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Abstract. We introduce a column elimination procedure for the ca-
pacitated vehicle routing problem. Our procedure maintains a decision
diagram to represent a relaxation of the set of feasible routes, over which
we define a constrained network flow. The optimal solution corresponds
to a collection of paths in the decision diagram and yields a dual bound.
The column elimination process iteratively removes infeasible paths from
the diagram to strengthen the relaxation. The network flow model can be
solved as a linear program with a conventional solver or via a Lagrangian
relaxation. To solve the Lagrangian subproblem more efficiently, we im-
plement a special successive shortest paths algorithm. We introduce sev-
eral cutting planes to strengthen the dual bound, including a new type
of clique cut that exploits the structure of the decision diagram. We ex-
perimentally compare the bounds from column elimination with those
from column generation for capacitated vehicle routing problems.

1 Introduction

The capacitated vehicle routing problem (CVRP) can be stated as follows [29].
Given a set of locations each with a specified weight and a fleet of trucks each
with a specified capacity, the problem asks to design a route for each truck
such that each location is visited by a truck, for each truck the total weight
of its visited locations does not exceed the capacity, and the sum of the truck
route lengths is minimized. It is a central problem in logistics and has become
increasingly important over the last decade due to the rise of last-mile deliv-
ery applications. The CVRP is among the most studied NP-hard combinatorial
optimization problems and finding provably optimal solutions remains a chal-
lenge in practice. Current state-of-the-art exact methods can solve up to around
200 locations optimally within a reasonable of time, with branch-cut-and-price
(BCP) methods performing particularly well [T2I523124125].

BCP is an effective method for solving generic large-scale integer program-
ming models [7]. It relies on column generation to solve the linear programming
relaxation: working with a restricted set of variables (or columns), column gener-
ation iteratively adds new variables to the model until an optimal basis is found.
Despite its successes, column generation has some weaknesses. For example, it
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may take many iterations to converge to the optimal solution due to dual degen-
eracy of the intermediate solutions. Furthermore, branching decisions or cutting
planes that strengthen the relaxation may complicate the pricing problem that
finds new variables.

We study an alternative approach that does not rely on a pricing problem,
thereby avoiding the potential drawbacks of column generation mentioned above.
Instead of using a restricted set of columns, column elimination works with a re-
lazed set of columns, from which infeasible ones are iteratively eliminated. As the
total number of columns can be exponentially large, we use relaxed decision di-
agrams to compactly represent and manipulate the set of columns. This method
was first introduced for the graph coloring problem in [3II33J15], then applied to
the traveling salesperson problem with a drone [28/27], and later termed ‘column
elimination’ [32].

The main focus of this work is to develop strong dual bounds for the CVRP
using column elimination. As will be formalized later, column elimination and
column generation will produce the same dual bound if they work from the
same underlying route relaxation. Column elimination can potentially produce
stronger bounds than the initial route relaxation as it can remove infeasible
columns beyond those that are excluded by the initial route relaxation (cf. [26]).
Moreover, column elimination allows a more liberal use of cutting planes to
strengthen the relaxation. We show how existing cuts from the column gener-
ation literature can be expressed directly into the column elimination model,
while in addition the decision diagram representation of the columns permits us
to develop new cuts. The novel contributions include introducing cuts to column
elimination, developing an efficient solution method via a Lagrangian reformu-
lation, and showing how column elimination can produce bounds competitive
with state-of-the-art solvers for the CVRP.

The paper is organized as follows. In Section [2] we present the column formu-
lation of the CVRP. Section [3] describes the decision diagram-based constrained
network flow formulation. The column elimination procedure is presented in
Section [ Section [f] present our Lagrangian relaxation. In Section [6] we describe
how cutting planes can be added to strengthen the model. Section [7] presents a
reduced cost-based arc fixing procedure to reduce the model size. We conduct
experimental results in Section [§] and conclude in Section [9

2 Column Formulation for CVRP

We first give a formal definition of the CVRP [29]. Let G = (V, A) be a complete
directed graph with vertex set V' = {0,1,...,n} and arc set A = {(4,5) | 4,j €
V,i # j}. Vertex 0 represents the depot and vertices {1,...,n} represent the
locations to be visited. We will interchangeably use vertices and locations. Each
vertex i € V has a demand ¢; > 0 and each arc a € A has a length [, > 0. Let
K be the number of (homogeneous) vehicles, each with capacity Q. A route is a
sequence of vertices [v1, va,...,v] starting and ending at the depot with total
demand at most Q. The distance of a route is the sum of its arc lengths, i.e.,
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Zi:ll lv;,vi1)- The CVRP consists in finding K routes such that each vertex
except for the depot belongs to exactly one route and the sum of the route
distances is minimized.

The column formulation for the CVRP is based on the set R of all feasible
elementary routes [6]. We let d,. denote the distance of route r € R. We define an
n X |R| matrix M such that M;, =1 if vertex i € {1,2,...,n} belongs to route
r € R, and M;,. = 0 otherwise. That is, each column vector in M corresponds
to a route. Lastly, we define a binary decision variable z,. for each r € R. The
column formulation of the CVRP is:

min E d, T,

réeR
sty Myx, =1 Vie{1,2,...,n}
ré€R (1>
S = K
reR

Ty € {0, 1} Vr € R.

This model is also known as the set partitioning formulation. In practice the set
of routes R often has exponential size, which restricts the direct application of
the set partitioning model to very small instances. Branch-and-price [7] provides
a more scalable approach by using a column generation procedure to solve the
continuous linear programming relaxation of .

Column generation starts by solving the linear programming relaxation of
the set partitioning model defined on a (small) subset of variables, known as
the restricted master problem. Using the dual variables of the optimal solution
it then solves a pricing problem to find a new variable with a negative reduced
cost. This process continues until no more improving variables exist and the
restricted master has a provably optimal basis. To ensure integer feasibility,
column generation is embedded into a systematic search.

Solving the pricing problem for the CVRP is not straightforward, because
it corresponds to the NP-hard elementary shortest path problem with resource
constraints [I3]. It can be solved with dynamic programming, which is however
limited by the exponential state space size. A computationally efficient alterna-
tive is to relax the pricing problem to find a shortest path that is not necessarily
elementary, i.e., certain locations can be visited more than once [20]. Recent
examples include the g-route relaxation [I2] and the ng-route relaxation [5]. The
linear programming model from route relaxations can be further strengthened
by adding cutting planes to the restricted master problem [23].

3 Decision Diagram Formulation for CVRP

The key ingredient of the column elimination procedure is to compactly represent
the set of routes R as a decision diagram. The CVRP can then be formulated
as a constrained integer network flow over the decision diagram following the
methodology in [3327].
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3.1 From Dynamic Programming to Decision Diagrams

For our purposes, a deciston diagram is a layered acyclic weighted directed graph
D = (N, A) with node set N and arc set A. Each arc a € A has an associated
cost ¢, and arc label ¢,. Graph D has a single root node r and a single terminal
node t. While there are different methods to compile decision diagrams, we
employ a generic approach that constructs a decision diagram from a dynamic
programming formulation [8]. It requires a state definition, an (implied) set of
states S, a set of labels £, a state transition function f : (S x £) — S and a
transition cost function g : (S x £) — R.

For the CVRP, we can use the dynamic programming formulation for the
elementary shortest path problem with resource constraints [13], which we will
refer to as DPgsprc. We define each state as a tuple (S,w,e) where S C V
represents the set of visited locations, w > 0 represents the accumulated ‘weight’,
and e € V represents the last visited location. The initial state is defined as
(2,0,0). The set of labels is £ = V. Given a state s = (S, w, e) and control (or
label) ¢ € V such that ¢ ¢ S and w + ¢; < @, we define the transition function
f(s,i) as

Fs,8) = (S Ui}, w+ g, )

with associated transition cost function g(s,i) = l;).

The decision diagram is defined similar to the state-transition graph of the
dynamic programming model: the nodes in A correspond to the states and the
arcs in A correspond to the transitions. That is, the root node r corresponds to
the initial state (&, 0,0). For each transition f(s1,4) = so from state s; to state
so we define an arc (u,v) € A where u corresponds to s; and v to sg. The arc
(u,v) has associated label £(, ) = i and arc cost c(,,,) = g(s,4). We define the
terminal node ¢ as the collection of all states (S, w,e) with |S| > 1 and e = 0,
i.e., t is the endpoint of all transitions that take label ¢ = 0 to finish the route
at the depot.

3.2 Dynamic Programming for Route Relaxations

The two most-used route relaxations for the CVRP in the column generation
literature are the g-route relaxation [12] and the ng-route relaxation [5]. Both
are based on the DPggprc dynamic programming formulation, but relax the set
of visited locations S.

The g-route relaxation maintains the last ¢ visited locations. The dynamic
program has state definition (SQ,w) where w is defined as above, and SQ =
[i1,...,14] is a sequence of locations. The initial state is ([-,..., -],0). Given a
state s = (9Q,w) and label ¢ € V such that i ¢ SQ and w + ¢; < @, we define
the transition function as

fSQ(Sai) = ([iQ, s 7i¢Z7i]aw + qi)

with associated transition cost function g5?(s,i) = l(i,i)- We denote the result-
ing dynamic programming model as DPsq, .
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For the ng-route relazation, we assume that a set IV; C V of size g exists for
each i € {1,...,n}. The set N; must include 7 and typically represents the g
locations closest to i. As state definition, we use (NG, w, e) where the ‘no-good’
set NG C V is a subset of visited locations, and w and e are as above. The initial
state is (2,0,0). Given a state s = (NG, w, e) and label i € V such that i ¢ NG
and w + ¢; < @, we define the transition function as

FH%(s,1) = (NG U{i}) N Niyw + gi, 1)

with associated transition cost function gN® (8,4) = l(c ;- We denote the resulting
dynamic programming model as DPxg,. Observe that DPsq, and DPng, forbid
cycles of length at most ¢ and g, respectively.

3.3 Exact and Relaxed Decision Diagrams

We next specify the concepts of exact and relaxed decision diagrams [8] in the
context of the CVRP. Given a decision diagram D, we let Pp denote the set of
arc-label specified -t paths in D. We slightly abuse notation and let ¢, denote
the sum of the arc costs of path p € Pp. Recall that d, represents the distance
of route r € R.

Definition 1. Let R be a set of routes for the CVRP and let D be a decision
diagram. We say that D is an exact diagram w.r.t. R if Pp = R and c, = d, for
all p € Pp, where 1 is the route representation of p. We say that D 1is a relaxed
diagram w.r.t. R if Pp O R and ¢, < d, for allp € Pp.

Theorem 1. The decision diagram derived from DPgsprc is exact w.r.t. R.
The decision diagrams derived from DPSQq and DP ng, are both relaxed w.r.t. R.

Proof. Because DPgsprc encodes elementary paths and represents all possible
feasible routes and their associated length, the resulting decision diagram is
exact. Both DPqu and DPng, encode a relaxation that contains elementary
paths, and therefore represent a superset of all possible feasible routes. Because
they both maintain the last visited location their cost functions are not relaxed,
ie., ¢, = d, for each path p and associate route r (which is not necessarily
elementary). Hence, DPgsq, and DPyg, yield a relaxed decision diagram. a

3.4 Constrained Network Flow Formulation

We next reformulate the set partitioning model as a constrained integer
network flow model over a given decision diagram D = (A, A). We introduce
a ‘flow’ variable y, > 0 for each a € A. The set of incoming arcs of a node u
is denoted by 6~ (u). Likewise 67 (u) denotes the set of outgoing arcs of u. We
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denote the set of arcs in A with label i by A’. The model is as follows:

F(D): min anya (2)

acA
s.t. Z Ya — Z Yo =0 Yu e N\ {r,t} (3)
a€d— (u) a€dt(u)
> ya=1 Viev\{0}  (4)
ac A
Z Ya = K (5)
a€dt(r)
Ya € {0,1} Vac A (6)

The objective function minimizes the sum of all arc costs. The ‘flow con-
servation’ constraints ensure that the solution is a collection of labeled r-t
paths. Constraints (4]) ensure that all locations are visited once. Constraint (|5))
enforces that exactly K units of flow originate from r. The binary constraints
complete the formulation.

Theorem 2. Let D be an exact decision diagram w.r.t. the set of routes R.
Model F(D) is an exact formulation of the CVRP.

The proof relies on the fact that the dynamic programming model represents all
possible routes, that each solution of the network flow model consists of exactly
K r-t paths, and that each r-t path corresponds to a feasible route.

Corollary 1. Let D be a relaxed decision diagram w.r.t. the set of routes R.
Model F (D) yields a dual bound for the CVRP.

In the remainder of this paper, we will use the continuous linear programming re-
laxation of model F (D), referred to as LP(F (D)), which is obtained by replacing
the integrality constraints @ by 0 <y, <1 for all a € A.

4 Column Elimination Procedure

We present a schematic representation of column elimination in Figure [1} Start-
ing with an initial relaxed decision diagram D, the column elimination procedure
iteratively 1) solves the constrained network flow model F (D), 2) decomposes
the solution into paths (routes), 3) identifies infeasible paths and removes them
from D, and repeats. The process terminates when no infeasible paths are de-
tected in which case F(D) is solved to optimality. It can also terminate earlier
when the dual bound matches a given (or heuristically generated) primal bound,
or when a different stopping criterion such as a time or memory limit is met. The
procedure can utilize either the integer model F'(D) or its continuous relaxation
LP(F(D)); using LP(F (D)) would solve the continuous linear programming re-
laxation of , but could be embedded in branch-and-bound to solve the full
problem.
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Initial relaxed D Constrained solution Path
decision diagram D network flow F(D) decomposition
refined D path(s)

Conflict | yes L Return
refinement bound

Fig. 1. Overview of the column elimination framework, adapted from [27].

Locations V = {0,1,2,3,4} lij ‘ 0 1 2 3 4
Depot = 0 0 5 10 5 10
rrandh 15 0 10 10 15

Demands g1 = g2 =¢qgs =1, q1 =2
Number of trucks K = 2
Vehicle capacity Q@ = 3

0

2110 10 0 10 15
315 10 10 0 10
4110 15 15 10 0O

Fig. 2. Input data for the CVRP instance in Example [T}

Any (existing) route relaxation for the CVRP can be applied to construct the
initial relaxed decision diagram. Recall that model DPgspgrc has state definition
(S, w,e), and each of these three elements can potentially be relaxed to define
a relaxed decision diagram. The g-route and ng-route relaxations only relax the
elementarity constraint, i.e., the set S. This means that conflicts will only come
in the form of repeated labels; each path respects the truck capacity constraint
and the route costs are exact. For a decision diagram D derived from such a
relaxation, F'(D) is an exact formulation for the CVRP. In practice, we prefer
using a relaxation that is relatively small and provides a ‘good’ starting point
in terms of bound quality from LP(F(D)). In our experiments, we therefore
use DPqu with ¢ = 1 and DPng, with g = 2 to initialize the relaxed decision
diagram, with DPng, performing best.

Given the initial relaxed decision diagram D, we solve the associated model
LP(F (D)), apply a path decomposition of the solution, and inspect the paths
for any conflicts. For our choice of route relaxations, the only conflicts arise from
repetition of locations along a path. To remove a conflict, we follow the (partial)
path elimination process outlined in [33]: it essentially separates the path by
introducing a new node at each layer, and removing the arc associated with the
repeated label. During this process, we will update the state information of the
nodes along the separated path. We illustrate conflict separation in the next
example, and refer to [33] for more details.

Ezxample 1. Consider the CVRP instance with the problem data given in Fig-
ure [2] The integer optimal solution uses routes [0,1,2,0] and [0,3,4,0] with
total distance 50. The relaxed decision diagram based on DPsgq, with ¢ = 1 is
presented in Figure a). Each node in the diagram is associated with its S@Q
state, i.e., the last visited location. The weights are omitted from the states; in-
stead nodes with the same cumulative weight are represented in the same layer.
For clarity, we also omit the arc labels and arc costs. Arcs into ¢ correspond
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w =0
w =1
w =2
w =3
a. Relaxed decision diagram from DPsq, . b. Refined decision diagram.

Fig. 3. Decision diagrams for the CVRP instance in Example|l] Figure (a) depicts the
relaxed decision diagram obtained from the g-route relaxation. The optimal solution
to model LP(F (D)) is indicated by thick blue arcs. Figure (b) represents the refined
decision diagram after eliminating the partial path [1,2,1] that contains a conflict.

to terminating a route and are dashed. The optimal solution to the linear pro-
gramming relaxation of F(D) yields dual bound 48.333 and uses the following
arc-label specified paths: path (1,2, 1,0) with flow value %, path (1,2,3,0) with

flow value %, path (4,2,0) with flow value %, and path (4, 3,0) with flow value %

The first path contains a conflict: label 1 is repeated. We separate this conflict
by rerouting the path to a new node with state SQ = [1,2] memorizing location
1 in addition to 2. As a result, we eliminate the arc with label 1 from the new
state. The refined decision diagram is depicted in Figure (b) It yields a dual
bound of value 50, which is optimal.

5 Lagrangian Relaxation

Because the decision diagrams can grow large in size, solving the constrained net-
work flow model can become the computational bottleneck of our method, even
when we consider the continuous linear programming relaxation. To potentially
solve the model more efficiently, we consider solving a Lagrangian relaxation,
similar to [2827], that has optimal bound equivalent to LP(F(D)). We obtain
our Lagrangian relaxation of the constrained network flow model by dualizing
constraints that require that each location is visited once. We introduce a
Lagrangian multiplier \; for each ¢ € V' (Ag = 0 is only introduced for notational
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ease), and define the Lagrangian relaxation as

L(D,)\): min anya+ Z Ai(1— Z Ya) (7)

acA 1€V \{0} ac Al
s.t. Z Ya — Z Yo =0 Vu e N\ {r,t} (8)
a€d~ (u) a€dt(u)
> va=K (9)
a€dt(r)
Ya € {0,1} Vae A.  (10)

The objective function can be rewritten as

min Z CalYa — Z )\1 Z Ya + Z )\1 =

acA i€eV\{0} acAl 1€V \{0}
min Z(C“ — e, )Ya + Z Ai.
acA i€V\{0}

As a consequence, for fixed A, the Lagrangian relaxation can be solved as a
(continuous) minimum-cost network flow problem over the decision diagram,
using ¢, — Ag, as the cost for arc a € A, yielding an integer optimal solution.
In fact, given constraints @D and the unit capacity constraints on the arcs, each
solution consists of K arc-disjoint r-t paths. By applying the successive shortest
paths (SSP) algorithm [I] to solve L(D, A) we obtain the following result:

Lemma 1. Given a decision diagram D = (N, A) and fized \, the Lagrangian
relazation L(D,\) can be solved in O(K (|JN]log(|N]) + |A])) time.

We also implemented a dedicated algorithm, based on the ‘minimum update
Successive Shortest Paths’ (muSSP) algorithm that was developed for specific
directed acyclic graphs in the content of multi-object tracking in computer vi-
sion [34]. Although graphs with a slightly different structure are considered
in [34], the algorithm generalizes to our case: weighted directed acyclic graphs
with one source (the root), one sink (the terminal), and unit capacities. The
muSSP algorithm leverages the fact that most updates to the shortest path tree
through Dijkstra’s algorithm are not useful, and it aims instead to make minimal
updates to the shortest path tree. While it has the same theoretical worst-case
time complexity as the SSP, in practice the muSSP algorithm can be an order
of magnitude more efficient than the standard SSP algorithm.

The Lagrangian ‘dual’ subproblem maxy L(D, A) finds the multipliers that
provide the best Lagrangian bound. Because the objective in L(D, \) is concave
and piecewise linear, the dual can be solved via a subgradient method. At each
iteration k of the subgradient method, one choice for a subgradient that we will
use is v* such that vF = (1 — 3, 4 ¥¥) where y” is the solution to L(D, A¥).
Then we update the dual multipliers for the next iteration as \¥+1 = \f 4+ af~F
where we use an estimated Polyak step size o* [10]. Note that the initial choice
of multipliers A’ can be important for solving the dual quickly [9].
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We remark that the optimal Lagrangian dual bound is equal to the optimal
linear programming bound from model LP(F(D)), when both apply the same
decision diagram. Moreover, when the column elimination process uses model
LP(F(D))or L(D, ), its bound at termination is equal to the column generation
bound of the set partitioning model 7 assuming that all methods use the same
underlying dynamic programming formulation, as was observed in [27]. That is,
the decision diagram applies the same dynamic programming formulation in its
construction as column generation uses in the pricing problem.

Lastly, we note that in each iteration of the subgradient method for solving
the Lagrangian dual the solution can potentially be used to identify and separate
conflicts. Similar to [28], we separate these conflicts in batches of size 100, after
which we restart the Lagrangian process.

6 Cutting Planes

Results from the literature show that the LP relaxation of the set partition-
ing formulation for CVRP, solved via column generation, frequently has a 1-
4% optimality gap. To further strengthen the LP relaxation several classes of
valid inequalities can be added. According to the literature, the most effec-
tive are rounded capacity cuts, strengthened comb inequalities, and subset-row
cuts [I8IT2123]. The first two types of cuts are called robust in the column gen-
eration literature because they do not affect the runtime of the pricing problem,
while the subset-row cuts are not robust. We next show how rounded capacity
cuts and strengthened comb inequalities can be implemented in our decision
diagram-based model LP(F (D)), as well as a generalization of subset-row cuts
as a type of clique cut.

Rounded capacity cuts ensure that a subset of locations S is visited by a
sufficient number of trucks to meet its aggregate demand. In column generation
these cuts can be added to model so long as the underlying routes are stored
for each r € R. Let pS be the number of times route r uses an edge between S

and V\S, and let k(S) = fé > ics . The cut added to the restricted master

problem is Y . pYa, > 2k(S), and the associated dual variable is added to
controls in the dynamic program for the pricing problem that correspond to a
route traversing an edge between S and V'\S. To add this cut in column elimina-
tion, let A% be the set of arcs a € A such that £(a) € S and the node u that is the
head of a has state with last visited location i € V\S, or the other way around
with ¢(a) € V\S and i € S. A rounded capacity cut for set S can be modeled by
adding to LP(F(D)) the following inequality: > . 4s¥a > 2k(S). Note that
when solving LP(F(D)) using the Lagrangean formulation, this constraint can
be dualized.

Strengthened comb inequalities are a generalization of comb inequalities that
have been proven highly useful for solving the Traveling Salesman Problem [17].
A strengthened comb inequality is defined by a handle set of locations H and
teeth sets of locations Ty for ¢t € {1,...,T}. Let S(H,Ty,...,Tr) be the appro-
priately defined right hand side for the inequality [I7]. In column generation,
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this cut also requires storing the underlying routes and can be added to the re-
stricted master problem as Y _ppH . + 3, cr D cnpita, > S(H, Ty, ..., Tr).
The associated dual variable is then added to controls in the dynamic pro-
gram for the pricing problem that correspond to traversing edges with one
endpoint in H or one of T; and the other endpoint not in that set. In col-
umn elimination, a strengthened comb inequality with handle H and teeth T
can be modeled by adding to LP(F(D)) the following inequality: ), . 4u Ya +
> ote(1,.. T} 2oaeam: Yo = S(H, Ty, ..., Tr). This constraint can also be dualized
when using the Lagrangean formulation to solve LP(F(D)).

Subset row cuts are non-robust cuts that have been successfully applied to
the CVRP. In particular, the limited memory subset row cuts are an important
part of the success of the column generation method in [23]. Since the decision
diagram representation does not have a matrix view of the set of routes, subset
row cuts do not directly translate to the LP(F (D)) model. However, they can
be generalized by a class of clique cuts on a specific conflict graph [3]. These
cuts are non-robust and have been used in [4] but not until the problem size has
been reduced. The structure of our decision diagram allows column elimination
to implement a specific version of these cuts. Let D = (N, A) be a decision
diagram as defined above. The conflict graph G¢ = (N, A) is defined on node
set V. Its arc set A® contains all arcs (4, j) such that 1) the set of visited locations
in the states associated to nodes i and j have a non-empty intersection, and 2)
nodes i and j never appear on the same directed path in D. A clique cut states
that the flow through nodes in a clique of G¢ must be at most 1:

Theorem 3. Let C be a clique in the conflict graph G€ derived from a decision
diagram D. The associated clique cut ), . Zaeg,m Yo < 1 is a valid inequality
for model LP(F(D)).

Proof. By construction of G, each pair of nodes i, j € C has at least one common
visited location (say u) in their associate states, and there is no directed path
between i to j in D. Suppose that for an integral optimal solution we have
Zaeé—(i)ué—(j) Yo > 1. This means that location u is visited twice, which cannot
occur in an optimal solution: a contradiction. a

Given G¢ and a set of cliques in G¢, clique cuts can be easily separated for
LP(F (D)) by evaluating whether a given fractional solution violates a cut. Be-
cause a solution to the Lagrangian model L(D, \) is integral, we cannot directly
use it to separate any cuts. In [2] it is shown that a weighted average of the
subproblem solutions converges to an optimal primal solution and we apply this
method to identify valid inequalities.

7 Reduced Cost-Based Arc Fixing

Variable fixing based on reduced costs is often applied to reduce the problem
size of integer programs [21], including the CVRP [I423]. It uses a feasible dual
solution and suitably small optimality gap to set the value of a primal variable
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equal to 0 [IJIIIT6]. We develop an arc fixing method for the LP(F (D)) model,
using similar arguments as [23].

Let D = (N, A) be a decision diagram that is exact w.r.t some set of routes
R’ C R. Consider a feasible dual solution (v,x) to the LP relaxation of the
set partitioning model over R, where v correspond to the ‘set partitioning’
constraints and & to the ‘number of trucks’ constraint. For each arc a € A we
define a ‘reduced cost distance’ rc(a) = I, — vy, . For each node u € N, we define
sp¥ as the shortest 7-u path in D with respect to the reduced cost distances,
and similarly define sp! to be the shortest u-t path in D.

Theorem 4. Consider arc a = (v1,v2) € A. Let v(v,k) be the dual solution
value, and let UB an upper bound on . Ifv(v, k)+sph, +spl, +rc(a)—k > UB,
then arc a can be fized to have flow 0 in F(D) and accordingly in LP(F(D)).

Proof. Given (v, k), each route 7 € R’ in the LP relaxation of (1)) has reduced cost
re(F) = dr — Y1, Mi7v; — k. Each T corresponds to a path p = {a1,...,a;} in D,
so r¢(T) can be decomposed into re(7) = Eizl rc(a;) — k. For all p that contain
arc a, let p’ be the path that corresponds to the route r’ with lowest reduced cost.
Denote rc(r’) = sp}, + spl, +rc(a) — k. Now for sake of contradiction assume an
optimal solution to F/(D) has y, = 1. Then some path p” in D that contains arc a
will have flow of 1, so we can consider this as some x,» = 1 in an optimal solution
to (1). To construct the remainder of an optimal solution to the LP relaxation
of (1) we can solve this LP relaxation with constraints for locations in 7" removed
and only requiring K —1 trucks. Because (v, k) remains feasible to the dual of this
updated problem and has value v(v, k) — >\ | M;»v; — K, it gives a valid lower
bound on that contradicts UB, namely v(v, k) — > i | Mynv; — k + dpr =
v(v, k) +re(r”) > v(v, k) + re(r’) > v(v, k) + spl, + spl, +rc(a) —k >UB. O

Note that while Theorem 4| relies on the set partitioning model to build the
reduced cost argument, we can use the optimal dual solution to LP(F(D)) in
the application of the theorem. When solving LP(F (D)) with a standard linear
programming solver, we can use the feasible dual from the previous iteration —
which remains feasible even with cuts and separations — to fix arcs. One impor-
tant note is that these fixed arcs are reintroduced if separation happens before
the next iteration, as the change in the decision diagram structure may disrupt
previous arc fixing arguments. When solving LP(F (D)) via its Lagrangian re-
laxation L(D,)\), we must ensure that we work with a feasible dual solution. In
addition, we include a dual variable for constraint and set it to its maximum
value while ensuring dual feasibility.

8 Experimental Results

We use the benchmark set of CVRP instances from http://vrp.atd-lab.
inf.puc-rio.br/index.php/en/, including the new challenge set of instances
from [30]. All experiments are run on an Intel(R) Xeon(R) Gold 6248R CPU
@ 3.00GHz. We use CPLEX version 22.1 [I9] as a linear programming solver
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# instances
# instances

— CELP_CUT
»»»»» CELP
--- CELAG_CUT
—-- CELAG

0
100 1000 1800 3600 8% 10%12%14%16%18%20% 100 1000 1800 3600 8% 10%12%14%16%18%20%
time (s) | optimality gap (%) time (s) | optimality gap (%)

a. Baseline CE vs. CG b. Adding Cuts to CE

Fig. 4. a) Comparing column generation over DPg, with column elimination starting
from DPg, and using different methods to solve LP(F (D)) without any added cuts.
b) Performance plot for adding cuts to CELP and CELAG.

and change [4] to > to help find an initial feasible solution. We use the pack-
age CVRPSEP [I8] to heuristically find rounded capacity cuts and strengthened
comb inequalities when given a fractional primal solution. At each iteration we
add at most 10 robust capacity cuts and 5 strengthened comb inequalities, using
the most violated ones possible. We use Cliquer [22] to heuristically find large
weighted cliques in the conflict graph used to derive clique cuts.

Comparing Column Elimination and Column Generation. We compare
column generation over DPg, with column elimination starting from the DPg,
route relaxation and eliminating cycles of size 2. Doing so, the final bounds are
the same, which allows us to compare how quickly column generation and col-
umn elimination reach the optimal bound. We implement a vanilla version of
column generation that starts with a small set of greedily chosen routes and
solves the pricing problem as shortest paths through the pre-compiled decision
diagram for DPg,. We compare column generation not including and including
time to compile the decision diagram (CG-a, CG-b), column elimination using
CPLEX (CELP), and column elimination using a subgradient method over the
Lagrangian dual (CELAG). We run each method for 3,600 seconds over bench-
mark sets A, B, E, F, M, P. We remove instances when the decision diagram
for DPg, does not finish compiling. Arc fixing uses the best known solution as
an upper bound and is used in CELP but not in CELAG. Lower bounds for
column generation are computed before termination as in [35]. Figure [da is a
performance plot of the number of instances solved to within a 5% optimality
gap in a given amount of time, extended by the number of instances solved to
larger optimality gaps. Over the given relaxation, it is evident that column elim-
ination with the different methods can work appropriately and be competitive
with column generation.

Evaluating the Impact of Cuts. We compare solving column elimination
using CPLEX with and without cuts (CELP_CUT, CELP) and using the La-
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— CELP_CUT

804 vt CELP_NORCC
-=- CELP_NOCOMB
== CELP_NOCLIQUE

— CELPCUT
804 CELP_CUT_NOFIX [

# instances
# instances

100 1000 1800 3600 6% 10% 14% 18% 100 1000 1800 3600 6% 10% 14% 18%
time (s) | optimality gap (%) time (s) | optimality gap (%)

a. Evaluating Individual Cuts b. Evaluating Arc Fixing

Fig. 5. a) Evaluating the performance of individual cuts on CELP_CUT. b) Perfor-
mance plot of CELP _CUT with and without arc fixing

grangian method with and without cuts (CELAG_CUT, CELAG). Figure filb
is a performance plot for solving the instances up to 5% as in the last experi-
ment. Figure @b shows how cuts greatly improve column elimination when using
CPLEX as the LP solver, and benefit when solving the Lagrangian reformulation
but not as much.

We then compare the performance of CELP _CUT removing one class of
cuts at a time: without the rounded capacity cuts (CELP_NORCC), without
the strengthened comb inequalities (CELP _NOCOMB), and without the clique
inequalities (CELP _NOCLIQUE). Figure a is a performance plot of the num-
ber of instances solved to within a 1% optimality gap. Rounded capacity cuts
provide the most benefit, the overhead of strengthened comb inequalities some-
times outweigh their benefit but not entirely if we more closely examine the
bounds achieved for each instance, and clique inequalities can provide some ben-
efit later in the method when it is able to be distinguished from separations and
other cuts.

Evaluating the Impact of Arc Fixing. We consider the impact of arc
fixing by removing the feature from CELP CUT to get CELP _CUT NOFIX.
Figure b is a performance plot using 1% optimality gap. Arc fixing speeds up
column elimination to find stronger bounds in less time.

Evaluating the Impact of muSSP. We evaluate the impact of using the
muSSP algorithm to solve the subproblem in CELAG by removing it in CELAG _ -
NOMUSSP. The performance plot using 5% optimality gap is for 64 large X
instances and shows that there is a significant speedup. We chose to use the X
class here because the speedup is more pronounced on large instances.

Comparison to State-of-the-Art. Figure[6]b compares the state-of-the-art
BCP method’s root node lower bounds (Pecin) with the best column elimination
method settings that we chose through experimentation (CE). For each class of
problems the table gives the number of problems in the class (NP) and the
average optimality gap found at the root node over all instances. Pecin takes



Column Elimination for Capacitated Vehicle Routing Problems 15

60 .. Eit:ginomussv P
e Class NP Pecin Gap (%) CE Gap (%)
50
A 22 0.36 0.66
" B 20 0.14 0.61
E30 E-M 12 0.33 2.60
* 0 F 3 0.00 16.41
P 24 0.42 0.85
10 X 100 0.44 2.13
0
100 1000 1800 3600 8% 10%12%14%16%18%20%
time (s) | optimality gap (%)
a. Evaluating muSSP for CELAG b. Comparing root node bounds

Fig.6. (a) A comparison of column elimination using the Lagrangean reformulation
with and without the muSSP algorithm. (b) Comparing the root node lower bounds
from Pecin et al. [23] (Pecin) and the lower bounds from column elimination (CE);
both methods include cuts.

less than 3600 seconds to compute its bounds for all instances except the X
class where it can take several hours. CE gaps are computed based on 3600
second runs for all classes except M, F, and X which are given 7200 seconds.
The decision diagram did not compile for 12 X instances, so we leave these out
of the analysis. One F instance with large capacity resulted in a large diagram
and 27% gap that can be reduced with more runtime. The better of the CELAG
and CELP results is used; most small instances use CELP while large instances
like almost all of the X class use CELAG. We also remove two E class instances
with unconventional demand formatting.

9 Conclusion

We introduced a column elimination procedure for the capacitated vehicle rout-
ing problem (CVRP). Our methods works with a relaxed set of routes that are
compactly represented in a decision diagram, and from which infeasible routes
are iterative removed. We showed how we can use existing route relaxations for
the CVRP, such as the g-route and ng-route relaxation, to compile good initial
relaxed decision diagrams. When the decision diagram is exact, and only con-
tains all feasible routes, we showed that a solution to the CVRP can be found by
solving a constrained network flow problem over the diagram. When the diagram
is relaxed, this model yields a dual bound. To strengthen the linear programming
relaxation of our model we added valid inequalities; in particular, we showed how
a class of clique cuts can be derived from the structure of the diagram. To solve
the model more efficiently, we considered solving a Lagrangian dual formulation
for which we implemented a specialized successive shortest paths algorithm. In
our experimental results, we demonstrated that column elimination is a viable
alternative to column generation for the CVRP, although the best known dual
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bounds from the literature, obtained by column generation with cutting planes,
are generally stronger.
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