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Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in 

recent years, especially due to their potential in low-frequency applications, such as seismic barriers. 

Their design strategy typically involves tailoring geometrical features of local resonators to attain a 

desired frequency bandgap through extensive dispersion analyses. In this paper, we present a 

systematic design methodology to conceive these local resonators using topology optimization, where 

frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. 

Our design approach modifies an individual resonator’s response to unidirectional harmonic 

excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface 

waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, 

frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations 

analyze three case studies showing that longitudinal-like and flexural-like antiresonances lead to 

nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and 

wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating 

the proposed design methodology as an effective tool to realize locally resonant metasurfaces by 

matching multiple antiresonances such that bandgaps generated due to in-plane and out-of-plane 

surface wave motion combine into wider bandgaps.
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I. INTRODUCTION 1 

Controlling the propagation of surface waves in elastic media has numerous applications at different 2 

length scales, from seismic events to surface acoustic wave devices. Early studies investigated the 3 

attenuation of surface waves at both high [1] and low frequencies [2] using the concept of Phononic 4 

Crystals (PCs). PCs are periodic structures whose behavior is described by Bragg scattering, which 5 

requires lattice periodicity on the order of incident wave wavelength [3], [4]. In contrast, Locally 6 

Resonant Metasurfaces (LRMSs) allow sub-wavelength local resonators, as their working mechanism 7 

relies on the hybridization of the propagating wave with the resonators, making them suitable for low-8 

frequency applications. In this paper, we present a novel strategy to tailor the dynamic response of 9 

LRMSs through a systematic design of their constituent local resonators. 10 

 11 

Our approach to resonator design relies on manipulating its antiresonances to shape the frequency 12 

bandgap. Resonance frequencies represent a maximum displacement response upon dynamic 13 

excitations. In contrast, antiresonance frequencies represent an effective zero displacement in a 14 

specific direction (e.g., vertical or horizontal) subject to specific dynamic forces [5]. Following studies 15 

on plate waves [5], [6], the concept of resonances and antiresonances in generating and shaping the 16 

surface wave bandgaps has been well-established in numerical [7]–[9] and analytical studies [10], [11] 17 

since resonance and antiresonance frequencies, respectively, determine the start and end of a surface 18 

wave bandgap [7], [9]. The calculation of resonance frequencies for a resonator mounted over a half-19 

space in the path of Rayleigh wave propagation does not appear in most of the earlier analytical studies 20 

based on the homogenization approach [10], [12]; their analytical estimation is challenging even for 21 

simple spring-mass systems [14]  Thus, most of the metasurface studies resort to performing extensive 22 

dispersion analyses to create or enhance frequency bandgaps by varying the geometrical features of 23 

local resonators [13]–[16], typically considering mass-spring systems [17]–[20], prismatic resonators 24 
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[6], [21]–[24], or other simple geometries [25]–[27]. Recently, design optimization and machine 25 

learning methods have been used to propose more complex designs for LRMSs [28]–[32] mostly 26 

relying on creating bandgaps from dispersion analyses; however, our approach considers the 27 

fundamental physical interactions between resonators and the waveguide described by resonances and 28 

antiresonances, and how these interactions define frequency bandgaps. 29 

 30 

Design of local resonators to compose LRMSs given target frequency bandgaps was proposed in our 31 

most recent works, a design strategy based on exploiting the resonators’ antiresonances to obtain 32 

frequency bandgaps for plate [33] and surface waves [9], closely following our understanding of how 33 

these waves interact with displacement constraints applied to the waveguide’s surface by local 34 

resonators [8]. Recently, we proposed a systematic design methodology to devise local resonators for 35 

LRMSs by matching their antiresonances with target frequencies [34]. This methodology enables the 36 

design of resonators without the need for coupling them to the waveguide’s surface, as the resonators’ 37 

antiresonance frequencies are the same when they are either loaded with unidirectional harmonic 38 

forces or with full plate wave motion [9]. This design strategy was successfully implemented in a case 39 

study of suppressing low-frequency 𝑆0 Lamb wave mode in a thin plate [35] considering only the in-40 

plane motion of this particular Lamb wave mode; however, in the case of surface waves, the in-plane 41 

and the out-of-plane motion lead to different frequency bandgaps; therefore controlling both 42 

longitudinal-like and flexural-like antiresonances is the key to generating optimized resonators for 43 

LRMSs to prevent the propagation of Rayleigh waves.  44 

 45 

In this paper, we present a systematic design methodology using Topology Optimization (TO) to 46 

design resonators for locally resonant metasurfaces by manipulating both longitudinal-like and 47 

flexural-like antiresonances, specifically targeting the two motion components of surface waves to 48 
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generate frequency bandgaps for Rayleigh waves. TO has been used for decades to design elastic 49 

metamaterials initially considering design objectives such as negative Poisson’s ratio [36] or extreme 50 

bulk modulus [37]; however, the introduction of TO in designing elastodynamic metamaterials for 51 

surface waves is an emerging research field, with the recent work focused on optimizing bandgaps 52 

from dispersion analyses of two-dimensional unit cells for plate waves [28], [30], [38] or surface waves 53 

[29], [39], mostly using genetic algorithms. In contrast, we present in this paper a three-dimensional 54 

density-based and gradient-based TO approach that tailors the local resonators’ dynamic response 55 

without imposing periodicity conditions or having to compute dispersion analyses, which are 56 

particularly expensive for the case of surface waves due to their simulation complexity when modeling 57 

a full half-space. 58 

 59 

The rest of the paper is organized in three sections. The topology optimization problem is introduced 60 

in Section 2, with three case studies illustrating the generation of bandgaps by manipulating 61 

antiresonances subject to different surface wave motion components. The experimental procedure is 62 

presented in Section 3 to validate the numerical results obtained with one of the optimized solutions, 63 

followed by our conclusions in Section 4.  64 
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II. TOPOLOGY OPTIMIZATION OF LOCAL RESONATORS 65 

Surface waves’ displacement motion in linear elastic media is described by an elliptical motion 66 

consisting of in-plane and out-of-plane components. Controlling these two components is the key to 67 

designing an effective resonator to prevent the propagation of surface waves using LRMSs as each 68 

component results in frequency bandgaps when antiresonances occur at the contact surface between 69 

the resonator and the waveguide. The design problem is then how to conceive a resonator that exhibits 70 

antiresonances for both in-plane and out-of-plane motion at designer-specified target frequencies. In 71 

this section, we present a TO design approach to match antiresonances with predefined target 72 

frequencies for each of the surface motion components, along with a discussion of three numerical 73 

case studies. The foundations of this optimization methodology have been presented in our preceding 74 

publication; please refer to [34] for details about the antiresonance matching approach using TO. 75 

Additionally, the optimization code can be downloaded in the following GitHub repository: 76 

https://github.com/danielgiraldoguzman/TopOpt_EigenMatch 77 

 78 

A. Optimization problem 79 

The topology optimization problem is to systematically modify the material distribution within the 80 

design domain to minimize the objective function.  In this approach, the objective function is defined 81 

such that the resonator’s dynamic response exhibits antiresonances that match two predefined target 82 

frequencies. The first antiresonance mode targets the out-of-plane displacement component of surface 83 

waves, and the second the in-plane component. To simplify the resonator design, the surface wave 84 

motion is replaced by harmonic forces applied along in-plane and out-of-plane directions at the points 85 

where the resonator would contact the surface. Thus, the optimization problem is simplified to 86 

designing an individual resonator subject to two harmonic forces, as opposed to designing a complete 87 

metasurface subject to surface wave motion, effectively reducing the optimization’s computational 88 

https://github.com/danielgiraldoguzman/TopOpt_EigenMatch


 6 

complexity. The objective function minimizes the normalized difference between the antiresonance 89 

eigenfrequencies and their respective target frequencies, as follows: 90 

  min
𝛒

[w1 (
fA_out − fT_out

fT_out
)

2

+ w2 (
fA_in − fT_in

fT_in
)

2

] (1) 

subject to: 91 

 

Vmin ≤ ∑ ρeVe 

Ne

e=1

≤ Vmax 

0 < ρmin ≤ ρe ≤ 1 

(2a) 

(2b) 

where fT_out and fT_in are the respective target frequencies for out-of-plane and in-plane components, 92 

fA_out and fA_in the antiresonance eigenfrequencies of the resonator being optimized for the out-of-93 

plane and in-plane component, respectively, and w1 and w2 are the scalar weighting factors defining 94 

the relative importance of each term in Eq. (1). The material distribution problem is parameterized 95 

using relative element densities, an approach that has been used for decades in the TO literature [40].  96 

In Eq. (2), 𝛒 is the vector of design variables, namely element pseudo-densities, where ρe is the 97 

pseudo-density associated with finite element e, and ρmin is a very small number near zero used to 98 

prevent numerical errors. The effective element volume is ρeVe, and the total volume ∑ ρeVe 
Ne
e=1 is 99 

bounded by the maximum and minimum volume limits, Vmax  and Vmin, respectively. The 100 

optimization problem presented in Eq. (1) and Eq. (2) is based on eigenfrequency matching informed 101 

by harmonic analysis [34], requiring the solution of the generalized eigenvalue problem at each 102 

iteration: 103 

 
𝐊𝚽 = 𝛌𝐌𝚽  

(3) 



 7 

where 𝛌 is the matrix of eigenvalues such that λq = 2πfAq is the qth eigenvalue and fAq its 104 

corresponding eigenfrequency, and 𝚽 the matrix of eigenvectors. 𝐊 and 𝐌 are respectively the 105 

stiffness and mass matrices, modified by the design variables ρe such that: 106 

 

𝐊 = ∑ ρe

Ne

e=1

[𝐤e] 

𝐌 = ∑ ρe

Ne

e=1

[𝐦e] 

 

(4a) 

 

(4b) 

where 𝐤e and 𝐦e are the element-wise stiffness and mass matrices, respectively. Note from Eq. (2) 107 

that the design variables 𝜌𝑒 range from 𝜌𝑚𝑖𝑛 to 1, resulting in finite elements with near zero stiffness 108 

and mass for design values near zero, and elements with material properties of the solid material when 109 

ρe = 1. The procedure to identify and select appropriate antiresonance eigenfrequencies fA_out and 110 

fA_in to be used in Eq. (1) is as follows (for additional details, please refer to [34]): 111 

• Compute antiresonance eigenvalues and eigenvectors by solving Eq. (3) subject to 112 

displacement boundary conditions at the degrees of freedom where antiresonances are 113 

sought. 114 

• Compute the structure’s response to harmonic forces to identify antiresonances from the 115 

frequency response function. 116 

• Evaluate antiresonance metrics, i.e., antiresonance amplitude, bandwidth, prominence, 117 

and proximity to the target frequency. 118 

• Compare the harmonic displacement response field, at the frequency where an 119 

antiresonance has been identified, against all eigenvector solutions using the Modal 120 

Assurance Criterion (MAC). 121 
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• Select the highest MAC coefficient between the harmonic response and an eigenvector as 122 

the antiresonance eigenmode to be used in Eq. (1). 123 

The optimization problem is solved using the gradient-based Sequential Linear Programming (SLP) 124 

method, which requires the linearization of objective and constraint functions, namely, a sensitivity 125 

analysis. Since the optimization constraints are linear functions, the objective function is linearized 126 

with respect to each design variable 𝜌𝑒 using first-order Tylor series, such that Eq. (1) simplifies to: 127 

  min
𝛒

[(w1

(fA_out − fT_out)

4π2fA_outfT_out
2

∂λA_out

∂ρe
+ w2

(fA_in − fT_in)

4π2fA_infT_in
2

∂λA_in

∂ρe
) ρe]. (5) 

The main optimization program, i.e., sensitivities and SLP solver, runs on MATLAB, calling the 128 

ABAQUS solver at each iteration to evaluate the objective function. Every sensitivity term in Eq. (5) 129 

is computed with respect to the design variables 𝜌𝑒 in a parallel loop. The optimization problem 130 

presented in Eq. (1) and Eq. (2) can be generalized for any case requiring the manipulation of multiple 131 

antiresonances; in this case, designing resonators for locally resonant metasurfaces considering 132 

multiple antiresonances for different wave motion components offers a wide range of possibilities 133 

during the optimization set up, as different weighting coefficients and target frequencies can be 134 

selected by the designer according to the problem requirements. The remainder of this section 135 

presents three case studies to demonstrate the implications of matching either a single or multiple 136 

antiresonances, highlighting the need for matching antiresonances for both in-plane and out-of-plane 137 

motions to control surface waves. 138 

TABLE I lists the optimization’s initial parameters used in the case studies. Two target antiresonance 139 

frequencies have been selected for each motion component in the frequency range of the experimental 140 

test, i.e., 10 to 80 kHz. The design domain dimensions have been defined, considering the material 141 

properties used in the experimental test, to ensure feasible optimization solutions. This design domain 142 

has been discretized with serendipity second-order finite elements, whose size of 0.7 mm is small 143 
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enough to accurately represent frequencies up to 80 kHz. The optimization starting point is a 144 

homogenously distributed material at the maximum volume constraint, i.e., 30% of the material 145 

density (𝜌𝑒 = 0.3), however, to ensure the optimized topology physically connects to the surface, full-146 

density material (𝜌𝑒 = 1) has been enforced as a solid non-design region at the bottom of the design 147 

domain. Although these volume constraints are not strictly necessary to solve the optimization 148 

problem, they offer stability to the optimization process and result in topologies that efficiently use 149 

the design space. Using this combination of initial parameters, the optimization routine takes 30 to 50 150 

iterations to find a solution, with an iteration time of around 15 minutes. For additional information 151 

about the selection of initial optimization parameters and how they influence the optimization 152 

solution, please refer to [34]. 153 

 154 

TABLE I. Optimization initial parameters. 155 

Target antiresonance 

frequencies 

𝑓𝑇_out = 40 kHz 

𝑓𝑇_in = 30 kHz 

Material properties for 

topology-optimized resonators 

𝐸 = 3.9 × 109 Pa 

𝜌 = 1214.65 kg/m3 

𝑣 = 0.33  

Material properties for 

waveguide (half-space) 

𝐸 = 3.68 × 109 Pa 

𝜌 = 1410 kg/m3 

𝑣 = 0.332  

Design domain 14 × 14 × 14 mm 
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Mesh discretization 20 ×  20 ×  20 finite elements 

Volume constraints 
𝑉𝑚𝑎𝑥 = 30%  

𝑉𝑚𝑖𝑛 = 10%  

Starting point 

Homogenous pseudo-density at 𝜌𝑒 = 0.3 

Solid non-design 4 mm squared bottom base 

with void non-design surrounding elements. 

 156 

  157 
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B. Single antiresonance matching 158 

Frequency bandgaps for surface waves can be created by tailoring a single antiresonance subject to a 159 

load excitation in a particular direction; however, because of the elliptical motion of surface waves, 160 

another frequency bandgap may appear due to the other motion component not being controlled. In 161 

this subsection, this concept is illustrated via topology-optimized resonators obtained by varying the 162 

weighting coefficients w1 and w2 in Eq. (1), i.e., a single antiresonance mode for each of the motion 163 

components is tailored. Numerical analyses of the resulting optimized resonators’ response to surface 164 

wave motion are presented. 165 

 166 

Case study #1: Consider the weighting coefficients w1 = 1, and w2 = 0 in Eq. (1), i.e., only the out-167 

of-plane motion is considered by the optimizer, and all the other initial parameters as presented in 168 

TABLE I. The resultant topology and its corresponding analysis are presented in Fig. 1. 169 

 170 

 171 

(a) 172 
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 173 

(b) 174 

 175 

(c) 176 

 177 

(d) 178 
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FIG. 1. (Color online). Case study #1 results. (a) Raw resultant topology with black and white voxels 179 

respectively for solid (𝜌𝑒 = 1) and void (𝜌𝑒 = 𝜌𝑚𝑖𝑛) material, and post-processed topology-optimized 180 

resonator meshed with tetrahedral elements in COMSOL Multiphysics®, (b) resonator’s response to 181 

unidirectional harmonic forces in the 𝑥- or 𝑦-directions; inset shows a lateral view (𝑥𝑧 plane) of the 182 

resonator’s total displacement field subject to harmonic loads in the 𝑧-direction at 42 kHz, (c) 183 

frequency response to in-plane and out-of-plane surface wave motion components for a single 184 

resonator, inset shows a single resonator’s total displacement field response to surface waves at 43 185 

kHz, (d) surface wave transmission ratio for a metasurface composed of topology-optimized 186 

resonators, inset shows the metasurface’s total displacement field response at 40 kHz. Note that 187 

frequency bandgaps for both the in-plane and out-of-plane components are depicted as shaded 188 

regions in subfigures (c) and (d). Insets of subfigures (b), (c), and (d) do not show absorption boundary 189 

regions for clarity, and they use the “Rainbow Classic” colormap from COMSOL Multiphysics®, with 190 

warm colors showing larger displacement values and cold colors representing relatively smaller 191 

displacement. 192 

 193 

Figure 1 shows the resultant topology-optimized resonator for case study #1. This resonator exhibits 194 

an antiresonance due to harmonic forces in the 𝑧-direction close to the target frequency at 42 kHz 195 

(Fig. 1(b)). Another antiresonance due to harmonic forces in the x-direction occurs at 49 kHz; 196 

however, this antiresonance was not considered as an optimization goal since 𝑤2 = 0 in Eq. (1).  Once 197 

the resonator is mounted on a half-space and subject to Rayleigh waves, the antiresonance due to out-198 

of-plane motion occurs at 43 kHz in Fig. 1(c), in accordance with the response to unidirectional 199 

harmonic forces in Fig. 1(b). The small frequency shift is the consequence of the complete surface 200 

wave motion interacting with this antiresonance mode, being influenced by the in-plane motion. The 201 
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antiresonance due to in-plane motion, although not considered during the optimization process, 202 

happens to be at 48.5 kHz. Two frequency bandgaps develop once a locally resonant metasurface is 203 

arranged using these optimized resonators; each bandgap corresponds to out-of-plane and in-plane 204 

motion. Following [7], the bandgaps’ bounds are defined from resonance to antiresonance in the 205 

frequency response to surface wave motion (Fig. 1(c)), depicted as shaded regions in Fig. 1(c)(d), 206 

respectively, from 27 kHz to 40 kHz for out-of-plane motion, and from 36.5 kHz to 48.5 kHz for 207 

in-plane motion. In Fig. 1(d), the maximum transmission loss for each bandgap is observed at 28.5 208 

kHz and 40 kHz, respectively with transmission coefficients of 0.10 and 0.19. However, the overlap 209 

between the in-plane and out-of-plane bandgaps creates a transitional response splitting the two 210 

bandgaps, allowing the transmission of waves through the metasurface in this overlapping range with 211 

a peak transmission coefficient of 0.88 at 36 kHz. 212 

Figure 1(d), Fig. 2(d), and Fig. 3(d) present transmission loss plots of Rayleigh waves as a function of 213 

frequency when the resonators have been placed over the half-space’s surface. These transmission 214 

ratio coefficients are computed as follows: 215 

• Run a baseline simulation of Rayleigh wave propagation in half-space for all frequencies of 216 

interest with no resonators placed on the surface. 217 

• Run the same simulation after mounting the optimized resonators over the half-space’s 218 

surface, constituting the locally resonant metasurface. 219 

• Extract real and imaginary components of displacement at 15000 equally-spaced points over 220 

the half-space surface in the transmission region, i.e., after the metasurface region along the 221 

wave propagation direction. Extract the displacements at the same data points for both the 222 

baseline and the metasurface simulations. 223 
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• Compute wavenumber spectra by performing 2D FFT (Fast Fourier transform) of the 224 

extracted displacements at each frequency, for both the baseline and metasurface simulations. 225 

• Compute the transmission coefficients as the ratio between the maximum spectral amplitude 226 

of the metasurface and the baseline simulations, for each frequency. 227 

 228 

Case study #2: Now consider the opposite weighting coefficients, i.e., 𝑤1 = 0, and 𝑤2 = 1 in Eq. 229 

(1), i.e., only the in-plane motion is considered by the optimizer, and all the other initial parameters as 230 

presented in TABLE I. The resultant topology and its corresponding analysis are presented in Fig. 2. 231 

 232 

 233 

(a) 234 

 235 
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(b) 236 

 237 

(c) 238 

 239 

(d) 240 

FIG. 2. (Color online). Case study #2. (a) Raw resultant topology with black and white voxels 241 

respectively for solid (𝜌𝑒 = 1) and void (𝜌𝑒 = 𝜌𝑚𝑖𝑛) material, and post-processed topology-optimized 242 

resonator meshed with tetrahedral elements in COMSOL Multiphysics®, (b) resonator’s response to 243 

unidirectional harmonic forces in the 𝑥- or 𝑦-directions; inset shows a lateral view (𝑥𝑧 plane) of the 244 

resonator’s total displacement field subject to harmonic loads in the 𝑥-direction at 34 kHz, (c) 245 

frequency response to in-plane and out-of-plane surface wave motion components for a single 246 

resonator, inset shows a single resonator’s total displacement field response to surface waves at 35.5 247 

kHz (d) surface wave transmission ratio for a metasurface composed of topology-optimized 248 
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resonators, inset show the metasurface’s total displacement field response at 28.5 kHz. Note that 249 

frequency bandgaps for both the in-plane and out-of-plane components are depicted as shaded 250 

regions in subfigures (c) and (d). Insets of subfigures (b), (c), and (d) do not show absorption boundary 251 

regions for clarity, and they use the “Rainbow Classic” colormap from COMSOL Multiphysics®, with 252 

warm colors showing larger displacement values and cold colors representing relatively smaller 253 

displacement. 254 

 255 

Similar to Case Study #1, Fig. 2 shows a topology-optimized resonator designed to exhibit an 256 

antiresonance due to unidirectional harmonic forces, this time along the 𝑥-direction with a target 257 

frequency 𝑓𝑇_in = 30 kHz; however, in this case, the antiresonance has shifted to 34 kHz after post-258 

processing but the reason is not fully understood as a higher mesh discretization does not prevent this 259 

problem. Our optimization uses the ABAQUS solver with serendipity second-order (20-node) 260 

hexahedral elements to compute the objective function and evaluate sensitivities; however, the 261 

resultant post-processed topology is evaluated in COMSOL using second-order Lagrange tetrahedral 262 

elements. As different elements experience different levels of shear-locking, using these two different 263 

solvers with two different finite elements may explain the frequency shift observed for flexural-like 264 

modes.  265 

The antiresonance due to loads in the z-direction occurs at 29.5 kHz; note this frequency was not 266 

considered as an optimization objective since 𝑤1 = 0 in Eq. (1). Once the resonator is mounted over 267 

the half-space under Rayleigh wave propagation, the antiresonance due to in-plane wave motion 268 

occurs at 35.5 kHz, as shown in Fig. 2(c), close to the antiresonance frequency under horizontal 269 

forced excitation (34 kHz), while the antiresonance due to out-of-plane motion appears at 32 kHz. 270 

Thus, two frequency bandgaps are expected from 26 kHz to 35.5 kHz and from 20.5 kHz to 32 271 

kHz, respectively for in-plane and out-of-plane motion. In Fig. 2(d), the maximum transmission loss 272 
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for each bandgap is achieved at 22 kHz and 28.5 kHz, respectively with transmission ratio coefficients 273 

of 0.28 and 0.06. Similar to Case Study #1, the two bandgaps are not joined but divided by the 274 

resonance mode due to the in-plane motion happening, in this case, with a transmission coefficient of 275 

0.89 at 26 kHz, as shown in Fig. 2(d).  276 
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C. Double antiresonance matching 277 

Matching a single antiresonance is useful to generate frequency bandgaps, however, as shown in case 278 

studies #1 and #2, the overlapping of in-plane and out-of-plane bandgaps allows the transmission of 279 

waves at their intersection. A double antiresonance matching approach offers control over both the 280 

out-of-plane and in-plane antiresonance modes. This subsection presents a case study that, contrary 281 

to the previous case studies, optimizes a resonator to exhibit two antiresonances at specific target 282 

frequencies, forcing the antiresonance due to in-plane motion to be lower than that due to out-of-283 

plane motion. As will be demonstrated below, this approach reduces those undesired interactions, 284 

effectively removing the transitional response and combining the two bandgaps into a single wider 285 

bandgap. 286 

 287 

Case study #3: Consider equal weighting coefficients 𝑤1 = 1, and 𝑤2 = 1 in Eq. (1), and all the 288 

other initial parameters as listed in TABLE I, i.e., both the in-plane and out-of-plane motions are 289 

considered by the optimizer.  Fig. 3 shows the resultant topology-optimized resonator and its 290 

corresponding analysis of results.  291 

 292 

 293 

(a) 294 
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 295 

(b) 296 

 297 

(c) 298 

 299 

(d) 300 
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FIG. 3. (Color online). Case study #3 analysis. (a) Raw resultant topology with black and white voxels 301 

respectively for solid (𝜌𝑒 = 1) and void (𝜌𝑒 = 𝜌𝑚𝑖𝑛) material, and post-processed topology-optimized 302 

resonator meshed with tetrahedral elements in COMSOL Multiphysics®, (b) resonator’s response to 303 

unidirectional harmonic forces in the 𝑥- or 𝑦-directions; inset shows a lateral view (𝑥𝑧 plane) of the 304 

resonator’s total displacement field subject to harmonic loads in the 𝑧-direction at 41 kHz, (c) 305 

frequency response to in-plane and out-of-plane surface wave motion components for a single 306 

resonator; inset shows a single resonator’s total displacement field response to surface waves at 44.5 307 

kHz, (d) surface wave transmission ratio for a metasurface composed of topology-optimized 308 

resonators; inset shows the metasurface’s total displacement field response at 35 kHz. Note that 309 

frequency bandgaps for both the in-plane and out-of-plane components are depicted as shaded 310 

regions in subfigures (c) and (d). Insets of subfigures (b), (c), and (d) do not show absorption boundary 311 

regions for clarity, and they use the “Rainbow Classic” colormap from COMSOL Multiphysics®, with 312 

warm colors showing larger displacement values and cold colors representing relatively smaller 313 

displacement. 314 

 315 

Figure 3 presents the topology-optimized resonator designed by matching two antiresonances due to 316 

harmonic forces in the 𝑥- and 𝑧-directions. The antiresonances occur at 41 kHz in the 𝑧-direction 317 

and 33 kHz in the 𝑥-direction, as shown in Fig. 3(b). When the resonator is subject to Rayleigh waves, 318 

the antiresonance due to out-of-plane motion occurs at 44.5 kHz. The response to in-plane motion 319 

does not exhibit a clear antiresonance; a flat response is observed from 43 kHz to 51 kHz, 320 

nonetheless, the lowest amplitude is registered at 47.5 kHz. Thus, the two respective bandgaps for 321 

out-of-plane and in-plane motion extend from 32.5 kHz to 44.5 kHz and from 32.5 kHz to 47.5 322 

kHz. Note that both bandgaps start at the same frequency because the resonance peak for both motion 323 
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components occurs at 32.5 kHz, as shown in Fig. 3(c). Moreover, the antiresonances for both 324 

components also happen in the same frequency range. This combination of resonances and 325 

antiresonances creates a single, wider bandgap, preventing the generation of undesired transitional 326 

responses and separation of bandgaps, as observed in case studies #1 and #2. In Fig. 3(d), the 327 

transmission coefficient at 35 kHz is 0.23, marking the lowest transmission point within the bandgap, 328 

however, by combining the effects of in-plane and out-of-plane motion, the resultant bandgap 329 

develops from 32.5 kHz to 47.5 kHz, which is a single and wider bandgap than those obtained in 330 

case studies #1 and #2. In the subsequent section, we present the experimental validation of the 331 

transmission loss for this case study. 332 

 333 

All topology-optimized resonators presented in Fig. 1, Fig. 2, and Fig. 3, are the resultant topologies 334 

after the optimization process convergence, i.e., the objective function defined in Eq. (1) has reached 335 

a local minimum. TABLE II summarizes and compares the optimization results for each of the case 336 

studies. Note that these topologies have been obtained using the initial parameters presented in 337 

TABLE I; adjustments to these parameters might result in different solutions. Design domain 338 

dimensions, material properties, and frequency range must be appropriately defined to ensure feasible 339 

solutions. For additional case studies and analyses on how different optimization parameters may 340 

influence the solution, please refer to [34]. Finally, the optimized topologies have been arranged in a 341 

9x4 regular grid to constitute a locally resonant metasurface as shown in the insets of Fig. 1(d), Fig. 342 

2(d), and Fig. 3(d). This arrangement has not been optimized, meaning that other configurations of 343 

resonator placements will generate different results. 344 

 345 

 346 

 347 
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TABLE II Summary of results. 348 

Case study #1 #2 #3 

Weighting coefficients 
𝑤1 = 1 

𝑤2 = 0 

𝑤1 = 0 

𝑤2 = 1 

𝑤1 = 1 

𝑤2 = 1 

Target antiresonance 

frequencies 
𝑓𝑇_out = 40 kHz 𝑓𝑇_in = 30 kHz 

𝑓𝑇_out = 40 kHz 

𝑓𝑇_in = 30 kHz 

Optimized 

antiresonance 

frequencies 

𝑓𝑇_out = 42 kHz 𝑓𝑇_in = 34 kHz 

𝑓𝑇_out = 41 kHz 

𝑓𝑇_in = 33 kHz 

Bandgap (out-of-plane) 

Bandgap (in-plane) 

27 - 40 kHz 

36.5 - 48.5 kHz 

26 - 35.5 kHz 

20.5 - 32 kHz 

32.5 - 47.5 kHz. 

Transmission 

coefficients; 

lowest within bandgap 

0.10 at 28.5 kHz 

0.19 at 40 kHz 

0.28 at 22 kHz 

0.06 at 28.5 kHz 

0.23 at 35 kHz 

Transmission 

coefficients;  

transitional peak 

0.89 at 26 kHz 0.88 at 36 kHz 
No transitional 

response 

 349 

  350 
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III. EXPERIMENTAL VALIDATION OF CASE STUDY #3 351 

 352 

D. Experimental setup 353 

Surface wave experiments are performed on a Delrin plastic block of dimensions 914×152×635 mm 354 

(36×6×25 inches) with material properties (Young’s modulus =  3.68 GPa, density =  1410 kg/m3, 355 

Poisson’s coefficient 0.332) estimated from wave speed measurements. The experimental setup 356 

comprises a National Instruments (NI) data acquisition system with arbitrary waveform generator 357 

PXIe-5433 and oscilloscope PXIe-5172 cards, a TEGAM amplifier set up to 50x amplification factor, 358 

an Olympus pre-amplifier set up to a 25dB gain, and a scanning laser setup equipped with a long-359 

range PSV-505 Laser Doppler Vibrometer (LDV) mounted on a 250 mm scan length micro-precision 360 

Newport scanning stage ILS250PP and controller ESP301, with the laser pointing at a reflective tape 361 

on the block’s surface to measure the out-of-plane particle velocity at multiple points, as shown in Fig. 362 

4(a). A 100-kHz P-wave Olympus transducer is glued to the narrow side of the plastic block, i.e., to 363 

the face with dimensions 914×152 mm (36×6 inches), thus separating the compressional waves 364 

reflecting from the back wall from the surface waves. Moreover, to minimize reflections from side 365 

walls, a duct seal is applied on both edges of the testing surface, as shown in Fig. 4. We employed two 366 

broadband Ricker waveforms with, respectively, 30 kHz and 50 kHz central frequencies to fully cover 367 

the frequency range under study. 368 

 369 

The topology-optimized resonator of Case Study #3 (Fig. 3) is selected for experimental validation as 370 

it was obtained by optimizing antiresonances for both the in-plane and out-of-plane surface wave 371 

motion components. This resonator has been 3D printed using Stereolithography (SLA) with material 372 

properties (density = 1214.65 kg/m3, Young’s modulus = 3.9 GPa, and Poisson’s coefficient = 0.33) 373 

measured from resonance ultrasonic measurements. An arrangement of 28 printed resonators is glued 374 
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on the Delrin block’s surface in a regular grid configuration to compose the locally resonant 375 

metasurface; the same arrangement is used in the numerical studies of Fig 3. The out-of-plane velocity 376 

is captured with a 50 MHz sampling frequency for 51 points after the metasurface (starting at 15 cm 377 

from the piezoelectric transducer) along the wave propagation direction in scanning steps of 5 mm; 378 

sufficient to identify wave modes propagating at wavenumbers up to 600 rad/m. We perform two 379 

independent experiments using the two excitation Ricker waveforms at 30kHz and 50kHz: (i) baseline 380 

(without resonators) and (ii) metasurface (with an array of resonators), while keeping all the other 381 

experimental conditions the same. To verify the generated signal amplitudes in each test are consistent, 382 

the back-wall reflection wave is used as a reference as this wave bounces back from the block’s bottom 383 

surface, therefore not being affected by the metasurface presence. 384 

 385 

(a) 386 

 387 

(b) 388 
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 389 

(c) 390 

FIG. 4. (Color online). Experimental setup. (a) Collage of photos showing the laser (LDV) pointing 391 

at the block’s surface, and close-up photos of the locally resonant metasurface composed of 3D-392 

printed optimized resonators from Case study #3. (b) Baseline and (c) metasurface measurement 393 

configurations. 394 

 395 

E. Experimental results 396 

Waterfall plots (B-scans) in the absence and presence of the metasurface are compared in Fig. 5 for 397 

the test performed with the 30 kHz Ricker wavelet excitation. Four distinct wave packets can be 398 

observed in the baseline waterfall plot: (i) surface skimming longitudinal waves (SSLW), (ii) surface 399 

sidewall reflections (SSWR), (iii) Rayleigh waves, and (iv) longitudinal back-wall reflections (LBWR), 400 

as marked in Fig. 5(a)(b). As expected, Rayleigh wave amplitude attenuation in the presence of the 401 

metasurface is observed in the waterfall plots. However, it is difficult to quantify the attenuation at 402 

different frequencies just relying on the time-domain signals. Thus, we construct wavenumber-403 

frequency dispersion spectra by performing 2D FFT over the waterfall data to visualize different wave 404 

modes propagating at distinct frequencies along the scanning path. Note that to exclude the LBWR 405 

from all subsequent results, we have limited the analysis to data contained in the first 575 𝜇𝑠 (Fig. 5 406 

(a)(b)) for both baseline and metasurface measurements. 407 

 408 
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The dispersion spectrum for the baseline plot, Fig. 5(c), indicates the presence of Rayleigh wave modes 409 

with a strong signal amplitude spanning from 15 kHz to 60 kHz. On the other hand, for the 410 

metasurface configuration, in Fig. 5(d), we can observe two splits in the spectral amplitude signature, 411 

indicating the formation of bandgaps due to the metasurface presence. It should be noted that 412 

waterfall plots are normalized against the corresponding maxima in the baseline measurement. The 413 

wave transmission is then estimated by taking the ratio between the maximum spectral amplitude of 414 

the metasurface and baseline configurations over the desired frequency range (dashed white lines in 415 

Fig. 5(c)(d)). To remove potential influence of non-surface wave modes, the maximum spectral 416 

amplitude is taken within a range of ±25 rad/m around the expected Rayleigh wave dispersion line; 417 

both limits are marked as solid light green lines in Fig. 5 (c)(d). 418 

 419 

 

(a) 

 

(b) 
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(c) 

 

(d) 

FIG. 5. (Color online). Experimental measurement results as waterfall plots and their respective 420 

wavenumber-frequency dispersion spectra. Following the experimental configurations shown in Fig. 421 

4, (a) and (c) are baseline measurements, (b) and (d) are metasurface measurements.  422 

 423 

The experimentally-estimated spectral transmission ratio, using both the 30 kHz and 50 kHz 424 

excitations, are shown in Fig. 6. Despite performing two independent experiments, both transmission 425 

ratio plots agree well over the desired frequency range (20 − 70 kHz), thereby validating the 426 

experimental procedures and the data analysis strategy used in deriving the transmission ratio for both 427 

the numerical and experimental results. The experimental spectral transmission plots correlate well 428 

with the numerical results, i.e., the predicted bandgap from 32.5 kHz to 47.5 kHz by the numerical 429 

analysis is observed in the experimental test, demonstrating the practical feasibility of the proposed 430 

topology optimization strategy in designing metasurfaces to suppress surface waves. 431 
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 432 

FIG. 6. (Color online). Comparison of numerical and experimental transmission plots. Numerical 433 

transmission plot from Fig. 3(d) (red solid line with circular markers) and transmission plots from 434 

experimental results using two independent Ricker wave excitations with center frequencies 30 kHz 435 

(blue solid line with circular markers) and 50 kHz (green dashed line with cross markers).  436 
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IV. SUMMARY AND CONCLUSION 437 

The design of locally resonant metasurfaces to prevent the propagation of surface waves can be 438 

simplified to designing an isolated local resonator by tailoring its antiresonances subject to 439 

unidirectional harmonic forces applied at the location where the resonator would connect to the 440 

surface. Since the particle displacement profile of surface waves is described by an elliptical motion, 441 

these antiresonances must be obtained by individually applying both in-plane and out-of-plane 442 

harmonic forces. This is because each component of surface motion leads to a different frequency 443 

bandgap; therefore, failing to control one of the two bandgaps could result in an undesired response, 444 

as was exemplified in case studies #1 and #2. Specifically, an overlap between the two bandgaps 445 

results in significant transmission at the frequency range where both bandgaps intersect. Thus, 446 

appropriate manipulation of each bandgap is the key to obtaining wider frequency bandgaps. 447 

 448 

When designing a local resonator that generates two overlapping bandgaps, tailoring its antiresonances 449 

to appropriate frequencies is crucial to ensure the fully overlapping instead of multiple separated 450 

bandgaps. In this paper, we presented three case studies to illustrate the separation vs combination of 451 

bandgaps, given specific antiresonance target frequencies. When a single antiresonance is controlled 452 

(Case studies #1 and #2), either the in-plane or out-of-plane component, the out-of-plane 453 

antiresonance seems to appear at a lower frequency than the in-plane antiresonance and the resultant 454 

spectral transmission ratio exhibits a transitional response that occurs at the intersection of the two 455 

bandgaps, mainly because of a resonance happening in this range, as shown in Fig. 1(c) and Fig. 2(c). 456 

An effective approach to prevent this transitional response, and therefore obtain a single wider 457 

bandgap, is to manipulate the order in which these antiresonances occur, i.e., making the in-plane 458 

component antiresonance occur at a lower frequency than that corresponding to the out-of-plane 459 

component. This manipulation results in an effective design approach to combine frequency bandgaps 460 



 31 

as demonstrated by case study #3. Numerical and experimental results pertaining to case study #3 461 

show excellent agreement; the expected bandgaps from the numerical analyses have been observed in 462 

the experimental results, specifically by comparing spectral transmission ratio plots. 463 

 464 

This paper demonstrates a systematic design methodology to conceive local resonators using topology 465 

optimization by matching antiresonance frequencies with specific targets. We present an effective 466 

methodology to create locally resonant metasurfaces composed of multiple optimized resonators with 467 

a wide bandgap occurring around the target frequencies. An antiresonance subject to harmonic forces 468 

correlates well with the antiresonance once the resonator is attached to the waveguide’s surface, 469 

however, future studies are necessary to understand the resonances of local resonators in response to 470 

surface waves once they are attached to the waveguide. This is an important consideration since 471 

frequency bandgaps are bounded by resonances and antiresonances, therefore a fundamental 472 

understanding of how to predict the frequency at which the resonance occurs is required to design 473 

optimized topologies for surface wave propagation. Thus, a future design approach should consider 474 

controlling both resonances and antiresonances as the essential factor in generating wider bandgaps.  475 
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