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Unfamiliar accents can cause word recognition challenges, particularly in noisy environments, but few studies
have incorporated quantitative pronunciation distance metrics to explain intelligibility differences across accents.
To address this gap, intelligibility was measured for 18 talkers -- two from each of three first-language, one bilin-
gual, and five second-language accents -- in quiet and two noise conditions. The relations between two edit dis-
tance metrics, which quantify phonetic differences from a reference accent, and intelligibility scores were
assessed. Intelligibility was quantified through both fuzzy string matching and percent words correct. Both edit dis-

Keywords:
Speech perception tance metrics were significantly related to intelligibility scores; a heuristic edit distance metric was the best predic-
Intelligibility tor of intelligibility for both scoring methods. Further, there were stronger effects of edit distance as the listening
L2 accents condition increased in difficulty. Talker accent also contributed substantially to intelligibility models, but relations
L1 accents

between accent and edit distance did not consistently pattern for the two talkers representing each accent.
Frequency of production differences in vowels and consonants was negatively correlated with intelligibility, partic-
ularly for consonants. Together, these results suggest that significant amounts of variability in intelligibility across
accents can be predicted by phonetic differences from the listener’'s home accent. However, talker- and accent-
specific pronunciation features, including suprasegmental characteristics, must be quantified to fully explain intel-
ligibility across talkers and listening conditions.

© 2024 The Authors. Published by Elsevier Ltd.

1. Introduction reverberation (Clopper & Bradlow, 2008; Munro, 1998;
Rogers et al., 2004; Wilson & Spaulding, 2010). Although
poorer accuracy has been observed for both unfamiliar L1

and L2 varieties, some research suggests that the pronuncia-

Although there is substantial variability across talkers in the
way phonemes and words are realized, listeners are generally

able to recover the intended linguistic messages (Heald &
Nusbaum, 2014; Kleinschmidt & Jaeger, 2015;
Pierrehumbert, 2016). However, some sources of variability
can lead to decrements in intelligibility. One factor that can lead
to substantial intelligibility challenges is the presence of an
unfamiliar accent, whether it be from regional differences
across talkers communicating in their first language (L1) or
accent differences stemming from L1 influences when commu-
nicating in a second language (L2) (Adank et al., 2009; Munro
& Derwing, 1995). These communication challenges can be
particularly acute when an unfamiliar accent is combined with
environmental degradation, such as background noise or
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tion patterns found in unfamiliar L2 accents are more challeng-
ing to overcome than those in unfamiliar L1 varieties (Adank
et al., 2009; Bent et al., 2016) with some research even sug-
gesting that listeners recruit different processing mechanisms
during the perception of these two accent types (Floccia
et al., 2006; Goslin et al., 2012). However, not all studies sup-
port this pattern (Bent et al., 2021; Levy et al., 2019) and other
research suggests that disruptions to speech processing are
similar across less familiar L1 and L2 accents (Floccia et al.,
2009). Furthermore, it has long been known that not all L2
speakers, even those with strong L2 accents, are difficult to
understand (Munro & Derwing, 1999).

One of the challenges for reconciling these results is that
many intelligibility studies do not include precise characteriza-
tions of their stimuli. That is, most studies, including our own,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.wocn.2024.101357&domain=pdf
https://doi.org/10.1016/j.wocn.2024.101357
mailto:tbent@iu.edu
https://doi.org/10.1016/j.wocn.2024.101357
http://www.sciencedirect.com/science/journal/00954470
http://www.elsevier.com/locate/Phonetics

2 T. Bent et al./Journal of Phonetics 107 (2024) 101357

that test perception of unfamiliar L1 and L2 accents simply
state that the variety is different from the local norm but do
not quantify the extent to which the varieties differ from one
another (Baese-Berk et al., 2023). Studies may provide gen-
eral descriptions of how the included accents differ from the
local standard (e.g., Bent et al., 2016; Clopper & Bradlow,
2008) but do not typically measure the acoustic—phonetic char-
acteristics of their specific stimuli nor integrate these types of
measures into statistical modeling of intelligibility.

Part of the challenge to incorporating pronunciation dis-
tance metrics into intelligibility studies is that there is no con-
sensus in the field about how distance from the local variety
should be measured. Researchers have taken a range of dif-
ferent approaches to determining what specific acoustic—pho-
netic characteristics are leading to word recognition
decrements across talkers and accents. Central approaches
to this problem can be classified into three broad categories,
which we describe in more detail below: the transposing
approach, the computational acoustic approach, and the pho-
netic distance approach.

1.1. Transposing approaches

One approach to determining broadly which aspect of L2
accents are causing intelligibility decrements is to synthetically
transpose specific dimensions of speech between L1 and L2
speakers. With this approach, researchers can determine
how shifting characteristics, such as intonation or rhythm, to
make them more or less L1-like impacts intelligibility (Sereno
et al., 2016; Tajima et al., 1997; Winters & O’Brien, 2013).
The results of these studies have been inconsistent. Changing
the rhythmic properties of L2 speech to be more L1-like was
shown to increase intelligibility in one study (Tajima et al,
1997) while it decreased intelligibility in another (Winters &
O’Brien, 2013). Two studies found that changing intonation
patterns to be more L1-like decreased intelligibility (Sereno
et al., 2016; Winters & O’Brien, 2013). Thus, synthetic manip-
ulations tend to have negative effects on intelligibility relative to
the talker’s original productions making it difficult to determine
how proximity to L1 norms in these features impacts intelligibil-
ity. The manipulations may have introduced unnatural qualities
to the speech demonstrating the limitations of this approach.
Furthermore, they do not allow for understanding how interac-
tions among multiple phonetic differences or between segmen-
tal and suprasegmental features may impact intelligibility for
naturally produced speech.

1.2. Computational acoustic approaches

A second class of approaches may be described as compu-
tational acoustic approaches. In these designs, researchers
have used computational techniques to automatically measure
acoustic distance between a talker’s and listener’s utterances
or between a representation of the local L1 accent and L2-
accented stimuli and related these measures to human intelli-
gibility scores or accent strength judgements. One example of
this approach is from Pinet et al. (2011) who showed that intel-
ligibility could be predicted by the acoustic similarity between a
listener’s speech patterns and an average of four talkers from
the accents in their study that included both L2 (higher and

lower proficiency French-accented talkers) and non-local L1
(Irish English) accents. The acoustic measure they employed,
ACCDIST (Huckvale, 2007), automatically compares the
acoustic similarity of recordings. Although ACCDIST has pri-
marily been employed for automatic accent classification, it
showed promise in predicting intelligibility. One limitation of this
specific metric is that it only incorporates vowels. Furthermore,
at least as employed by Pinet et al. (2011), the method
required making recordings of each listener in the study and
comparing these recordings to the speech stimuli used in the
intelligibility tests. It seems possible that the approach could
be adapted to make comparisons with a set of reference
speakers representing the local norm, thus making it more
generalizable and increasing feasibility across larger partici-
pant samples. However, as far as we are aware, this modifica-
tion in the approach has not yet been applied to studies of
intelligibility.

More recent acoustic distance measures have shown sub-
stantial promise in predicting human L2 accent strength judge-
ments across a large set of L2 talkers (Bartelds et al., 2020,
2022; Lind-Combs et al.,, 2023). Two examples of this
approach used dynamic time warping with various speech rep-
resentations as input to quantify distances between target and
reference acoustic signals (Bartelds et al., 2020; 2022). These
approaches have some of the advantages of ACCDIST but
incorporate all segments (i.e., vowels and consonants). In
Bartelds et al. (2020), their distance metric based on Mel Fre-
quency Cepstral Coefficients (MFCCs) was related to human
accent strength ratings but was not as strong of a predictor
as an edit distance approach (see below). Bartelds et al.
(2022) found that one of the deep-learning signal-based mod-
els, which uses Transformers to extract the acoustic features,
was the best predictor of accent strength in comparison to
approaches utilizing edit distance or MFCC-based acoustic
features. These acoustic approaches have not yet been
applied to modeling intelligibility across accents, although
there have been a range of related projects modeling speech
intelligibility in different types of maskers (for a recent example,
see Martinez et al. (2022)). There are many benefits to using
these types of signal-based models; however, Bartelds et al.
(2022) noted that they are limited by the availability of large
training sets in the specific language, as their assessments
of Norwegian were less successful due to the lack of training
data compared to English (see San et al. (2024) for a recent
approach that improves similar models for low resourced lan-
guages). These approaches demonstrate the ability to predict
L2 accent strength. Future studies should also evaluate
whether they can predict intelligibility across a range of L1
and L2 accent varieties.

The literature reviewed in this section is not an exhaustive
description of the computational approaches to measuring pro-
nunciation distance. It should also be noted that there are
many other automated tools that have been developed over
the past two decades for a range of purposes. For example,
Witt and Young (2000) developed an automated “Goodness
of Pronunciation” measure that can approximate human per-
formance in determining whether L2 speakers have produced
phones in error. This tool was developed and has primarily
been applied to language learning contexts. There are also
hybrid acoustic approaches that use IPA transcription to inform



T. Bent et al./Journal of Phonetics 107 (2024) 101357 3

acoustic modeling. For example, Pongkittiphan et al. (2015)
found that an approach that incorporated both linguistic
features of a word (e.g., syllable structure) as well as phonetic
pronunciation distance derived from dynamic time warping
informed by IPA transcription could predict if a Japanese-
accented English production had very low (<10%) or
moderately low (10-30%) intelligibility for L1 American English
listeners. This hybrid approach also could predict accent
strength ratings using the same dataset as in Bartelds et al.
(2020; 2022) (Shi et al., 2015).

1.3. Phonetic distance approaches

A final approach, and the one we incorporate here, is to use
measures of phonetic difference between a reference accent
or set of stimuli and the target accents. An advantage of these
approaches is that they use linguistically motivated units (i.e.,
phonemes) to make comparisons across talkers. Early
attempts at relating intelligibility scores to the number of pho-
netic errors for L2 speakers did not show significant associa-
tions (Munro & Derwing, 1999). However, there is some
evidence that this relation may hold for speakers with less
advanced proficiency, novice to intermediate learners
(Nagels & Huensch, 2020). More recently, Kang et al. (2020)
investigated how a range of phonological features impacted
comprehensibility and intelligibility for talkers representing sev-
eral different accent types, including L1 and L2 varieties. The
speaker’s productions were evaluated using a phonetic mea-
sure that calculated all phonetic divergences from standard
American English divided by the number of syllables produced.
This phonetic measure predicted intelligibility scores and was
a stronger predictor than their prosodic and fluency measures.
This study suggests that phonetic deviation measures hold
substantial promise in predicting intelligibility differences
across L2 and L1 accents. The study was limited by including
very few stimulus items per talker (four anomalous sentences
each), only using L2 listeners for the statistical modeling, and
testing in ideal listening conditions (i.e., quiet). These deci-
sions were primarily driven by the motivation for this specific
work which focused on applied questions regarding the appro-
priate speaker parameters for evaluations of second language
learners' abilities (e.g., in TOEFL-like tests). Similarly, Nagels
et al. (2023) investigated how a range of phonetic variables
known to pose challenges for L1 English speakers acquiring
Spanish as an L2 related to intelligibility, comprehensibility rat-
ings, and foreign accent strength ratings. Again, the study only
included quiet listening conditions and had two utterances per
talker, which the authors note as a substantial limitation. Fur-
ther, the intelligibility scores were highly skewed towards per-
fect intelligibility scores and therefore the authors could not
compute the relation between their variables and a range of
intelligibility scores but rather used a binary measure of intelli-
gibility. This analysis showed several significant relations (i.e.,
with rising intonation as well as one consonant- and one vowel-
based variable), but these only explained about 1-3% of the
variance.

Other studies have incorporated edit-distance metrics into
investigations of L2 accent strength ratings (Bartelds et al.,
2020, 2022; Lind-Combs et al., 2023; Wieling, Bloem, et al.,
2014), intelligibility across accents (Bent et al., 2021; Levy

et al., 2019), mutual intelligibility across related languages
(e.g., Beijering et al., 2008; Gooskens & Heuven, 2020;
Gooskens & Schneider, 2019), and intelligibility of speech from
children with cochlear implants (Sanders & Chin, 2009). These
studies build on measures developed within the field of dialec-
tometry, which investigates large sets of linguistic features to
characterize geographically or socially conditioned varieties
(for reviews see Nerbonne, 2009; Wieling & Nerbonne,
2015). Rather than counting the number of differences or devi-
ations from the assumed local standard, these metrics mea-
sure pronunciation distance for a speaker relative to a
reference set using phonetic transcription of the target stimuli
in comparison to phonetic transcriptions of one or more talkers
representing the local standard. These metrics find the optimal
alignment between the phonetic transcriptions of the target and
reference stimuli and assign penalties according to differences
between the two. Several variations have been evaluated in
relation to L2 accent strength ratings including standard
Levenshtein Distances and Pointwise Mutual Information
(PMI) metrics (Bartelds et al., 2020, 2022; Wieling, Bloem,
et al., 2014). The PMI metric incorporates the frequency of pro-
nunciations within a corpus to determine penalties for pronun-
ciation differences. Higher penalties are then assigned for less
frequent pronunciation patterns with the idea that listeners are
likely to assign higher accent strength ratings to pronunciation
patterns that are less frequently encountered. Both of these
metrics have been shown to be related to human accent
strength ratings.

Fewer investigations have incorporated edit-distance met-
rics into modeling intelligibility across accents. One intelligibility
study with child listeners calculated Levenshtein distances for
three stimulus talkers: one local L1, one non-local L1, and one
L2 (Levy et al., 2019). They used a weighted version of the
Levenshtein algorithm in which the penalties for different types
of pronunciation differences were adjusted based on theoreti-
cal assumptions from the literature about how pronunciation
differences should impact word recognition accuracy. They
found that the overall intelligibility scores aligned with the
Levenshtein scores (i.e., the least intelligible talker had the
highest Levenshtein score), but the researchers did not incor-
porate the distance scores into their statistical models. Building
on their work, Bent et al. (2021) used the same hand-
calculated weighted Levenshtein distance algorithm to model
intelligibility for talkers representing seven different accents
under quiet and noise-added conditions with both adults and
children. The accents included both L2 varieties and non-
local L1 varieties. The Levenshtein scores were a significant
predictor of intelligibility in both quiet and noise-added condi-
tions. Furthermore, a model including both Levenshtein dis-
tances and talker accent was a better fit than the one using
only the Levenshtein distances. Jurado-Bravo (2021) also
used Levenshtein distances to model intelligibility across a
set of 15 L1 Spanish speakers producing a passage. Their
adaptation of the algorithm compared the stimulus items to
English as a Lingua Franca (EFL). In this version called the
EFL-Levenshtein Distance (EFL-LD), the stimuli were
assessed relative to whether they diverge from a set of pronun-
ciation features that Jenkins (2000) identified as essential for
L2 English speakers to ensure their intelligibility. In this version,
errors such as producing different vowels or /1/ variations are
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not penalized whereas other errors, such as consonant substi-
tutions, are. In their model, EFL-LD scores significantly pre-
dicted intelligibility scores, again suggesting the utility of
these types of edit distance metrics for predicting intelligibility.
Their adaptation of the algorithm, however, does not lend itself
to investigating intelligibility across L1 varieties because their
research aims are focused on L2 speakers of English. The lack
of penalties for many types of pronunciation differences also
could lead to very compressed scores across talkers, limiting
the explanatory value of their adaptation. Related work has
shown that Levenshtein distances significantly correlate with
word intelligibility scores for children with cochlear implants
(Sanders & Chin, 2009).

All three studies that have incorporated Levenshtein dis-
tances with intelligibility data across accents have either been
limited by including only one accent (Jurado-Bravo, 2021) or
including multiple accents but only having one talker repre-
senting each accent (Bent et al., 2021; Levy et al., 2019).
For the latter studies, there was a confound between talker-
and accent-specific effects. It will be essential to include not
just a wide range of accents into these models, but also to
include more than one talker per accent. The inclusion of mul-
tiple talkers per accent will address whether variability in intel-
ligibility can be traced to pronunciation features that are
characteristic of a specific accent or whether effects that have
been described as “accent effects” are talker-level effects. We
begin to address this limitation by including two talkers per
accent in the current study to preliminarily disentangle talker
and accent level effects. In addition, we evaluate two versions
of the Levenshtein (edit) distance metric that are automatically
calculated via freely available web-based applications: a
heuristic version (Bailey et al., 2022) and weighted version
(Heeringa et al., 2023). Previous comparisons of Native Dis-
criminative Learning (NDL) pronunciation distances and
Levenshtein distances, showed similar utility in predicting
accent strength ratings (Wieling, Nerbonne, et al., 2014), but
there have not been any comparisons across edit distance
measures for predicting intelligibility. Finally, we investigate
how different listening environments (i.e., quiet vs. two back-
ground noise levels) may influence the relation between edit
distances and intelligibility. Nearly all prior studies that have
evaluated the predictive value of edit distances for human per-
ception have tested participants in quiet listening conditions
(Bartelds et al., 2020, 2022; Beijering et al., 2008; Gooskens
& Heuven, 2020; Gooskens & Schneider, 2019; Levy et al.,
2019; Lind-Combs et al., 2023; Wieling, Bloem, et al., 2014;
Wieling, Nerbonne, et al., 2014).

1.4. Measurements of intelligibility

We must consider how speech perception success is mea-
sured if we want to understand how different accents impact
perception. Here, we are focusing specifically on speech intel-
ligibility, with the acknowledgement that intelligibility measures
only capture part of the perceptual processes involved in
speech communication (Baese-Berk et al., 2023; Beechey,
2022). Even with this focus, there are numerous decisions to
be made about how to score the data, which may impact our
findings and conclusions. For example, studies have employed
phoneme, word, or sentence accuracy (Case et al., 2018; Kent

et al.,, 1994). Some studies allow for variation in grammatical
morphemes for content words (Yoho & Borrie, 2018) whereas
others do not (Nilsson et al., 1994). Some include all words
(Spahr et al., 2012) whereas others focus specifically on key-
words (Bamford & Wilson, 1979). If we are considering how
the edit distance metrics relate to intelligibility scores, it is also
important to consider how exactly we are measuring intelligibil-
ity. However, few studies have systematically compared
results across different scoring approaches (Baese-Berk
et al., 2023). A few studies have used more than one scoring
method and have found similar intelligibility results across
the scoring methods. For example, Case et al. (2018) showed
that scoring intelligibility at the word vs. sentence level led to
similar results. Likewise, models of word recognition accuracy
in Levi (2015) produced similar findings whether the responses
were scored at the phoneme or word level. Recently, Bosker
(2021) developed an online implementation of fuzzy-string
matching for automatically scoring intelligibility data, Token
Sort Ratio (TSR). He showed that the TSR scores correlated
well with hand-scored percent words correct data and outper-
formed two other automated scoring approaches (i.e., Leven-
shtein distance and Jaro distance). TSR scores also showed
the highest alignment with two acoustic markers of intelligibility.
The advantages of this approach are its consistency and
speed. Although this scoring method has substantial promise
and is beginning to be adopted (e.g., Babel, 2022), there is a
need for more study of how this measure compares to a more
traditional percent words correct measure. The comparisons in
Bosker (2021) only employed L1 Dutch speakers in two exper-
iments; thus, the impact that different speaker characteristics
may have on the use of this measure should continue to be
investigated. In the current study, in addition to comparing
two edit distance measures for modeling pronunciation dis-
tance, we employ two methods for scoring the intelligibility
data. The first method is the token sort ratio (the instantiation
of fuzzy string matching from Bosker [2021]) and the second
is a traditional percent words correct measure. For our percent
words correct measure, we used some automation (as
described below) but preprocessing of the data included
human decision making, such as whether inaccurate words
were the result of typos by using spell check and changing
homophones to the correct target word. The percent words
correct measure is therefore aligned with more traditional scor-
ing approaches for intelligibility studies.

The purpose of the current investigation was twofold. First,
we test the predictive value of two edit distance measures for
intelligibility across L1 and L2 varieties of English. The soft-
ware tools selected to compute these measures are freely
available web-based calculators that increase accessibility
for researchers and speech-language pathologists without
the need for software download and installation. Second, we
assess whether different intelligibility scoring approaches
impact the modeling results. To address these goals, record-
ings from 18 talkers representing nine English accents with
two talkers per accent were presented to adult listeners in a
transcription task. We expect that edit distance scores will pre-
dict word recognition accuracy consistent with their predictive
value for L2 accent strength scores (Bartelds et al., 2020;
Wieling, Bloem, et al., 2014) and intelligibility scores (Bent
et al., 2021). The comparison across edit distance scores is
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more exploratory. Relative to the weighted edit distance mea-
sure, the heuristic edit distance measures may be less sensi-
tive in predicting intelligibility because all pronunciation
differences are given equal weight without adjustment for the
frequency of pronunciation differences from the local standard
on intelligibility. Additionally, the models using fuzzy string
matching may better align with the edit distance measures
because both measures are gradient measures (of perception
and production, respectively) compared with binary scores for
word recognition which do not give listeners credit for correctly
perceiving parts of words.

2. Method
2.1. Participants

Listeners included 369 American English monolingual par-
ticipants between the ages of 18 — 35 years (average = 26).
All participants reported typical speech, language, and hearing
abilities. The gender of participants included women (n = 203),
men (n = 145), non-binary (n = 15), one each of transgender
man, transgender woman, and genderfluid. Three participants
did not report their gender. For ethnicity, participants indicated
that they were Hispanic or Latino (n = 32), not Hispanic or
Latino (n = 332) or prefer not to respond (n = 5). For race, par-
ticipants identified as white (n = 280), Black or African Ameri-
can (n = 35), Asian or Asian American (n = 23), two or more
races (n = 21), Native Hawaiian or other Pacific Islander
(n = 1), other (n = 7), or prefer not to say (n = 2). Participants
were asked to rate their exposure to all accents included in the
study on a scale of 1 (no exposure or only brief casual expo-
sure) to 5 (daily at home exposure). Exposure ratings for the
accents were calculated for the participants who received
these specific accents in their assigned conditions. The aver-
age ratings were as follows with range in parentheses: British
English (England) = 2.0 (1-4); Scottish English = 1.6 (1-4);
French-accented English = 1.7 (1-3); German-accented Eng-
lish = 1.6 (1-4); Hindi-accented English = 1.9 (1-4);
Japanese-accented English = 1.6 (1—4); Mandarin Chinese-
accented English = 1.7 (1—4); Spanish-accented English = 3.0
(1-4). Although not all participants indicated daily interaction
with speakers from the Midland American region, this variety
of English was familiar to all participants due to its similarity
to Standard American English. Participants who reported daily
exposure to one of the other accents in their condition were
excluded (and not included in the subject counts above). Par-
ticipants rated the level of background noise in their environ-
ment as 1.9 on average from a scale of 1 (very quiet) to 10
(very loud) (range = 1-8) with nearly all participants
(n = 354) reporting ratings of 4 or less.

An additional 25 participants were tested but their data were
not usable due to bilingual language status (n = 4), indicating
that they did not turn off all devices that make sound (n = 2),
frequent exposure to one of the test accents in their assigned
condition (n = 7), hearing or language disorder (n = 2), low
effort responses (e.g., leaving multiple trials blank in the Mid-
land condition, n = 9) or reporting the background noise in their
environment as a 10 (n = 1). An additional 55 participants did
not pass the headphone screening (see detail below) (Woods
et al., 2017).

Listeners were paid for their participation at $10.00-12.00
per hour. Most participants were paid $10/hour; the hourly pay-
ment was increased in June 2022 to align with recommended
compensation on Prolific. Participants who failed the head-
phone screening were paid for the time they put into the study.
All experimental procedures took approximately 25 min and
were approved by the Institutional Review Board at Indiana
University.

2.2. Stimuli

Sixty sentences from the Hearing in Noise Test for Children
(Nilsson et al., 1996) were used as the experimental stimuli.
These sentences are short declaratives with three to four key-
words per sentence. These sentences were produced by 18
talkers representing 9 different accents with two speakers (1
female and 1 male) representing each variety. The varieties
included three L1: Midland American English, Southern Stan-
dard British English, and Scottish English, with the male
speaker from Glasgow and the female speaker from the High-
lands. The first language varieties for the five L2 accents
included French (from France), Spanish (Colombian dialect),
German (from Germany), Japanese (from Japan), and Man-
darin (Beijing dialect). There was also one bilingual variety:
Hindi-accented English from India. Recordings from all L2
speakers and the Midland American speakers were taken from
the Hoosier Database of Native and Nonnative Speech for
Children (Bent, 2014). Both Standard Southern British English
speakers, the male Scottish speaker, and both Hindi-accented
English speakers were recorded at Indiana University. The
Scottish female speaker was recorded at Ohio State Univer-
sity. All IU and OSU recordings were made in sound-
attenuated booths using identical high-quality recording equip-
ment (Marantz PDM670 digital recorder) and head-mounted
microphones (Shure Dynamic WH20XLR headset micro-
phone). All L2 speakers learned English at the age of 12 or
later and had been in the U.S. for 4 years or less. The bilingual
speakers began learning both English and Hindi before the
age of 3 years. The average age for the speakers was 27 with
a range from 18 to 53. All stimuli were recorded and presented
as.wav files equalized for RMS amplitude using the scale
intensity function in Praat. All recordings are available in our

OSF repository: https://osf.io/cnxat/.

2.3. Procedure

Listeners were recruited through Prolific (https://www.pro-
lific.co/). If participants met the inclusion criteria, the study
would appear as one for which they were eligible. The inclu-
sion criteria included being a monolingual speaker of English,
living in the U.S. with U.S. citizenship, and between the ages of
18-35 with no hearing difficulties. The residency and citizen-
ship filters were used to try to ensure that participants were
L1 speakers of American English. Participants were then direc-
ted to Qualtrics to complete the consent form, a background
questionnaire, and a headphone screening (Woods et al.,
2017). The headphone screening included six trials. Each trial
had three pure tones and participants indicated which was the
quietest. One of the sounds was 180 degrees out of phase
across the stereo channels, resulting in phase cancellation.
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The task is designed to be relatively easy if the participant is
wearing headphones but difficult if listening over speakers.
The participants had three opportunities to pass this head-
phone screening. If they failed the third attempt, they could
not continue with testing. Participants used their own comput-
ers and headphones to complete all testing.

After completing the questionnaire and headphone screening,
participants were directed to Pavlovia, the online testing platform
for PsychoPy (Peirce et al., 2019). Participants were randomly
assigned to one of three listening conditions: quiet, +4 dB
signal-to-noise ratio (SNR), or 0 dB SNR. The noise was an 8-
talker babble with talkers matched in gender to the target
speech. The female babble track was taken from Van Engen
et al. (2014) and a parallel babble file was developed with male
speakers using the same materials, talker types, and number of
speakers. A randomly selected section of the babble file that was
1 s longer than the sentence was selected as the masker for
each item, with the sentence centered in the babble. Within
these noise conditions, they were presented with three talkers
representing three different accents. All talkers in each condition
were matched in gender. All listeners were presented with the
Midland American speaker and then assigned to one of the fol-
lowing accent conditions: (1) Japanese-accented English and
Standard Southern British English, (2) German-accented English
and Scottish English, (3) Mandarin-accented English and Hindi-
accented English, or (4) Spanish-accented English and French-
accented English." The task began with nine practice trials that
included three sentences from each of the talkers in the listener’s
assigned condition. Then listeners were presented with 60 exper-
imental trials, including 20 sentences from each of their assigned
talkers. The sentences were blocked by talker and randomized
within a block. Listeners were instructed to listen carefully to each
sentence then type in what they heard. They could only listen to
each sentence one time and were not provided with any feedback
as to the accuracy of their responses. For each accent / listening
condition combination, 14—18 participants were tested.

2.4. Analysis

2.4.1. Levenshtein distances

All sentences were phonetically transcribed by two trained
research assistants. Inter-transcriber agreement was calcu-
lated for a subset of the transcriptions (80 sentences with 10
sentences from 8 of the talkers) and found to be 82.1%. This
rate of inter-transcriber agreement is in line with other recent
work (Seifert et al., 2020). The two initial transcriptions were
compared. Discrepancies were evaluated by a third transcriber
and the differences were resolved through further listening,
evaluation of the visual representations of the sentences
(waveforms and spectrograms in Praat), and discussion with
the transcription team. An agreed-upon set of IPA symbols
was used for transcription. The transcriptions for each non-
Midland speaker were compared to four talkers representing
the familiar Midland American English referent. Two of these
speakers were also used in the intelligibility testing. An addi-
tional two speakers (one male and one female) were included

" Intelligibility data for the female talker conditions has been presented in Bent & Holt
(2018) (condition 1), Bent et al. (2021) (conditions 1, 2, and 3), Bent et al. (2023)
(conditions 1, 2, and 3). A preliminary version of this dataset was presented in Bent & Holt
(2023).

in the referent set to have a slightly more representative sam-
ple of the familiar accent variety. These comparisons were
used for two edit distance variants. All IPA transcriptions are
available to researchers upon reasonable request.

The first edit distance scoring method implemented the
Levenshtein Edit Distance App (LED-A; Heeringa et al,

2023) available at https://www.led-a.org/. This application
allows the user to implement a variety of methods for calculat-
ing Levenshtein distance. Here, we employed the site’s PMI-
based distance metric as our weighted edit distance measure.
This PMI implementation follows Wieling (2012) where seg-
mental distances are weighted based on their frequency in
the dataset. The alignments between vowels and consonants
are given very high weights to prevent the alignment of conso-
nants and vowels. Other alignments are determined through
an iterative process of comparing pairs of transcriptions until
the process stabilizes. Ultimately, the weights are scaled from
0 to 1 where the most frequent pairs get scores of 0 and the
least frequent get scores of 1. We utilized the option where
the scores were normalized for alignment length. Greater detail

about the computation of this metric can be found at https:/

www.led-a.org/docs/PMI.pdf.
The second scoring method employed the Automated Pho-
netic Transcription Comparison Tool (APTct) available at

https://aptct.auburn.edu/ (Bailey et al., 2022). This automated
tool is similar to traditional Levenshtein distance algorithms,
in which all phoneme differences are assigned a penalty of
1, except for cases in which a vowel is substituted for a conso-
nant or vice versa, in which the penalty is 2; therefore, we refer
to this approach as the heuristic edit distance. The algorithm is
designed to find the most economical alignment between the
strings. More detail about the design and implementation of
this scoring can be found in Bailey et al. (2022). For this study,
word level transcriptions from the non-local talkers were com-
pared with the four Midland talkers’ transcriptions and the low-
est distance score among the four comparisons was used for
analysis. The approach of using the lower distance score
rather than an average across the four reference speakers
was determined based on preliminary modeling results sug-
gesting this method resulted in a better fit than the averaging
method. Word level scores were then averaged across words
in the sentence.

The edit distance metrics were initially compared using
two schemes for calculating the reference to identify which
method would be a better fit for the perceptual data. The first
edit distance scheme incorporated the lowest edit distance
value for each word from each of the four referent Midland
talkers. Thus, a single referent talker was selected depending
on the specific stimulus and variety. The second scheme
employed an average of the edit distance values obtained
from the four referent Midland talkers for each word. Ulti-
mately, the edit distance metrics performed better during
analysis when using the lowest-of-four distances approach,
which is implemented here, rather than the average-of-four
distances. While the lowest-of-four approach clearly per-
formed better with the current dataset, further evaluation of
these approaches could be informative, especially for areas
such as automatic speech recognition and natural language
processing.
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2.4.2. Intelligibility scoring

Intelligibility scores were calculated two ways. The first
method is the traditional binary word scoring method. To calcu-
late these scores, participants’ responses were first spell
checked and obvious typos, misspellings and homophones
were corrected. The transcripts were automatically scored as
correct or incorrect using a Python script for each word in the
sentence. A strict scoring criterion was applied except that
the following substitutions were allowed following HINT scoring
procedures: a(n)/the, has/had, have/had, is/was, and are/were.
Scores were then calculated for percent words correct (PWC)
per sentence. The second scoring method employed was
Fuzzy String Matching, specifically the token sort ratio (TSR)
from Bosker (2021) using the online implementation (https://to-
kensortratio.netlify.app). These scores range from 0 to 100.
Sentences that match the target exactly are given a score of
100 and those without any matching characters are given a
0. These scores tend to be higher than percent words correct
scores with a strict scoring criterion because responses are
given credit for partial matches.

3. Results
3.1. Correlations among distance and intelligibility measures

Pearson product-moment correlation coefficients were com-
puted with a Bonferroni correction to account for multiple com-
parisons to assess the relations between the two edit distance
measures and the two measures of intelligibility. The two intel-
ligibility measures — PWC scores and TSR scores — were
strongly positively correlated across listening conditions, r
(22138) = 0.915, p < 0.001, and within each listening condition
with correlation coefficients of (7318) = 0.837, p < 0.001 in the
quiet listening condition; r(7558) = 0.904, p < 0.001 in
the + 4 dB SNR condition; and r(7258) = 0.923, p < 0.001 in
the + 0 dB SNR condition (Fig. 1). Strong positive correlations
were also found between the weighted and heuristic edit dis-
tance metrics with a correlation coefficient of r
(22138) = 0.724, p < 0.001 (Fig. 2). The reported correlation
coefficients suggest strong positive relationships between the
two edit distance measures and between the two measures
of intelligibility, warranting further examination of these vari-
ables with mixed effects modeling to identify the best-fitting
model parameters for the behavioral data.

3.2. Mixed effect modeling

Mixed effects modeling analyses were performed using R
Version 2023.03.1 + 446 release for macOS (R Core Team,

2023). The statistical code is available at https://osf.io/cnxgt/.
To determine the predictive value of the two edit distance scor-
ing methods for predicting intelligibility, four mixed-effects beta
regression models were built using the “gimmTMB” package
(Brooks et al., 2017). Models incorporated either the fuzzy
string matching score (i.e., TSR score) or the PWC score as
the outcome variable with one of the edit distance scores. All
models included SNR as fixed effects along with their
interactions. Maximally designed models included random
by-participant and by-item intercepts and slopes for SNR,
edit-distance measure, and their interaction. These

overspecified models failed to converge, and were then
stepped down through the incremental removal of one random
effect term from the random effect structure, beginning with the
term with the highest correlation to other variables in the ran-
dom effect structure, until convergence was achieved. The
resulting models included by-participant and by-item random
intercepts and slopes for the edit distance measures only. Con-
tinuous response variables were scaled to values greater than
zero and less than one by dividing intelligibility scores by 100.
To ensure that data fit into a beta distribution, intelligibility
scores of 0 were replaced with a value of 0.001 and scores
of 1 were replaced with 0.999. Categorical variables were
dummy coded with Midland serving as the referent accent
and Quiet as the referent listening environment. Type Il Wald
chi-square tests were conducted for each model to identify sig-
nificant effects for edit distance scores, SNR, and their interac-
tion. After evaluating significant effects, model comparisons
using the Akaike Information Criterion (AIC) were conducted
using the “AlCcmodavg” package (Mazerolle, 2023) to deter-
mine which of the two edit scores resulted in a better fit for
each intelligibility measure. AIC was used rather than other
methods for model comparison due to the tendency for log like-
lihood to covary with AIC and differences in predictor variables,
despite each model having the same number of parameters.
The two best-fit models were then compared by conducting a
seemingly unrelated regression (SUR) equation using the
“systemfit” package (Hamann, 2023). SUR allows for two or
more models with differing response variables to be compared
using R2 and Root Mean Square Error. After assessing the
variance explained through the SUR system of equations, a full
mixed-effects beta regression model was constructed to exam-
ine the relation between accent and intelligibility scores.

3.3. Edit distance with TSR score

Two mixed-effects beta regression models were built with
TSR score as the response variable. Type Ill Wald chi-
square tests of the two TSR models (Table 1) revealed signif-
icant main effects of both edit distance variant and SNR, which
indicates that edit distance and listening condition indepen-
dently contributed to intelligibility such that higher edit distance
and more difficult listening conditions were associated with
lower intelligibility. The interaction between both of the edit
variants and SNR (Fig. 3) was also significant, indicating that
edit distance scores impacted intelligibility differentially for
each of the three listening conditions. In the most difficult lis-
tening condition, there was a steep decline in intelligibility once
edit scores diverged from zero. In contrast, in the quiet condi-
tion, high intelligibility was maintained until productions
diverged substantially from zero. TSR model selection based
on AIC indicated that the heuristic edit distance model
(AIC=-51905.51) was the best-fit model with the lowest AIC
value compared to the weighted edit distance model (A
AIC=339.33). A likelihood ratio test comparing the two models
was also completed, X2(13) = 339.33, p < 0.001, with a log-
likelihood of 25,966 and a deviance of —51932 which indicated
a significantly better fit. Thus, the heuristic edit distance scores
were a better fit for predicting intelligibility, as measured by the
Token Sort Ratio method.
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Fig. 1. Scatterplots showing the correlation between Token Sort Ratio (TSR) scores and Percent Word Correct (PWC) scores for the three listening environments. Note: Each data
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Fig. 2. Scatterplot showing the correlation between the two edit distance measures.
Note: Each data point is made slightly transparent with darker points on the plot
indicating more overlap in the data.

In addition to these models, we conducted an exploratory
analysis using simple correlations between the edit distances
and TSR scores to allow for more direct comparison to prior lit-
erature in which correlational analyses were used. Again, fol-
lowing prior literature (e.g., Saito et al, 2023), the data input
to the correlations were averages for each talker. Specifically,
we investigated the relation between the average TSR score
for each talker in each listening condition by their average edit
distance score (heuristic or weighted) (Fig. 3). Moderate nega-
tive relations, approaching or reaching significance, between
TSR score and weighted edit distance were observed in quiet,
r(16)= —0.46, p = 0.057, at + 4 dB SNR, r(16)= —0.49, p < 0.05,
and at 0 dB SNR, r{16)= —0.61, p < 0.01. Moderate, significant
negative relationships were also found between TSR score
and heuristic edit distance at in quiet, (16)= —0.60, p < 0.01,

+4 dB SNR, r(16)= —0.52, p < 0.05, and at 0 dB SNR, r(16)
= —0.58, p < 0.05. Due to the number of correlations in this
analysis, the p-values reported should be interpreted with cau-
tion. We did not employ Bonferroni correction because Bonfer-
roni correction may be too conservative to be applied with the
added analyses; it may excessively inflate Type Il error
(Armstrong, 2014). These patterns, as well as the parallel anal-
ysis below, can be used for broad comparisons to prior work
and as a starting point for future studies.

3.4. Edit distance with PWC score

Two parallel models to the analyses with the TSR scores
were built to evaluate how the predictive value of the edit dis-
tance scores may differ when PWC scores were used as the
response variable. Type Il Wald chi-square tests of the three
PWC models (Table 1) again revealed significant main effects
of both edit distance variants and SNR indicating that phonetic
distance and listening environment independently influenced
the PWC scores. Again, intelligibility decreased as edit dis-
tance increased (Fig. 4). Intelligibility also decreased as the
SNR became more difficult. The significant interactions
between both of the edit distance variants and SNR again
show that the influence of phonetic distance varies across dif-
ferent listening environments. PWC model selection based on
AIC indicated again that the model with the heuristic edit dis-
tance scores (AIC=—-35928.25) was the best-fit model with
the lowest AIC value compared to the weighted edit distance
model (A AIC=391.45). A likelihood ratio test comparing mod-
els, also showed that the heuristic edit distance model was the
best fit, X? (13) = 391.45, p < 0.001, with a log-likelihood of
17,977 and a deviance of —35954 indicating a substantially
better fit. Therefore, the heuristic edit distance scores were a
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Table 1
Results of Type Ill Wald Chi-Square Tests for four mixed-effects beta regression models predicting intelligibility scores.
Response Model Intercepts, Effects, & Interactions X2 df P
Variable
Token Sort Ratio Weighted Distance Weighted-Distance by Quiet SNR (Intercept) 7195.23 1 <0.001
Model Weighted-Distance 10.45 1 <0.001
SNR 8.97 2 <0.05
Weighted-Distance by SNR 142.60 2 <0.001
Heuristic Distance Heuristic-Distance by Quiet SNR (Intercept) 7123.51 1 <0.001
Model Heuristic-Distance 19.69 1 <0.001
SNR 9.07 2 <0.05
Heuristic-Distance by SNR 139.93 2 <0.001
Percent Words Correct Weighted Distance Weighted-Distance by Quiet SNR (Intercept) 5128.75 1 <0.001
Model Weighted-Distance 26.66 1 <0.001
SNR 60.44 2 <0.001
Weighted-Distance by SNR 170.94 2 <0.001
Heuristic Distance Heuristic-Distance by Quiet SNR (Intercept) 5285.52 1 <0.001
Model Heuristic-Distance 45.36 1 <0.001
SNR 57.01 2 <0.001
Heuristic-Distance by SNR 168.21 2 <0.001
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Fig. 3. Scatterplots showing the speaker-level correlations between percent words correct score (top) and TSR score (bottom) and the two edit distance metrics, weighted edit distance

(left) and heuristic edit distance (right) for each level of SNR.

better fit for predicting intelligibility when accuracy was calcu-
lated with both Percent Words Correct and the Token Sort
Ratio.

In parallel with the correlation analysis above, we also cal-
culated correlations for edit distance scores with percent words
correct (Fig. 3). Similar to the results of the correlations with
TSR scores, significant negative correlations between percent
words correct and the weighted edit distance were found in
quiet, (16) = —0.69, p < 0.01, at + 4 dB SNR, (16) = —0.59,
p < 0.05, and at 0 dB SNR, r(16) = —0.61, p < 0.01. Moderate
negative correlations were also observed between percent
words correct and heuristic edit distance in quiet, r
(16) = —0.55, p < 0.05, at + 4 dB SNR, r(16) = —0.55,
p < 0.05, and at 0 dB SNR, r(16) = —0.65, p < 0.01.

3.5. SUR model fitting with PWC and TSR

A winning model predicting PWC and another winning
model predicting TSR were identified and selected using AIC

comparison. However, these two models differ in that they
are built around two distinct and different response variables.
Therefore, a comparative analysis that accounts for multiple
models with differing dependent variables is needed. One such
method is to build a SUR model, which consists of two or more
regression equations, each having its own dependent variable
as well as varying sets of exogenous explanatory variables. To
compare the two best-fit models, a system of regression equa-
tions was built using the SUR method for model comparison
with the systemfit() function (Hamann, 2023), which allows
for comparisons between models with separate dependent
response variables. To further examine the predictive value
of the edit distance scores for intelligibility, R? and Root-
Mean-Square Error (RMSE) values were compared between
the weighted edit distance model with TSR score as the
response variable (automated model) and the weighted edit
distance model with PWC score as the response variable. Very
little difference was found between the R? values for the two
models with the TSR model accounting for approximately
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6.8% of the variance (R? = 0.068397) and the PWC model
accounting for slightly more variance with 9.5% of the variance
accounted for (R? = 0.095271). However, there were differ-
ences between the models when considering their predictive
quality. The TSR model appears to be the better predictor of
intelligibility (RMSE=11.5% TSR score) compared to the
PWC model (RMSE=15.8% PWC score). Considering the lack
of difference in the variance explained between the two models
and the higher predictive power of the TSR model, the heuristic
edit distance score and TSR score were used in a full mixed-
effects beta regression model to examine the relation between
accent and intelligibility scores.

3.6. Intelligibility scores and talker accent

We next investigated the contribution of talker accent to
intelligibility scores. Fig. 4 displays each mean talker’s intelligi-
bility in each listening condition. Although the figure is divided
by talker gender, we do not include gender in any of our anal-
yses as none of our research questions address the impact of
gender and we only have one male and one female talker for
each accent. A full mixed-effects beta regression model was
built that included fixed effects of heuristic edit distance scores,
SNR, and talker accent, as well as three-way interactions
between each of the variables. The model also included by-
item random intercept and slopes for accent and the heuristic
edit distance score, and by-participant random intercept and
slope for the heuristic edit distance score. Summary results
are shown in Table 2 with full results shown in Appendix A.

All three main effects were significant. The main effect of
edit distance scores arose because items with higher edit dis-
tance scores were less intelligible than those with lower edit
distance scores. That is, productions that diverged more from
the local accent were more difficult for listeners to understand
than those closer to the local accent. The main effect of SNR
resulted from the highest accuracy in quiet and lowest accu-
racy in the 0 dB SNR with intermediate performance in

Table 2
Output of Type Il Analysis of Variance Table with Satterthwaite's method for full model of
intelligibility.

Effects & Interactions x? df P

Heuristic-Distance 7.27 1 <0.05
SNR 43.44 2 < 0.001
Accent 137.49 8 < 0.001
Heuristic-Distance x SNR 16.55 2 < 0.001
Heuristic-Distance x Accent 40.77 7 < 0.001
SNR x Accent 483.68 16 < 0.001
Heuristic-Distance x Accent x SNR 21.67 14 0.086

the + 4 dB SNR condition. The main effect of accent was
due to the differences in intelligibility across accents with high-
est accuracy for the Midland American English and the South-
ern Standard British English accents and lowest accuracy for
the Hindi and Japanese accents. The two-way, but not the
three-way, interactions were significant (Fig. 5). The SNR by
Accent interaction arose because some accents were highly
intelligible even in the most difficult SNRs (e.g., Midland and
British) whereas other accents showed much larger intelligibil-
ity declines, particularly in the most difficult SNR. The edit dis-
tance by Accent interaction arose because the extent to which
edit distance scores and TSR scores were related differed
across accents. Although there was a significant interaction
between edit distance and accent, the patterns between these
two variables were not necessarily consistent for the two talk-
ers representing each accent (Fig. 5) suggesting that interlan-
guage phonology patterns are not the primary driver of these
relations.

3.7. Pronunciation differences post hoc analysis

To further examine the relation between intelligibility and
pronunciation distance, a follow-up analysis of the distribution
of pronunciation differences (i.e., insertions, deletions, different
substitution types) was conducted using Python scripting to
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extract and categorize differences within the two transcription
strings. Manual processing of the full output was conducted
by two research assistants to ensure the reliability of the
results, resulting in an average agreement of 97% between
the script and a human rater. Remaining differences in catego-
rization were discussed and agreed upon by the two raters.
Pronunciation differences were assigned to one of the follow-
ing six categories: consonant substitutions, vowel substitu-
tions, deletions, insertions, consonant for vowel substitutions,
and vowel for consonant substitutions. The overall distributions
across all speakers (Fig. 6) and for the individual talkers
(Fig. 7) are shown below.

Again, simple correlations were calculated between the two
intelligibility metrics and the two categories of pronunciation
differences with the largest proportion of differences.
Speaker-level averages for intelligibility at each SNR level
and the pronunciation difference frequency were used to cal-
culate the correlation coefficients corresponding to the correla-
tions displayed in the scatterplots in Fig. 8. The analysis
revealed moderate negative correlations among intelligibility
and the number of consonant and vowel differences. Moderate
negative correlations, approaching or reaching significance,
were observed between percent words correct and the fre-
quency of vowel substitutions in quiet, (16) = —0.56,
p < 0.05, at + 4 dB SNR, r(16) = —0.44, p = 0.065, and at
0 dB SNR, r(16) = —0.52, p < 0.05, as well as consonant sub-
stitutions in quiet, (16) = —0.66, p < 0.05, at + 4 dB SNR, r
(16) = —0.54, p < 0.05, and at 0 dB SNR, r{16) = —0.58,
p < 0.05. Moderate negative correlations, again approaching
or reaching significance, were also observed between TSR
score and the frequency of vowel substitutions in quiet, r
(16) = —0.51, p < 0.05, at + 4 dB SNR, r16) = —0.40,
p = 0.10, and at 0 dB SNR, r(16) = —0.49, p < 0.05 as well
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Fig. 6. Frequency of each category of pronunciation differences across all talkers. The
percentage for each category reflects how often that pronunciation difference occurs out
of the total number of pronunciation differences.

as consonant substitutions in quiet, (16) = —0.54, p < 0.05,
at + 4 dB SNR, r{16)= —0.45, p = 0.061, and at 0 dB SNR, r
(16)= —0.54, p < 0.05. The relation between intelligibility and
substitutions tended to be slightly stronger for consonant sub-
stitutions than vowel substitutions.

4. Discussion

Talkers with unfamiliar accents tend to be less intelligible
than those with local, familiar accents, but the extent to which
listeners have difficulty understanding unfamiliar accents can
vary widely. Understanding why specific accents or talkers
cause varied amounts of challenge for word recognition suc-
cess is important for speech perception theories as well as
practical applications related to pedagogy, experimental
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design, and clinical practice. However, not only does the field
not agree upon methods for a priori determination of which
talkers are likely to be more or less intelligible, some investiga-
tors have lamented that “as every phonetician or phonologist
knows, it is very difficult, if not impossible, to quantify the
amount of foreign or regional accent within an utterance”
(Floccia et al., 2009, p. 402). Since this time, the field has
moved toward incorporating quantitative methods for capturing
distances from the local, familiar accent and L2 or regional

accents (e.g., Bartelds et al., 2020, 2022). This study uses
metrics that have been developed in the field of dialectometry
(for a review see Wieling & Nerbonne, 2015). Incorporating
these quantifiable metrics for acoustic—phonetic distance
among accent or dialect varieties into studies with objective
word recognition data is an essential step for predicting intelli-
gibility across talkers.

To address these issues, this study investigated intelligibility
in quiet and two noise-added conditions across nine accents,
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both L1 and L2 varieties, with two talkers representing each
accent. The primary goal was to examine the explanatory
value of two edit distance variants, which measure phonetic
differences from a reference accent, for intelligibility scores
across listening environments using accessible, recently
developed web applications for the edit distance calculations.
Further, the impact of two scoring methods for listener tran-
scriptions on the relation between these distance metrics and
intelligibility results was investigated.

The edit distance metrics included two automatically scored
metrics — weighted and heuristic. The weighted version
assigns penalties based on the frequency of alignments across
the stimulus set with higher penalties for less frequent align-
ments. The heuristic metric gives equal penalties to all differ-
ences except for consonant-for-vowel and vowel-for-
consonant substitutions and is not sensitive to frequency of
substitutions. Although these methods result in slightly differ-
ent edit distance scores depending on the types of differences
between the target and reference accent, the two metrics are
strongly, positively correlated with one another. Furthermore,
both edit distance metrics significantly predicted variance in
intelligibility in the models, but the heuristic metric explained
more of the variance in both models. Thus, these edit distance
metrics are both capturing important cues for intelligibility;
while the heuristic slightly outperformed the weighted one for
these materials, both account for a significant amount of vari-
ance in human intelligibility. There are advantages to weighted
models in that they capture distances that are more “linguisti-
cally sensible” (Wieling et al., 2014, p. 260). It remains possible
that the weighted distance metric would outperform the heuris-
tic one with a larger dataset or with different materials. Similar
findings were observed in the exploratory correlational analy-
ses, which compared the edit distances (weighted and heuris-
tic) and intelligibility scores (percent words correct and Token
Sort Ratio) at the talker level, divided by listening condition.

Future studies should continue to compare different types of
pronunciation distance measurement to determine whether
other variants of edit distance measurement can better predict
intelligibility variation among talkers and accents than the edit
distance measures employed here. A range of variables could
be independently evaluated in terms of their predictive value.
For instance, one limitation of our study was that our weighted
variant normalized for word length, but our heuristic one did
not. Future studies should test these parameters indepen-
dently. There are also multiple ways to calculate weightings,
which could be tested in relation to intelligibility across listening
environments. Exploring the interactions among weightings,
word length normalization, as well as other variants such as
multiple sequence alignment procedures (List, 2012) in relation
to intelligibility specifically may be beneficial. Thus, this study is
not an exhaustive investigation of all edit distance variants and
their relation to intelligibility scores. It represents an initial step
at examining the predictive value of two edit distance mea-
sures for intelligibility using web-based tools. Both within
LED-A (used here for the weighted variant) and other available
software packages (e.g., LingPy, List & Forkel, 2024), there are
many edit distant variants that could be tested.

The effectiveness of signal-based intelligibility models for
predicting intelligibility across listening conditions could also
be a particularly fruitful future direction. These metrics have
shown substantial promise in their relation to human percep-
tion, particularly with rating data, such as accentedness and
comprehensibility ratings (e.g., Bartelds et al., 2022; Saito
et al., 2023). Because there is not a deterministic relationship
between rating data, such as accentedness or comprehensibil-
ity, and intelligibility, it is possible that different distance metrics
could explain most variance across different types of percep-
tual measures. Indeed, the correlation coefficients observed
in our study between intelligibility scores and edit distances
were slightly lower in magnitude to previous studies that have
compared accent strength ratings data completed by human
raters with Levenshtein distances (e.g., Wieling, Bloem,
et al., 2014) as well as relations between machine-based algo-
rithms measuring pronunciation distance (Saito et al., 2023
and references therein) and human rating data. Most of these
studies had correlation coefficients between 0.6 — 0.9,
whereas ours fell primarily in the 0.5 — 0.6 range. It may be
that pronunciation distances, whether based on automated
machine-based computation or measures requiring substantial
human input, are more highly correlated with rating data, such
as ratings of accent strength (Wieling, Bloem, et al., 2014),
comprehensibility (Saito et al., 2023), fluency (Cucchiarini
et al., 2000, 2002), or proficiency (Kang & Johnson, 2018).
The differences in strength of these relations may be explained
by the differences in types of perceptual data being assessed.
For example, even speech that has relatively high accented-
ness can still also be highly intelligible (Munro & Derwing,
1999) so that there are cases in which a talker’s production
diverges from the local standard would receive an elevated
pronunciation distance score and likely a higher score on a
measure like comprehensibility or accent strength but listeners
could still accurately recognize the word. More work that exam-
ines the relation between pronunciation distance metrics (edit
distance or computational acoustic) and intelligibility could help
to explain why these relations may be stronger with rating data
than intelligibility data.

Determining the extent to which intelligibility (and perceived
accentedness) are impacted by prosodic variation is an impor-
tant next step. Although the transposition approaches have
attempted to address this issue, the introduction of unnatural-
ness by the synthetic manipulations has limited the conclu-
sions that can be drawn. Signal-based intelligibility models
provide one way of incorporating information below and
beyond the phoneme level. Other approaches could have sep-
arable, quantifiable metrics for different phonetic and prosodic
distances from the home accent that would allow for the deter-
mination of the contribution of these different types of variation
to intelligibility and other perceptual measures (e.g., Saito
et al., 2023). The edit distance metrics used here also did
not incorporate information smaller than a phoneme. That is,
we used broad transcription with only diacritics that were
essential for the scoring methods (i.e., the tie diacritic for diph-
thongs and the syllabic diacritic). The edit distance methods
allow for the incorporation of any diacritic. These phonetic
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changes are given smaller penalties (e.g., 0.5 rather than 1.0
for a phoneme change in the heuristic model). The task of fully
narrowly transcribing a large set of recordings would add sub-
stantially to the time and can decrease interrater reliability
(Shriberg & Lof, 1991). A follow-up study from this one could
investigate whether adding diacritics for a subset of the data
used here increases the amount of intelligibility variability
accounted for.

When averaged across listening conditions and for the two
talkers representing each accent, there were relations between
edit distance scores and intelligibility for seven of the eight
accents. However, the ways in which the Levenshtein scores
were related to intelligibility scores differed across talkers when
separated by listening condition in ways that were not clearly
tied to accent variety. There were several distinct patterns. In
one pattern, listeners showed decrements in intelligibility with
increasing distance scores across all three listening condi-
tions. This pattern was clearly observed for the both Hindi talk-
ers, the Japanese female talker, the Scottish female talker, and
the Spanish female talker. In contrast, other talkers showed
patterns in which listeners appeared to be relatively resistant
to increasing edit distances for the easier listening conditions
with steeper slopes for the hardest listening condition (e.g., Bri-
tish female, French female, Mandarin male). The remaining
talkers showed a variety of other patterns including ones in
which there did not appear to be a strong impact of edit dis-
tance scores (e.g., French male) or even some in which there
was a positive relation between increasing edit distances and
intelligibility scores for some listening conditions (Japanese
male and Scottish male). These results suggest that although
overall edit distances are significant contributors to intelligibil-
ity, the scores will need to be considered in terms of the listen-
ing conditions and other features of the talker’s production
patterns. That is, the intelligibility of a particular sentence by
a particular talker cannot be estimated purely from their edit
distance score, but likely will need to take into account factors
such as rhythm, stress, speaking rate, and intonation as well.
These patterns across edit distance scores and intelligibility
did not clearly pattern with specific accent varieties nor
whether the talker was an L1, L2, or bilingual speaker.

Even with multiple edit distance metrics that account for
multiple levels of phonetic and phonological variation, there
is still the need to account for many other linguistic factors that
could interact with pronunciation differences to impact intelligi-
bility. For example, some pronunciation differences may result
in lexical confusions whereas others would not. For example, a
vowel substitution of [ou] for /a/ in the word “ball” results in a
different real word whereas the same substitution in “shot”
results in a nonword. If this substitution is in the sentence
“the puppy played with the ball,” the sentence level semantics
also do not necessarily help the listener with mapping the pro-
duction to the appropriate word since playing with a bowl, while
perhaps less frequent, is certainly plausible. Conversely real-
world knowledge and plausibility could help listeners overcome
some types of phonetic differences in certain items. None of
the metrics described above account for these types of seman-
tic factors that certainly can contribute to intelligibility differ-
ences across items. That said, these scores may be used at

the talker level or sentence level to help select stimuli for
experiments where specific intelligibility levels are targeted.

In addition to relating intelligibility to the edit distance met-
rics, which was our central focus in the paper, we also con-
ducted an analysis of the types of production differences
found in our dataset, separating the differences by the types
that are typically included in edit distance measures (e.g., sub-
stitutions, insertions, and deletions). This preliminary analysis
showed that vowel and consonant substitutions were by far
the most common types of differences from the local variety.
This broad pattern held for nearly all talkers. However, whether
vowel or consonant substitutions were more prevalent as well
as the prevalence of the other types of production differences
varied substantially across talkers. The production differences
for L1 talkers tended to be primarily in vowels, which is consis-
tent with literature showing substantial vowel differences for
regional varieties within and across countries (Clopper et al.,
2005; Blackwood Ximenes et al., 2017). In contrast, the L2
speakers tended to have more production differences in con-
sonants. Our preliminary analysis correlating these production
difference patterns to intelligibility suggests a slightly tighter
negative relationship between consonant than vowel produc-
tion differences and intelligibility. This pattern is consistent with
research showing the prioritization of consonants over vowels
during lexical processing in tasks such as lexical decision
(Nazzi & Cutler, 2019). Because L1 talkers are less likely to
display consonant substitutions across varieties, perhaps that
specifically contributes to listeners' maintenance of relatively
high levels of intelligibility at various levels of noise for L1 talk-
ers relative to L2 talkers. Furthermore, listeners may have
more experience with linking multiple vowel variants to specific
lexical items and therefore are more adept at recognizing
words that include vowel differences from the local standard.

This analysis also allowed for a preliminary comparison of the
production patterns between the two talkers representing each
accent. For some accents, the two talkers representing the vari-
ety (British, French, German, Japanese, Scottish) had very sim-
ilar production difference patterns, but in the other cases, each
of the two talkers representing the accent variety (Hindi, Man-
darin, Spanish) were quite distinct in their production difference
patterns. Of course, these analyses are only one way of captur-
ing pronunciation differences across talkers and accents. Future
work could continue these investigations to provide even more
detailed views of production patterns and associated intelligibility
patterns. For example, analyses could be conducted on error
patterns at the word position level as there is some evidence
that pronunciation differences or errors impact intelligibility differ-
entially depending on the position in the word (e.g., Bent et al.,
2007; Kim & Gurevich, 2023). Other analyses could investigate
patterns by phoneme, specific substitution pattern, or type of
word within which the error occurred (e.g., function vs. content
word). These types of analyses should build on the general find-
ings here regarding the relationship between broad phonetic dis-
tance and intelligibility as well as our initial investigation into
pronunciation difference types.

We incorporated two talkers for each accent in an initial
attempt to extract away from talker-level effects and focus on
accent-level effects, but specific talkers selected here to repre-
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sent each accent did not all show consistent patterns in either
their relations between edit distances and intelligibility nor their
difference pattern distribution profiles. Even larger datasets
and talker samples will be needed to delineate among the
many factors that contribute to intelligibility across accents,
including the incorporation of multiple talkers of the same gen-
der from each accent background. Further, our listeners were
from a relatively homogeneous sample of monolingual Ameri-
can English speakers. Changing the characteristics of the lis-
teners could also impact the relations among accent, edit
distances, and intelligibility outcomes. Future studies should
also include other social or sociolinguistic factors, such as lis-
tener familiarity with accents or language attitudes, to deter-
mine their impact on intelligibility across accent varieties.

Previous studies that have employed accent distance met-
rics have primarily focused on rating data (e.g., accent strength
judgements) with fewer investigating intelligibility as we have
done here. The utility of these metrics for predicting other types
of perceptual effects should also be investigated. That is, intel-
ligibility and accent strength ratings are just two measures of
the types of information listeners extract from speech
(Baese-Berk et al., 2023). Future work should also assess
how pronunciation distance may impact other aspects of per-
ceptual processing, such as listening effort and memory. For
example, there is evidence that even fully intelligible L2 speech
can still incur a processing cost above that of more familiar L1
varieties (McLaughlin & Van Engen, 2020). It is possible that
the relation between edit distance measures and listening
effort could be even stronger than between edit distances
and intelligibility. That is, a sentence that has a higher edit dis-
tance score but for which listeners can successfully recover
the linguistic message may still require more effort than one
in which the edit distance score is closer to zero (i.e., aligns
more closely with the local variety).

In addition to evaluating two edit distance metrics, we also
investigated how the method for scoring listeners' responses
would impact results. There was a strong, positive correlation
between intelligibility scores based on percent words correct
(PWC) compared with the token sort ratio (TSR) scores from
Bosker (2021). Overall, there were few differences in the
results when the data were scored using the two methods.
That is, the same significant main effects and interactions were
observed with the two scoring methods. Both models also
accounted for roughly the same amount of variance. There-
fore, the very substantial time savings with the TSR method
suggests that adopting this scoring methodology will likely
not have very substantial impacts on the main results from a
study. Particularly as we are moving as a field toward large
datasets, tools such as these will be essential. These tools

should continue to be evaluated, however, with different types
of speech materials and listeners to ensure that the results
continue to align with the more traditional, “gold standard”
measures of intelligibility.

5. Conclusion

This study supports the use of edit distance metrics to cap-
ture how differences in segmental productions across both
unfamiliar L1 and L2 accents can impact intelligibility. The
results suggest that relatively simple metrics (i.e., automati-
cally calculated scores that are not adjusted for frequency of
pronunciations within a large corpus) may be sufficient to cap-
ture the impact of phonetic differences across accent varieties
on intelligibility. Furthermore, the findings support the use of an
automated method (i.e., the Token Sort Ratio from Bosker
[2021]) for scoring orthographic transcriptions that are com-
monly used in intelligibility studies. Although the pronunciation
distance metrics employed here significantly predicted intelligi-
bility across a range of accents and several listening condi-
tions, a full accounting of intelligibility across accents will
also require additional metrics at other levels of linguistics
structure including phonological, syntactic, and semantic
variables.

Declaration of interests

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Tessa Bent: Writing — review & editing, Writing — original
draft, Supervision, Software, Resources, Project administra-
tion, Methodology, Investigation, Funding acquisition, Concep-
tualization. Malachi Henry: Writing — review & editing, Writing
— original draft, Validation, Formal analysis. Rachael F. Holtb:
Writing — review & editing, Resources, Project administration,
Methodology, Funding acquisition, Conceptualization. Holly
Lind-Combs: Writing — review & editing, Software, Formal
analysis.

Acknowledgements

We would like to thank our research assistants, Jessica Bell, Pay-
ton Bastie, Journie Dickerson, Audrey Kunath, and Alondra Rodriguez,
programming assistance from Jill Henry, as well as our funding from
the National Science Foundation (Award Numbers: 1941691 and
1941662).



16

T. Bent et al./Journal of Phonetics 107 (2024) 101357

Appendix A. Summary results of the selected full mixed-effects beta regression model

Characteristic Factor/Level Beta 95% CI p-value
HeuristicDistance — 0.87 0.46, 1.3 <0.001
SNR Quiet — — —
PlusFour 0.02 —0.04, 0.07 0.5
Zero -0.03 —0.09, 0.03 0.3
Accent Midland — — —
British -0.02 -0.13, 0.10 0.8
German -0.09 -0.21, 0.04 0.2
Scottish —0.01 -0.13, 0.1 0.8
French 0.15 —-0.03, 0.33 0.1
Mandarin -0.07 —-0.19, 0.06 0.3
Spanish -0.29 -0.50, —0.08 0.007
Hindi 0.42 0.28, 0.57 <0.001
Japanese 0.01 -0.17, 0.19 >0.9
HeuristicDistance by SNR Heuristic-Distance * PlusFour —0.31 -0.76, 0.15 0.2
Heuristic-Distance * Zero -0.15 —0.58, 0.28 0.5
Heuristic Heuristic-Distance * Accent — — —
DistancebyAccent Heuristic-Distance * British —0.68 -1.3, —0.06 0.032
Heuristic-Distance * German -0.89 -1.5, —0.27 0.005
Heuristic-Distance * Scottish -0.38 -1.1, 0.37 0.3
Heuristic-Distance * French —-0.98 —-1.6, —0.42 <0.001
Heuristic-Distance * Mandarin —0.66 -1.2, —-0.12 0.016
Heuristic-Distance * Spanish —0.02 —0.55, 0.52 >0.9
Heuristic-Distance * Hindi —-1.1 -1.6, —0.55 <0.001
Heuristic-Distance * Japanese — -0.07, 0.21 —
SNR by Accent PlusFour * British 0.07 —0.24, 0.04 0.3
Zero * British -0.1 -0.11, 0.21 0.2
PlusFour * German 0.05 0.02, 0.33 0.5
Zero * German 0.18 -0.23, 0.08 0.026
PlusFour * Scottish -0.07 0.34, 0.63 0.4
Zero * Scottish 0.48 —0.30, 0.09 <0.001
PlusFour * French -0.1 0.07, 0.45 0.3
Zero * French 0.26 -0.19, 0.12 0.007
PlusFour * Mandarin —-0.04 0.00, 0.31 0.7
Zero * Mandarin 0.16 —-0.25, 0.20 0.05
PlusFour * Spanish -0.03 0.36, 0.79 0.8
Zero * Spanish 0.57 -0.56, —0.27 <0.001
PlusFour * Hindi -0.42 0.28, 0.55 <0.001
Zero * Hindi 0.42 -0.48, —0.12 <0.001
PlusFour * Japanese -0.3 0.31, 0.65 0.001
Zero * Japanese 0.48 -1.0, 0.47 <0.001
Heuristic Distance Heuristic-Distance * PlusFour * British —-0.28 0.00, 1.5 0.5
by SNRbyAccent Heuristic-Distance * Zero * British 0.75 —0.46, 1.1 0.049
Heuristic-Distance * PlusFour * German 0.34 -0.72, 0.83 0.4
Heuristic-Distance * Zero * German 0.05 —1.4, 0.59 0.9
Heuristic-Distance * PlusFour * Scottish —-0.39 —-1.2, 0.58 04
Heuristic-Distance * Zero * Scottish -0.33 -0.63, 0.75 0.5
Heuristic-Distance * PlusFour * French 0.06 -0.04, 1.3 0.9
Heuristic-Distance * Zero * French 0.62 -0.62, 0.79 0.065
Heuristic-Distance * PlusFour * Mandarin 0.08 -0.12,1.2 0.8
Heuristic-Distance * Zero * Mandarin 0.55 -0.71, 0.63 0.1
Heuristic-Distance * PlusFour * Spanish —0.04 —0.71, 0.56 >0.9
Heuristic-Distance * Zero * Spanish -0.07 —0.74, 0.59 0.8
Heuristic-Distance * PlusFour * Hindi -0.08 -0.10, 11 0.8
Heuristic-Distance * Zero * Hindi 0.52 0.08, 0.13 0.1
Heuristic-Distance * PlusFour * Japanese — 0.15, 0.28 —
Heuristic-Distance * Zero * Japanese — 0.12, 0.24 —

Model Syntax: TSR Score ~ UW Edit Distance*Accent*SNR + (1 | SNR) + (1 + Accent + UW Edit Distance | Sentence) ++ (1 + UW

Edit Distance | Participant).

Note: Due to rank deficiency in the model matrix, the table does not include interactions between the Japanese accent and Edit
Distance, nor the three-way interaction between the Japanese accent, Edit Distance, and SNR as this level of the interaction
was dropped by the model due to redundancy.
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