response similarity. We can use the
chain rule to link all those different entropies:

H

[

�

R�

!
=

nX

i=1

H(R�i |R�1 , · · · , R�i�1)

= H(R�1) + H(R�2 |R�1) + H(R�3 |R�2 , R�1) + · · ·

This work calculates the first three terms (response entropies)
exactly for any choice of �1,�2,�3. The left term is the
overall PUF entropy which is challenging to calculate.

All of the above definitions we presented the Shannon-
entropy definition, but these definitions can be equivalently
modified for the min-entropy. The Min-entropy of a probability
mass function (or conditional probability mass function) is
defined as the log of the most likely outcome. When the
response R�1 = r�1 is known, the most likely conditional
entropy will be given by the probability that you guess R�2

(for a new, never before seen challenge �2) correctly in one
go. The min entropy is simply defined as

Hmin(R�2 |R�1 = r�1) = � log max{ps, 1� ps}.

Min-entropy is often used when considering worst-case sce-
narios, ensuring that even if the distribution is not uniform, the
system remains secure. Shannon entropy is more commonly
used when analyzing average-case scenarios. In the context of
hardware security primitives, min-entropy may be preferred
because it helps assess the worst-case security of the PUF

6

when one or two CRPs have been revealed.
Without any CRP exposure, the response entropy P [R� =

1] = P [R� = �1] = 1
2 so Min-response-entropy and Shannon

response entropy both equal 1 bit. For arbitrary challenge bit
vectors �1,�2 the a conditional response entropy becomes:

H(R�2 |R�1 = r�1) = �
X

r�22{±1}

P [R�2 = r�2 |R�1 = r�1]

· log2(P [R�2 = r�2 |R�1 = r�1])
(a)
= �ps log ps � (1� ps) log(1� ps),

where (a) follows when we define ps = P [R�2 = 1|R�1 =
1] or ps = P [R�2 = �1|R�1 = �1] (depending on what
value r�1 2 {±1} takes on) and hence 1 � ps = P [R�2 =
�1|R�1 = 1] or 1� ps = P [R�2 = 1|R�1 = �1].

Figure 2 illustrates the similarity factors and their corre-
sponding response similarity ps = 1

2 + 1
⇡

arcsin
�

2s
n
� 1

�

as a function of s for a 32-bit APUF. The x-axis shows
the similarity factor s = S(�1,�2) between the known
(say �1) and the unknown (say �2) challenges. The green
points ps shows the response similarity ranging from 0 to 1,
corresponding to the y-axis on the left. We plot also both the
Shannon and min entropies of a challenge’s response when we
know 1 challenge as a function of s. As we can see, this will
depend on the correlation ⇢12 between the challenge whose
response we know, �1, and the one whose response we wish to
guess, �2. If they are uncorrelated, i.e. ⇢12 = 0 (or s roughly
equal to n/2), then the response entropy remains optimal at
1 bit; the more correlated or anti-correlated they become, the
more this drops, and more dramatically so for the min entropy.

Fig. 2: Accuracy, probability of same, Min-entropy and Shan-
non entropy of a second challenge response �2 when we know
1 challenge �1’s response, as a function of the S(�1,�2).
Non-integer values of S(�1,�2) occur when �1,1 6= �2,1.

IV. SIMILARITY, ACCURACY AND ENTROPY BINS

Construction of Bins: Given an n-bit challenge �1 (the
“anchor”), we now show how to construct various sets con-
taining all the challenges respecting a “semimetric” to the
anchor. We can intuitively view a bin B of challenges as
a sphere of challenges of radius r that all have the same

probability, a prediction accuracy or conditional entropy given
the anchor challenge. This radius can be

• the response similarity: “similarity bins” written
B(s,�1) := {�2|S(�1,�2) = s} or equivalently
B(p,�1) := {�2|P [R�1 = R�2] = p} are the bins
containing all the challenges that have the same response
similarity to the anchor. For sake of the convenience, we
will use the first definition B(s,�1).

• the prediction accuracy: “accuracy bins” written
Ba(a,�1) := {�2| max{P [R�1 = R�2], 1� P [R�1 =
R�2]} = a} have all the challenges which can be pre-
dicted with the same accuracy given the anchor challenge.

• the entropy (Shannon or min): “entropy bins” written
BH(h,�1) := {�2|H(R�2 |R�1 = r�1) = h} all have
the same conditional response entropy given the anchor
challenge.

These bins B can be derived using the probability P [R�1 =
R�2] which relies on the similarity factor. From a specific
value of your “semimetric” you can derive the similarity
factor(s) and then use algorithm 1 (Appendix A).

According to Theorem III.1, there are only 2n distinct
response similarities thus for a given anchor challenge, all
the challenges (including the anchor itself) will be partitioned
into a total of 2n disjoint similarity bins. Intuitively, most of
the challenges are in the “uncorrelated” bin of an anchor, i.e.,
B(p ⇡ 0.5,�).

First, consider the trivial case B(p = 1,�) = B(s = n,�):
among all the 2n challenges, the one with highest response
similarity (100%) is the anchor itself and itself only, thus
B(n,�) = {�}, and its size is 1.

Next, consider the similarity bin with the highest p < 1:
this would be B(p,�) = B(s = n� 1/2,�), where p = 1

2 +
1
⇡

arcsin
�

2s
n
� 1

�
. For a challenge �0 to be in this set, it needs

to satisfy S(�0
,�) = n�1/2 according to Theorem III.1. This

can only be achieved by making �
0
1 = ��1, while keeping all

other �
0
i
= �i, i 2 [2, n+1] – as w1 contributes half the weight

as the other wi, i 2 [2, n], while wn+1 always is positive (as
�n+1 = +1). Thus, this will constitute B(s = n� 1/2,�), a
set with only one element.

Following the same argument, a challenge �0 2 B(s =
n � 1,�) must satisfy �

0
1 = �1, with a single �

0
i

= ��i

among i 2 [2, n]. Thus the size of this bin |B(n � 1,�)| =
n� 1. Similarly, a challenge �0 2 B(s = n� 3/2,�) can be
derived by making �

0
1 = ��1, and making sure only a single

�
0
i
= ��i among i 2 [2, n]. The size of the bin is again n�1.
Essentially, to obtain a challenge �0 2 B(s,�), one needs

to select bsc among the anchor’s �i, i 2 [2, n] to flip their
signs to form the �

0
i
’s. Whether �

0
1 = �1 or ��1 depends on

whether s is an integer or not.
Size of Similarity Bins: Algorithm 1 summarizes the

general method for deriving the similarity bin B(s,�). The
complexity is linear in the size of the similarity bin to be
derived. From Algorithm 1, we can derive the size of a
similarity bin as follows:

Corollary IV.0.1. The size of the similarity bin B(s,�), for

7

s 2 [1 : n], for an APUF of length n is

|B(s,�)| =

✓
n� 1

s

◆
if �1 = �

0
1

=

✓
n� 1

bs� 1c

◆
if �1 6= �

0
1

Fig. 3: Similarity bin sizes (number of challenges) in function
of S(�1,�2). Not integer values of S means that �1,1 6= �2,1.

Figure 3 shows the size of each similarity bin, |B(s,�)|,
obtained from Corollary IV.0.1 on the right y-axis.

Expected conditional entropy: From Figures 2 and 3 we
have all the information needed to compute the expected
conditional response entropy or accuracy of a response given
one CRP. We know the specific value of the response entropy
for each possible known challenge as well as the exact
number of challenges in an entropy bin, i.e the exact number
of challenges such that H(R�0 |R� = r�) = h since
B(h,�) is the union of two disjoints B(s,�). Defining hs,�

as hs,� = H(R�0 |R� = r�) with �0 2 B(s,�), the
expected response entropy becomes the weighted average of
the response entropies, weighted by the number of challenges
in each bin as below:

H̄(R�0 |R� = r�) =
1

2n � 1

X

s2{0, 12 ,1,··· ,n�
1
2}

hs,� · |B(s,�)|

The expected accuracy (of estimating a next challenge given
knowledge of one CRP) can be similarly calculated as a
weighted sum. The expected conditional min and Shannon
entropies and the expected conditional accuracy are calculated
in Table I for different PUF lengths. Note that this does not
depend on the variance �

2 of the delay element generation
process.

V. SCALABILITY TO MORE KNOWN CRPS

All conditional response entropy and optimal predictor results
so far have assumed a single anchor: i.e., one CRP (�, R�) to
be known. The natural next question is how to obtain optimal
predictors and conditional response entropies with multiple

n=32 n=64 n=128
H-min 0.8747 0.9112 0.9369

H-Shannon 0.9900 0.9952 0.9977
Accuracy 0.5465 0.5323 0.5226

TABLE I: Expected conditional entropy and expected accuracy
of a challenge’s response knowing one CRP for APUFs of
different length (number of stages n).

anchors. This is based on finding the conditional probability
mass function, which, at its core, depends on the availability
of closed form expressions for the orthant probabilities of
jointly Gaussian random variables. While this is known for
Gaussian vectors of dimensions 2 (useful for one known, one
target challenge) and 3 (useful for two known, and one target
challenge), it remains unknown for larger dimensions [26],
and hence there is little hope for closed form solutions for
higher dimensions, i.e. optimally predicting the response to a
target challenge given knowledge of 3 or more known CRPs.
Numerical approximations are left for future work.

A. Optimal predictor
When (�1, R�1) and (�2, R�2) are known and we wish

to predict the response R�3 to a third challenge �3, one
naive approach may be to use our previous know-one-predict-
one predictor to predict R�3 based on the response of the
“most correlated” challenge to �3, i.e. based on the response
predicted by either �1 or �2 We will show that this is in
fact provably optimal. This naive strategy can be extended
to knowing more than 2 CRPs to predict another, but we
are unable to prove optimality, which essentially stems from
Gaussian orthant probabilities being unknown for more than
3 dimensions.

For knowing two CRPs and predicting a third, the optimal
predictor takes on the following form [27]:

dR�3 = arg max P (R�3 |R�1 , R�2).

Hence, to obtain this optimal predictor, we need to obtain
the conditional probability mass functions P (R�3 |R�1 , R�2).
This involves finding the eight values

P (R�3 = r3|R�1 = r1, R�2 = r2), ri 2 {±1}.

We only need the four values P (R�3 = �1|R�1 =
r1, R�2 = r2) from which we can find the others as P (R�3 =
1|R�1 = r1, R�2 = r2) = 1 � P (R�3 = �1|R�1 =
r1, R�2 = r2). By definition, we have that

P (R�3 = r3|R�1 = r1, R�2 = r2)

=
P (R�3 = r3, R�1 = r1, R�2 = r2)

P (R�1 = r1, R�2 = r2)
. (7)

Recall that R� = sign(�n(�)), and that �n is a Gaussian
random variable, as it is the sum of Gaussian random variables.
To obtain (7) we thus need only calculate P (R�3 , R�1 , R�2)
and P (R�1 , R�2). These may both be obtained by noting
that since R� = sign(�n(�)) are signs of zero mean,
equal variance Gaussian random variables, these probabilities

8

amount to the orthant probabilities of jointly Gaussian random
variables, i.e.

P (R�3 = 1|R�1 = 1, R�2 = 1)

=
P (R�3 = 1, R�2 = 1, R�1 = 1)

P (R�1 = 1, R�2 = 1)

=
P (�n(�3) > 0, �n(�2) > 0, �n(�1) > 0)

P (�n(�1) > 0, �n(�2) > 0))
.

If X, Y, Z are zero mean Gaussian random variables, then

P (X > 0, Y > 0, Z > 0)

=
1

8
+

1

4⇡
[arcsin ⇢XY + arcsin ⇢XZ + arcsin ⇢XZ]

P (X > 0, Y > 0) =
1

4
+

1

2⇡
[arcsin ⇢XY]

P (X > 0|Y > 0, Z > 0)

=
1

2


1 +

arcsin ⇢XY + arcsin ⇢XZ

⇡

2 + arcsin ⇢Y Z

�
,

Letting ⇢ij be the correlation coefficient between �n(�i)
and �n(�j) (which we recall are Gaussian random variables)
we obtain the following:

Theorem V.1. For r1, r2 2 {±1},

P (R�3 = 1|R�1 = r1, R�2 = r2) (8)

=
1

2


1 +

r1 arcsin ⇢13 + r2 arcsin ⇢23
⇡

2 + r1r2 arcsin ⇢12

�

and we can obtain P (R�3 = �1|R�1 = r1, R�2 = r2) =
1� P (R�3 = 1|R�1 = r1, R�2 = r2).

For clarity, we detail the quantities needed:

|Sij | := # indices l 2 {1, 2, · · · n} for which �i,l = �j,l

⇢ij =

(
2|Sij |

n
� 1 if �i,1 = �j,1

2|Sij |+1
n

� 1 if �i,1 6= �j,1

.

From the above equation (8) we notice a few things: 1) first,
the prediction accuracy depends on the actual response values
r1, r2 and how they interact with the correlation coefficients.
For example, for good prediction accuracy, you want the
second term inside the brackets to be close to 1 or �1 (and
hence the overall prediction being close to either 1 or 0).
Poor accuracy corresponds to the second term being close to 0
(and hence the overall prediction being around 0.5). For good
accuracy you want r1 arcsin ⇢13 and r2 arcsin ⇢23 to align or
point in the same direction, both adding to a positive +1 or
a negative �1, then it will be easy to predict the third r3

as it will likely be in the same direction as the others. If the
two challenge responses and correlation coefficients contradict
each other, i.e. if r1 arcsin ⇢13 = �r2 arcsin ⇢23 then the
accuracy will be poor. The denominator also matters: if it
becomes close to 0, or if r1r2 arcsin ⇢12 is close to �⇡/2
(could happen if r1 = r2 = +1 but arcsin ⇢12 = �⇡/2 which
means that ⇢12 = �1 and the challenges are statistically anti-
correlated yet produced the same sign – virtually impossible),
then the prediction accuracy is close to 1

2 .
The optimal predictor of R�3 given knowledge of R�2 and

R�1 first calculates ⇢12, ⇢13 and ⇢23. From this, and R�2 and

R�1 we select R�3 as:

dR�3 = arg max
R�32{±1}

P (R�3 |R�1 , R�2).

The optimal prediction accuracy is then given by

Prediction accuracy = max
�
P [R�3 = 1|R�1 = r1, R�2 = r2],

P [R�3 = �1|R�1 = r1, R�2 = r2]

which may be re-written as a value A as:

A = max
n1

2


1 +

r1 arcsin ⇢13 + r2 arcsin ⇢23

⇡/2 + r1r2 arcsin ⇢12

�
,

1� 1

2


1 +

r1 arcsin ⇢13 + r2 arcsin ⇢23

⇡/2 + r1r2 arcsin ⇢12

�o
.

This shows that the optimal predictor may be obtained in
closed form for the arbiter PUF when two CRPs are known.
In fact the optimal predictor has a simple form: if you know 2
challenges and want to predict a third, simply select the closest
challenge to the anchor (the most correlated) and use the
know-one-predict-one predictor. In other words, the response
of the third challenge is the response of closest of the two
challenges times the sign of its correlation:

P (R�3 = 1|R�1 = r1, R�2 = r2) ? 0.5

, 1

2


1 +

r1 arcsin ⇢13 + r2 arcsin ⇢23
⇡

2 + r1r2 arcsin ⇢12

�
? 0.5

, r1 arcsin ⇢13 + r2 arcsin ⇢23

c
? 0

, r1 arcsin ⇢13 + r2 arcsin ⇢23 ? 0

, r1⇢13 + r2⇢23 ? 0

, R�3 = ri · sign(⇢i3) with i = arg max{|⇢13|, |⇢23|}

B. Entropy

The conditional response entropy given two CRPs also de-
pends only on the conditional probability mass functions, this
is easily obtained once we have the conditional distributions,
as:

H(R�3 |R�1 = r�1 , R�2 = r�2)

= �
X

r�32{0,1}

P (R�3 = r�3 |R�1 = r�1 , R�2 = r�2)·

log2(P (R�3 = r�3 |R�1 = r�1 , R�2 = r�2)).

Figure 4 shows the Min and Shannon entropy for different
⇢ij values for an arbiter PUF with n = 32. Again, we see
that the remaining APUF entropies depend on the correlations
between the two known challenges and the other challenges.
Once again, the min entropy is more dramatically reduced
than the Shannon entropy, as expected. This means that
there is an increase in the probability of guessing a third
challenge correctly when two challenges are known. On the
diagonal (yellow) the two known challenges do not reveal any
information about the remaining challenges. While one CRP
might give us some information about the unknown challenge,
the other CRP leads us on the opposite direction, so we do

9

not learn anything and the probability to guess the unknown
challenge response is still 0.5, i.e. has entropy 1 bit.

C. Neighborhoods
We now ask how we may generalize the notion of similarity

bins introduced earlier, to predictability and entropy neigh-
borhoods. The question is which challenges �3 lie within a
certain "distance" / “semi-metric” d to two anchor challenges
rather than one. We would like an algorithm to enumerate
the challenges that lie within this predictability or entropy
neighborhood, denoted by B(d,�1,�2, r1, r2), and as a by-
product, its size. To this end, define

B(A,�1,�2, r1, r2) =
�
�3 :

max(P (R�3 = 1|R�1 = r1, R�2 = r2),

1� P (R�3 = 1|R�1 = r1, R�2 = r2)) = A

B(H,�1,�2, r1, r2) =
�
�3 :

H(R�3 |R�1 = r�1 , R�2 = r�2) = H

In this “know 2, predict a third” case, we will see that not
all prediction accuracies/entropies are possible. It depends on
the relationship between the challenges you know. If you know
two challenges, they are fixed, and hence so is their correlation
⇢12. We are thus interested in seeing how many challenges lie
at different correlations ⇢13, ⇢23 to these challenges.

In order to define the similarity neighborhoods and count
them, we will need to quantify which correlation triples
(⇢12, ⇢13, ⇢23) are possible.

This is illustrated in Figure 5. To approach this, define

K := number of indices in S12 that we “keep” in �3

(a)
=

|S13| + |S23| + |S12|� n

2
(9)

where (a) follows by setting x := |S13| � K (the number
of bits from D12 that belongs to |S13|), and y := |S23| �K

(the number of bits from D12 that belongs to |S23|), from
which, since x and y must cover the whole D12 set we see
that x + y = |D12| = n� |S12| and by replacing x and y, we
obtain K = |S13|+|S23|+|S12|�n

2 .
1) Neighborhood construction: How can we find one chal-

lenge in B(d,�1,�2, r1, r2)? We enumerate the steps below
which takes known challenges �1,�2 with correlation coef-
ficient ⇢12 and produces a single output challenge �3 at the
desired distance d in a chosen “semi-metric” space (accuracy,
Shannon or min entropies).

This distance d depends on the challenge response values
r1 and r2, and how to pick ⇢13, ⇢23 to satisfy this equation:

1) Find ⇢13, ⇢23 based on desired distance d and the set
of all possible (⇢12, ⇢13, ⇢23) tuples, given by Figure for
the given ⇢12. How this Figure is obtained is presented
in the Question below “Which correlations ⇢13 and ⇢23

are possible given ⇢12”. This essentially boils down to
picking ⇢13, ⇢23 of the desired accuracy (represented by
color) in our numerical evaluations.

2) The ⇢12, ⇢13, ⇢23 determine the sizes |S12|, |S13|, |S23| of
the sets S12, S13, S23. From here we can use Algorithm
3 in Appendix A which gives the following steps :

3) From |S12|, |S13|, |S23| we find K as in (9). Select any
K indices in S12 to keep fixed in �3. The remaining
indices in S12 in �3 must be flipped.

4) For the remaining indices in D12, pick |S13|�K of them
the same as �1 and flip the remaining ones with respect
to �1, yielding the desired ⇢13 and ⇢23.

2) Example: constructing a �3 2 B(d,�1,�2, r1, r2):
Given challenges �1 and �2, to create a third vector with de-
sired correlations (note that not all will be possible), the main
idea is to know how many bits we have to keep/fix from the
first two challenges and how many we have to flip. Consider
n = 8 and �1 := (+1, +1, +1, +1, +1, +1, +1, +1, +1),
�2 := (+1, +1, +1, +1,�1,�1,�1,�1, +1), then ⇢12 = 0.
Say we wish to predict a third challenge �3 with probability
of accuracy A ⇡ 0.6. We follow the steps of the algorithm:

1) By generating the Figures from (12) – (13), we can see
that ⇢23 = 0, ⇢23 = 1/3 and �1,1 = �2,1 = �3,1 = 1 is
one of the multiple possible choices.

2) This is equivalent to selecting |S23| = 4 and |S13| = 6.
3) To create a challenge with these desired correlations to

the two known challenges, we need to decide how many
indices in �3 to keep from S12, let us call this set of
indices K, and then how many to keep and flip from
the set D12. Since �1,1 = �2,1 = �3,1 = 1 the first bit
belongs to the sets S12, S13, S23 so we have to select it in
the ones we fix and K�1 = (|S12|+|S13|+|S23|�n)/2�
1 = (4+4+6�8)/2�1 = 2 other bits to fix from the S12.
Take for example �3 := (+1, ⇤, +1, +1, ⇤, ⇤, ⇤, ⇤, +1)
where the ⇤ positions still need to be filled in.

4) Finally, we can flip the other bits in S12 to obtain
�3 := (+1,�1, +1, +1, ⇤, ⇤, ⇤, ⇤, +1). Then we select
|S13| � K = 3 bits from D12 to fix and flip the left
ones as �3 := (+1,�1, +1, +1, +1, +1, +1,�1, +1).
Equivalently, we could have fixed |S23| � K = 1 bits
from D12 and flipped the left ones. Then, this �3 can be
predicted with accuracy P (R�3 = 1|R�1 = 1, R�2 =

1) = 1
2

h
1 +

arcsin 1
3+arcsin 0

⇡
2 +arcsin 0

i
⇡ 0.61.

The algorithm is given in Algorithm 3 in Appendix A.
3) Neighborhood size: So far we have produced one chal-

lenge of a given desired distance to the anchors. We now
answer how many challenges exist with that ditance, and how
can they be efficiently enumerated? The answer to this is
derived directly from the way we created the single challenge
– i.e. by looking at how many arbitrary choices we had. For
example, in the case �1,1 = �2,1 = �3,1: how many ways are
there to choose K � 1 bits from S12 � 1 (since the first bit
is fixed in this example) and |S13| �K bits from D12, with
|D12| = n � |S12|. Now, there are two possibilities, when
�1,1 = �2,1 and when �1,1 6= �2,1 which must be treated
differently as the 1st position is special in the � notation.
• If �1,1 = �2,1 and |S13| + |S23| + |S12| � n ⌘ 0 mod 2,

then do not flip first bit:

#of challenges =

✓
|S12|� 1

K � 1

◆✓
n� |S12|
|S13|�K

◆
(10)

=

✓
|S12|� 1

K � 1

◆✓
n� |S12|
|S23|�K

◆

10

(a) Min-Entropy : r1 = r2 and ⇢12 = 0 (b) S-Entropy : r1 = r2 and ⇢12 = 0 (c) Min-Entropy : r1 = r2 and ⇢12 = 0.5 (d) S-Entropy : r1 = r2 and ⇢12 = 0.5

Fig. 4: Min-entropy and Shannon entropy when knowing 2 challenges

<latexit sha1_base64="ax7btTDArge5vVJQ/6QQRL1woP4=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq9cY8b7fL1e8qjcHXiV+TiqQo9Evf/UGiqYxk5YKYkzX9xIbZERbTgWblnqpYQmhYzJkXUcliZkJsvm1U3zmlAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ug4yLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQyYXgL7+8SloXVf+yWruvVeo3eRxFOIFTOAcfrqAOd9CAJlB4hGd4hTek0At6Rx+L1gLKZ47hD9DnDw00jsw=</latexit>

�1

<latexit sha1_base64="iaPSBDUeWU8JaepmvWSC/h7jc0o=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld1S1GPRi8cK9gPapWTTbBubTZYkK5Sl/8GLB0W8+n+8+W9M2z1o64OBx3szzMwLE8GN9bxvtLa+sbm1Xdgp7u7tHxyWjo5bRqWasiZVQulOSAwTXLKm5VawTqIZiUPB2uH4dua3n5g2XMkHO0lYEJOh5BGnxDqp1WuMeL/aL5W9ijcHXiV+TsqQo9EvffUGiqYxk5YKYkzX9xIbZERbTgWbFnupYQmhYzJkXUcliZkJsvm1U3zulAGOlHYlLZ6rvycyEhsziUPXGRM7MsveTPzP66Y2ug4yLpPUMkkXi6JUYKvw7HU84JpRKyaOEKq5uxXTEdGEWhdQ0YXgL7+8SlrVin9Zqd3XyvWbPI4CnMIZXIAPV1CHO2hAEyg8wjO8whtS6AW9o49F6xrKZ07gD9DnDw64js0=</latexit>

�2

<latexit sha1_base64="z0J3+yL8d+P/vZ5lZQvoeuOLFmc=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8lV0t6rHoxWMF+wHtUrJpto3NJkuSFcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0O/VbT0wbruSDHScsiMlA8ohTYp3U7NaHvHfRK5W9ijcDXiZ+TsqQo94rfXX7iqYxk5YKYkzH9xIbZERbTgWbFLupYQmhIzJgHUcliZkJstm1E3zqlD6OlHYlLZ6pvycyEhszjkPXGRM7NIveVPzP66Q2ug4yLpPUMknni6JUYKvw9HXc55pRK8aOEKq5uxXTIdGEWhdQ0YXgL768TJrnFf+yUr2vlms3eRwFOIYTOAMfrqAGd1CHBlB4hGd4hTek0At6Rx/z1hWUzxzBH6DPHxA8js4=</latexit>

�3

<latexit sha1_base64="9NGTzGrmhi0oUq5yLcZiURIkaeI=">AAAB73icbVBNTwIxEJ3FL8Qv1KOXRmLiiewSoh6JXjxilI8ENqRbutDQdte2a0IW/oQXDxrj1b/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywupn5rSeqNIvkgxnH1Bd4IFnICDZWak/ue6lXmU56xZJbdudAq8TLSAky1HvFr24/Iomg0hCOte54bmz8FCvDCKfTQjfRNMZkhAe0Y6nEgmo/nd87RWdW6aMwUrakQXP190SKhdZjEdhOgc1QL3sz8T+vk5jwyk+ZjBNDJVksChOOTIRmz6M+U5QYPrYEE8XsrYgMscLE2IgKNgRv+eVV0qyUvYty9a5aql1nceThBE7hHDy4hBrcQh0aQIDDM7zCm/PovDjvzseiNedkM8fwB87nD9Qdj9g=</latexit>

|S12|
<latexit sha1_base64="LE3QuXzFxB+M9a/tZbBGIu67JVY=">AAAB/HicbZDLSsNAFIZP6q3WW7RLN8EiuLEkpagboagLlxXtBdoQJtNpO3QyCTMTIaT1Vdy4UMStD+LOt3HaZqGtPwx8/OcczpnfjxiVyra/jdzK6tr6Rn6zsLW9s7tn7h80ZRgLTBo4ZKFo+0gSRjlpKKoYaUeCoMBnpOWPrqf11iMRkob8QSURcQM04LRPMVLa8szi+MZLncpkfMlPx/dz9MySXbZnspbByaAEmeqe+dXthTgOCFeYISk7jh0pN0VCUczIpNCNJYkQHqEB6WjkKCDSTWfHT6xj7fSsfij048qaub8nUhRImQS+7gyQGsrF2tT8r9aJVf/CTSmPYkU4ni/qx8xSoTVNwupRQbBiiQaEBdW3WniIBMJK51XQITiLX16GZqXsnJWrd9VS7SqLIw+HcAQn4MA51OAW6tAADAk8wyu8GU/Gi/FufMxbc0Y2U4Q/Mj5/ANpDlEU=</latexit>

|D12| = n � |S12|
<latexit sha1_base64="9NGTzGrmhi0oUq5yLcZiURIkaeI=">AAAB73icbVBNTwIxEJ3FL8Qv1KOXRmLiiewSoh6JXjxilI8ENqRbutDQdte2a0IW/oQXDxrj1b/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywupn5rSeqNIvkgxnH1Bd4IFnICDZWak/ue6lXmU56xZJbdudAq8TLSAky1HvFr24/Iomg0hCOte54bmz8FCvDCKfTQjfRNMZkhAe0Y6nEgmo/nd87RWdW6aMwUrakQXP190SKhdZjEdhOgc1QL3sz8T+vk5jwyk+ZjBNDJVksChOOTIRmz6M+U5QYPrYEE8XsrYgMscLE2IgKNgRv+eVV0qyUvYty9a5aql1nceThBE7hHDy4hBrcQh0aQIDDM7zCm/PovDjvzseiNedkM8fwB87nD9Qdj9g=</latexit>

|S12|

<latexit sha1_base64="E1oJG0zg2xPEUznWY7mTwiLMGvw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiIB4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzQHbX0w8Hhvhpl5QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepv53SeqNIvko5nF1Bd4LFnICDaZdMdZPKzW3LqbA60SryA1KNAaVr8Go4gkgkpDONa677mx8VOsDCOcziuDRNMYkyke076lEguq/TS/dY7OrDJCYaRsSYNy9fdEioXWMxHYToHNRC97mfif109MeO2nTMaJoZIsFoUJRyZC2eNoxBQlhs8swUQxeysiE6wwMTaeig3BW355lXQade+yfvHQqDVvijjKcAKncA4eXEET7qEFbSAwgWd4hTdHOC/Ou/OxaC05xcwx/IHz+QP6No40</latexit>

Flip
<latexit sha1_base64="ls4GAsm3dskZBBBR4PXH9SD/VY4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbRD0GvQheIpoHJEuYnXSSIbOzy8ysEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqN59QaR7JRzOO0Q/pQPI+Z9RY6eHuzOsWS27ZnYEsEy8jJchQ6xa/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/OTp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/JTLODEo2XxRPxHERGT6N+lxhcyIsSWUKW5vJWxIFWXGplOwIXiLLy+TRqXsXZTP7yul6nUWRx6O4BhOwYNLqMIt1KAODAbwDK/w5gjnxXl3PuatOSebOYQ/cD5/AH1njUg=</latexit>

K-1
<latexit sha1_base64="8Bl/2eMTB4FfRPG3fsdJbX+tBIk=">AAAB8XicbVBNT8JAEJ3iF+IX6tHLRmLiRdICUY9ELyZeMMpHhIZsly1s2G6b3a0JKfwLLx40xqv/xpv/xgV6UPAlk7y8N5OZeV7EmdK2/W1lVlbX1jeym7mt7Z3dvfz+QUOFsSS0TkIeypaHFeVM0LpmmtNWJCkOPE6b3vB66jefqFQsFA96FFE3wH3BfEawNtLj+L6blMqT8dltN1+wi/YMaJk4KSlAilo3/9XphSQOqNCEY6Xajh1pN8FSM8LpJNeJFY0wGeI+bRsqcECVm8wunqATo/SQH0pTQqOZ+nsiwYFSo8AznQHWA7XoTcX/vHas/Us3YSKKNRVkvsiPOdIhmr6PekxSovnIEEwkM7ciMsASE21CypkQnMWXl0mjVHTOi5W7SqF6lcaRhSM4hlNw4AKqcAM1qAMBAc/wCm+Wsl6sd+tj3pqx0plD+APr8wfdOpBm</latexit>

|S23| � K
<latexit sha1_base64="3I9Y6E4rNd4UBm561TqGRRHZets=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBiyXRoh6LXgQvFe0HtqFstpt26WYTdjdCSfMvvHhQxKv/xpv/xm2bg7Y+GHi8N8PMPC/iTGnb/rZyS8srq2v59cLG5tb2TnF3r6HCWBJaJyEPZcvDinImaF0zzWkrkhQHHqdNb3g98ZtPVCoWigc9iqgb4L5gPiNYG+lxfN9NnLN0fHLbLZbssj0FWiRORkqQodYtfnV6IYkDKjThWKm2Y0faTbDUjHCaFjqxohEmQ9ynbUMFDqhyk+nFKToySg/5oTQlNJqqvycSHCg1CjzTGWA9UPPeRPzPa8fav3QTJqJYU0Fmi/yYIx2iyfuoxyQlmo8MwUQycysiAywx0SakggnBmX95kTROy855uXJXKVWvsjjycACHcAwOXEAVbqAGdSAg4Ble4c1S1ov1bn3MWnNWNrMPf2B9/gDbsZBl</latexit>

|S13| � K
<latexit sha1_base64="JuZVvE2EvAaUnFzuV/Pf0g4aUa8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04JF+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NIpObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsbTLgCpkRE0soU9zeStiIKsqMDadkQ/CWX14lrYuqd1mt3dcq9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AdMgjOg=</latexit>

1

First bit is the same in all 3 (for example)

Fig. 5: Illustration of the sizes of the difference index sets
S12, S13, D12, S23 and integer K representing the number of
indices in S12 that we keep the same in �3. In this example
we assume the first bit is the same in all three �1,2,3.

• If �1,1 = �2,1 and |S13| + |S23| + |S12| � n ⌘ 1 mod 2,
then flip the first bit:

#of challenges =

✓
|S12|� 1

K

◆✓
n� |S12|
|S13|�K

◆

=

✓
|S12|� 1

K

◆✓
n� |S12|
|S23|�K

◆

• If �1,1 6= �2,1 we need |S13|+ |S23|+ |S12|�n ⌘ 0 mod 2
since we necessarily have �3,1 6= �2,1 or �3,1 6= �1,1

#of challenges (11)

=

✓
|S12|
K

◆✓
n� |S12|

|S13|�K � 1

◆
if S(�1,�3) ⌘ 0 mod 1

=

✓
|S12|
K

◆✓
n� |S12|

|S23|�K � 1

◆
if S(�2,�3) ⌘ 0 mod 1

Notice that, contrary to the accuracy, the number of chal-
lenges does not depend on the challenge responses. To create
similarity bins of size m with two anchors we can use
Algorithm 2, which in turn calls Algorithms 4 and 5.

4) Neighborhood landscape discussion: Now we provide
some in-depth analysis on the details of a neighborhood’s
landscape with the following questions.

a) Which correlations ⇢13 and ⇢23 are possible given
⇢12?: The answer depends on whether �1,1, �2,1, �3,1 are the
same or different. This is because this first bit has a different
variance than the others, as per Lemma II.1. We present one
case as an example; the others follow similarly.

Assume �
1
1 = �

1
2 = �

1
3. Then equation (9) and (10) imply

two sufficient and necessary conditions on the correlation be-
tween the three challenges to be able to create the third one. In
particular, by requiring K 2 N in (9), and #of challenges =�|S12|�1

K�1

��
n�|S12|
|S13|�K

�
=

�|S12|�1
K�1

��
n�|S12|
|S23|�K

�
> 0 we obtain the

following conditions:

K 2 N! |S13| + |S23| + |S12|� n ⌘ 0 mod 2
✓

|S12|� 1

K � 1

◆✓
n� |S12|
|S13|�K

◆
> 0! |S12| � K

! n� |S12| � |S13|�K
✓

|S12|� 1

K � 1

◆✓
n� |S12|
|S23|�K

◆
> 0! n� |S12| � |S23|�K

Re-writing these using correlation coefficients (recall |S| =
(⇢ + 1)n2) yields the inequalities relating the possible correla-
tions ⇢12, ⇢13, ⇢23 (which also must all lie in [�1, 1]):

⇢13  �⇢23 + 1� ⇢12 (12)
⇢13 � ⇢23 � 1 + ⇢12

⇢13  ⇢23 + 1� ⇢12

⇢13 � �⇢23 � 1 + ⇢12 (13)

One can visualize these equations easily, yielding rotated
rectangles in the ⇢13, ⇢23 plane for each given ⇢12 (fixed
by the two known challenges �1 and �2. The shapes in
Figures 6 indicate which triples are possible, as shown by
the linear equations above. The largest range of possible
correlations occurs when ⇢12 = 0, i.e. the first two challenges
are uncorrelated. There are many such challenges, exactly how
many is given by for example Figure 6.

b) How many challenges lie at different possible
(⇢13, ⇢23) from given challenges with correlation ⇢12?: To
obtain this, we simply evaluate Equations (10) – (11) depend-
ing on what case we are in for each possible (⇢12, ⇢13, ⇢23)
triple. These yield the different colors in the yellow/blue plots
of Figures 6. Notice that the densities do not depend on the
actual values r1, r2 that the challenges take on.

c) What prediction accuracies and entropies are possible
with different (⇢12, ⇢13, ⇢23) triples?: Finally, given that we
now know how many challenges there are at different corre-
lations to one another, the question is how many challenges
there are at different prediction accuracies or entropies. This
is given by Theorem V.1 and shown in the purplish plots of
Figures 4 and 6.

11

d) Numerical evaluations and interpretations of plots:
Algorithms 2–5 in Appendix A allow us to create the bins
B(d,�1,�2, r1, r2) for all possible distance d in the “semi-
metric” space defined by the accuracy or the entropies, and
then the Figures 4 and 6. We now present some numerical
evaluations to provide an understanding of the similarity bins
when we know 2 challenges and wish to understand how many
challenges lie at different distances to these two. To do so, we
illustrate the following three questions:

1) Which correlations ⇢13 and ⇢23 are possible given ⇢12?
This is given by the shape in Figures 6–?? which depict
equations (12) – (13).

2) What prediction distances are possible with different
(⇢12, ⇢13, ⇢23) triples? This is given by Theorem V.1 and
is given by the purplish plots of Figures 4,6 and ??.. The
accuracy and entropies do depend on the actual values
of the responses as well as the correlations. This may be
intuitively thought of as follows: if the two challenges we
know are well “aligned”, i.e. when r1 ·r2 ·sign(⇢12) = +1
this means the challenges have the same response and are
highly correlated then they act more like one challenge
with respect to the third one. Otherwise the informa-
tion provided by the two challenges when ⇢12 negative,
r1 = r2 is somewhat contradictory, then information is
neutralized for ⇢13 = ⇢23. The “blue line” on the accuracy
graphs shows where the information is neutralised: line
y = �x if r1 = r2, y = x if r1 6= r2.

3) How many challenges lie at different possible (⇢13, ⇢23)
from given challenges with correlation ⇢12? This is given
by equations (10) – (11) and is given by the blue/yellow
plots of Figures 6.
e) Expected conditional entropy and accuracy of a chal-

lenge’s response: Knowing the values of the entropies and
accuracy in each neighborhood as well as the number of
challenges in all of them. we can compute the expected
conditional entropy and accuracy of a challenge’s response.
Calling di the distance in B(di,�1,�2, r1, r2) in the entropy
or accuracy space and n

2 the maximum number of differ-
ent neighborhoods knowing that if one is not possible then
|B(di,�1,�2, r1, r2)| = 0. The expected semi-metric d̄ is
then given as follows:

d̄ =
1

#possible challenges

n
2X

i=1

di|B(di,�1,�2, r1, r2)|.

Table II shows the different expected conditional entropy
and accuracy of a challenge’s response in function of the
correlation ⇢12 between the two anchors and the number of
stages of the PUF, n.

There is quite a bit of information packed into these Figures.
Some things to note include: highly predictable challenges
have the yellow color in the left (a) plots: they tend to be
around the edges and there are relatively few of them. Less
predictable challenges are found along the dark blue/purplish
lines in the left (a) plots and there tend to be many of them.
However, sometimes we can see large clumps (density plots
are greenish) that are also reasonably well predicted (pinkish).
Overall, the hope is that such plots will be useful to PUF

protocol design engineers to give them an idea of the landscape
of challenges: how many there are at different prediction
accuracies or conditional response entropies once one or two
challenges are exposed.

VI. CONCLUSION

We have presented two new tools for understanding and
exploiting the CRP correlations of APUF (and by almost
immediate extension, compute then entropy). The first is the
response similarity, or the probability that two challenges yield
the same response, which is a function of the challenges
themselves. This may be used to optimally predict the response
to one challenge given the response to another challenge, and
to obtain the conditional response entropy, The second is the
derivation of a simple algorithm for enumerating the similarity
bins, or entropy bins to a given challenge, i.e. all challenges
that have the same response similarity or conditional response
entropy to a given anchor challenge. In combination, these
form a powerful tool for understanding the CRP landscape:
how CRPs are correlated and may be used to obtain statistical
properties of linear-threshold-based PUFs.

DECLARATIONS

• Ethical Approval: This work is original and has not been
published elsewhere, nor is it currently under consideration
for publication elsewhere.

• Competing interests: The authors have no relevant financial
or non-financial interests to disclose.

• Authors’ contributions: All authors contributed to the
study conception and design. Material preparation, simu-
lations and analysis were performed by Vincent Dumoulin,
Natasha Devroye and Wenjing Rao. The first draft of the
manuscript was written by Vincent Dumoulin and Natasha
Devroye then all authors commented on previous versions
of the manuscript. All authors read and approved the final
manuscript.

• Funding: This work was supported by the National Science
Foundation under award 2217023 and 2244479.

• Data: No exterior data set is used. All simulations and plots
are derived based on the statistical models, equations and
pseudo algorithms presented in the paper.

REFERENCES

[1] W. Che, F. Saqib, and J. Plusquellic, “Puf-based authentication,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2015, pp. 337–344.

[2] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” 9th ACM Conference on Computer and Communi-
cation Security, 2002.

[3] L. Feiten, M. Sauer, and B. Becker, “On metrics to quantify the
inter-device uniqueness of PUFs,” Cryptology ePrint Archive, Paper
2016/320, 2016. [Online]. Available: https://eprint.iacr.org/2016/320

[4] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh, “Quantitative and sta-
tistical performance evaluation of arbiter physical unclonable functions
on fpgas,” Int. Conf. on Reconfigurable Computing and FPGAs, pp.
298–303, 2010.

[5] Rukhin, A. et al., “A Statistical Test Suite for Random and Pseudoran-
dom Number Generators for Cryptographic Applications,” 2010.

[6] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender puf protocol: A lightweight, robust, and secure authentication
by substring matching,” in Security and Privacy Workshops (SPW), 2012
IEEE Symposium on. IEEE, 2012, pp. 33–44.

12

(a) Accuracy : r1 = r2 and ⇢12 = 0 (b) Density : r1 = r2 and ⇢12 = 0 (c) Accuracy : r1 = r2 and ⇢12 = 0.5 (d) Density : r1 = r2 and ⇢12 = 0.5

(e) Accuracy : r1 = r2 and ⇢12 = �0.5 (f) Density : r1 = r2 and ⇢12 = �0.5 (g) Accuracy : r1 6= r2 and ⇢12 = �0.5 (h) Accuracy : r1 6= r2 and ⇢12 = 0.5

Fig. 6: Accuracy and density plot same and different responses.

n=32 n=64 n=128
⇢12 = �0.5 ⇢12 = 0 ⇢12 = 0.5 ⇢12 = �0.5 ⇢12 = 0 ⇢12 = 0.5 ⇢12 = �0.5 ⇢12 = 0 ⇢12 = 0.5

H-min 0.8259 0.8329 0.8450 0.8728 0.8788 0.8879 0.9080 0.9127 0.9194
H-Shannon 0.9798 0.9815 0.9842 0.9898 0.9908 0.9922 0.9948 0.9954 0.9961
Accuracy 0.5663 0.5634 0.5584 0.5472 0.5448 0.5413 0.5335 0.5317 0.5292

TABLE II: Expected conditional entropies and accuracies of a challenge’s response knowing two CRPs

[7] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Robust and reverse-engineering resilient puf authentication and key-
exchange by substring matching,” IEEE Transactions on Emerging
Topics in Computing, vol. 2, no. 1, pp. 37–49, 2014.

[8] Y. M.-D. et al., “A noise bifurcation architecture for linear additive phys-
ical functions,” in 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST). IEEE, 2014, pp. 124–129.

[9] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on
lightweight entity authentication with strong pufs,” ACM Comput.
Surv., vol. 48, no. 2, Oct. 2015. [Online]. Available: https:
//doi.org/10.1145/2818186

[10] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
pufs,” in 2008 IEEE/ACM International Conference on Computer-Aided
Design, Nov 2008, pp. 670–673.

[11] ——, “Testing techniques for hardware security,” in 2008 IEEE Inter-
national Test Conference, Oct 2008, pp. 1–10.

[12] J. Delvaux, “Machine-learning attacks on PolyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUFÐFSMs,” IEEE Transactions on Information Foren-
sics and Security, pp. 1–1, 2019.

[13] P. H. Nguyen, D. P. Sahoo, R. S. Chakraborty, and D. Mukhopadhyay,
“Security analysis of arbiter puf and its lightweight compositions
under predictability test,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 22, no. 2, pp. 20:1–20:28, Dec. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2940326

[14] O. Rioul, P. Solé, S. Guilley, and J.-L. Danger, “On the entropy of
physically unclonable functions,” in ProcISIT, July 2016, pp. 2923–
2932.

[15] M.-D. Yu, R. Sowell, A. Singh, D. M’Raïhi, and S. Devadas, “Per-
formance metrics and empirical results of a puf cryptographic key
generation asic,” in HOST. IEEE, 2012, pp. 108–115.

[16] A. Schaub, O. Rioul, and J. J. Boutros, “Entropy estimation of physically
unclonable functions via chow parameters,” 2019 57th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), pp.
698–704, 2019.

[17] Frisch, C., Wilde, F., Holzner, T. et al., “A practical approach to estimate
the min-entropy in pufs,” J Hardw Syst Secur, vol. 7, pp. 138–146, 2023.

[18] Jao, J., Wilcox, I., Thotakura, S. et al.., “An Analysis of FPGA LUT
Bias and Entropy for Physical Unclonable Functions,” J Hardw Syst
Secur, vol. 7, p. 110–123, 2023.

[19] Y. Lao and K. K. Parhi, “Statistical analysis of mux-based physical
unclonable functions,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 33, no. 5, pp. 649–662, May
2014.

[20] W. Che, V. K. Kajuluri, M. Martin, F. Saqib, and J. Plusquellic, “Analysis
of entropy in a hardware-embedded delay puf,” in Cryptography, Jun.
2017.

[21] W. Stefani, F. Kappelhoff, M. Gruber, Y.-N. Wang, S. Achour,
D. Mukhopadhyay, and U. Rührmair, “Strong PUF security metrics:
Sensitivity of responses to single challenge bit flips,” Cryptology ePrint
Archive, Paper 2024/378, 2024.

[22] D. Boning and S. Nassif, “Models of process variations in device and
interconnect,” Design of high performance microprocessor circuits, p. 6,
2000.

[23] J. Tobisch and G. T. Becker, “On the scaling of machine learning attacks
on pufs with application to noise bifurcation,” in Revised Selected Papers
of the 11th International Workshop on Radio Frequency Identification -
Volume 9440, ser. RFIDsec 2015. New York, NY, USA: Springer-Verlag
New York, Inc., 2015, pp. 17–31.

[24] W. Yeqi, F. Tim, D. Vincent, R. Wenjing, and D. Natasha, “Apuf faults:
Impact, testing, and diagnosis,” pp. 442–447, 2022.

[25] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. New
York:Wiley, 2006.

[26] M. C. Cheng, “The orthant probabilities of four gaussian variates,” The
Annals of Mathematical Statistics, vol. 40, no. 1, pp. 152–161, 1969.
[Online]. Available: http://www.jstor.org/stable/2239206

[27] J. Massey, “Guessing and entropy,” in ProcISIT, Jul 1995, p. 204.

13

APPENDIX

ALGORITHMS FOR BIN CREATION

Algorithm 1 builds a similarity bin. For a different “semi-
metric”, use the theoretical results or the graph in Figure 2 to
get the two s = (s1, s2) factors that will give you the desired
value/ create a similarity bin for each si (two similarity factors
for entropy and accuracy). Form the union of the two disjoint
bins.

Algorithm 1: Bin construction for one anchor:
Input: anchor �, n, similarity factor(s) s = (s1, s2)

derived from a wanted “semimetric" (entropy,
accuracy,probability).

Output: Bin B(s,�).
// initialize

B ;
// use s and �1 to determine �0

1.

if s mod 1! = 0 then
�
0
1 = ��1 ; // s even

else
�
0
1 = �1 ; // s odd

/* use s to decide how many of �2, · · · ,�n, to

flip to construct �0
2, · · · ,�0

n. */

F {f |f 2 {0, 1}n�1
,
P

fi = bsc}
/* F contains all the strings of size n� 1

with Hamming weight bsc, and f encodes where

to flip �2, · · · ,�n for �0
i’s */

for f 2 F do
for i = 2 to n do

if fi�1 == 0 then
�
0
i
= �

0
i

else
�
0
i
= ��

0
i

�0 (�0
1, �

0
2, · · · , �

0
n
, +1)

B B
S

{�0}
return B // This is B(s,�)

Algorithm 2: Bin construction with two anchors
Input: Anchors �1,�2 and responses r1 r2

Output: Similarity bins of size m for all possible
distance d : B(d,�1,�2, r1, r2)

// initialize: look for the bits to select

for |S12| = 1 to n do
for |S13| = 1 to n do

for |S23| = 1 to n do
K (|S13| + |S23| + |S12|� n)/2;
if �1,1 = �2,1 then

CBSS(�1,�2, r1, r2, |S12|, |S13|, |S23|)
if �1,1 6= �2,1 then

CBDS(�1,�2, r1, r2, |S12|, |S13|, |S23|)
else Ignore // Challenge does not exist

return B(d,�1,�2, r1, r2) for all distances d

Algorithm 3 builds a third challenge at a distance d in a
the chosen “semimetric” space (accuracy or entropy space).
Algorithms 2-5 create the bins using the previous algorithm.

Algorithm 3: CC: Create a 3rd Challenge �3

Input: Anchors �1,�2, responses r1 r2,
|S12|, |S13|, |S23|, �3,1

Output: a challenge �3 with a desired distance d
// construct �3 from ⇢12, ⇢13, ⇢23 we know

�1,1
?
= �2,1

?
= �3,1

K (|S13| + |S23| + |S12|� n)/2;
if �1,1 = �2,1 = �3,1 then

if K 2 N then
Fix: the first bit and K� 1 other bits in S12;
Flip: all other bits in S12;
Fix: any |S13|�K bits in D12;
Flip: all other bits in D12 ;
// equivalently fix |S23|�K bits in D12,

and flip the rest

else
return False;
// # of bits to fix is not an integer

else if �1,1 = �2,1 6= �3,1 then
if K = x.5 then

Fix: any bKc bits except the 1st bit in S12;
Flip: all other in S12 (including the 1st bit);
Fix: any |S13|�K bits in D12;
Flip: all other bits in D12;
// equivalently fix |S23|�K bits in D12,

and flip the rest

else
return False;

else if �1,1 6= �2,1 = �3,1 then
if K 2 N then

Use: the first bit of �2,1;
Fix: any K bits in S12;
Flip: all other bits in S12;
Fix: any |S23|�K � 1 bits in D12;
Flip: all other bits in D12;

else
return False;
// Number of bits to fix is not integer

else if �1,1 = �3,1 6= �2,1 then
if K 2 N then

Use: the first bit of �3,1 ;
Fix: any K bits in S12 ;
Flip: all other bits in S12 ;
Fix: any |S13|�K � 1 bits in D12 ;
Flip: all other bits in D12 ;

else
return False;
// Number of bits to fix is not integer

return �3 // Challenge �3 has desired distance

14

Algorithm 4: CBSS: Create Bin first bit Same Sign:
�1,1 = �2,1

Input: Anchors �1,�2, responses r1 r2,
|S12|, |S13|, |S23| under �1,1 = �2,1

Output: B(d,�1,�2, r1, r2) of size m

⇢12 = (2|S12|)/n� 1;
begin

�3,1 = �1,1;
⇢13 = (2|S13|)/n� 1;
⇢23 = (2|S23|)/n� 1;
#of challenges =

�|S12|�1
K�1

��
n�|S12|
|S13|�K

�
;

if K 2 N & #of challenges � 0 then
p 1

2

h
1 + r1 arcsin ⇢13+r2 arcsin ⇢23

⇡/2+r1r2 arcsin ⇢12

i
;

d1 = Accuracy(p) or entropy(p);
for i = 1 to m do

�3
CC(�1,�2, r1, r2, |S12|, |S13|, |S23|, �3,1);

B(d1,�1,�2, r1, r2)
B(d1,�1,�2, r1, r2)

S
{�3}

else Ignore // Challenge does not exist

begin
�3,1 = ��1,1;
⇢13 = (2|S13| + 1)/n� 1;
⇢23 = (2|S23| + 1)/n� 1;
#of challenges =

�|S12|�1
K

��
n�|S12|
|S13|�K

�
;

if K 2 N & #of challenges � 0 then
p 1

2

h
1 + r1 arcsin ⇢13+r2 arcsin ⇢23

⇡/2+r1r2 arcsin ⇢12

i
;

d2 = Accuracy(p) or entropy(p);
for i = 1 to m do

�3
CC(�1,�2, r1, r2, |S12|, |S13|, |S23|, �3,1);

B(d2,�1,�2, r1, r2)
B(d2,�1,�2, r1, r2)

S
{�3}

else Ignore // Challenge does not exist

return B(d1,�1,�2, r1, r2), B(d2,�1,�2, r1, r2)

Algorithm 5: CBDS: Create Bin first bit Different
Sign: �1,1 6= �2,1

Input: Anchors �1,�2, responses r1 r2,
|S12|, |S13|, |S23| under �1,1 6= �2,1

Output: B(d,�1,�2, r1, r2) of size m

⇢12 = (2|S12| + 1)/n� 1;
begin

�3,1 = �1,1;
⇢13 = (2|S13|)/n� 1;
⇢23 = (2|S23| + 1)/n� 1;
#of challenges =

�|S12|
K

��
n�|S12|

|S13|�K�1

�
;

if K 2 N & #of challenges � 0 then
p 1

2

h
1 + r1 arcsin ⇢13+r2 arcsin ⇢23

⇡/2+r1r2 arcsin ⇢12

i
;

d1 = Accuracy(p) or entropy(p);
for i = 1 to m do

�3
CC(�1,�2, r1, r2, |S12|, |S13|, |S23|, �3,1);

B(d1,�1,�2, r1, r2)
B(d1,�1,�2, r1, r2)

S
{�3}

else Ignore // Challenge does not exist

begin
�3,1 = �2,1;
⇢13 = (2|S13| + 1)/n� 1;
⇢23 = (2|S23|)/n� 1;
#of challenges =

�|S12|
K

��
n�|S12|

|S23|�K�1

�
;

if K 2 N & #of challenges � 0 then
p 1

2

h
1 + r1 arcsin ⇢13+r2 arcsin ⇢23

⇡/2+r1r2 arcsin ⇢12

i
;

d2 = Accuracy(p) or entropy(p);
for i = 1 to m do

�3
CC(�1,�2, r1, r2, |S12|, |S13|, |S23|, �3,1);

B(d2,�1,�2, r1, r2)
B(d2,�1,�2, r1, r2)

S
{�3}

else Ignore // Challenge does not exist

return B(d1,�1,�2, r1, r2), B(d2,�1,�2, r1, r2)

